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Abstract. In this paper, sufficient conditions have been obtained for
the existence of at least two positive periodic solutions of the Nicholson’s
Blowflies model

x′(t) = −a(t)x(t) + p(t)xm(t− τ(t))e−γ(t)xn(t−τ(t)).

The Leggett–Williams multiple fixed point theorem has been used to prove
our results.
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îâäæñéâ. êŽöîëéöæ éæôâĲñèæŽ ïŽçéŽîæïæ ìæîëĲâĲæ æéæïŽåãæï, îëé êæ-
çëèïëêæï éëáâèï

x′(t) = −a(t)x(t) + p(t)xm(t− τ(t))e−γ(t)xn(t−τ(t))

ßóëêáâï ïñè éùæîâ ëîæ áŽáâĲæåæ ìâîæëáñèæ ŽéëêŽýïêæ. öâáâàâĲæï áŽ-
ïŽéðçæùâĲèŽá àŽéëõâêâĲñèæŽ èâóâð{ãæèæŽéïæï éîŽãŽèæ ñúîŽãæ ûâîðæèæï
åâëîâéŽ.
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1. Introduction

In this paper, we study the existence of two positive periodic solutions
of a nonlinear functional differential equation of the form

x′(t) = −a(t)x(t) + p(t)xm(t− τ(t))e−γ(t)xn(t−τ(t)), (1)

where a, p, γ and τ ∈ C(R, R+) are T -periodic functions, m > 1 and n > 0
are reals and T is a positive constant.

If m = 1 and n = 1, then (1) yields the Nicholson’s Blowflies model

x′(t) = −a(t)x(t) + p(t)x(t− τ(t))e−γ(t)x(t−τ(t)). (2)

When all the parameters are positive constants, (2) reduces to an original
model developed by Gurney et al. [6] to describe the population of Aus-
tralian sheep-blowfly that agrees well with the experimental data of Nichol-
son [11]. One may note that the equation explains Nicholson’s data of
blowfly quite accurately and hence we refer (2) as the Nicholson’s Blowflies
model.

The variation of the environment plays an important role in many biolog-
ical and ecological dynamical systems. In particular, the effects of a period-
ically varying environment are important for evolutionary theories, as the
selective forces on systems in a fluctuating environment differ from those in
a stable environment. Thus, the assumption of periodicity of parameters
of the system (in a way) incorporates the periodicity of the environment
(e.g., seasonal effects of weather, food supplies, mating habits, etc.). In
fact, it has been suggested by Nicholson [12] that any periodic change of
climate tends to improve it’s periodicity upon oscillations of internal origin
or to cause such oscillations to have a harmonic relation to periodic climate
changes. In view of the above fact, it is realistic to assume the periodicity
on the parameters or on the coefficient functions of (1) and (2). Thus, the
existence of periodic solutions of (1) or (2) are naturally expected.

Many authors have studied the existence of at least one positive periodic
solution of (2). For this, one may refer the papers in [5], [7], [16], [23], [24],
[27]–[29]. Krasnoselskǐı fixed point theorem [3] have been used to prove the
results. Although the existence of at least one periodic solution of (2) is
largely studied in the literature, studies on the existence of at least two
periodic solutions of (1) and (2) are relatively scarce.

In this paper, we have made an attempt to study the existence of at
least two positive periodic solutions of (1). We have used Leggett–Williams
multiple fixed point theorem [10] to prove our theorem. This theorem have
been used by the authors in [19]–[22] to study the existence of three periodic
solution of the following differential equations:

x′(t) = −a(t)x(t) + λf(t, x(h(t))),

and
x′(t) = a(t)x(t)− λf(t, x(h(t))),
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where λ is a positive parameter. The results obtained for the above equa-
tions were applied to (1) with constant coefficients of the form

x′(t) = −ax(t) + pxm(t− τ)e−γxn(t−τ), (3)

We state the results obtained in [20], [21] in the form of theorems.

