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Abstract. The presented work deals with the question on the existence
and uniqueness of a solution of the initial value problem for two-dimensional
systems of linear functional differential equations.

Unimprovable efficient conditions sufficient for the unique solvability of
the problem considered are established. The question on the existence of
a constant-sign solution is also studied in detail. In other words, theorems on
systems of linear functional differential inequalities (maximum principles)
are discussed, which play a crucial role not only in studies of solvability of
linear and non-linear problems but also for other topics related to the theory
of boundary value problems (e. g., oscillation theory, asymptotic theory,
etc.).

The general results are applied to special cases of functional differential
systems, namely, to systems of differential equations with arguments de-
viations and integro-differential systems, in which case further results are
derived; the criteria obtained contain results well-know for ordinary differ-
ential systems.
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îâäæñéâ. ê�öîëéæ âýâ�� ûîòæãæ òñêóùæëê�èñî áæòâîâêùæ�èñîæ
à�êðëèâ�â�æï ïæïðâéâ�æï�åãæï ï�ûõæïæ �éëù�êæï �éëê�ýïêæï �îïâ�ë�æï�
á� âîå�áâîåë�æï ï�çæåýï.

á�áàâêæèæ� à�êýæèñèæ �éëù�êæï ù�èï�ý�á �éëýïê�áë�æï âòâóðñîæ
ï�çé�îæïæ ìæîë�â�æ. �àîâåãâ áâð�èñî�á�� à�êýæèñèæ êæö�êéñáéæãæ
�éëê�ýïêæï �îïâ�ë�æï ï�çæåýæ. ïýã� ïæðõãâ�æå îëé ãåóã�å, à�êýæèñ-
èæ� åâëîâéâ�æ ûîòæã òñêóùæëê�èñî áæòâîâêùæ�èñî ñðëèë��å� ïæ-
ïðâéâ�æï öâï�ýâ� (é�óïæéñéæï ìîæêùæìâ�æ), îëéèâ�æù à�á�éûõãâð îëèï
å�é�öë�âê �î� éýëèëá ûîòæãæ á� �î�ûîòæãæ �éëù�êâ�æï �éëýïê�áë-
�æï, �î�éâá ï�ï�äôãîë �éëù�ê�å� åâëîæ�ïå�ê á�ç�ãöîæîâ�ñèæ ïýã�
ï�çæåýâ�æï (é�à., îýâã�áë�æï åâëîæ�, �ïæéìðëðñîæ åâëîæ� á� �. ö.)
öâïû�ãè�öæù.

äëà�áæ öâáâàâ�æ à�éëõâêâ�ñèæ� òñêóùæëê�èñî áæòâîâêùæ�èñîæ ïæ-
ïðâéâ�æï çâîúë öâéåýãâãâ�æï�åãæï, çâîúëá, à�á�ýîæè�îàñéâêðæ�ê áæ-
òâîâêùæ�èñî à�êðëèâ��å� á� æêðâàîë-áæòâîâêùæ�èñîæ ïæïðâéâ�æ-
ï�åãæï, á� é�ååãæï éæôâ�ñèæ� á�é�ðâ�æåæ öâáâàâ�æ; éæôâ�ñèæ çîæðâ-
îæñéâ�æ éëæù�ãï øãâñèâ�îæãæ áæòâîâêùæ�èñîæ ïæïðâéâ�æï�åãæï ç�î-
à�á ùêë�æè öâáâàâ�ï.



3

Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1. Basic Notation and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. Motivation and Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3. Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4. Theorems on Differential Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1. Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.1. The case ` ∈ P2
ab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1.2. The case −` ∈ P2
ab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2. Systems with argument deviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3. Auxiliary Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4. Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5. Counterexamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5. Weak Theorems on Differential Inequalities . . . . . . . . . . . . . . . . . 58
5.1. Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.1. The case h1, h2 ∈ Pab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.1.2. The case hk ∈ Pab and −h3−k ∈ Pab . . . . . . . . . . . . . . . . . . . . . . . 65

5.2. Systems with argument deviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3. Auxiliary lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4. Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5. Counterexamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6. Existence and Uniqueness Theorems . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.1. General two-dimensional systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1.1. Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.1.2. Systems with argument deviations . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.1.3. Modified pantograph equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.1.4. Auxiliary lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.1.5. Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2. Anti-diagonal systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2.1. Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2.2. Systems with argument deviations . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2.3. Auxiliary lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2.4. Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3. Counterexamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123



4

Preface

The presented work is devoted to the study of certain qualitative proper-
ties of functional differential systems. The author’s first results, concerned
with the question on the solvability of a two-point boundary value problem
for the first-order scalar functional differential equations (see [26–31, 78]),
were published in a comprehensive form in the monograph [32]. The tech-
niques used therein had later been generalized and modified for the case of
higher dimensions and, as a result, some efficient conditions for the solv-
ability of the initial value problem for functional differential systems were
obtained. The present work collects material from the papers [73–77]. The
results established in [73–75] are reformulated for the two-dimensional case.
Some of the statements given in [76,77] are also incorporated into the text.

The main part of the work is Section 6, where the question on the unique
solvability of the initial value problem for two-dimensional systems of linear
functional differential equations is studied. Since the results stated therein
are proved using the techniques of differential inequalities, theorems on sys-
tems of functional differential inequalities are investigated in Sections 4
and 5.

For the sake of convenience, each section is organized as follows. At
first, all the main results are formulated and discussed. These results are
then applied to a special case of functional differential systems, namely,
to systems of differential equations with arguments deviations, in which
case further results are obtained. Then, necessary auxiliary lemmas and
the detailed proofs of all the statements formulated above are presented.
Finally, we construct several counterexamples showing that some of the
results obtained are unimprovable in a certain sense.

The results presented in this work were achieved using the subsidization
by the grants No. 201/04/P183 and No. 201/06/0254 of the Czech Science
Foundation. The research was also supported by the Academy of Sciences
of the Czech Republic, Institutional Research Plan No. AV0Z10190503.

1. Basic Notation and Definitions

(1) N is the set of all natural numbers.
(2) R is the set of all real numbers, R+ = [0,+∞[ .
(3) For any x ∈ R, we put

[x]+ =
1
2

(|x|+ x), [x]− =
1
2

(|x| − x).

(4) R2 is the space of two-dimensional columns x = (xi)2i=1 with the
elements x1, x2 ∈ R and the norm

‖x‖ = |x1|+ |x2|.

(5) R2
+ =

{
(xi)2i=1 ∈ R2 : x1 ≥ 0, x2 ≥ 0

}
.

(6) x · y denotes the scalar product of the vectors x, y ∈ R2.
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(7) R2×2 is the space of 2×2-matrices X = (xik)2i,k=1 with the elements
xik ∈ R (i, k = 1, 2) and the norm

‖X‖ =
2∑

i,k=1

|xik|.

