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EULER CASE FOR A CLASS
OF THIRD-ORDER DIFFERENTIAL EQUATION



Abstract. We deal with an Euler-Case for a class of third-order differ-
ential equation. A theorem on asymptotic behaviour at the infinity of three
linearly independent solutions is proved. This theorem coveres different
class of coefficients.

2010 Mathematics Subject Classification. 34E05.
Key words and phrases. Differential equations, asymptotic form of
solutions, Euler case.

31) mamﬁ:]&) amoGogl) &(‘)J['BDGOJE(S)JE)O’I) thongl)B3o &QOLJE’h



Euler Case for a Class of Third-Order Differential Equation 7

1. INTRODUCTION

In this paper we investigate the form of three linearly independent solu-
tions for a class of the third-order differential equation

(a(ay")) = (py) —ry =0 (1)
as r — 00, where x is the independent variable and the prime denotes
d/dz. The functions ¢, p and r are defined on the interval [a,00), are not
necessarily real-valued and continuously differentiable, and all are non-zero
everywhere in this interval. In this situation where p is sufficiently small
compared to ¢ and r as * — 00, (1) can be considered as a perturbation
of the equation investigated by Eastham. In this paper,we consider the
opposite situation where p is large compared to ¢ and r. In this situation,
we identify the Euler case:

I
@ ~ const. X %,
pr q
(pg") p @
— const. X -

pq

as * — oo. The various conditions imposed on the coefficients will be
introduced when they are required in the development of the method. Al-
Hammadi [1] considers (1) in the case where the solutions all have a similar
exponential factor. A third-order equation similar to (1) has been considered
previously by Unsworth [11] and Pfeiffer[10]. Eastham [6] considered the
Euler case for a fourth-order differential equation and showed that this
case represents a border line between situations where all solutions have a
certain exponential character as z — oo and where only two solutions have
this character. The case (2) will appear in the method in Sections 4-6,
where we use the recent asymptotic theorem of Eastham [4, Section 2| to
obtain the solutions of (1). Two examples are considered in Section 6.

2. THE GENERAL METHOD

We write (1) in the standard way [8] as a first order system

Y' = AY, (3)
where the first component of Y is y and
0 ¢! 0
A=1{0 pg ¢ '|. (4)
r 0 0

As in [2], we express A in its diagonal form
T 'AT = A (5)
and we therefore require the eigenvalues \; and eigenvectors v; (1 < j <

3) of A, with the eigenvalues \; are chosen as continuously differentiable
function.
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Writing
¢ =s, (6)
we obtain the characteristic equation of A as
sA3 —pA2 —r =0. (7)
An eigenvector v; of A corresponding to A; is
vj = (1,5%)\j7r)\;1)t, (8)

where the superscript denotes the transpose. We assume at this stage that
the \; are distinct, and we define the matrix T in (5) by

T=(mi'vy my'vs mz'vs), (9)

where the m; (1 < j < 3) are scalar factors to be specified according to the
following procedure. Now from (4), we note that EA is symmetric, where

0 0 1
E=]0 1 0 (10)
1 00
Hence, by [7, Section 2(i)], the v; have the orthogonality property
(Evp)'v; =0 (k # j). (11)
We then define the scalars
m; = (Ev;)'v; (12)
and the row vectors
’I“j = (Evj)t. (13)
Hence by [7, Section 2]
1
T t=|r], (14)
T3
mj = 33)\? —2pAj = sA? + 27“)\]71. (15)
By (5), the transformation
Y =TZ (16)
takes (3) into
Z'=(AN-T7'T")Z, (17)
where
A= dg()\l,)\g,)\g). (18)
From (8)—(12), we obtain T7'T" = (t;;,), where
1 m}
tjj=—=—> 19
73 2 m] ( )
and, for j # k,
1 m! Ai — Mk 1 mj, 1 1
tjk = 5 miz + ka (S ;c+ §>\k5') — mii (T)\j +5)\j>\k —|—7’)\k ) (20)



Euler Case for a Class of Third-Order Differential Equation 9

Now we need to work out (19) and (20) in some detail in terms of s, p and
r in order to determine the form of (17).

