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Abstract. Spectral analysis of a class of integral operators associated
with fractional order differential equations arising in mechanics is carried
out. The connection between the eigenvalues of these operators and zeros of
Mittag–Leffler type functions is established. Sufficient conditions for com-
plete non-self-adjointness and completeness of the systems of eigenfunctions
are given.
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îâäæñéâ. êŽöîëéöæ øŽðŽîâĲñèæŽ ûæèŽáæ îæàæï áæòâîâêùæŽèñî àŽêðë-
èâĲâĲåŽê ŽïëùæîâĲñèæ æêðâàîŽèñîæ ëìâîŽðëîâĲæï âîåæ çèŽïæï ïìâóðîŽ-
èñîæ ŽêŽèæäæ. áŽáàâêæèæŽ çŽãöæîæ Žé ëìâîŽðëîâĲæï ïŽçñåîæã îæùýãâĲïŽ
áŽ éæððŽà{èâòèâîæï ðæìæï òñêóùæâĲæï êñèâĲï öëîæï. éëõãŽêæèæŽ ïŽçñå-
îæã òñêóùæŽåŽ ïæïðâéæï ŽîŽåãæåöâñôèâĲñèëĲæï áŽ ïæïîñèæï ïŽçéŽîæïæ
ìæîëĲâĲæ.
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The spectral analysis of operators of the kind

A[α,β]
γ u(x) = cα

x∫

0

(x− t)
1
α−1u(t) dt + cβ,γ

1∫

0

x
1
β−1(1− t)

1
γ−1u(t) dt

has been carried out in [1]. Here α, β, γ, cα, cβ,γ are real numbers, while α,
β, γ are positive ones (similar operators were considered by G. M. Gubreev
in [2]). These operators arise in studying boundary value problems for
differential equations of fractional order (see [3] and references therein).

In particular, it is shown in [1] that the operator

Aρu(x) = A[ρ,ρ]
ρ u(x) =

=
1

Γ(ρ−1)

x∫

0

(x− t)
1
ρ−1u(x) dt− 1

Γ(ρ−1)

1∫

0

x
1
ρ−1(1− t)

1
ρ−1u(t) dt

is almost non-self-conjugate ([4]) if ρ > 1), and if 0 < ρ < 1, the kernel of
the operator Aρ coincides with the set of roots of the entire Mittag–Leffler
type function

Eρ(λ; ρ−1) =
∞∑

k=0

λk

Γ(ρ−1 + kρ−1)
.

Thus it follows from the above that all eigenvalues of the operator Aρ are
complex if ρ > 1, while if 0 < ρ < 1 the operator Aρ has real eigenvalues
(in fact, if 1

2 < ρ < 1, then the set of real eigenvalues is finite). All zeros of
the function Eρ(λ; ρ−1) are complex if ρ > 1, and if 0 < ρ < 1 the function
Eρ(λ; ρ−1) has real zeros. This confirms the hypothesis about the existence
of real zeros of the function Eρ(λ; ρ−1) if 1

2 < ρ < 1, as is stated in the
monograph ([5], p. 248).

The given paper is also devoted to investigation of boundary value prob-
lems for differential equations of fractional order and associated integral
operators of the kind A

[α;β]
γ .

To state the corresponding problems, we use some concepts from the
fractional calculus.

Let f(x) ∈ L1(0, 1). Then the function

d−α

dx−α
f(x) ≡ 1

Γ(α)

x∫

0

(x− t)α−1f(t) dt ∈ L1(0, 1)

is called the fractional integral of order α > 0 with the origin at the point
x = 0 [6] while the function

d−α

d(1− x)−α
f(x) ≡ 1

Γ(α)

1∫

x

(t− x)α−1f(t) dt ∈ L1(0, 1)

is called the fractional integral of order α > 0 with the end at the point
x = 1 [6]. Here Γ(α) is Euler’s gamma-function. In case α = 0, it is natural
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to put both fractional integrals equal to the function f(x). As is known [6],
the function g(x) ∈ L1(0, 1) is called a fractional derivative of the function
f(x) ∈ L1(0, 1) of order α > 0 with the origin at the point x = 0, if

f(x) =
d−α

dx−α
g(x).

Denote

g(x) =
dα

dxα
f(x).

In what follows, under the symbol dα

dxα , we will mean the fractional in-
tegral for α < 0 and the fractional derivative for α > 0. The fractional
derivative dα

d(1−x)α of the function f(x) ∈ L1(0, 1) of order α > 0, with the
end at the point x = 1 is defined similarly.

Let {γk}0n be an arbitrary set of real numbers satisfying the condition
0 < γj ≤ 1 (j = 0, 1, . . . , n). Denote

σk =
k∑

j=0

µk = σk + 1 =
k∑

j=0

γj (k = 0, 1, . . . , n)

and assume that

1
ρ

=
n∑

j=0

γj − 1 = σn = µn − 1 > 0.

