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FOR REACTION-DIFFUSION SYSTEMS
WITH A TRIDIAGONAL MATRIX

OF DIFFUSION COEFFICIENTS



Abstract. The aim of this study is to prove the global existence of
solutions for reaction-diffusion systems with a tridiagonal matrix of diffu-
sion coefficients and nonhomogeneous boundary conditions. In so doing, we
make use of the appropriate techniques which are based on invariant do-
mains and Lyapunov functional methods. The nonlinear reaction term has
been supposed to be of polynomial growth. This result is a continuation of
that by Kouachi [12].

2010 Mathematics Subject Classification. 35K45, 35K57.

Key words and phrases. reaction diffusion systems, invariant do-
mains, Lyapunov functionals, global existence.

69bo7dg. bodGmdob doboboo odi)30330mm 0Jbgb 0G0 1B my 3oGm30b0 bobob-
Q:}ém \)3(")805:]601) Oa(’)EObl)EU)O &,Qm?)og:r:jﬁo \)61):]2)(")60 01):]0’)0 EJOjGO‘DQ—QO%U—
q(‘)ot]tqo 1)01)(3)3332501)000301), ﬁma"]g)mo QO(B-DQOOOL &(")3430(3036(5‘)32)0 jHEooE (’3)60@0—
oz)mgogg‘:]ﬁ (0\)&(‘72’01)) 3-)(8)0'/)0(31) Oaﬂ’b\)m:;()'l) 608(")3:]631})‘:]{:20\) (831)-)2)0301)0 ts)ajgﬂ'j-),
U)(")Q"Jbl). 06\)%’6(8030 6:]0:]0001) v:]:}écb:] Q\)QJ&'DQOO JmQOENSOOQ'UéO %6Q01)
2°63633b0b.



Reaction-Diffusion Systems 95

1. INTRODUCTION

We consider the reaction-diffusion system

ou

i a11Au — a12Av — agsAw = f(u,v,w) in RT x Q, (1.1)
% — 91 AU — a9 AV — agzAw = g(u,v,w) in RT x Q, (1.2)
%—Z) — a9 Au — azaAv — a1 Aw = h(u,v,w) in RT x Q (1.3)
with the boundary conditions
ou
ov 4
)\v—i—(l—)\)a—:ﬁg on R™ x 09, (1.4)
n
ow
Aw+ (1 - )\)6—77 = s,
and the initial data
w(0,2) = up(x), v(0,2) =vo(z), w(0,z)=wo(z) in Q, (1.5)

where:

(i) 0 < A < 1land B; € R, ¢ = 1,2,3, for nonhomogeneous Robin
boundary conditions.
(i) A=p; =0, i=1,2,3, for homogeneous Neumann boundary condi-

tions.
(iii) 1 =X = p; =0, i = 1,2,3, for homogeneous Dirichlet boundary
conditions.

) is an open bounded domain of the class C! in RY with boundary 952, and
6% denotes the outward normal derivative on d€). The diffusion terms a;;
(i, =1,2,3 and (i,7) # (1,3), (3,1)) are supposed to be positive constants
with a11 = azz and (a2 + ag1)? + (a23 + aze)? < 4ajiage, which reflects the
parabolicity of the system and implies at the same time that the matrix of
diffusion

air a2 0

A= lax azx ax

0 asx an

is positive definite. The eigenvalues A1, Ay and A3 (A1 < Ag, A3 = aq1) of A
are positive. If we put

a =min{a11,a2} and @ = max{aii, a0},
then the positivity of a;;’s implies that

M <a<)d<a< .
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The initial data are assumed to be in the domain

{(U’OvaawO) € R?: povg < aziug + aszwo < pive, azaug < alz’wo}
if pofa < a1 + azf3 < 12, azefr < aiafs,
(ug, vo, wo) € R3 : povg < asiug + aszwy < pyvo, ajpwy < aszuo}

if pofBo < a1 B1 + asfs < puifBa, ai2fs < azefi,
(UO, Uo,wo) S R3 :