(8) X−1 denotes the inverse matrix to X ∈ R2×2.
(9) XT stands for the transposed matrix to an n×m-matrix X.

(10) For x = (xi)2i=1, y = (yi)2i=1 ∈ R2 and X = (xik)2i,k=1, Y =
(yik)2i,k=1 ∈ R2×2, we put

x ≤ y if and only if xi ≤ yi for i = 1, 2,
x < y if and only if xi < yi for i = 1, 2,

X ≤ Y if and only if xik ≤ yik for i, k = 1, 2.

We write x ≥ 0 and x > 0 instead of x ≥ (0, 0)T and x > (0, 0)T ,
respectively.

(11) If x = (xi)2i=1 ∈ R2, then we denote |x| =
(
|xi|
)2
i=1

, [x]+ =(
[xi]+

)2
i=1

, [x]− =
(
[xi]−

)2
i=1

, sgn(x) =
(
| sgnxi|

)2
i=1

, and

Sgn(x) =
(

sgnx1 0
0 sgnx2

)
.

(12) Having x1, x2 ∈ R, we put

diag(x1, x2) =
(
x1 0
0 x2

)
.

(13) C([a, b]; R2) denotes the Banach space of continuous vector func-
tions u : [a, b]→ R2 equipped with the norm

‖u‖C = max
{
‖u(t)‖ : t ∈ [a, b]

}
.

(14) Ca([a, b];D), where D ⊆ R2, is the set of the continuous vector
functions u : [a, b]→ D such that u(a) = 0.

(15) AC([a, b]; R2) is the set of absolutely continuous vector functions
u : [a, b]→ R2.

(16) C([a, b]; R) denotes the Banach space of continuous scalar functions
z : [a, b]→ R equipped with the norm

‖z‖C = max
{
|z(t)| : t ∈ [a, b]

}
.

(17) C([a, b]; R+) =
{
z ∈ C([a, b]; R) : z(t) ≥ 0 for t ∈ [a, b]

}
.

(18) Ca([a, b]; R) is the set of the continuous functions u : [a, b]→ R such
that u(a) = 0.

(19) Cloc([a, b[ ; R) is the set of continuous functions z : [a, b[→ R.
(20) AC([a, b]; R) stands for the set of absolutely continuous scalar func-

tions z : [a, b]→ R.
(21) ACloc([a, b[ ; R) is the set of the functions z : [a, b[→ R such that

z|[a,β] ∈ AC([a, β]; R) for every β ∈ ]a, b[ .
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(22) L([a, b]; R2) is the Banach space of Lebesgue integrable vector func-
tions q : [a, b]→ R2 equipped with the norm

‖q‖L =

b∫
a

‖q(s)‖ ds.

(23) L([a, b]; R) is the Banach space of Lebesgue integrable scalar func-
tions f : [a, b]→ R equipped with the norm

‖f‖L =

b∫
a

|f(s)|ds.

(24) L([a, b]; R+) =
{
f ∈ L([a, b]; R) : f(t) ≥ 0 for a. e. t ∈ [a, b]

}
.

(25) L2
ab denotes the set of linear bounded operators ` : C([a, b]; R2) →

L([a, b]; R2).
(26) Lab is the set of linear bounded operators ` : C([a, b]; R) →

L([a, b]; R).
(27) If ` : C([a, b]; R2) → L([a, b]; R2) is a linear operator, then for any

i ∈ {1, 2} and u ∈ C([a, b]; R2) `i(u) denotes the ith component
of the vector function `(u). Moreover, for any i, k ∈ {1, 2} and
z ∈ C([a, b]; R), we put

`ik(z) = `i(zk), where zk =

{
(z, 0)T if k = 1,
(0, z)T if k = 2.

The linear operators `ik : C([a, b]; R) → L([a, b]; R) (i, k = 1, 2) are
said to be components of the operator `. Obviously, for any u =
(u1, u2)T ∈ C([a, b]; R2), we have

`(u) =
(
`1(u), `2(u)

)T and `i(u) =
2∑
k=1

`ik(uk) for i = 1, 2.

(28) Given a linear operator ` : C([a, b]; R2)→ L([a, b]; R2), we put

P`(t) =
(
`ik(1)(t)

)2
i,k=1

for a. e. t ∈ [a, b].

It is clear that P` : [a, b]→ R2×2 is an integrable matrix function.

Definition 1.1. An operator ` ∈ L2
ab (resp., ` ∈ Lab) is said to be strongly

bounded if there exists a function η ∈ L([a, b]; R+) such that

‖`(u)(t)‖ ≤ η(t)‖u‖C for a. e. t ∈ [a, b] and all u ∈ C([a, b]; R2)(
resp., |`(z)(t)| ≤ η(t)‖z‖C for a. e. t ∈ [a, b] and all z ∈ C([a, b]; R)

)
.
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Example 1.2. Let the operator ` : C([a, b]; R2) → L([a, b]; R2) be defined
by the relation

`(v)(t) =
(
p11(t)v1

(
τ11(t)

)
+ p12(t)v2

(
τ12(t)

)
p21(t)v1

(
τ21(t)

)
+ p22(t)v2

(
τ22(t)

))
for a. e. t ∈ [a, b] and all v = (v1, v2)T ∈ C([a, b]; R2), (1.1)

where pik ∈ L([a, b]; R) and τik : [a, b] → [a, b] are measurable functions
(i, k = 1, 2). Then it is clear that ` is strongly bounded and

`ik(z)(t) = pik(t)z
(
τik(t)

)
for a. e. t ∈ [a, b] and all z ∈ C([a, b]; R).

Definition 1.3. An operator ` ∈ L2
ab (resp., ` ∈ Lab) is said to be positive

if the relation
`(u)(t) ≥ 0 for a. e. t ∈ [a, b]

holds for every function u ∈ C([a, b]; R2) (resp., u ∈ C([a, b]; R)) satisfying
the condition

u(t) ≥ 0 for t ∈ [a, b].
We denote the set of positive operators by P2

ab (resp., Pab).
We say that an operator ` ∈ L2

ab (resp., ` ∈ Lab) is negative if −` ∈ P2
ab

(resp., −` ∈ Pab). An operator ` is called monotone if it is either positive
or negative.

Remark 1.4. It is clear that every monotone operator is strongly bounded.

Remark 1.5. It is not difficult to verify that ` ∈ P2
ab if and only if

`ik ∈ Pab for i, k = 1, 2.

In particular, the operator ` given by the formula (1.1) is positive if and
only if

pik(t) ≥ 0 for a. e. t ∈ [a, b], i, k = 1, 2.

