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ON AN INTEGRAL EQUATION
WITH MONOTONIC NONLINEARITY



Abstract. We prove the existence of a nonnegative and bounded so-
lution of a type of homogeneous integral equations with monotonic non-
linearity. Under certain assumptions on the kernel, the properties of the
obtained solutions are investigated. Some particular examples which arise
in applications are demonstrated.
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îâäæñéâ. êŽöîëéöæ áŽéðçæùâĲñèæŽ éëêëðëêñîæ ŽîŽûîòæãëĲæï
öâéùãâèæ âîåàãŽîëãŽêæ æêðâàîŽèñîæ àŽêðëèâĲæï âîåæ ðæìæïåãæï
ŽîŽñŽîõëòæåæ áŽ öâéëïŽäôãîñèæ ŽéëêŽýïêæï ŽîïâĲëĲŽ. àŽêðëèâĲæï
àñèäâ áŽáâĲñè àŽîçãâñè ìæîëĲâĲöæ àŽéëçãèâñèæŽ éæôâĲñèæ ŽéëêŽýï-
êâĲæï ŽïæéìðëðæçŽ. àŽêýæèñèæŽ îŽéáâêæéâ çâîúë éŽàŽèæåæ, îëéèâĲæù
àŽéëõâêâĲŽöæ àãýãáâĲŽ.
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1. Introduction

We consider the following nonlinear integral equation:

ϕp(x) =

∞∫

0

K(x, t)ϕ(t) dt, x > 0, (1)

in regard to unknown function ϕ(x) ≥ 0. Here p > 1 is a real number,
0 ≤ K(x, t) is a measurable function defined on (0, +∞)×(0, +∞) satisfying
the condition

sup
x>0

∞∫

0

K(x, t) dt = 1. (2)

We will also consider the general integral equation of Hammerstein type:

f(x) =

∞∫

0

K(x, t)Q(f(t)) dt, (1∗)

where the function Q(x) is defined on (−∞,+∞) and satisfies some addi-
tional conditions (see Theorem 6).

The problems (1), (2) and (1∗), (2) are of considerable interest not only
in mathematics, but also in the theory of nonlocal interactions, string filed
theory, cosmology, kinetic theory of gases (see [1]–[6]).

In the present paper, under certain assumptions on the kernel K(x, t)
we prove the existence of a nontrivial, nonnegative and bounded solution
of nonlinear homogenous equations (1) and (1∗). The properties of the ob-
tained solutions are investigated (see Theorems 1–3, 6). We also undertake
mathematical investigation of a special case which arises in applications,
particularly in the dynamics of P -adic closed string field theory (see Theo-
rems 4–5). Some particular examples of the function Q(x) are listed.

2. Convolution type nonlinear integral equation

2.1. Symmetric kernel. First, we consider the equation (1), in particular,
the case where

K(x, t) = k0(x− t); 0 ≤ k0 ∈ L1(−∞, +∞).

We have

ψp(x) =

∞∫

0

k0(x− t)ψ(t) dt, x > 0, p > 1. (3)

The condition (2) takes the form of
+∞∫

−∞
k0(x) dx = 1. (4)
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We also assume that

k0(−x) = k0(x), ∀x > 0. (5)

Denoting f(x) = ψp(x), we have

f(x) =

∞∫

0

k0(x− t) p
√

f(t) dt, x > 0, p > 1. (6)

We will consider the following iteration process

f (n+1)(x) =

∞∫

0

k0(x− t) p

√
f (n)(t) dt, f (0)(x) ≡ 1, n = 0, 1, 2 . . . . (7)

The following statements are valid.

Statement 1. The sequence of functions {f (n)(x)}∞0 is monotonously
decreasing as n increases.

Proof. Indeed, for n = 0 we have

f (1)(x) ≤
+∞∫

−∞
k0(t)dt = 1 ≡ f (0)(x).

Assuming that the analogous inequality holds for n and using the mono-
tonicity of the function y = p

√
x on (0, +∞), from (7) we obtain

f (n+1)(x) ≤ f (n)(x). ¤

Statement 2. The following inequality is valid

f (n)(x) ≥
(

1
2

) p
p−1

, n = 0, 1, 2, . . . . (8)

Proof. For n = 0 this estimate is obvious. Let f (n)(x) ≥ ( 1
2 )

p
p−1 be true.