Y /7 (@21 +a23wo) <vo < IT (a21uo+ag3wp) , aszuo < ajawo
2 1

L1 1
if i (@211 +a2303) <PBa < ™ (a2181+a2303) , as2fr <ai20s,
2 1
(UQ, Uo,wo) S R3 :

1
/7 (@210 +a23wo) <vo < /7 (a21u0+az3wp) , aszuo>a12wo
2 1

o1 1
if i (a2181+a2303) <2 < " (a2181+a2303) , aszafi>ai2fs,

where
pr=a—XA >0>pus=a— .
Since we use the same methods to treat all the cases, we will tackle only

with the first one. We suppose that the reaction terms f, g and h are
continuously differentiable, polynomially bounded on X,

(f (7"1,7’2,T3),9(7’1,T2,T3)7’1(7"177"2,7’3))

is in X for all (rq1,r2,73) in 0¥ (we say that (f, g, h) points into ¥ on 9%),
ie.,
ag1f (r1,7r2,73) + agzh (r1,72,73) < p1g (r1,72,73) (1.6)
for all 71, o and r3 such that usre < agyri+assrs = pire and agar < aiars,
and
p2g (r1,7r2,73) < a1 f (ri,r2,r3) + azsh (ri,r2,r3) (1.6a)
for all r1, T2 and T3 such that H2To = 2171 “+ao373 S H1T2 and asa2”T1 S a127T3,
and
a32f(7"1,7“2,7“3) S algh(Tl,Tgﬂ‘g,) (16b)
for all 71, ro and rg such that pore < agiri+assrs < pire and ager; = aiars,
and for positive constants F and D, we have

(Ef+Dg+h)(u,v,w) <Ci(u+v+w+1), (1.7)

for all (u,v,w) in X, where C is a positive constant.

In the two-component case, where a1 = 0, Kouachi and Youkana [13]
generalized the method of Haraux and Youkana [4] with the reaction terms
f(u,v) = =AF (u,v) and g (u,v) = pF (u,v) with F (u,v) > 0, requiring
the condition

lim

s—+o00

{111(1 + F(r,s))

}<a* for any r > 0,
s
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with

. 2a11022 [ A ann —a2
min{ —, ——= 5,

o = 2 )
n (a1 — ag)” [Juol| jz a1

where the positive diffusion coefficients a1, ago satisfy a1 > ags, and asq,
A, p are positive constants. This condition reflects the weak exponential
growth of the reaction term F. Kanel and Kirane [6] proved the global
existence in the case where g (u,v) = —f (u,v) = w™ and n is an odd
integer, under the embarrassing condition

la1s — a21] < Cp,

where C), contains a constant from Solonnikov’s estimate [18]. Later they
improved their results in [7] to obtain the global existence under the restric-
tions

Hi. az < a1 + ao,

ai1azz (a1 + ag1 — ag)

Hs. a0 <eg =
ai11a22 + a2 (a11 + a1 — ag2)

if a1 < age < @11 + aon,

.1 .
H3. a2 < I?(lll’l{2 (all +a21) ,EQ} if a9 < a11,

and

|F (v)| < CF (1 + |v|176) , vF(v)>0 forall veR,
where ¢ and Cp are positive constants with € < 1 and

g(u,v) =—f(u,v) =uF (v).

Kouachi [12] has proved global existence for solutions of two-component
reaction-diffusion systems with a general full matrix of diffusion coefficients
and nonhomgeneous boundary conditions.

Many chemical and biological operations are described by reaction-dif-
fusion systems with a tridiagonal matrix of diffusion coefficients. The com-
ponents u (¢,x), v (t,z) and w (¢,x) can represent either chemical concen-
trations or biological population densities (see, e.g., Cussler [1] and [2]).