Definition 1.6. A linear operator ` : C([a, b]; Rn) → L([a, b]; Rn), where
n ∈ {1, 2}, is said to be an a-Volterra operator if, for every b0 ∈ ]a, b] and
v ∈ C([a, b]; Rn) such that v(t) = 0 holds for t ∈ [a, b0], we have `(v)(t) = 0
for a. e. t ∈ [a, b0].

Remark 1.7. Clearly, ` ∈ L2
ab is an a-Volterra operator if and only if all its

components `ik (i, k = 1, 2) are a-Volterra operators.
In particular, the operator ` given by the formula (1.1) is an a-Volterra

operator if and only if the condition

|pik(t)|(τik(t)− t) ≤ 0 for a. e. t ∈ [a, b], i, k = 1, 2

is satisfied.

Definition 1.8. Let ` : C([a, b]; Rn) → L([a, b]; Rn), where n ∈ {1, 2}, be
an arbitrary operator and b0 ∈ ]a, b]. The operator `ab0 : C([a, b0]; Rn) →
L([a, b0]; Rn) defined by the equality

`ab0(z)(t) = ` (zb0) (t) for a. e. t ∈ [a, b0] and all z ∈ C([a, b0]; Rn),
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where

zb0(t) =

{
z(t) for t ∈ [a, b0[,
z(b0) for t ∈ [b0, b],

is called the restriction of the operator ` to the space C([a, b0]; Rn).
If b0 < b1 ≤ b and z ∈ C([a, b1]; Rn), then we write `ab0(z) instead of

`ab0
(
z|[a,b0]

)
.

Remark 1.9. If ` : C([a, b]; R)→ L([a, b]; R) is an a-Volterra operator, then
it is clear that for every b0 ∈ ]a, b[ and z ∈ C([a, b]; R) the condition

`ab0(z)(t) = `(z)(t) for a. e. t ∈ [a, b0]

is satisfied.

2. Motivation and Illustrative Example

It is well-known that differential equations appear in mathematical mod-
els of various phenomena in physics, economy, biology, engineering, and
other fields of science. In many cases, these equations can be written in the
form of the ordinary differential system

x′ = f(t, x), (2.1)

where f : [0,+∞[×Rn → Rn is a certain vector function (in general non-
linear). The system (2.1) characterizes the evolution of the state variables
x ∈ Rn in time. The basic assumption that is made on the process when
models of this kind are used is that the evolution of the system at the
moment t is completely determined by the value of the state variables at
the same moment. In other words, for any t0 ∈ [0,+∞[ , in order to find
the value of x(t) of the state variables at the moment t ≥ t0, it is sufficient
to know the initial value x(t0).

In practice, however, many phenomena cannot be satisfactorily modelled
by ordinary differential systems. Indeed, for many processes, the evolution
of the state variables x at the moment t depends not only on the current
value x(t) but also on their past or future values. Consequently, when
constructing mathematical models for such processes, we obtain differential
systems with deviating arguments or more general functional differential
systems. Many illustrative examples of such models can be found in the
literature (see, e. g., [18, 35,35,48] and references therein).

In order to explain how the delay terms in differential systems may arise,
let us consider the modelling of regenerative effects in metal cutting in
a lathe. The situation under examination is described as follows. A cylin-
drical workpiece rotates with constant angular velocity ω and the lathe
carriage moves along the axis of the workpiece with constant linear velocity
ωf
2π , where f denotes the feed rate in length per revolution (see Fig. 2.1(a),
which is taken from [18]). In such a way, the tool removes a chip whose
steady thickness is equal to the feed rate f . Because of some external per-
turbations, the tool starts a damped oscillation y(t) relative to the lathe
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(a) Geometry of turning (b) One-degree-of-freedom model
Fig. 2.1.

carriage and the surface of the workpiece becomes wavy. After a round of
the workpiece, the chip thickness will vary because of relative oscillation of
the tool. The cutting force is commensurable, among other quantities, to
the instantaneous chip thickness and thus depends not only on the steady
chip thickness and the actual relative displacement of the tool, but also on
the delayed values of relative displacement of the tool. It should be noted
that the value of the delay is equal to the time-period τ of one revolution
of the workpiece.

The following one-degree-of-freedom model of the cutting process shown
on Fig. 2.1(b) goes back to 1950s (see, e. g., [1,16]). The equation of motion
takes the form

my′′ + cy′ + ky = −∆Fy(h, ϑ),
where m, c, and k denote the inertia, damping, and stiffness characteristics
of the tool, Fy is the component of the cutting-force in the direction of os-
cillations, h is the instantaneous chip thickness, and ϑ stands for the vector
of the other input quantities (cutting velocity, chip width, material charac-
teristics, etc.). The instantaneous chip thickness h(t) at the moment t is
often written as a deviation from the steady chip thickness f , i. e.,

h(t) = f + y(t)− y(t− τ),

where τ is the time-period of one revolution of the workpiece (i. e., τ = 2π
ω ).

Consequently, the equation of motion can be rewritten in the form

y′′(t)+2ζωny′(t)+ω2
ny(t)=− 1

m

(
Fy
(
f + y(t)−y(t−τ), ϑ(t)

)
−Fy(f, ϑ0)

)
,

where ωn is the natural angular frequency of the non-damped free oscil-
lator, ζ is the relative damping factor, and ϑ0 is the steady value of the
input quantities. Hence, we have obtained a second-order non-linear delay
differential equation.

Assuming that the vector of the input quantities ϑ is constant in time,
after linearization of the cutting-force Fy at the steady chip thickness f , the
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linearized equation of motion becomes (see, e. g., [80])

y′′(t) + 2ζωny′(t) +
(
ω2
n +

k1

m

)
y(t)− k1

m
y(t− τ) = 0, (2.2)

where k1 = ∂Fy(h,ϑ0)
∂h

∣∣∣
h=f

, which is a second-order linear delay differential

equation.
Another type of linearization of the cutting-force in the equation of mo-

tion is presented in [79]. Assuming that p describes the shape of the station-
ary stress distribution along the active face of the tool in the time-domain
[−σ, 0], where σ is the time-period needed for the chip to slip along the
active face of the tool, the linearized equation has the form

y′′(t) + 2ζωny′(t) + ω2
ny(t) +

k2

m

t∫
t−σ

p(s− t)
(
y(s)− y(s− τ)

)
ds = 0, (2.3)

where k2 is a suitable constant, which is a second-order linear integro-
differential equation with a delayed argument.