Theorem 1.1 ([20]). Let m > 1 and 2e(δ−1)δm−1γ
(m−1)

n ≤ 1. Then the
equation (3) has at least three positive T -periodic solutions for 1

2T < p < 1
T .

Theorem 1.2 ([21]). Assume that m > 1 and that
T∫

0

p(t) dt > δ(δ − 1)
( γδ2e

m− 1

)m−1

. (4)

Then the equation

x′(t) = −a(t)x(t) + p(t)xm(t− τ(t))e−γx(t−τ(t)) (5)

has at least three nonnegative T -periodic solutions, where γ > 0 is a constant

and δ = exp
( T∫

0

a(s) ds
)
.

For the last two decades, there has been a rich literature on the use of
fixed point theorems on the existence of positive solutions of boundary value
problems. The existence of periodic solutions of this type equation is closely
related to the existence of solutions of general boundary value problems.
The ideas in this paper have come from those for general boundary value
problem.

In the next section, we will state the well known Leggett–Williams mul-
tiple fixed point theorem [10] and then we will apply the theorem to the
model (1). The obtained result improves our previous result.

2. Main Results

From the periodicity of the solution and the assumption that x is known
on the nonlinear parts of (1), one can construct a Green’s Kernel. In fact,
(1) is equivalent to

x(t) =

t+T∫

t

G(t, s)p(s)xm(s− τ(s))e−γ(s)xn(s−τ(s)) ds,

where G(t, s) = e

s∫
t

a(θ) dθ

e

T∫
0

a(θ) dθ

−1

is Green’s Kernel, which is bounded by

α =
1

δ − 1
≤ G(t, s) ≤ δ

δ − 1
= β, δ = e

T∫
0

a(θ) dθ
.

The following concept from the Leggett–Williams multiple fixed point
theorem [10] is needed. Let X be a Banach space and K be a cone in X.
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For a > 0, define Ka = {x ∈ K; ‖x‖ < a}. A mapping ψ is said to be
a concave nonnegative continuous functional on K if ψ : K → [0,∞) is
continuous and

ψ(µx + (1− µ)y) ≥ µψ(x) + (1− µ)ψ(y), x, y ∈ K, µ ∈ [0, 1].

Let b, c > 0 be constants with K and X as defined above. Define

K(ψ, b, c) =
{
x ∈ K; ψ(x) ≥ b, ‖x‖ ≤ c

}
.

Theorem 2.1 (Leggett–Williams multiple fixed point theorem [10, The-
orem 3.3]). Let X = (X, ‖ · ‖) be a Banach space and K ⊂ X a cone, and
c4 > 0 a constant. Suppose there exists a concave nonnegative continuous
functional ψ on K with ψ(u) ≤ ‖u‖ for u ∈ Kc4 and let A : Kc4 → Kc4 be
a continuous compact map. Assume that there are numbers c1, c2 and c3

with 0 < c1 < c2 < c3 ≤ c4 such that

(i)
{
u ∈ K(ψ, c2, c3); ψ(u) > c2

} 6= φ and ψ(Au) > c2 for all u ∈
K(ψ, c2, c3);

(ii) ‖Au‖ < c1 for all u ∈ Kc1 ;
(iii) ψ(Au) > c2 for all u ∈ K(ψ, c2, c4) with ‖Au‖ > c3.

Then A has at least three fixed points u1, u2 and u3 in Kc4 . Further-
more, we have u1 ∈ Kc1 , u2 ∈ {u ∈ K(ψ, c2, c4); ψ(u) > c2}, u3 ∈
Kc4 \ {K(ψ, c2, c4) ∪Kc1}.

In this article, X will denote the set of continuous T -periodic functions,
which forms a Banach space under the norm ‖x‖ = sup

0≤t≤T
|x(t)|. Define an

operator A on X by

(Ax)(t) =

t+T∫

t

G(t, s)p(s)x(s− τ(s))e−γ(s)x(s−τ(s)) ds

and a cone K on X by

K =
{

x ∈ X; x(t) ≥ 1
δ
‖x‖

}
.