We note that the case of strongly coupled systems which are not triangu-
lar in the diffusion part is more difficult. As a consequence of the blow-up
of the solutions found in [16], we can indeed prove that there is a blow-up of
the solutions in finite time for such nontriangular systems even though the
initial data are regular, the solutions are positive and the nonlinear terms
are negative, a structure that ensured the global existence in the diagonal
case. For this purpose, we construct invariant domains in which we can
demonstrate that for any initial data in these domains, the problem (1.1)-
(1.5) is equivalent to the problem for which the global existence follows
from the usual techniques based on Lyapunov functionals (see Kirane and
Kouachi [8], Kouachi and Youkana [13] and Kouachi [12]).
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2. LocAL EXISTENCE AND INVARIANT REGIONS

This section is devoted to proving that if (f,g,h) points into 3 on 9%,
then ¥ is an invariant domain for the problem (1.1)—(1.5), i.e., the solution
remains in ¥ for any initial data in 3. Once the invariant domains are
constructed, both problems of the local and global existence become easier
to be established. For the first problem we demonstrate that the system
(1.1)—(1.3) with the boundary conditions (1.4) and the initial data in ¥ is
equivalent to a problem for which the local existence throughout the time
interval [0, 7] can be obtained by the known procedure, and for the second
one we need invariant domains as explained in the preceeding section.

The main result of this section is

Proposition 1. Suppose that (f, g, h) points into ¥ on 0X. Then for any
(ug,vo,wo) in X the solution (u,v,w) of the problem (1.1)—~(1.5) remains in
Y for all t’s in [0,T*[.

Proof. Let ($i1,$i27.’£i3)t, i = 1,2, 3, be the eigenvectors of the matrix A?
associated with its eigenvalues \;, i = 1,2,3 (A1 < A3 < A2). Multiplying
the equations (1.1), (1.2) and (1.3) of the given reaction-diffusion system by
T;1, T2 and x;3, respectively, and summing the resulting equations, we get

%zl—/\lAzl :Fl (2,’1722,2’3) in }O,T*[XQ, (21)
%22 — /\QAZQ = F2 (2,’17 22, 2’3) in }O,T*[ X Q, (22)
0
azg — /\3A23 = F3 (2,’17 22, 2’3) in }O,T*[ X Q, (23)
with the boundary conditions
8Zi . *
Azi + (1= A) n =p;, 1=1,2,3, on ]0,T"[ x 99, (2.4)
and the initial data
2(0,2) = 22(x), i=1,2,3, in Q, (2.5)
where
Zi = Tyl + oV + 3w, 1 =1,2,3, in ]O,T*[ x €, (26)
pi = i1 + wi2fa + wizfB3, 1=1,2,3,
and

Fi(z1,22,23) = xanf + Tiog + ai3h, 1 =1,2,3, (2.7)

for all (u,v,w) in X.
First, as has been mentioned above, note that the condition of the para-
bolicity of the system (1.1)—(1.3) implies the parabolicity of the system
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(2.1)—(2.3) since

(a12 + 021)2 + (@23 + CL32)2 < 4aiia0 =
— (detA >0 and aji1a22 — aszazs > 0)
Since A1, A2 and A3 (A1 < A3 < A2) are the eigenvalues of the matrix A?, the
problem (1.1)—(1.5) is equivalent to the problem (2.1)—(2.5) and to prove

that ¥ is an invariant domain for the system (1.1)—(1.3) it suffices to prove
that the domain

{(0,29,29) €R?: 20 >0, i=1,2,3} = (R")’ (2.8)
is invariant for the system (2.1)-(2.3) and that
Y= { (UQ, V0, U)o) GRS : Z? =x;1Ug+Ti0v0+x;3we >0, 1=1,2, 3} (29)
Since (l‘il,%ig,xig)t is an eigenvector of the matrix A! associated to the
eigenvalue \;, i = 1,2, 3, we have
(@11 — Ai) zin + ag1242 = 0,
a1221 + (@22 — A\g) T2+ agazizs =0, i=1,2,3,
a3 + (a11 — Ai) w43 = 0.

If we assume, without loss of generality, that a;; < ags and choose x15 = p1,
ZTog = —pg and T3z = ajz, then we have

—ag1ug+ 109 — az3wo >0,
T ugteigueteiswo >0, 1=1,2,3 <= {az1ug— p2vg+azzwg >0, —
—aszaug + arawg > 0.
< H2vo < a1 + azzwo < pHive,  azalo < a12Wo.

Thus (2.9) is proved and (2.6) can be written as

21 = —Q21U + 1V — G23W,
29 = Q21U — U2V + G23W, (2.6a)
23 = —Qa32U + a12w.