Taking into account (4) and (5), from (7) we get

f (n+1)(x)≥
(

1
2

) 1
p−1

x∫

−∞
k0(t) dt≥

(
1
2

) 1
p−1

0∫

−∞
k(t) dt=

(
1
2

) p
p−1

. (9)

The statement is proved. ¤

Statements 1 and 2 imply that almost everywhere the limit of the se-
quence of functions {f (n)(x)}∞0 exists:

lim
n→∞

f (n)(x) = f(x). (10)

Furthermore, (
1
2

) p
p−1

≤ f(x) ≤ 1. (11)
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Using Levi’s limit theorems, we conclude that f(x) is a solution of the
equation (6).

Statement 3. The solution f(x) of the equation (6) is monotonously
increasing as x increases.

Proof. First, we prove that the sequence of functions {f (n)(x)}∞n=0 is in-
creasing in x. Indeed, for n = 0 this is obvious. Suppose that f (n−1)(x) ↑
as x increases. Let x1, x2 ∈ (0,+∞), x1 > x2, are two arbitrary numbers.
We have

f (n)(x1)− f (n)(x2) =

=

x1∫

−∞
k0(t)[

p

√
f (n−1)(x1 − t) dt−

x2∫

−∞
k0(t)

p

√
f (n−1)(x2 − t)] dt ≥

≥
x2∫

−∞
k0(t)

[
p

√
f (n−1)(x1 − t)− p

√
f (n−1)(x2 − t)

]
dt ≥ 0.

Therefore f (n)(x1) ≥ f (n)(x2), which implies that f(x1) ≥ f(x2). ¤

Statement 4. The limit of the function f(x) exists:

lim
x→+∞

f(x) = 1. (12)

Proof. Denote lim
x→+∞

f(x) = δ.

It is easy to check that

lim
x→+∞

p
√

f(x) = lim
x→+∞

ψ(x) = p
√

δ. (13)

We show that

lim
x→+∞

∞∫

0

k0(x− t) p
√

f(t) dt = p
√

δ. (14)

Indeed,
∣∣∣∣∣∣

∞∫

0

k0(x− t) p
√

f(t) dt− p
√

δ

+∞∫

−∞
k0(t) dt

∣∣∣∣∣∣
=

=

∣∣∣∣∣∣

x∫

−∞
k0(t) p

√
f(x− t) dt− p

√
δ

x∫

−∞
k0(t)dt−

∞∫

x

p
√

δk0(t)dt

∣∣∣∣∣∣
≤

≤
x∫

−∞
k0(t)

∣∣∣ p
√

f(x− t)− p
√

δ
∣∣∣ dt + p

√
δ

∞∫

x

k0(t) dt = J1 + J2.
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It is obvious that lim
x→+∞

J2 = 0. We have

J1 =

x∫

−∞
k0(t)

∣∣∣ p
√

f(x− t)− p
√

δ
∣∣∣ dt ≤

≤
x
2∫

−∞
k0(t)

∣∣∣ p
√

f(x− t)− p
√

δ
∣∣∣ dt +

x∫

x
2

k0(t)
∣∣∣ p
√

f(x− t)− p
√

δ
∣∣∣ dt =

= J3 + J4,

J3 =

∞∫

x
2

k0(x− t)
∣∣∣ p
√

f(t)− p
√

δ
∣∣∣ dt ≤ sup

t≥ x
2

∣∣∣ p
√

f(t)− p
√

δ
∣∣∣ dt

+∞∫

−∞
k0(t) dt → 0

as x → +∞.

J4 = (1 + p
√

δ)

x∫

x
2

k0(t) dt → 0

as x tends to ∞. Thus the formula (13) holds. Passing in (6) to limit, we
obtain δ = p

√
δ ⇒ δ = 1. From (14) it follows that

lim
x→+∞

ψ(x) = 1. (15)

The statement is proved. ¤

Statement 5. Let f1(x) and f2(x) be the constructed solutions of the
equation (6) for the integers p1 and p2, respectively. If p1 > p2, then f1(x) ≥
f2(x).