Following [6], we introduce the differential operators

D(σ0)f(x) ≡ d−(1−γ0)

dx−(1−γ0)
f(x)

of, generally speaking, fractional order:

D(σ1)f(x) ≡ d−(1−γ1)

dx−(1−γ1)

dγ0

dxγ0
f(x),

D(σn)f(x) ≡ d−(1−γn)

dx−(1−γn)

dγn−1

dxγn−1
· · · dγ0

dxγ0
.

Note that if γ0 = γ1 = · · · = γn = 1, then it is obvious that

D(σk)f(x) = f (k)(x) (k = 0, 1, 2, . . . , n).

Now,
a) a two-point Dirichlet boundary value problem

u(0) = 0, u(1) = 0, (1)

for the fractional oscillatory equation

u′′ + λDα
0xu = 0, (2)
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(Dα
0x is the operator of fractional differentiation of order 0 < α < 1 [2])

investigated by many authors is equivalent to the equation [3], [4]

u(x) +
λ

Γ(ρ−1)

[ x∫

0

(x− t)
1
ρ−1u(t) dt−

1∫

0

x(1− t)
1
ρ−1u(t) dt = 0, (∗)

1
ρ

= 2− α, α = 2− 1
ρ

.

b) the operator, inverse to the operator generated by the differential
expression

lu =
1

Γ(1− γ)
dn−1

dxn−1

x∫

0

u′(t)
(x− t)γ

dt,

0 < γ < 1, and the natural boundary conditions

u(0) = 0, u(1) = 0, D(σ1)u
∣∣∣
t=0

= 0, . . . , D(σn−2)u
∣∣∣
t=0

= 0

can be represented in the form

A[ρ,ρ]
ρ u(x)=

1
Γ(ρ−1)

x∫

0

(x−t)
1
ρ−1u(t) dt− 1

Γ(ρ−1)

1∫

0

x
1
ρ−1(1− t)

1
ρ−1u(t) dt

(1
ρ

= n− 1 + γ, n = 1, 2, 3, . . .
)
.

A remarkable work of M. K. Gubreev in which similar operators are stud-
ied is worth mentioning. In [4], the operator A

[ρ,ρ]
ρ (∗) is investigated by

methods of the perturbation theory. Assume that the operator

Au =

x∫

0

(x− t)u(t) dt−
1∫

0

x(1− t)u(t) dt

is non-perturbed, and the operator

Ãu =
1

Γ(ρ−1)

[ x∫

0

(x− t)
1
ρ−1u(t) dt−

1∫

0

x(1− t)
1
ρ−1u(t) dt

]

is perturbed. Towards this end, the use was made of the concept of opening
between the closed operators. In [4], no explicit expression for the pertur-
bation of the operator A was written. In the present work we obtain the
corresponding expression and it seems to the authors that the present work
will become a factor allowing one to insert the theory of differential equa-
tions of fractional order in a general scheme of the theory of perturbations
[6], [7].
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Thus using the methods of the theory of perturbations in L1(0, 1), we
study the operator

Aεu =

x∫

0

(x− t)1+εu(t) dt−
1∫

0

x(1− t)1+εu(t) dt.

Theorem 1. The representation

Aεu = A + εA1 + ε2A2 + · · ·+ εnAn + · · · (ε > 0)

holds, where

Au =

x∫

0

(x− t)u(t) dt−
1∫

0

x(1− t)u(t) dt,

Anu =
1
n!

[ x∫

0

(x− t)[ln(x− t)]n dt−
1∫

0

x(1− t)[ln(x− t)]n dt

]

are operators with power-logarithmic kernels.

Proof. We rewrite the operator Aε as follows:

Aεu = Mεu + Nεu,

where

Mεu =

x∫

0

Kε(x, t)u(t) dt,

Kε(x, t) =

{
(x− t)1+ε, t < x

0, t ≥ x

and

Nε =

1∫

0

K̃ε(x; t)u(t) dt,

K̃ε(x, t) =

{
x(1− t)1+ε, t 6= 1
0, t = 1

.

Find the operator Aε as follows:

(A−Aε)u = (M −Mε)u− (N −Nε)u.

First, we find (M −Mε)u. Obviously,

(M −Mε)u =

1∫

0

[
K(x, t)−Kε(x, t)

]
u(t) dt.
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Since

[
K(x, t)−Kε(x, t)

]
=

{
(x− t)− (x− t)1+ε, t < x

0, t ≥ x
,

we have

K(x, t)−Kε(x, t) =

{
(x− t)[1− (x− t)ε], t < x

0, t ≥ x
.

As far as

ax = 1 +
x

1!
+

(x)2

2!
+ · · ·+ (x)n

n!
+ · · · (a > 0, x < ∞),

we find

K(x, t)−Kε(x, t) =

=





(x−t)
[
ε
ln(x−t)

1!
+ε2 (ln(x−t))2

2!
+· · ·+εn (ln(x−t))n

n!
+ · · ·

]
, t<x

0, t ≥ x
.

From the last expression we find that

(M −Mε)u = ε

1∫

0

K1(x, t)u(t) dt + · · ·+ εn

1∫

0

Kn(x, t)u(t) dt + · · · ,

where

Kn(x, t) =





(x− t)[ln(x− t)]n

n!
, t < x

0, t ≥ x
.