3. THE MATRICES A AND T 17"

In our analysis, we impose a basic condition on the coefficients as follows:
(I) p, r and s are all nowhere zero in some interval [a, 00), and

()} =of?) 0 o
If we write )
5=""2 (22)
p2
then by (21)
d=0(1) (x — o0). (23)

Now as in [1,2], we can solve the characteristic equation (7) asymptotically
as ¢ — o0o. Using (21) and (23), we obtain the distinct eigenvalues A; as

[T\
A= z(;) (14 01), (24)
[T\
Ag = — (];) (1+d2), (25)
s = (g)u +35), (26)
where
51 =0(8), 62 =0(5), b5=0(5?). (27)
By(21), the ordering of A; is such that
Aj = o(A3) (z — o0, j=1,2). (28)
Now substituting (24)—(26) into (7) and differentiating, we obtain
p_ Loy
Y QZ(p) {~ . +0(e) }, (29)
AT CALIC
Ny = 2z(p) {= ; +0(e)}, (30)
AV
X\, = (5>{p - +0(55)}. (31)

Now we work out m; (1 < j < 3) asymptotically as x — oo; hence by
(24)-(27), (15) gives,

my = —2i(pr) {14+ 0(8)}, (32)
my = 2i(pr) 2 {1+ 0(8)}, (33)

mg = (%2){1 +0(8)}. (34)
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Also by substituting A; (j = 1,2,3) into (15) and using (24), (25) and (26)
respectively, and differentiating, we obtain

’ . i(r p
=— —+=40 35
mi = ~i(rp)H{ -+ 7+ 0() }, (35)
! /
’ . 1 p
= ~+2 40 36
mh =i(rp)H{ -+ 7+ 0 (36)
2 / /
(P[P %
mg_(s){zp - +0(5g)}, (37)
where
/ S/ p/
e= f5\+f5+f5 (38)
r s
At this stage we also require the following condition:
(1)
rr/ S/ p/
§—,8—,6= areall L(a,oc0). (39)
r s P
Now by (22)

=0(74) +o(%9) vo(%s) o

Also by substituting (24) (25) into (7) and d1ﬁ'erent1at1ng, we obtain

5;:0( ) ( ( ) j=1,2) (41)

and
i (T 52 s P oo
53_0(T5)+0 85)+0(p5). (42)
Hence by (38), (40), (41), (42) and (39)
g, 0, 8; € L(a,00). (43)

We can now substitute the estimates (24)—(27), (32)—(37) and (29)—(31)
into (19) and (20) as in [1], we obtain the following expressions for ¢,
ti1=—-p+ 0(5)7 lag=—p+ 0(5)7
tss = —n+0(de), tiz=p+0(e),
tor =p+ O(E), tiz3 = O(E), tog = O(E) (44)

1 1
t31 = §7I+O(5)a l3g = 577+O(5)

with
1 (rp)’ _ (ps™1/2Y

Py rp T psT1/2

(45)

It follows from (43) the O-terms in (44) are L(a, c0), and we can therefore
write (17)
—(A+R+ 97 (46)
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where
p —-p 0
—| —» p 0
R i 1 (47)
51 —5n M

and S € L(a,c0) by (43).

4. THE EULER CASE

Now we deal with (2) more generally. So we write (2) as

2 421+ 0), (18)
s—1/2y
EZ ) 2 (1), (49)
ps S

where o and w are non zero constants, and ¢(z) — 0, ¥(z) — 0 (z — ).
At this stage we let
¢', ¥ € L(a,0). (50)

We note that by (48) and (49), the matrix A no longer dominates the matrix
R and so Eastham’s theorem [4, Section 2] is not satisfied which means that
we have to carry out a second diagnolization of the system(46). First we
write

A+ R =X3{S1 + 52} (51)
and we need to work out the two matrices S; = const. with the matrix
Sa(x) = o(1) as  — oo using (24), (25), (26) and Euler case (48) and (49).
Hence after some calculations, we obtain

o —0 0
si= 7 7 Y (52)
oW v 1+w
Uy U 0

Sg(.’lﬁ): U2 U3 0 5 (53)
Uqg Ug Us

where

(5% :)\1>\§1—UQ, U = —U(1+63)_1(¢—53),
. 1 . (54)
us = )\2)\3 — U2, Ug = 75 w(l + 53) (’l/} — 53), us = 72U4.