Proof. We consider the iterations for p = p1 and p = p2 separately.

f
(n+1)
i (x)=

∞∫

0

k0(x−t) pi

√
f

(n)
i (t) dt, f

(0)
i ≡1, i=1, 2, n=0, 1, 2, . . . . (16)

We will prove that
f

(n)
1 (x) ≥ f

(n)
2 (x). (17)

Indeed, for n = 0 the inequality (17) is obvious. Assuming that (17) holds
for n, we check it for n+1. Taking into account the estimates 0<f (n)(x) ≤ 1,
from (16) we get

f
(n+1)
1 (x) ≥

∞∫

0

k0(x− t) p1

√
f

(n)
2 (t) dt ≥

≥
∞∫

0

k0(x− t) p2

√
f

(n)
2 (t) dt = f

(n+1)
2 (x), (18)
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which implies that
f1(x) ≥ f2(x). (19)

Thus we have proved the statement. ¤

Theorem 1. Under the conditions (4), (5) the equation (3) has a positive
and bounded solution ψ(x) which possesses the following properties:

a) ψ(x) ↑ in x;
b) the estimates ( 1

2 )
1

p−1 ≤ ψ(x) ≤ 1 are valid;
c) there exists the limit lim

x→+∞
ψ(x) = 1.

Remark 1. The linear equation (3)–(5) (p = 1) represents the well-known
homogeneous conservative Wiener–Hopf equation. Many works are devoted
to the investigation of the corresponding linear equation (3) (see [7]–[9] and
the literature therein). It is known (see [7]) that the corresponding linear
equation in the symmetric case k0(−x) = k0(x) has a positive solution,
possessing the asymptotic O(x) at x → +∞. Thus we confirm that there is
a quantitative difference between solutions of nonlinear (p > 1) and linear
(p = 1) equations.

2.2. Nonsymmetric kernel. We will assume that

ν(k0) =

+∞∫

−∞
xk0(x) dx < 0. (20)

The convergence of the integral (20) is understood in the Cauchy v.p. sense.
Together with the equation (3) we consider the corresponding linear equa-
tion

S(x) =

∞∫

0

k0(x− t)S(t) dt, x > 0. (21)

It is well–known that if the function k0(x) satisfies the conditions (4), (20),
then the equation (21) has a positive monotonously increasing and bounded
solution S(x) (see [8,9]). We denote C = sup

x>0
S(x). Due to the linearity of

(21), the function S∗ =
1
C

S(x) will also satisfy the equation (21). Further-

more, S∗(x) ↑ 1 as x → +∞. We consider the equation (7) with the kernel
(4), (20).

Analogously, it is easy to verify that f (n)(x) ↓ as n increases. We prove
f (n)(x) ≥ S∗(x). For n = 0 this is obvious. Taking into account (21) and
0 < S∗(x) ≤ 1, from (7) we obtain

f (n+1)(x) ≥
∞∫

0

k0(x− t) p
√

S∗(t)dt ≥
∞∫

0

k0(x− t)S∗(t) dt = S∗(x).
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Thus, there exists f(x) = lim
x→+∞

f (n)(x). Moreover,

S∗(x) ≤ f(x) ≤ 1. (22)

From Levi’s theorem it follows that the limit function f(x) satisfies the
equation (3).

Acting analogously as in Theorem 1, we obtain that f(x) ↑ as x increases.
Since S∗(x) → 1 as x → +∞, it follows from (22) that

lim
x→∞

f(x) = 1.

Thus the following theorem holds.

Theorem 2. Under the conditions (4), (20) the equation (3) has a pos-
itive monotonically increasing and bounded solution ψ(x). Moreover,

lim
x→∞

ψ(x) = 1, S∗(x) ≤ ψ(x) ≤ 1.

Acting analogously we will be able to prove the following general theorem.

Theorem 3. Let there exist k0(x), k0(x) ≥ 0,
+∞∫
−∞

k0(x) dx = 1, such

that K(x, t) ≥ k0(x− t) ∀x, t ∈ R+ ×R+.
1) if k0(−x) = k0(x), then the equation (1) has a positive and bounded

solution ϕ(x):
(

1
2

) 1
p−1

≤ ψ(x) ≤ ϕ(x) ≤ 1; lim
x→+∞

ϕ(x) = 1;

2) if ν(k0) < 0, then the equation (1) has a positive and bounded solu-
tion ϕ(x):

S∗(x) ≤ ψ(x) ≤ ϕ(x) ≤ 1; lim
x→+∞

ϕ(x) = 1.