It is easy to verify that A(K) ⊂ K and A is a completely continuous op-
erator on K. Further, the existence of a positive periodic solution of (1) is
equivalent to the existence of a fixed point of A in K.

According to the localization of the fixed points in Theorem 2.1, one of
them is possibly a zero (namely u1 ∈ Kc1). Thus, the operator A has at least
two positive fixed points and a zero fixed point as can be easily observed.
Accordingly, (1) has two positive T -periodic solutions and a possible trivial
solution (if the conditions of Theorem 1 are satisfied).

On the cone K, we define a nonnegative concave functional ψ as

ψ(x) = inf
0≤t≤T

x(t)
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and let
γ = max

0≤t≤T
γ(t).

Now, we are ready to prove our main results in this paper.

Theorem 2.2. Let m > 1, a(t) > 0 and γ(t) > 0 for t ∈ R, and
T∫

0

p(t) dt > e(δ − 1)δm−1γ
m−1

n (6)

hold. Then (1) has at least two positive T -periodic solutions.

Proof. From

lim sup
x→∞

max
0≤t≤T

p(t)xm−1e−γ(t)xn

a(t)
= 0

it follows that there exist constants 0 < µ1 < 1 and η > 0 such that

p(t)xme−γ(t)xn

a(t)
< µ1x for 0 ≤ t ≤ T, x ≥ η.

Let

µ2 = max
0≤t≤T,0≤x≤η

p(t)xme−γ(t)xn

a(t)
.

Then

p(t)xme−γ(t)xn

a(t)
< µ1x + µ2, for x ≥ 0 and 0 ≤ t ≤ T.

Choose c4 > 0 such that

c4 > max
{ µ2

1− µ1
,

1
γ

1
n

}
.

Then for x ∈ Kc4 , we have

‖Ax‖ ≤ sup
0≤t≤T

t+T∫

t

G(t, s)p(s)xm(s− τ(s))e−γ(s)xn(s−τ(s)) ds ≤

≤ sup
0≤t≤T

t+T∫

t

G(t, s)a(s)(µ1x(s− τ(s)) + µ2) ds ≤

≤ sup
0≤t≤T

t+T∫

t

G(t, s)a(s)(µ1‖x‖+ µ2) ds ≤

≤ µ1c4 + µ2 ≤ c4.

Hence A : Kc4 → Kc4 . Set c2 = 1

δγ
1
n

and c3 = 1

γ
1
n

. Clearly c2 <

δc2 = c3 ≤ c4. Setting φ0(t) = φ0 = c2+c3
2 , we have that φ0 ∈ {x; x ∈
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K(ψ, c2, c3), ψ(x) > c2} 6= φ. Now, for x ∈ K(ψ, c2, c3) we obtain

ψ(Ax) = min
0≤t≤T

t+T∫

t

G(t, s)p(s)xm(s− τ(s))e−γ(s)xn(s−τ(s)) ≥

≥ 1
δ − 1

cm
2 e−γδncn

2

T∫

0

p(s) ds > c2.

Hence the condition (i) of Theorem 2.1 is satisfied. Since m > 1, we have
that

lim sup
x→0

max
0≤t≤T

p(t)xme−γ(t)xn

a(t)x
= 0

implies that there exists a constant c1 ∈ (0, c2) small enough such that

p(t)xme−γ(t)xn

a(t)x
< 1 for 0 ≤ x ≤ c1.

Thus for x ∈ Kc1 , we have

‖Ax‖ ≤ sup
0≤t≤T

t+T∫

t

G(t, s)p(s)xm(s− τ(s))e−γ(s)xn(s−τ(s)) ds <

< sup
0≤t≤T

t+T∫

t

G(t, s)a(s)‖x‖ ds ≤ c1,

that is, A : Kc1 → Kc1 . Thus the property (ii) of Theorem 2.1 is satisfied.
Finally, for x ∈ K(ψ, c2, c4) with ‖Ax‖ > c3,

c3 < ‖Ax‖ ≤ δ

δ − 1

T∫

0

p(s)xm(s− τ(s))e−γ(s)xn(s−τ(s)) ds

implies that

ψ(Ax) ≥ 1
δ − 1

T∫

0

p(s)xm(s− τ(s))e−γ(s)xn(s−τ(s)) ds >

>
1
δ

c3 = c2.