Now, to prove that the domain (}R*‘)3 is invariant for the system (2.1)—(2.3),
it suffices to show that F; (21, 22,235) > 0 for all (z1, 22, 23) such that z; =0
and z; > 0,7 =1,2,3 (j #14), ¢ = 1,2,3, thanks to the invariant domain
method (see Smoller [17]). Using the expressions (2.7), we get

Fy = —as f + p1g — azsh,

Fy = a1 f — pag + assh, (2.7a)

F3 = —aza f + ar2h
for all (u, v, w) in . Since from (1.6), (1.6a) and (1.6b) we have F; (z1, 22, 23)
> 0 for all (21,22, %23) such that z; = 0 and z; > 0, j = 1,2,3 (j #1),
i = 1,2,3, we obtain z; (t,z) > 0, ¢ = 1,2,3, for all (¢,2) € [0,T*] x Q.
Then ¥ is an invariant domain for the system (1.1)—(1.3). O
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In addition, the system (1.1)—(1.3) with the boundary conditions (1.4)
and initial data in ¥ is equivalent to the system (2.1)—(2.3) with the bound-
ary conditions (2.4) and positive initial data (2.5). As has been mentioned
at the beginning of this section and since p;, i = 1, 2, 3, given by

p1 = —ag1 B + p1B2 — az3fs,
p2 = az131 — p2fB2 + az3fs,
p3 = —az2fB1 + a1283,

are positive, we have for any initial data in C (ﬁ) or L (Q), p € |1, +o0],
the local existence and uniqueness of solutions to the initial value problem
(2.1)—(2.5) and consequently those of the problem (1.1)—(1.5) follow from
the basic existence theory for abstract semilinear differential equations (see
Friedman [3], Henry [5] and Pazy [15]). These solutions are classical on
[0, T%[ x £, where T™ denotes the eventual blow up time in L>° (€2). A local
solution is continued globally by a priori estimates.

Once invariant domains are constructed, one can apply the Lyapunov
technique and establish the global existence of unique solutions for (1.1)—
(1.5).

3. GLOBAL EXISTENCE

As the determinant of the linear algebraic system (2.6), with respect to
the variables u, v and w, is different from zero, to prove the global existence
of solutions of the problem (1.1)—(1.5) one needs to prove it for the problem
(2.1)—(2.5). To this end, it suffices (see Henry [5]) to derive a uniform
estimate of || £ (21, 22, 23)|,,, i = 1,2,30n [0,T], T < T, for some p > N/2,
where | - [, denotes the usual norms in spaces L (Q2) defined by

1
fully = 0 [ [u(@)]”dz, 1 <p<oo, and |lull,, = esssup |u(z)|.
|€2] e
xr
Q

Let 6 and o be two positive constants such that

0> Alz, (31)
(02 — A2,) (02 — AZ) > (A1s — A1aAss)?, (3.2)
where
AN+ A
Ai': ¢ ja ‘7.:172’3 -<‘7
AW B (<)
and let

quﬁ(pfq“)z and crp:apz, for ¢=0,1,...,p and p=0,1,...,n, (3.3)

where n is a positive integer. The main result of this section is
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Theorem 1. Let (z1(t,-),22(t,-),23(t,+)) be any positive solution of
(2.1)~(2.5). Introduce the functional

t— L(t /H 21 (t,x), 220 (t, @), 23 (¢, 2) ) da, (3.4)
where
H, (21,22, 23) ZZ PCA0,0p2 2 12377, (3.5)
p=0 g=0

with n being a positive integer and CE = #p‘),p.

Then the functional L is uniformly bounded on the interval [0,T], T < T*.
For the proof of Theorem 1 we need some preparatory Lemmas.