Now let us go back to the equation (2.2). We will consider this equation
on the interval [0, T ], where T > 0 is large enough. Because of the delayed
term y(t− τ), to define correctly the initial value problem for (2.2), it is not
sufficient to prescribe the initial values y(0) and y′(0); we must prescribe
values of the function y on the interval [−τ, 0]. Consequently, the initial
conditions subjected to the equation (2.2) can be written in the form

y(t) = ϕ(t) for t ∈ [−τ, 0], y′(0) = d, (2.4)

where d ∈ R and ϕ : [−τ, 0] → R is a suitable initial function. From the
application point of view, the problem on the stability of the equation (2.2)
is very interesting. But the first very important question reads as follows:
Does there exist any solution of the equation (2.2) satisfying the condition
(2.4)? It can be easily shown by the method of steps that, for any initial
function ϕ ∈ C([−τ, 0]; R) and an arbitrary d ∈ R, there exists a unique
function y ∈ C([−τ, T ]; R), possessing the continuous on [0, T ] second-order
derivative, such that the initial conditions (2.4) hold and the equality (2.2)
is satisfied for every t ∈ [0, T ].

The equation (2.2) can be reduced to the form in which the deviation
maps the interval [0, T ] into itself. Indeed, if we put

g(t) =

0 for t ∈ [0, τ [ ,
k1

m
for t ∈ [τ, T ],

qϕ(t) =


k1

m
ϕ(t− τ) for t ∈ [0, τ [ ,

0 for t ∈ [τ, T ],

and

τ̂(t) =

{
0 for t ∈ [0, τ [ ,
t− τ for t ∈ [τ, T ],

(2.5)
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then the problem (2.2), (2.4) takes the form

y′′(t) + 2ζωny′(t) +
(
ω2
n +

k1

m

)
y(t)− g(t)y

(
τ̂(t)

)
= qϕ(t), (2.6)

y(0) = ϕ(0), y′(0) = d (2.7)

in which τ̂ : [0, T ]→ [0, T ].
Equations of the type (2.6) are often studied in the phase space (“dis-

placement–velocity”). To do this, one puts u = (y, y′)T and rewrites the
equation (2.6) as follows:

u′(t) = −

(
0 −1

ω2
n +

k1

m
2ζωn

)
u(t) +

(
0 0
g(t) 0

)
u
(
τ̂(t)

)
+
(

0
qϕ(t)

)
. (2.8)

We thus obtain a two-dimensional differential system with a delayed argu-
ment, which is a particular case of the system (6.20) considered in Sec-
tion 6.1.3 below. Moreover, the initial condition (2.7) takes the form

u(a) =
(
ϕ(0)
d

)
. (2.9)

As it has been noted above, for any function ϕ ∈ C([−τ, 0]; R) and an
arbitrary d ∈ R there exists a unique vector function u ∈ C([0, T ]; R2),
continuously differentiable on [0, T ], such that the initial condition (2.9)
holds and the equality (2.8) is satisfied for every t ∈ [0, T ]. In other words,
for every ϕ and d the initial value problem (2.8), (2.9) has a unique solution
without any additional assumption. However, if the system (2.8) is not
a delay system, i. e., τ̂(t) > t for some t ∈ [0, T ], then certain additional
assumptions are necessary to ensure the unique solvability of the problem
(2.8), (2.9). Some such additional conditions can be found in Section 6.1.3
and one of them reads as(

ω2
n + 2

k1

m
+ 2ζωn + 1

)(
τ̂(t)− t

)
≤ 1

e
for t ∈ [0, T ]

and means that the deviation τ̂(t)− t is “small enough”.
In a similar way we can rewrite the equation (2.3) in the form of the

two-dimensional integro-differential system with a delayed argument

u′(t) = −G1u(t)−
t∫

σ̂(t)

G2(s− t)u(s) ds+

+

t∫
σ̂(t)

χ(s)G2(s− t)u
(
τ̂(s)

)
ds+

(
0

qψ(t)

)
, (2.10)

where

G1 =
(

0 −1
ω2
n 2ζωn

)
, G2(ξ) =

(
0 0

k2

m
p(ξ) 0

)
for ξ ∈ [−σ, 0],
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χ(t) =

{
0 for t ∈ [0, σ[ ,
1 for t ∈ [σ, T ],

σ̂(t) =

{
0 for t ∈ [0, σ[ ,
t− σ for t ∈ [σ, T ],

qψ(t) =
k2

m

σ̂(t)∫
t−σ

p(s− t)
(
ψ(s− τ)− ψ(s)

)
ds+

+
k2

m

t∫
σ̂(t)

(1− χ(s))p(s− t)ψ(s− τ) ds for t ∈ [0, T ],

the function τ̂ is defined by the relation (2.5), and ψ ∈ C([−τ − σ, 0]; R) is
the initial function appearing in the initial conditions

y(t) = ψ(t) for t ∈ [−τ − σ, 0], y′(0) = d

subjected to the second-order equation (2.3).
Finally, we note that the systems (2.8) and (2.10) have many common

properties irrespective of their representations, namely, the so-called Fred-
holm property of the linear boundary value problems, continuous depen-
dence of solutions on the initial conditions and parameters, etc. They both
are particular cases of the linear functional differential system in the general
form (3.1) in which the operator ` and the vector function q are defined by
the formulas

`(v)(t) = −
(

0 −1
ω2
n + k1

m 2ζωn

)
v(t) +

(
0 0
g(t) 0

)
v
(
τ̂(t)

)
for t ∈ [a, b], v ∈ C([a, b]; R2)

and q = (0, qϕ)T , and

`(v)(t) = −G1u(t)−
t∫

σ̂(t)

G2(s− t)u(s) ds+

t∫
σ̂(t)

χ(s)G2(s− t)u
(
τ̂(s)

)
ds

for t ∈ [a, b], v ∈ C([a, b]; R2)

and q = (0, qψ)T , respectively.
Below we investigate functional differential systems in the general form

(3.1). Its particular cases are also considered in order to illustrate the
applicability of the main results.

3. Statement of the Problem

On the interval [a, b], we consider the Cauchy problem for the two-di-
mensional linear differential system

u′(t) = `(u)(t) + q(t), (3.1)

u(a) = c, (3.2)
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where ` ∈ L2
ab, q ∈ L([a, b]; R2), and c ∈ R2. As usual in the Carathéodory

case, by a solution to this problem we understand a vector function u ∈
AC([a, b]; R2) satisfying the equality (3.1) almost everywhere on the interval
[a, b] and verifying the initial condition (3.2). Using the components `ik
(i, k = 1, 2) of the operator ` (see the item 27 in Section 1), the system (3.1)
can be rewritten to the form

u′1(t) = `11(u1)(t) + `12(u2)(t) + q1(t),

u′2(t) = `21(u2)(t) + `22(u2)(t) + q2(t).