2.3. Examples. We bring two particular examples of the equation (1) sat-
isfying the conditions of Theorem 3:

1) ϕp(x) =

∞∫

0

k0(x− t)ϕ(t) dt +

∞∫

0

k1(x + t)ϕ(t) dt, where

0 ≤ k1 ∈ L1(0, +∞),

∞∫

x

k1(t) dt ≤
∞∫

x

k0(t) dt, ∀x > 0;

(23)

2) ϕp(x) = µ(x)

∞∫

0

k0(x− t)ϕ(t) dt, (24)

where µ(x) is a measurable function on (0, +∞) satisfying the condition
1 ≤ µ(x) ≤ 1

x∫
−∞

k0(t) dt
.
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3. On a Special Case Arising in Applications

We consider the equation (1) in the case where

K(x, t) = k0(x− t)− k1(x + t) ≥ 0. (25)

It should be noted that the condition K(x, t) ≥ k0(x − t) doesn’t work for
the kernel (25) and it is necessary to develop a new approach for studying
the problem of solvability of the equation (1), (25). We should also note
that the nonlinear equation (1) with the kernel

K(x, t) =
1√
π

(e−(x−t)2 − e−(x+t)2) (26)

describes the dynamics (rolling) of P−adic closed strings for a scalar tachyon
field (see [2], [3]).

First we consider the corresponding linear equation (p = 1)

η(x) =

∞∫

0

k0(x− t)η(t) dt−
∞∫

0

k1(x + t)η(t) dt, x > 0, (27)

where η(x) is the unknown function.
We rewrite the equation (27) in the operator form

(I − K̂0 + K̂1)η = 0, (28)

where I is the unit operator, K̂0 is a Wiener–Hopf integral operator, and
K̂1 is a Henkel operator. Let E be one of the following Banach spaces:
Lp(0, +∞), 1≤p≤∞, M(0, +∞), Cu(0, +∞), C0(0,+∞), where Cu(0,+∞)
is the space of continuous functions having a finite limit at infinity.

It is known (see [10]) that if ν(k0) ≤ 0 and m2(k1) =
∞∫
0

x2k1(x) dx < +∞,

then the operator I − K̂0 + K̂1 admits the following three factor decompo-
sition

I − K̂0 + K̂1 = (I − V̂−)(I + Ŵ )(I − V̂+), (29)

where V̂± are Volterra operators:

(V̂−f)(x) =

∞∫

x

v−(t− x)f(t) dt, f ∈ E, (30)

(V̂+f)(x) =

x∫

0

v+(x− t)f(t) dt, f ∈ E, (31)

0 ≤ v± ∈ L1(0, +∞), γ± =
∞∫
0

v±(x) dx ≤ 1, and Ŵ is a Henkel type integral

operator

(Ŵf)(x) =

∞∫

0

W (x + t)f(t)dt, f ∈ E, (32)
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0 ≤ W ∈ L1(0, +∞). It should be noted that (see [8])
i) if ν(k0) < 0, then γ− = 1, γ+ < 1;
ii) if ν(k0) = 0, then γ± = 1.

At the same time, if the functions k0 and k1 are bounded, then W ∈
M(0, +∞), v± ∈ M(0,+∞).

It is well known that Ŵ is a compact operator in the spaces L1(0,+∞)
and Cu(0, +∞) (and in other natural functional spaces).

Taking into account the factorization (29), we rewrite the equation (28)
in the form

(I − V̂−)(I + Ŵ )(I − V̂+)η = 0. (33)
Solving the equation (33) is equivalent to solving the following three coupled
equations

(I − V̂−)η1 = 0, (34)

(I + Ŵ )η2 = η1, (35)

(I − V̂+)η = η2. (36)

Statement 6. Let ν(k0) < 0. Then the equation (27) has a nontrivial
solution η(x) ∈ Cu(0, +∞).