It follows from (4) that

Mε =

1∫

0

K(x, t)u(t) dt− ε

1∫

0

K1(x, t)u(t) dt− · · · − εn

1∫

0

Kn(x, t)u(t) dt.

In the same way we can obtain the representation

Nεu=

1∫

0

K̃(x, t)u(t) dt−ε

1∫

0

K̃1(x, t)u(t) dt− · · · −εn

1∫

0

K̃n(x, t)u(t) dt+ · · · ,

where

K̃n(x, t) =





x(1− t)[ln(x− t)]n

n!
, t < 1

0, t = 1

which was to be proved. ¤

Theorem 2. All eigenvalues λn(ε) of the operator A(ε) are real.
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Proof. We have

λn(ε) = πn2 + ελ1 + ε2λ2 + · · · , (3)

ϕn(ε) = sin nx + εϕ1 + ε2ϕ2 + · · · , (4)

where

λn =
n∑

k=1

(Akϕn−k, sinnx), (5)

ϕn = R

n∑

k=1

(λk −Ak)ϕn−k. (6)

Here, R is the reduced resolvent of the operator A corresponding to the
eigenvalue πn2. This resolvent is an integral operator with the kernel

S(x, y)=
[
− y

n
cosny sin nx+

1−x

n
sin ny cosnx+

1
2n2

sin ny sin nx
]
, y≤x

(if y > x, in the middle part of this expression y and x should be inter-
changed).

Clearly, R is a one-to-one transformation of H0 into itself which annuls
sin πnx (H0 is the orthogonal complement of the function sin πnx).

It follows from [8] that

λ1 = (A1 sinnx, sin x),

because the kernel of the operator A1, and sin λ1 = 0 is real-valued.
Next, from (6) it follows

ϕ1 = R(nk2 −A1) sin nx,

and the kernels of the operators R and A1 are real-valued. Hence Imϕ1 = 0.
Consequently, we can successively prove that all λi are real, and since ε is
real, therefore λu(ε) is real too. ¤

Theorem 3. For the eigenvalues λn(x) and eigenfunctions ϕn(ε) of the
operator A(ε) the estimates

∣∣λn(ε)− πn2
∣∣ <

π(2n− 1)
2

,

∣∣ϕn(ε)− sin nx
∣∣ <

1
2

hold.

Proof. From (5) and (6), under the assumption that

‖Anu‖ ≤ pn−1
{
u‖u‖+ b‖A0u‖

}
, m = ‖A0‖, 1

d
= ‖R‖, |ε| < 1

c
,

where

c = max
{8(a + mb)

d
, 8p + 4

a + mb

d

}
,
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we obtain the following simple formulas [8]:
∣∣λ(ε)− λ0 − ελ1 − εnλn

∣∣ ≤ d

2
(|ε|c)n+1, (7)

∣∣ϕ(ε)− ϕ0 − εϕ1 − εnϕn

∣∣ ≤ 1
2

(|ε|c)n+1. (8)

Let us calculate the values of the parameters a, b, c, d, m. First, we find m.
m = ‖A‖ = sup A, where sup A is the spectral radius of the operator A.

Since
sup A = π−1,

we have m = π−1. Further, we find d.

d = dist(πn2; Σ
′′
)

(d is an isolating distance). Here Σ
′′

is the spectrum of the operator A−1

with the unique excluded point πn2. Clearly, d = π(2n − 1). To find the
remaining parameters a, b, c, we have to estimate the norm of the opera-
tor An,

‖Anϕ‖L(0,1) ≤
1∫

0

1∫

0

|Kn(x, t)| |ϕ(t)| dt dx.

Here, Kn(x, t) is the kernel of the operator An,

1∫

0

1∫

0

|Kn(x, t)| |ϕ(t)| dt dx =

1∫

0

x∫

0

∣∣∣ (x− t)[ln(x− t)]n

n!

∣∣∣ |ϕ(t)| dt dx =

=

1∫

0

|ϕ(t)|
1−t∫

0

z|(ln z)n|
n!

dz dt ≤ 1
n!

1∫

0

z|(ln z)n| dz‖ϕ‖L1(0,1).

We now calculate the integral
∫

z ln zndz. It is equal to
∫

z ln zn dz =

=
z2(ln z)n

2
−nx2(ln x)n−1

22
+· · ·+ (−1)n−1n(n−1)(n−2) · · · 2

2n−1

[x2

2
− 1

22

]
,

whence ‖An‖ ≤ 1
2n+1 . It is now obvious that we can take α = 1

4 , p = 1
2 , and

b = 0. Since

c = max
{

8
a + mb

d
+ 8p + 4

a + mb

d

}
,

we have

c = max
{2

d
; 4 +

1
d

}
= 4 +

1
d

= 5.

Thus

|λ(ε)− λ| ≤ 1
2

π(2n− 1)
2

.
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In a similar way we find

|ϕε − ϕ0| ≤ 1
2

,

which proves Theorem 3. ¤
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