Along with the problem (3.1), (3.2) we consider the corresponding homo-
geneous problem

u′(t) = `(u)(t), u(a) = 0. (3.3)

It is well-known that the linear problem (3.1), (3.2) has the so-called Fred-
holm property (see [33]; for the case where the operator ` is strongly boun-
ded, see also [1, 16]). More precisely, the following statement holds.

Proposition 3.1. The problem (3.1), (3.2) is uniquely solvable for any q ∈
L([a, b]; R2) and c ∈ R2 if and only if the homogeneous problem (3.3) has
only the trivial solution.

The differential system with argument deviations

u′1(t) = p11(t)u1

(
τ11(t)

)
+ p12(t)u2

(
τ12(t)

)
+ q1(t),

u′2(t) = p21(t)u1

(
τ21(t)

)
+ p22(t)u2

(
τ22(t)

)
+ q2(t)

(3.1′)

is investigated in more detail. Here we suppose that pik, qk ∈ L([a, b]; R)
and τik : [a, b]→ [a, b] are measurable functions (i, k = 1, 2). It is clear that
the system (3.1′) is a particular case of (3.1) in which the operator ` is
defined by the formula (1.1).

4. Theorems on Differential Inequalities

It is well-known that theorems on differential inequalities play an im-
portant role not only in the theory of boundary value problems, but also
in many topics related to the theory of differential equations (asymptotic
theory, oscillation theory, etc.). Therefore, the question on the validity of
theorems on differential inequalities is studied by many authors (see, e. g.,
[2,9,10,15,17,21,24,28,29,32,36,37,39,46,47,55,63,65,66,69,71,74,81,82,84]).
Although for ordinary differential equations and their systems the question
indicated is studied in detail (see, e. g., [9,10,14,36,37,47,82,84] and refer-
ences therein), for functional differential systems, and even for rather simple
systems (3.1′), there is still a broad field for further investigation.

Consider the initial value problem for the system of ordinary differential
equations

u′ = P (t)u+ q(t), u(a) = c (4.1)
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with an integrable matrix function P : [a, b]→ R2×2. The following proposi-
tion on systems of ordinary differential inequalities is well-known (see, e. g.,
[42]).

Proposition 4.1. Let the matrix function P = (pik)2i,k=1 satisfy

p12(t) ≥ 0, p21(t) ≥ 0 for a. e. t ∈ [a, b].

Then every absolutely continuous vector function x : [a, b]→ R2 such that

x′(t) ≤ P (t)x(t) + q(t) for a. e. t ∈ [a, b], x(a) ≤ c
satisfies the condition

x(t) ≤ u(t) for t ∈ [a, b], (4.2)

where u is a solution to the problem (4.1).

Below we will give sufficient conditions under which an analogous result
is true also for the problem (3.1), (3.2). In other words, we will establish
efficient conditions for the operator ` which guaranteeing that a certain
maximum principle holds for the functional differential system (3.1).

We first introduce

Definition 4.2. Let n ∈ {1, 2}. We say that a linear bounded operator
` : C([a, b]; Rn) → L([a, b]; Rn) belongs to the set Snab(a) if for an arbitrary
function u ∈ AC([a, b]; Rn) such that

u′(t) ≥ `(u)(t) for a. e. t ∈ [a, b], (4.3)

u(a) ≥ 0, (4.4)

the relation
u(t) ≥ 0 for t ∈ [a, b] (4.5)

is satisfied.
If ` ∈ S2

ab(a), then we say that the theorem on differential inequalities
holds for the system (3.1). Note also that, following [24], we write Sab(a)
instead of S1

ab(a).

From Definition 4.2 it immediately follows

Proposition 4.3. Let n ∈ {1, 2}. The following three statements are equiv-
alent:

(1) ` ∈ Snab(a);
(2) The problem (3.1), (3.2) has a unique solution u for arbitrary q ∈

L([a, b]; Rn) and c ∈ Rn. Moreover, the solution u satisfies the con-
dition (4.5) provided that

q(t) ≥ 0 for a. e. t ∈ [a, b], c ≥ 0;

(3) The operator K` : AC([a, b]; Rn) → L([a, b]; Rn) defined by the for-
mula

K`(v)(t) = v′(t)− `(v)(t) for a. e. t ∈ [a, b] and all v ∈ AC([a, b]; Rn)
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is inverse positive1 in the set B = {v ∈ AC([a, b]; Rn) : v(a) ≥ 0}.

Remark 4.4. The following analogue of Proposition 4.1 for the problem
(3.1), (3.2) is true.

Let ` ∈ S2
ab(a). Then for an arbitrary vector function x ∈ AC([a, b]; R2)

satisfying the conditions

x′(t) ≤ `(x)(t) + q(t) for a. e. t ∈ [a, b], x(a) ≤ c,
the inequality (4.2) holds, where u is a solution to the problem (3.1), (3.2).

In what follows, we establish efficient conditions under which the theorem
on differential inequalities holds for the system (3.1). Analogous results for
the first and second-order scalar functional differential equations are given
in [24] and [55], respectively. As mentioned above, these results play very
important role not only in the theory of boundary value problems, but also
in many topics related to the theory of differential equations. In particular,
results of this section will be used in further sections for the study of the
solvability of the Cauchy problem for linear functional differential systems.

In Section 4.1, main results are formulated, their proofs being postponed
till Section 4.4. Differential systems with argument deviations are studied
in more detail in Section 4.2, in which case further results are obtained.
In Section 4.5, counterexamples are constructed verifying that the results
obtained are unimprovable in a certain sense.

4.1. Main results. A certain “characteristic” structure of the set S2
ab(a)

is described in the following theorem.

Theorem 4.5. Let ` = `+ − `−, where `+, `− ∈ P2
ab are such that

`+ ∈ S2
ab(a), −`− ∈ S2

ab(a). (4.6)

Then ` ∈ S2
ab(a).

Remark 4.6. The assumption (4.6) in Theorem 4.5 can be replaced neither
by the assumption

(1− ε)`+ ∈ S2
ab(a), −`− ∈ S2

ab(a)

nor by the assumption

`+ ∈ S2
ab(a), −(1− ε)`− ∈ S2

ab(a),

no matter how small ε > 0 is (see Examples 4.48 and 4.49).

In order to apply Theorem 4.5, we should find some conditions sufficient
for the inclusion ` ∈ S2

ab(a) both if the operator ` is positive and negative.
The conditions indicated are given in Sections 4.1.1 and 4.1.2.