Proof. Let us consider the following possibilities:

a) ε = −1 is an eigenvalue for the operator Ŵ ;
b) ε = −1 is not an eigenvalue for the operator Ŵ .

a) We choose the trivial solution of the equation (34). Inserting it in
(35), we obtain

η2(x) = −
∞∫

0

W (x + t)η2(t) dt. (37)

Since ε = −1 is an eigenvalue for the operator Ŵ , the equation (37) has a
nontrivial solution η2 ∈ Cu(0,+∞). Furthermore, from the estimate

|η2(x)| ≤ sup
t>0

|η2(t)|
∞∫

x

W (τ) dτ

it follows that η2 ∈ C0(0,+∞).
Now we consider the equation (36)

η(x) = η2(x) +

x∫

0

v+(x− t)η(t) dt. (38)

Since γ+ < 1, the equation (38) in the space C0(0, +∞) has a unique solution
(see [9]).

b) It is easy to check that η1(x) = const 6= 0 satisfies the equation (34)
because γ− = 1.
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We choose η1(x) ≡ 1 as η1. Substituting it in (35), using the fact that
ε = −1 is not an eigenvalue for Ŵ and taking into account that Ŵ is
completely continuous (in Cu(0,+∞)), we conclude that the equation (35)
has a bounded solution η2 ∈ Cu(0, +∞). Since γ+ < 1, the equation (38)
has a solution belonging to Cu(0, +∞). ¤

Statement 7. Let ν(k0) = 0, k0 ∈ L1(−∞,+∞) ∩M(−∞, +∞), k1 ∈
L1(0,+∞)∩M(0,+∞). If ε = −1 is an eigenvalue for the operator Ŵ , then
the equation (27) has a nontrivial bounded solution.

Proof. First we note that under the above-mentioned conditions and from
the results of [9], [10] it follows that W ∈ M(0, +∞) ∩ L1(0,+∞), v± ∈
M(0, +∞) ∩ L1(0,+∞). Choosing the trivial solution of the equation (34)
and taking into account that ε = −1 is an eigenvalue for the completely
compact operator Ŵ (in L1(0,+∞)), we conclude that the equation (35)
in L1(0,+∞) has a nontrivial solution. Since W ∈ M(0,+∞)∩L1(0,+∞),
from the inequality

|η2(x)| ≤ sup
x>0

|W (x)|
∞∫

0

|η2(t)| dt

it follows that η2 ∈ M(0, +∞). Thus we have proved that η2 ∈ L1(0, +∞)∩
M(0, +∞). Now we consider the equation (36) in the conservative case
(when γ+ = 1). Using the results of the work [11], we conclude that the
equation (36) has a bounded solution η(x). Below we assume that one of the
conditions of Statements 6 or 7 is fulfilled. Denote C = sup

x>0
|η(x)|. Due to

the linearity of the equation (27), the function η̃ = 1
C η will be a nontrivial

solution of the equation (27). Furthermore,

sup
x>0

|η̃(x)| = 1. (39)

Let us consider the following iteration

f (n+1)(x) =

∞∫

0

K(x, t) p

√
f (n)(t) dt, f (n)(x) ≡ 1, n = 0, 1, 2, . . . , (40)

where K(x, t) is given by the formula (25).
It is easy to check that for arbitrary n = 0, 1, 2, . . . the inequality

f (n)(x) ≥ |η̃(x)| (41)

holds. Indeed, for n = 0 it is obvious (see (39)). Assuming that the in-
equality (41) holds for some n, we will prove that it is true for n + 1. Since
|η̃(x)| ≤ 1, we have

f (n+1)(x) ≥
∞∫

0

K(x, t) p
√
|η̃(t)|dt ≥

∞∫

0

K(x, t)|η̃(t)|dt ≥ |η̃(x)|.
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Hence the sequence of functions {f (n)(x)}∞0 has a limit as n → +∞,

lim
n→∞

f (n)(x) = f(x). (42)

At the same time,
|η̃(x)| ≤ f(x) ≤ 1. (43)

Using Levi’s theorem, we conclude that f(x) is a solution of the equation

f(x) =

∞∫

0

K(x, t) p
√

f(t) dt. ¤

Statement 8. f(x) ↑ as x increases.

Proof. Let x1, x2 ∈ (0, +∞), x1 < x2, be arbitrary numbers and consider
the following iteration process

f (n+1)(x) =

x∫

−∞
k0(t)

p

√
f (n)(x− t) dt−

∞∫

x

k1(t)
p

√
f (n)(t− x) dt.