This shows that the condition (iii) of Theorem 2.1 is satisfied. By The-
orem 2.1, the equation (1) has at least two positive T -periodic solutions.
This completes the proof of the theorem. ¤

The following corollary can be obtained as an immediate consequence of
Theorem 2.2.
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Corollary 2.3. If m > 1, a > 0, γ > 0 and

pT > e(δ − 1)δm−1γ
m−1

n (7)

hold, then (3) has at least two positive T -periodic solutions, where δ = eaT .

Remark 2.4. The conditions of Theorem 1.1 imply the conditions of
Corollary 2.3. However, Corollary 2.3 gives two positive T -periodic solutions
where as Theorem 1.1 yields three positive T -periodic solutions. Although
the range on p defined in Theorem 1.1 forces us to assume that pT < 1 and
2e(δ− 1)δm−1γ

m−1
n ≤ 1 must hold. On the other hand, the condition (7) is

sufficient in corollary 2.3 for the existence of two positive periodic solutions
of (1).

In what follows, we prove another theorem on the existence of two positive
periodic solutions of (1).

Theorem 2.5. Let m > 1, a(t) > 0 and γ(t) > 0 for t ∈ R, and

min
0≤t≤T

{p(t)
a(t)

}
> eδm−1γ

m−1
n (8)

hold. Then (1) has at least two positive T -periodic solutions.

Proof. Set c2 = 1

δγ
1
n

and c3 = 1

γ
1
n

. Choose c4 > 0 as in Theorem 2.2. One

may proceed as in Theorem 2.2 to prove that A : Kc4 → Kc4 . Clearly, φ0 =
φ0(t) = c2+c3

2 ∈ {x, x ∈ K(ψ, c2, c3), ψ(x) > c2} 6= 0. For x ∈ K(ψ, c2, c3),
we have

ψ(Ax) > min
0≤t≤T

{p(t)
a(t)

}
cm
2 e−γδncn

2

t+T∫

t

G(t, s)a(s) ds > c2.

Choose c1 = 1

max{ p(t)
a(t)}

1
m−1

. Using (8) we have c1 < c2. Now, for x ∈ Kc1

we obtain

‖Ax‖ < max
0≤t≤T

{p(t)
a(t)

}
cm
1 = c1.

The third condition of Theorem 2.1 is easy to verify and hence we omit it.
The theorem is proved. ¤

The following corollary follows from Theorem 2.5 as a direct application
to equation (3).

Corollary 2.6. Let m > 1, a > 0, γ > 0 and

p > ae1+(m−1)aT γ
m−1

n (9)

hold. Then (3) has at least two positive T -periodic solutions.

Remark 2.7. Since aT < eaT − 1, Corollary 2.6 gives a better sufficient
condition than the one in Corollary 2.3.
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3. Conclusion

In this paper, we have been able to find sufficient conditions for the
existence of multiple periodic solutions of (1) when m > 1. We have not
obtained any result concerning the existence of multiple periodic solutions of
(1) when 0 ≤ m ≤ 1. As mentioned earlier, many authors [5], [7], [16], [23],
[24], [27]–[29] have used Krasnoselskǐı and other fixed point theorems for the
existence of one periodic solution of (1) when m = 1, that is, of equation (2).
From the literature, it seems that no results have been obtained regarding
the existence of multiple periodic solutions of (1) with 0 ≤ m ≤ 1. Thus,
it would be interesting to obtain sufficient conditions for the existence of
multiple periodic solutions of (1) when 0 ≤ m ≤ 1. This is left as an open
problem.
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