Lemma 1. Let H, be the homogeneous polynomial defined by (3.5).
Then

OH, "o (nm1)—

n n—

921 = ”chg—lc Og+10p412{25 123 Y, (3.6)
p=0 ¢g=0

OH, v (n-1)-

n n—

822 = TLZZ 1C 0 (Tp+12:(1122 q p’ (37)
p=0 ¢q=0

OH, & (n1)—

9o nzz 1CH0g0p2 2y 2y P, (3.8)
p=0 q=0

Proof. Differentiating H,, with respect to z; and using the fact that
qCl = qu I and pCP =nCP~} (3.9)
forq=1,2,...,p,p=1,2,...,n, we get

plql 1. p—q, n—p
nEEC 10q0p21 25792
82:1

p=1g¢=1

Replacing in the sums the indexes ¢ — 1 by ¢ and p — 1 by p, we deduce
(3.6). For the formula (3.7), differentiating H,, with respect to 2o, taking
into account

Ci=Cy1 ¢=0,1,...,p—1 and p=1,2,...,n, (3.10)

using (3.9) and replacing the index p — 1 by p, we get (3.7).
Finally, we have

n—1 p

q,p—q, n—p—1
E E n—p) ChCI0,0,2 25 23 .

p=0 ¢=0

Since (n —p)CE = (n —p) C"P =nC) """ =nCP_,, we get (3.8). O

623
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Lemma 2. The second partial derivatives of H, are given by

0%H, [ g (n=2)—
5 =n(n—1)Y > 0042022125 D7 (3.11)
21 p=0 ¢=0
oM, w22 i
321322 =n(n-1) pz;)qzocn 20y Og+10p22125 1 ( - Y (3.12)
0%H, 28 g (n-2)-
:n(n—1)226’7]272059%10[,“2;’25 "D (3.13)
62182’3 =0 =0
O%H, 2 -
—— =n(n—-1) ZZ oClgop 02l ! AP, (3.14)
023 ==
0’Hy, v —q (n 2)-p
D007 (n—1) pz;)qzo b Cl0,0p 1272 , (3.15)
0%H, =L g (n-2)-
5.2 :n(n—l)ZZCfoQCgé)qopzfzg 12, (3.16)
3 p=0 ¢=0

Proof. Differentiating aa— given by (3.6) with respect to z; yields
z

n—1 p

q-1_p—q _(n—1)—p
_nzzqcn 10p0g410q4121 25 23

p=1qg=1

Using (3.9), we get (3.11).

n—1p—1

nY > (p—q) Ch Cfyropiaziah T

p=1 qg=0
Applying (3.10) and then (3.9), we get (3.12).

n—2 p

— n—2)—
321823 ZZ n—1)—p)Cy 09q+10p+12(112§ qzé )P,

=0 ¢g=0

321822

Applying successively (3.10), (3.9) and (3.10) for the second time, we deduce
(3.13).

82 n—1p—1 . ( 1)
67—”2210 q) CF_1Cp0qopi12{2f " 25" 0
2 p=1g=0
The application of (3.10) and then of (3.9) yields (3.14).
n—2
62282’3 Z Z (n—1) Ch_1Cl0,0p2125" 12,

p=0 g=0
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Applying (3.10) and then (3.9) yields (3.15). Finally we get (3.16) by dif-
H7l . . .
ferentiating B with respect to z3 and applying successively (3.10), (3.9)
3
and (3.10) for the second time. O

Proof of Theorem 1. Differentiating L with respect to t yields

’ o 5‘Hn 821 3Hn 822 aHn 82’3
L(t)/<azl ot 0z Ot 0z at>d
Q

H, H, H,
:/()\180 nAzl—i-)\gaa TLA22+)\388 nAZg) dz+

Z1 ) z3
0H,, 0H, oH,
F; F: F3 ) dx =
+/ ( 821 1+ 82’2 2+ 623 3) v
=TI+ J

Using Green’s formula in I, we get I = I1 + I, where

11/<A OH, 0z, OH, 0z _ OH, 323) s

182'18777 282’2 87n+3823 on

9Q
where ds denotes the (n — 1)-dimensional surface element, and
0’H,,
82’1 82’2

VZ1 VZQ

0%*H,
IQ = — / |:A1 W |v21|2 + ()\1 + )\2)
Q “

o*H, O°H, 2

AL+ A Ay ———

+ A+ As) 021023 Vava + A 023 V2|

0%H, 0%H,

A

322823 VZQVZ?, + 3 8z§

We prove that there exists a positive constant Cs independent of ¢ € [0, T*|
such that

+ (A2 + A3) V23| da.

