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ON PERTURBED MULTI-POINT PROBLEMS FOR
NONLINEAR FUNCTIONAL DIFFERENTIAL SYSTEMS

Abstract. For nonlinear functional differential systems unimprovable con-
ditions of solvability of perturbed multi-point boundary value problems are
established.

îâäæñéâ. ŽîŽûîòæãæ òñêóùæëêŽèñî áæòâîâêùæŽèñîæ ïæïðâéâĲæïŽ-
åãæï áŽáàâêæèæŽ öâöòëåâĲñèæ éîŽãŽûâîðæèëãŽêæ ïŽïŽäôãîë Žéë-
ùŽêâĲæï ŽéëýïêŽáëĲæï ŽîŽàŽñéþëĲâïâĲŽáæ ìæîëĲâĲæ.
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Consider the boundary value problem

dxi(t)
dt

= fi(x1, . . . , xn)(t) (i = 1, . . . , n), (1)

xi(ti) = ϕi(x1, . . . , xn)(t) (i = 1, . . . , n), (2)

where t1, . . . , tn are points from the segment I = [a, b], while fi : C(I;Rn) →
L(I;R) (i = 1, . . . , n) and ϕi : C(I;Rn) → R (i = 1, . . . , n) are, respectively,
continuous operators and functionals.

A vector function (xi)n
i=1 : I → Rn with absolutely continuous compo-

nents xi : I → R (i = 1, . . . , n) is said to be a solution of the system (1) if
it satisfies this system almost everywhere on I.

A solution of the system (1), satisfying the boundary conditions (2), is
said to be a solution of the problem (1),(2).

Particular cases of (1) are systems of ordinary differential equations

dxi(t)
dt

= f0i

(
t, x1(t), . . . , xn(t)

)
(i = 1, . . . , n) (3)

and systems of differential equations with deviated arguments

dxi(t)
dt

= gi

(
t, x1(τi(t)), . . . , xn(τn(t)), xi(t)

)
(i = 1, . . . , n), (4)

where f0i : I × Rn → R and gi : I × Rn+1 → R (i = 1, . . . , n) are functions
from the Carathéodory class, and τi : I → I (i = 1, . . . , n) are measurable
functions.
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Particular cases of (2) are the boundary conditions of periodic type

xi(a) = αixi(b) (i = 1, . . . , n) (21)

and the multi-point boundary conditions

xi(ti) =
n∑

k=1

m∑

j=1

`ijkxk(tijk) + ci (i = 1, . . . , n). (22)

Boundary value problems for systems of the type (1) have been investi-
gating intensively and are the subject of numerous works (see, e.g., [1]–[5],
[12] and the references therein).

In the case where ϕi = ci = const (i = 1, . . . , n), the problem (3), (2),
i.e. the system (3) with the boundary conditions

xi(ti) = ci (i = 1, . . . , n)

is called the Cauchy–Nicoletti problem. Optimal, in a certain sense, suffi-
cient conditions for the solvability and unique solvability of that problem
are contained in the papers [6], [7], [14].

In the paper [8] I. Kiguradze proposed a new method of investigation
of boundary value problems of the type (3), (2) which is based on a priori
estimates of solutions of systems of one-sided differential inequalities. This
method allows us to study from the unified viewpoint a sufficiently large
class of perturbed multi-point boundary value problems and the periodic
problem (see [8] and [10]).

In our paper, new sufficient conditions for the solvability of boundary
value problems of the type (1), (2) are given, which, in contrast to previous
results, cover the cases where the system (1) is superlinear or sublinear or
some equations of this system are superlinear, while others are sublinear.

Throughout the paper, the use will be made of the following notation:
R = ]−∞,+∞[ , R+ = [0, +∞[ ;
Rn is the n-dimensional real Euclidian space;
y = (yi)n

i=1 and Y = (yik)n
i,k=1 are an n-dimensional column vector and

an n× n-matrix with elements yi and yik ∈ R (i = 1, . . . , n);
Y −1 is the inverse matrix to Y ; r(Y ) is the spectral radius of Y ;
E is the unit matrix;
C(I;Rn) is the space of n-dimensional continuous vector functions x =

(xi)n
i=1 : I → Rn with the norm

‖x‖C = max
{ n∑

i=1

|xi(t)| : t ∈ I
}

;

L(I;R) is the space of Lebesgue integrable functions x : I → R with the

norm ‖x‖L =
b∫

a

|x(s)| ds;

L(I;R+) is the set all nonnegative functions from L(I;R).
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We will say that the operator p : C(I;Rn) → L(I;R) belongs to the
Carathéodory class if it is continuous and

sup
{
|p(x)(·)| : x ∈ C(I;Rn), ‖x‖C ≤ ρ

}
∈ L(I;R+) for ρ ∈ R+.