Below we will show (see Theorem 4.21) that if ` ∈ S2
ab(a) is a negative

operator, then the components `12 and `21 of the operator ` are necessarily

1The notion of an inverse positive operator is used by A. Cabada, P. Torres, and
others (see, e. g., [8, 82]).
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zero operators. Consequently, using Theorem 4.5 and the results of Sec-
tions 4.1.1 and 4.1.2, we can derive several efficient conditions sufficient for
the inclusion ` ∈ S2

ab(a) if the operator ` satisfies

`ii = `+ii − `
−
ii with `+ii , `

−
ii ∈ Pab (i = 1, 2) and `12, `21 ∈ Pab .

Now we give a rather simple assertion.

Proposition 4.7. Let ` ∈ L2
ab be such that either

`i3−i = 0, 2 `3−ii ∈ Pab
holds for some i ∈ {1, 2}. Then ` ∈ S2

ab(a) if and only if `11 ∈ Sab(a) and
`22 ∈ Sab(a).

Recall that the efficient conditions sufficient for the validity of the inclu-
sion ` ∈ Sab(a) are established in the paper [24].

4.1.1. The case ` ∈ P2
ab. A sufficient and necessary condition for a positive

operator ` is stated in the next theorem.

Theorem 4.8. Let ` ∈ P2
ab. Then ` ∈ S2

ab(a) if and only if there exists
γ ∈ AC([a, b]; R2) satisfying

γ(t) > 0 for t ∈ [a, b], (4.7)

γ′(t) ≥ `(γ)(t) for a. e. t ∈ [a, b]. (4.8)

By a suitable choice of the function γ in Theorem 4.8, we obtain the
following corollary.

Corollary 4.9. Let ` ∈ P2
ab and let there exist numbers m, k ∈ N and

α ∈ [0, 1[ such that m > k and

%m(t) ≤ α%k(t) for t ∈ [a, b], (4.9)

where %1 ∈ R2 is such that

%1 > 0, (4.10)

%i+1(t) = ϕ(%i)(t) for t ∈ [a, b], i ∈ N, (4.11)

and

ϕ(v)(t) =

t∫
a

`(v)(s) ds for t ∈ [a, b], v ∈ C([a, b]; R2). (4.12)

Then ` ∈ S2
ab(a).

Remark 4.10. The assumption α ∈ [0, 1[ in Corollary 4.9 cannot be replaced
by the assumption α ∈ [0, 1] (see Example 4.50).

From the last corollary we get

2The symbol 0 stands here for the zero operator.
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Corollary 4.11. Let ` ∈ P2
ab and there exist numbers δ1 > 0 and δ2 > 0

such that

max
{

1
δi

2∑
k=1

δk

b∫
a

`ik(1)(s) ds : i = 1, 2
}
< 1. (4.13)

Then ` ∈ S2
ab(a).

Remark 4.12. Example 4.50 shows that, in general, the strict inequality
(4.13) in Corollary 4.11 cannot be replaced by the nonstrict one. However,
in the case where the equality

max
{

1
δi

2∑
k=1

δk

b∫
a

`ik(1)(s) ds : i = 1, 2
}

= 1 (4.14)

is satisfied with some δ1 > 0 and δ2 > 0, the inclusion ` ∈ S2
ab(a) is still

true under additional assumptions. Some such additional conditions are
presented in the next proposition.

Proposition 4.13. Let ` ∈ P2
ab and there exist numbers δ1 > 0, δ2 > 0,

and i ∈ {1, 2} such that

1
δi

2∑
k=1

δk

b∫
a

`ik(1)(s) ds < 1, (4.15)

1
δ3−i

2∑
k=1

δk

b∫
a

`3−ik(1)(s) ds = 1, (4.16)

and
`3−ii(1) 6≡ 0. (4.17)

Then ` ∈ S2
ab(a).

The last proposition cannot be applied to the case where

1
δi

2∑
k=1

δk

b∫
a

`ik(1)(s) ds = 1 for i = 1, 2.

Nevertheless, the following more general statement can be used in the case
indicated.

Proposition 4.14. Let ` ∈ P2
ab and there exist numbers δ1 > 0 and δ2 > 0

such that the equality (4.14) is fulfilled. Then ` ∈ S2
ab(a) if and only if the

homogeneous problem (3.3) has only the trivial solution.

The next corollary of Theorem 4.8 contains another type of conditions
sufficient for the validity of the inclusion ` ∈ S2

ab(a).
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Corollary 4.15. Let ` ∈ P2
ab and Y : [a, b]→ R2×2 be a fundamental matrix

of the ordinary differential system

x′ = P̃ (t)x, (4.18)

where the matrix function P̃ = (p̃ik)2i,k=1 : [a, b] → R2×2 is defined by the
formulas

p̃11 ≡ 0, p̃22 ≡ 0,

p̃i3−i(t) = `i3−i(1)(t) e

t∫
a

[`3−i3−i(1)(s)−`ii(1)(s)] ds

for a. e. t ∈ [a, b], i = 1, 2. (4.19)

Let, moreover, there exist an operator ¯̀∈ P2
ab such that the inequality

`
(
ϕ(v)

)
(t)− P`(t)ϕ(v)(t) ≤ ¯̀(v)(t) for a. e. t ∈ [a, b] 3 (4.20)

holds on the set Ca([a, b]; R2
+) and

BY (b)

b∫
a

Y −1(s)q̃(s) ds < 1, (4.21)

where the operator ϕ is defined by the relation (4.12), 1 = (1, 1)T , the vector
function q̃ = (q̃1, q̃2)T ∈ L([a, b]; R2) is given by the formula

q̃i(t) = ¯̀
i

(
1
)
(t) e

−
t∫
a

`ii(1)(s) ds
for a. e. t ∈ [a, b], i = 1, 2, (4.22)

and

B = diag
(

e

b∫
a

`11(1)(s) ds
, e

b∫
a

`22(1)(s) ds
)
.

Then ` ∈ S2
ab(a).

In Corollaries 4.16 and 4.18 efficient conditions are given under which the
fundamental matrix Y of the system (4.18) satisfies the condition (4.21).

Corollary 4.16. Let ` ∈ P2
ab and there exist an operator ¯̀∈ P2

ab such that
the inequality (4.20) holds on the set Ca([a, b]; R2

+) and

e
max

{ b∫
a

`11(1)(s) ds,
b∫
a

`22(1)(s) ds
} b∫
a

h(s) e

b∫
s

p(ξ) dξ
ds < 1, (4.23)

where the operator ϕ is defined by the relation (4.12),

p(t) = max
{
p̃12(t), p̃21(t)

}
for a. e. t ∈ [a, b], (4.24)

h(t) = max
{
q̃1(t), q̃2(t)

}
for a. e. t ∈ [a, b], (4.25)

and the functions p̃12, p̃21 and q̃1, q̃2 are given by the formulas (4.19) and
(4.22), respectively. Then ` ∈ S2

ab(a).