I; <Oy forall te [O,T*[, (317)

and that
I, <0. (3.18)

To see this, we follow the same reasoning as in [11].
(7) If 0 < A < 1, using the boundary conditions (2.4) we get

OH, oH, OH,
I1=/()\1 971 (M1 —z1)+A2 B2 (2 —az2)+As 02 (73_6“23)) ds,
89

_ A ] - 3
where a = 12 and v; = %5, i =1,2,3. Since

OHu oy 4 ag O
821 m-ea 2 622

= Pp_1 (21,22, 23) — Qn (21, 22, 23) ,

0H,,
(Y2—aza)+A3 —— (13— z3)

H(Zl722,23) = >\1 823
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where P,,_1 and @, are polynomials with positive coefficients and respective
degrees n — 1 and n, and since the solution is positive, we obtain

lim sup H (21, 29, 23) = —00, (3.19)
(lz1|+]22]+|23]) —+o0

which proves that H is uniformly bounded on (R+)3, and consequently
(3.17).

(i) If A=0, then I; =0 on [0,T*[.

(#4i) The case of the homogeneous Dirichlet conditions is trivial since the
positivity of the solution on [0, 7*[ x € implies %—znl <0, %—Z; < 0and %irf <0
on [0, T*[ x 9§2. Consequently, one again gets (3.17) with Cy = 0.

Now, we prove (3.18). Applying Lemma 1 and Lemma 2, we get

n—2 p

ILh=-n(n-1) / Z ch_gcg [ (Bpgz) - 2] du,
Q p=0 q=0
where
A1+ A AL+ A
AMbgy20pt2 % Oq+10p+2 % Og+10p+1
AL+ A A2+ A
qu = ! B 2 9q+10'p+2 >\29q0p+2 % 9q0p+1 )
A1+ A3 A2 + A3
9 Og+10p+1 9 040011 A3bq0p

forq=0,1,...,p,p=0,1,...,n—2 and z = (Vz1, Vz, Vz3)".

The quadratic forms (with respect to Vz1, Vzo and Vz3) associated with
the matrices Bpq, ¢ = 0,1,...,p, p = 0,1,...,n — 2, are positive since
their main determinants A, Ay and Ag are positive too, according to the
Sylvester criterion. To see this, we have

1. Ay = MbOgq20py2 >0for¢g=0,1,...,pand p=0,1,...,n— 2.

AL+ A2

Mg 20p42 —5 Per10p+2

TN A
g 0q+10p+2 /\20q0p+2

= /\1/\293+10'127+2 (92 — A%z),
forg=0,1,...,pand p=0,1,...,n — 2.
Using (3.1), we get Ay > 0.

AL+ A AL+ A
A0g420p 42 % Og+10p+2 173 04+10p+1
A+ A A + A
3. Az = |= : Og+10p+2 A2040p 12 % 0q0p+1
A1+ A3 Ao+ A3
g Og+10p41 9 040p11 A30q0p

:)‘1>‘2)‘39§+10110—;04-20—%—}—1[(927A%Q)(OQ*A%B) — (Algf A12A23)2} ,
forg=0,1,...,pand p=0,1,...,n — 2.
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Using (3.2), we get Az > 0. Consequently we have (3.18).
Substitution of the expressions of the partial derivatives given by Lemma
1 in the second integral yields

nlp

J = /[ Ch_1Claizs~ P

p=0 ¢q=0
X (9q+10'p+1F1 + 0q0p+1F2 + HqO'ng) dz.