Everywhere below, when we discuss the boundary value problem (1), (2),
it is supposed that the operators fi : C(I;Rn) → L(I;R) (i = 1, . . . , n)
belong to the Carathéodory class, and the functionals ϕi : C(I;Rn) → R
(i = 1, . . . , n) are continuous.

We will consider the case where for arbitrary (xi)n
i=1 ∈ C(I;Rn) and for

almost all t ∈ I the inequalities

fi(x1, . . . , xn)(t) sgn
(
(t− ti)xi(t)

) ≤

≤ pi(x1, . . . , xn)(t)
(
− |xi(t)|+

n∑

k=1

hik‖xk‖C + hi

)
+

+δi(x1, . . . , xn)
( n∑

k=1

qik(t)‖xk‖C + qi(t)
)

(i = 1, . . . , n), (5)

∣∣ϕi(x1, . . . , xn)
∣∣ ≤

≤ ϕ0i(|xi|) + δi(x1, . . . , xn)
( n∑

k=1

`ik‖xk‖C + `i

)
(i = 1, . . . , n) (6)

are satisfied, where pi : C(I;Rn) → L(I;R+) (i = 1, . . . , n), δi : C(I;Rn) →
R+ are any nonlinear operators and functionals; ϕ0i : C(I;R) → R (i =
1, . . . , n) are linear non-negative functionals; hik, hi, `ik and `i are non-
negative constants;

qik ∈ L(I;R+), qi ∈ L(I;R+) (i, k = 1, . . . , n).

Suppose

p̃i(x1, . . . , xn)(t) = exp
(
−

∣∣∣∣
t∫

ti

pi(x1, . . . , xn)(s) ds

∣∣∣∣
)

(i = 1, . . . , n), (7)

H =
(
hik + (1 + ϕ0i(1))‖qik‖L + `ik

)n

i,k=1
. (8)

Theorem 1. Let along with (5) and (6) the conditions

ϕ0i(1) ≤ 1, 1− ϕ0i

(
p̃i(x1, . . . , xn)

) ≥ δi(x1, . . . , xn) (i = 1, . . . , n), (9)

r(H) < 1 (10)

be fulfilled, where p̃i (i=1, . . . , n) and H are operators and a matrix, given by
the equalities (7) and (8). Then the problem (1), (2) has at least one solution.

Consider now the boundary value problem of periodic type (1), (21),
where α1, . . . , αn are arbitrary real constants. In particular, if α1 = · · · =
αn = 1, then (1), (21) is a periodic problem.

The following theorem is valid.
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Theorem 2. Let there exist operators pi : C(I;Rn) → L(I;R+) (i =
1, . . . , n) and numbers σi ∈ {−1, 1}, hik ≥ 0, hi ≥ 0 such that for any
(xi)n

i=1 ∈ C(I;Rn) and for almost all t ∈ I the inequalities

fi(x1, . . . , xn) sgn(σixi(t)) ≤

≤ pi(x1, . . . , xn)(t)
(
− |xi(t)|+

n∑

k=1

hik‖xk‖C + hi

)
(i = 1, . . . , n),

b∫

a

pi(x1, . . . , xn)(s) ds > 0 (i = 1, . . . , n)

hold. If, moreover, the numbers αi, σi satisfy the inequalities

(1− |αi|)σi ≥ 0 (i = 1, . . . , n),

and the matrix H = (hik)n
i,k=1 satisfies the condition (10), then the problem

(1), (21) has at least one solution.

Note that in both Theorems 1 and 2 the condition (10) is unimprovable
in the sense that it cannot be replaced by the non-strict inequality

r(H) ≤ 1. (10′)

Indeed, it is clear that the periodic problem
dxi(t)

dt
= −σixi(t) + ‖xi‖C + 1, xi(a) = xi(b) (i = 1, . . . , n)

has no solution, though for this problem all the conditions of Theorem 2
are satisfied except the condition (10), instead of which the inequality (10′)
holds, since in that case H = E, r(H) = 1.