3For the definition of the matrix function P`, see the item 28 in Section 1.
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Remark 4.17. The strict inequality (4.23) in Corollary 4.16 cannot be re-
placed by the nonstrict one (see Example 4.50).

Corollary 4.18. Let ` ∈ P2
ab and there exist an operator ¯̀∈ P2

ab such that
the inequality (4.20) is satisfied on the set Ca([a, b]; R2

+). Let, moreover, the
inequality

max
{
λ1 e

b∫
a

`11(1)(s) ds
, λ2 e

b∫
a

`22(1)(s) ds
}
< 1 (4.26)

hold, where

λi =

b∫
a

cosh
( b∫
s

p(ξ) dξ
)
q̃i(s) ds+

+

b∫
a

sinh
( b∫
s

p(ξ) dξ
)
q̃3−i(s) ds for i = 1, 2, (4.27)

p(t) = max
{
p̃12(t), p̃21(t)

}
for a. e. t ∈ [a, b], (4.28)

and the functions p̃12, p̃21 and q̃1, q̃2 are defined by the relations (4.19) and
(4.22), respectively. Then ` ∈ S2

ab(a).

Remark 4.19. Example 4.50 shows that the strict inequality (4.26) in Corol-
lary 4.18 cannot be replaced by the nonstrict one.

The next proposition also follows from Corollary 4.15.

Proposition 4.20. Let ` ∈ P2
ab be an a-Volterra operator. Then ` belongs

to the set S2
ab(a).

4.1.2. The case −` ∈ P2
ab. In the case of a negative operator ` we have also

sufficient and necessary condition for the validity of the inclusion ` ∈ S2
ab(a),

which requires that the system considered consists of two independent scalar
equations such that a theorem on scalar differential inequalities holds for
each of them.

Theorem 4.21. Let −` ∈ P2
ab. Then ` ∈ S2

ab(a) if and only if

`11 ∈ Sab(a), `22 ∈ Sab(a) (4.29)

and
`12 = 0, `21 = 0.4 (4.30)

Using the results stated in [20, 24], we can immediately formulate the
following corollary of Theorem 4.21.

4The symbol 0 stands here for the zero operator.
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Corollary 4.22. Let the operator ` be defined by the formula

`(v)(t)=
(
`1(v1)(t)
`2(v2)(t)

)
for a. e. t∈ [a, b] and all v=(v1, v2)T ∈C([a, b]; R2),

where `1, `2 ∈ Lab are negative a-Volterra operators. Let, moreover, for
every i ∈ {1, 2}, at least one of the following conditions be satisfied:

(a) there exists an absolutely continuous function γ : [a, b] → R such
that

γ(t) > 0 for t ∈ [a, b[ ,

γ′(t) ≤ `i(γ)(t) for a. e. t ∈ [a, b];

(b) the inequality
b∫
a

|`i(1)(s)|ds ≤ 1

holds;
(c) the condition

b∫
a

∣∣˜̀
i(1)(s)

∣∣ e s∫
a

|`i(1)(ξ)| dξ
ds ≤ 1

is fulfilled, where

˜̀
i(z)(t) = `i

(
θi(z)

)
(t)− `i(1)(t)θi(z)(t)

for a. e. t ∈ [a, b] and all z ∈ C([a, b]; R),

θi(z)(t) =

t∫
a

`i
(
ωi(z)

)
(s) ds for a. e. t ∈ [a, b] and all z ∈ C([a, b]; R),

and

ωi(z)(t) = z(t) e

t∫
a

`i(1)(s) ds
for a. e. t ∈ [a, b] and all z ∈ C([a, b]; R).

Then ` ∈ S2
ab(a).

Remark 4.23. The assumption on the operators `1 and `2 to be a-Volterra
ones is necessary in Corollary 4.22 (see [6, Thm. 2]).

4.2. Systems with argument deviations. In this part, we establish some
corollaries of the results stated in the previous section for the differential
system with argument deviations (3.1′). More precisely, efficient conditions
are found for the validity of the inclusion ` ∈ S2

ab(a) whenever the operator
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` is defined by one of the formulas

`(v)(t) =

(
p11(t)v1

(
τ11(t)

)
+ p12(t)v2

(
τ12(t)

)
p21(t)v1

(
τ21(t)

)
+ p22(t)v2

(
τ22(t)

))

for a. e. t ∈ [a, b] and all v = (v1, v2)T ∈ C([a, b]; R2) (4.31)

and

`(v)(t) = −
(
g1(t)v1

(
µ1(t)

)
g2(t)v2

(
µ2(t)

))
for a. e. t ∈ [a, b] and all v = (v1, v2)T ∈ C([a, b]; R2). (4.32)

Here we suppose that pik, gk ∈ L([a, b]; R+) and τik, µk : [a, b] → [a, b] are
measurable functions (i, k = 1, 2). Throughout this section, the following
notation is used:

τ∗11 = ess sup
{
τ11(t) : t ∈ [a, b]

}
, τ∗22 = ess sup

{
τ22(t) : t ∈ [a, b]

}
,

τ∗ = max
{

ess sup
{
τik(t) : t ∈ [a, b]

}
: i, k = 1, 2

}
. (4.33)

Theorem 4.24. Let there exist numbers δ1 > 0, δ2 > 0, and α ∈ [0, 1[
such that

2∑
j=1

t∫
a

pij(s)
( 2∑
k=1

δk

τij(s)∫
a

pjk(ξ) dξ
)

ds ≤

≤ α
2∑
k=1

δk

t∫
a

pik(s) ds for t ∈ [a, b], i = 1, 2. (4.34)

Then the operator ` defined by the formula (4.31) belongs to the set S2
ab(a).

Remark 4.25. Example 4.50 shows that the assumption α ∈ [0, 1[ in Theo-
rem 4.24 cannot be replaced by the assumption α ∈ [0, 1].

The following corollary follows immediately from Theorem 4.24.

Corollary 4.26. Let there exist numbers δ1 > 0 and δ2 > 0 such that the
inequality

max
{

1
δi

2∑
k=1

δk

τ∗∫
a

pik(s) ds : i = 1, 2
}
< 1 (4.35)

is satisfied. Then the operator ` defined by the formula (4.31) belongs to the
set S2

ab(a).

Remark 4.27. Example 4.50 shows that, in general, the strict inequality
(4.35) in Corollary 4.26 cannot be replaced by the nonstrict one. However,
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in the case where the equality

max
{

1
δi

2∑
k=1

δk

τ∗∫
a

pik(s) ds : i = 1, 2
}

= 1

is satisfied with some δ1 > 0 and δ2 > 0, the operator ` defined by the
formula (4.31) still belongs to the set S2

ab(a) under additional assumptions.
Such additional conditions are presented in the next two theorems.