Using the expressions (2.7a), we get

Og10p+1F1 + 040 p 1 Fo + 040, F3 =

= ( — 04+10p41021 +a219q0p+1—0329q0p)f+(9q+10p+1/i1 — 12040p11) g+
+ ( —Og410pt1023 + a23bq0p11 + algeqap)h =

a1 (040p+1—044+10p11) —az20,0,

_I_
a23(0q0p+1 —0q+10p+1)+a120q0p f

= (a23(9q0p+1—9q+10p+1)+a129q0p) (

9q+10p+lul - M29q0p+1 _
+h)=
a3 (0q0p+1 — Og410p41) + ar2640p

Op+1 0 0
=0, 10, | azgs—L2* ( 4 —1>—|—a 4 > X
e < P, op  \bgt1 " Oq+1

Op+1 Gq 9 p+1 q Op41
a9 2= —1)—a 2= —
% 270, (9q+1 ) 32 9(1+1 m H2 20411 op +h
a p+1 ( Gq _ )+a 9 a Op41 ( 9 _ 1) + a 9 g
23 Og11 12 9q+1 23 op \Ogi1 1273 1

Since Beil and 0"“ are sufficiently large if we choose 6 and o sufficiently
q
large, using the condltlon (1.7) and the relation (2.6a) successively we get,

for an appropriate constant Cj,

n—1 p
J < C’3/ Z Z (21 + 22+ 23+ 1) C’ﬁ_ngz‘fzg_qzén_l)_p] dr.
Q p=0 q¢=0
To prove that the functional L is uniformly bounded on the interval [0, T,
we first write

n—1 p
ZZ(zl + 20 +23+1)Ch_ Clziz) 1P =
p=0 ¢g=0
= R, (21,22, 23) + Sn—1 (21, 22,23)

where R, (21, 22, 23) and S, 1 (21, 22, 23) are two homogeneous polynomials
of degrees n and n — 1, respectively. First, since the polynomials H,, and
R,, are of degree n, there exists a positive constant C4 such that

/Rn (21,22, 23) dx < C4/Hn (21, 22, 23) dx.
)
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Applying Hélder’s inequality to the integral fQ Sn—1 (21, 22, 2z3) dz, one gets

n—1
n

3=

/Sn_l (21, 22, 23) de < (meas Q) /(Sn_l (zl,zg,z?,))ﬁ dz
Q Q

Since for all zy > 0 and 23,23 >0

(Sn_1(21,22,23)) "7 (Su_1 (€1,60,1))77

H, (21, 22, 23) H, (&,62,1) ’

z z
where & = i, & = i and

. (Snfl <£Ia£27 1))ﬁ
N NGRS

§a2—+o00

< 400,

one asserts that there exists a positive constant C5 such that

(Sn—1 (21,22723))ﬁ
H, (21, 22, 23)

< (5 for all z, 29,23 > 0.

Hence the functional L satisfies the differential inequality
L' (t) < CsL () + C-L™% (1),
which for Z = L= can be written as
nZ' < Ce¢Z + Cs.
A simple integration gives a uniform bound of the functional L on the

interval [0,T]. This completes the proof of Theorem 1. O

Corollary 1. Suppose that the functions f (r1,7r2,73), g (r1,72,73) and
h(ri,7r2,73) are continuously differentiable on ¥, point into ¥ on 0¥ and
satisfy the condition (1.7). Then all uniformly bounded on Q solutions of
(1.1)—(1.5) with the initial data in X are in L (0,T; LP (Q)) for all p > 1.

Proof. The proof of this Corollary is an immediate consequence of Theo-
rem 1, the trivial inequality

/(21+ZQ+23)pdx§L(t) on [0,7%[,
O

and (2.6a). O

Proposition 2. Under the hypothesis of Corollary 1, if f(ri,72,73),
g (ri,m2,13) and h(r1,r2,73) are polynomially bounded, then all uniformly
bounded on Q solutions of (1.1)~(1.4) with the initial data in ¥ are global
m time.
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Proof. As has been mentioned above, it suffices to derive a uniform estimate
of | F1(z1, 22, 23) s [[F2(21, 22, 23) |, and [[F3(21, 22, 23) [, on [0, 7], T" < T~
for some p > % Since the reactions f (u,v,w), g (u,v,w) and h (u, v, w) are
polynomially bounded on X, by using relations (2.6a) and (2.7a) we get that
so are Fi(z1, 22, 23), Fa(z1, 22, 23) and F3(z1, 22, 23), and the proof becomes
an immediate consequence of Corollary 1. O
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