It is clear that by (28) and (27), Sz(x) — 0 as x — co. Hence we diagonalize
the constant matrix S7. Now the eigenvalues aj(l < j < 3) of the matrix
S1 are given by
a1 =0, ag=20, az=1+w. (55)
Let
w# -1 and 20 —w # 1. (56)
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Hence by (56), the eigenvalues «; are distinct. Thus we use the transfor-
mation
Z =T1W (57)
in (46), where T} diagonalizes the constant matrix S;. Then (46) trans-
forms to
W' = (A + M+ T STHW, (58)
where
Al = )\3T1_131T1 = dg(?)l,’UQ,’Ug) = )\3dg(041, ag,ag),

M = \T; 1 S,Ty, Ty 'STy € Lia,00).
Now we can apply the asymptotic theorem of Eastham [4, Section 2] to (58)
provided only that A; and M satisfy the conditions in [4, Section 2]. We

first require that the v; (1 < j < 3) are distinct, and this holds because ¢
(1 < j < 3) are distinct. Second, we need to show that

(59)

vij‘fvj L0 (2 — o) (60)
fori=# jand 1 <i,j <3. Now
- ]\_4%_ — (01— ay) TS = o(1) (2 — o). (61)
Thus (60) holds. Third, we need to show that
Sh € L(a, 00). (62)
Thus it suffices to show that
uj(x) € L(a,00) (1 <1i<5). (63)
Now by (24), (25), (26) and (54)
up = O(0") + 0(616) + O(d3) + O(¢'),
uy = 0(d3) + O(¢),
ufy = O(8") + 0(850) + O(65) + O(¢'), (64)
uy = O(d3) + O(¢),
ug = O(d3) + O(¢")

Thus, by (64), (43) and (50), we see that (63) holds and consequently (62)
holds. Now we state our main theorem for (1).
5. THE MAIN RESULT

Theorem 5.1. Let the coefficients p, v and s are C®[a,00). Let (21),
(38), (48), (49) and (55) hold. Let

ReI(x), (65)

1
Re[Xs+n—5 20+ A+ Ao £1)] (66)
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be of one sign in [a,c0), where

I() = [40* + (A — 2)?] . (67)
Then (1) has the solutions
(@) = of (@) T exp (3 [ D0+ 2a(0) - 10)] ) .
y2(w) = [~i + o(1)](r(2)p()) T x
(68)

X exp (; ] [AL(t) + A2 (t) + I(¢)] dt),

a

ys(z) = 0{(7"(56)5(%))212?1/2@) exp <])\3(t) dt) }

a

Proof. Before applying the theorem in [4, Section 2|, we show that the
eigenvalues pyp (1 < k < 3) of Ay + M satisty the dichotomy condition [9].
As in [2], the dichotomy condition holds if

Re(vj —w)=f+g (j#k 1<k<3), (69)

where f has one sign in [a,00) and g belongs to L(a,o0) [4, (1.5)]. Now
since the eigenvalues of A; + M are the same as the eigenvalues of A + R,
by (18) and (47) we have

1
pe= 5 2o Mt he + (<D (B =1,2),

H3 = Az + 1.

Thus by (70) and (66), we see that (69) holds. Since (58) satisfies all the
conditions for the asymptotic result [4, Section 2], it follows that, as x — oo,
(58) has three linearly independent solutions

(70)

x
Wi(2) = {er + o(1)} exp ( / () dt), (71)
where py are given by (70) and ey are the coordinate vectors with kth
component unity and other components zero. Now we transform back to Y
by means of (16) and (57), where T} in (57) is given by

1 -1 0
n=| L 1 0] (72)
— 0 1
14+w

We obtain
Yi(z) =T (@) A Wi(z) (1<Ek<3). (73)
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Now using (9), (32), (33), (34), (71), (72) and (45) in (73) and carrying out
;1 ! ’
the integration of #*2)" and (1) %, for 1 <k <3, we obtain (68). O

ps 2
6. DiscussioN

(1) In a familiar case, the coefficients covered by Theorem 5.1 are
s(r) = Az®, p(z) = Bz®, r(z)=Cx", (74)
where «, 3, v, A(# 0), B(# 0) and C(# 0) are real constants. Then
the Euler case (48)—(49) is given by
a—pF=1 (75)
The values of o and w are given by

1 (B+7v)A w_(ﬁ— a)A.

(76)

4 B ’
Also in this example ¢(x) =9 (z) = 0 in (48) and (49).
(2) Theorem 5.1 coveres also the following class of coefficients
5= Axo‘ewb, p= Bxﬁe"”b, r= Cx”’e%zb, (77)

where «, 8, v, A(# 0), B(#£ 0), C(# 0) and b(> 0) are real con-
stants. Then the Euler case (48)—(49) is given by

bJ N

b—1=0-a. (78)
The values of o and w are given by
3 bA 1b
Also
2 _ _
Bla) = 307G+, (30)
_ 1 _
W(x) =2b 1(5 ~5 a)x b, (81)
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