Let us now consider the boundary value problem (4), (21).
For this problem from Theorem 2 we get

Corollary 1. Let on the set I × Rn+1 the inequalities

gi(t, y1, . . . , yn, yn+1) sgn(σiyn+1) ≤

≤ pi(t, y1, . . . , yn, yn+1)
(
− |yn+1|+

n∑

k=1

hik|yk|+ hi

)
(i = 1, . . . , n)

hold, where pi : I × Rn+1 → ] − ∞, [ (i = 1, . . . , n) are functions from
the Carathéodory class, hik and hi are non-negative constants, and σi ∈
{−1, 1}. If, moreover, the inequalities

(1− |αi|)σi ≥ 0 (i = 1, . . . , n), r(H) < 1

are satisfied, where H = (hik)n
i,k=1, then the problem (4), (21) has at least

one solution.

As it is noted above, the theorems proven by us cover the cases where the
system (1) is superlinear or sublinear or some of equations of these systems
are superlinear, and others are sublinear.
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Indeed, suppose the equalities

gi(t, y1, . . . , yn, yn+1) =

= pi(t) exp
(
βi

n+1∑

k=1

|yk|
)(− σiyn+1 + g0i(t, y1, . . . , yn, yn+1)

)
(i = 1, . . . , n)

hold, where βi ∈ R, σi ∈ {−1, 1}, pi ∈ L(I; R+) (i = 1, . . . , n), and
g0i : I × Rn+1 → R (i = 1, . . . , n) are continuous bounded functions. If,
moreover, σi(1 − |αi|≥0 (i = 1, . . . , n), then according to Corollary 1 the
problem (4), (21) has at least one solution. On the other hand, the i-th
equation of the system (1) is superlinear if βi > 0, and sublinear if βi < 0.
Note that in these cases the problem (4), (21), generally speaking, is a prob-
lem at resonance since if αi = 1 for some i ∈ {1, . . . , n}, then the linear
homogeneous problem dxi(t)

dt = 0, xi(a) = αixi(b) (i = 1, . . . , n) has an
infinite set of solutions.

Finally, consider the problem (1),(22), where tijk∈I, `ij ∈R, ci∈R. Put

`ik =
n∑

j=1

|`ijk|.

For this problem Theorem 1 takes the form

Theorem 3. Let there exist operators pi : C(I;Rn) → L(I;R+) (i =
1, . . . , n), non-negative numbers hik, hi (i = 1, . . . , n), and functions qik

and qi ∈ L(I;R+) (i, k = 1, . . . , n) such that for any (xk)n
k=1 ∈ C(I;Rn)

almost everywhere on I, the inequalities

fi(x1, . . . , xn) sgn(σixi(t)) ≤ pi(x1, . . . , xn)(t)
(
− |xi(t)|+

+
n∑

k=1

hik‖xk‖C + hi

)
+

n∑

k=1

qik(t)‖xk‖C + qi(t) (i = 1, . . . , n)

hold. If, moreover, the matrix H = (hik + ‖qik‖L + `ik)n
i,k=1 satisfies the

condition (10), then the problem (1), (22) has at least one solution.

For the boundary value problem (4), (22) this theorem yields

Corollary 2. Let on the set I × Rn the inequalities

gi(t, y1, . . . , yn, yn+1) sgn
(
(t−ti)yn+1

) ≤ pi(t, y1, . . . , yn, yn+1)
(
−|yn+1|+

+
n∑

k=1

hik‖yk‖+ hi

)
+

n∑

k=1

qik(t)‖yk‖+ qi(t) (i = 1, . . . , n)

be fulfilled, where pi : I × Rn → ] −∞, 0[ (i = 1, . . . , n) are functions from
the Carathéodory class, hik and hi are non-negative constants, qik and qi ∈
L(I;R+). If, moreover, the matrix H = (hik + ‖qik‖L + `ik)n

i,k=1 satisfies
the condition (10), then the problem (1), (22) has at least one solution.
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The above-formulated theorems are a generalization of I. Kiguradze’s
results [10] for the system (1). They are proved using the results of the
papers [9], [11], [13].
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