We have

f (n+1)(x1)− f (n+1)(x2) =

=

x1∫

−∞
k0(t)

p

√
f (n)(x1 − t) dt−

∞∫

x1

k1(t)
p

√
f (n)(t− x1) dt−

−
x2∫

−∞
k0(t)

p

√
f (n)(x2 − t) dt +

∞∫

x2

k1(t)
p

√
f (n)(t− x2) dt ≥

≥
x2∫

−∞
k0(t)

[
p

√
f (n)(x1 − t)− p

√
f (n)(x2 − t)

]
dt+

+

∞∫

x2

k1(t)
[

p

√
f (n)(t− x2)− p

√
f (n)(t− x1)

]
dt ≥ 0.

Therefore f(x) ↑ as x increases. From (39) and (43) it follows that
lim

x→∞
f(x) = 1. ¤

Thus the following theorems are valid.

Theorem 4. Let

1) 0 ≤ k0 ∈ L1(−∞; +∞),
+∞∫
−∞

k0(t) dt = 1, K(x, t) = k0(x − t) −

k1(x + t) ≥ 0, 0 ≤ k1 ∈ L1(0, +∞), m2(k1) =
∞∫
0

x2k1(x) dx < +∞;

2) ν(k0) < 0.
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Then the equation (1) has a nontrivial nonnegative solution ϕ(x) and
lim

x→∞
ϕ(x)= 1.

Theorem 5. Let
1) the condition 1) of Theorem 4 be fulfilled;
2) if ν(k0) = 0 and ε = −1 is an eigenvalue for the operator Ŵ ,

and k0 ∈ M(−∞, +∞)∩L1(−∞,+∞), then the equation (1) has a
nontrivial, nonnegative solution ϕ(x) and lim

x→∞
ϕ(x) = 1.

Remark 2. We note that Theorems 4, 5 are true for the kernels K(x, t)
satisfying the condition K(x, t) ≥ k0(x− t)− k1(x + t).

4. General Equation

We consider the general nonlinear equation (1∗). Acting analogously as
in Theorem 1 and leaving out the details, we will formulate the following
theorem.

Theorem 6. Let the following conditions be fulfilled:

1) there exists k0(x) : k0(−x) = k0(x),
+∞∫
−∞

k0(x) dx = 1, such that

K(x, t) ≥ k0(x− t) ∀x, t ∈ R+ ×R+; (44)

2) there exist η, ζ, η > 2ζ, such that Q(η) = η, Q(ζ) = 2ζ, Q(x) ↑ on
[ζ, η], Q ∈ C[ζ, η],

where η is the first positive root of the equation Q(x) = x. (45)

Then the equation (1∗) has a nonnegative and bounded solution f(x) :

lim
x→∞

f(x) = η.

Moreover, if K(x, t) ≡ k0(x − t), then the solution possesses the following
properties:

i) ζ ≤ f(x) ≤ η;
ii) f(x) ↑ as x increases.

Examples. We bring some particular examples of the function Q(x)
(see below) which arise in applications:

(1) Q(x) = x
1
p , x > 0, ζ = ( 1

2 )
p

p−1 , η = 1;
(2) Q(x) = sinx + x + 1, x > 0, ζ ∈ (0, 3

4π), η = 3
2π;

(3) Q(x) = ae−(x−a)2 , x > 0, ζ ∈ (0, η
2 ), where η is the first positive

root of the equation ae−(x−a)2 = x;
(4) Q(x) = ex−1, x > 0, ζ ∈ (0, 1

4 ), η = 1.

Summarizing, let us demonstrate one sample example. So, let K(x, t) =
k0(x− t), k0(x) = 1

2e−|x|, Q(x) = ex−1, η = 1, ζ be the solution of equation
ex−1 = 2x.
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From (1∗) we obtain

f ′′(x)− f(x) + ef(x)−1 = 0. (46)

In spite of the fact that it is impossible to solve the obtained nonlinear dif-
ferential equation analytically, the equation (46) has a positive and bounded
solution f(x) 6≡ 1 which has the following properties:

i) ζ ≤ f(x) ≤ 1;
ii) lim

x→∞
f(x) = 1;

iii) f(x) ↑ as x increases.
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