Theorem 4.28. Let i ∈ {1, 2} and there exist δ1 > 0 and δ2 > 0 such that

δ1

τ∗∫
a

pi1(s) ds+ δ2

τ∗∫
a

pi2(s) ds = δi (4.36)

and

δ1

τ∗∫
a

p3−i1(s) ds+ δ2

τ∗∫
a

p3−i2(s) ds < δ3−i . (4.37)

Then the following assertions are true:
(a) If the condition

τ∗ii∫
a

pii(s) ds < 1 (4.38)

is satisfied, then the operator ` defined by the formula (4.31) belongs
to the set S2

ab(a).
(b) Let

τ∗ii∫
a

pii(s) ds = 1. (4.39)

Then the operator ` defined by the formula (4.31) belongs to the set
S2
ab(a) if and only if

τ∗ii∫
a

pii(s)
( τii(s)∫

a

pii(ξ) dξ
)

ds < 1. (4.40)

Theorem 4.29. Let there exist δ1 > 0 and δ2 > 0 such that the relation
(4.36) is satisfied for i = 1, 2. Then the following assertions are true:

(a) Let
τ∗∫
a

p12(s) ds

τ∗∫
a

p21(s) ds = 0 (4.41)

and the condition (4.38) hold for i = 1, 2. Then the operator `
defined by the formula (4.31) belongs to the set S2

ab(a).
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(b) Let the condition (4.41) hold and there exist i ∈ {1, 2} such that
the condition (4.39) is fulfilled. Then the operator ` defined by the
formula (4.31) belongs to the set S2

ab(a) if and only if the condition
(4.40) is satisfied for every i ∈ {1, 2} verifying the condition (4.39).

(c) Let
τ∗∫
a

p12(s) ds

τ∗∫
a

p21(s) ds 6= 0. (4.42)

Then the operator ` defined by the formula (4.31) belongs to the set
S2
ab(a) if and only if there exists i ∈ {1, 2} such that the inequality

2∑
j=1

τ∗∫
a

pij(s)
( 2∑
k=1

δk

τij(s)∫
a

pjk(ξ) dξ
)

ds < δi (4.43)

holds.

The following theorem can be regarded as a supplement of Corollary 4.26
and Theorems 4.28 and 4.29 for the case where neither of the statements
indicated can be applied.

Theorem 4.30. Let pik 6≡ 0 on the interval [a, τ∗] for some i, k ∈ {1, 2}
and let the condition

ess sup
{ τik(t)∫

t

p(s) ds : t ∈ [a, b]
}
< η∗ for i, k = 1, 2 (4.44)

hold, where

η∗ = sup
{

1
x

ln
(
x+

x

exp
(
x
τ∗∫
a

p(s) ds
)
− 1

)
: x > 0

}
(4.45)

and

p(t) = max
{
p11(t) + p12(t), p21(t) + p22(t)

}
for a. e. t ∈ [a, b]. (4.46)

Then the operator ` defined by the formula (4.31) belongs to the set S2
ab(a).

The previous theorem yields

Corollary 4.31. Let the condition
τik(t)∫
t

p(s) ds ≤ 1
e

for a. e. t ∈ [a, b], i, k = 1, 2

hold, where the function p is given by the relation (4.46). Then the operator
` defined by the formula (4.31) belongs to the set S2

ab(a).

The next theorem follows from Corollary 4.15.
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Theorem 4.32. Let Y : [a, b] → R2×2 be a fundamental matrix of the or-
dinary differential system (4.18), where P̃ = (p̃ik)2i,k=1 : [a, b] → R2×2 is
defined by the relations

p̃11 ≡ 0, p̃22 ≡ 0,

p̃i3−i(t)=pi3−i(t) e

t∫
a

[p3−i3−i(s)−pii(s)] ds
for a. e. t∈ [a, b], i=1, 2.

(4.47)

Let, moreover, the inequality (4.21) hold, where the vector function q̃ =
(q̃i)2i=1 ∈ L([a, b]; R2) is defined by the formula

q̃i(t) =
2∑
k=1

pik(t)ωik(t)
( 2∑
j=1

τik(t)∫
t

pkj(s) ds
)

e
−

t∫
a

pii(η) dη

for a. e. t ∈ [a, b], i = 1, 2, (4.48)

ωik(t) =
1
2
(
1 + sgn(τik(t)− t)

)
for a. e. t ∈ [a, b], i, k = 1, 2, (4.49)

and

B = diag
(

e

b∫
a

p11(s) ds
, e

b∫
a

p22(s) ds )
. (4.50)

Then the operator ` defined by the formula (4.31) belongs to the set S2
ab(a).

In the following two corollaries, efficient conditions are presented under
which the fundamental matrix Y of the system (4.18) satisfies the condition
(4.21) in the case where the matrix function P̃ is defined by the relations
(4.47).

Corollary 4.33. Let

e
max

{ b∫
a

p11(s) ds,
b∫
a

p22(s) ds
} b∫
a

h(s) e

b∫
s

p(ξ) dξ
ds < 1, (4.51)

where the functions p and h are given by the equalities (4.24) and (4.25),
respectively, and the functions p̃12, p̃21 and q̃1, q̃2 are defined by the relations
(4.47)–(4.49). Then the operator ` defined by the formula (4.31) belongs to
the set S2

ab(a).

Remark 4.34. The strict inequality (4.51) in the last corollary cannot be
replaced by the nonstrict one (see Example 4.50).

Corollary 4.35. Let

max
{
λ1 e

b∫
a

p11(s) ds
, λ2 e

b∫
a

p22(s) ds }
< 1, (4.52)

where the numbers λ1, λ2 are given by the equalities (4.27), (4.28) and the
functions p̃12, p̃21 and q̃1, q̃2 are defined by the relations (4.47)–(4.49). Then
the operator ` defined by the formula (4.31) belongs to the set S2

ab(a).
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Remark 4.36. Example 4.50 shows that the strict inequality (4.52) in Corol-
lary 4.35 cannot be replaced by the nonstrict one.

Theorem 4.8 also yields the following proposition which is a particular
case of Theorem 3.2(a) stated in [69].

Proposition 4.37. Let the functions pik (i, k = 1, 2) be essentially bounded
and there exist numbers δ1 > 0, δ2 > 0 such that the inequality

max
{

1
δi

ess sup
{ 2∑
k=1

δkpik(t)
(
τik(t)− a

)
: t ∈ [a, b]

}
: i = 1, 2

}
< 1

holds. Then the operator ` defined by the formula (4.31) belongs to the set
S2
ab(a).

From Corollary 4.22 and the results stated in [24] we obtain

Theorem 4.38. Let

gi(t)
(
µi(t)− t

)
≤ 0 for a. e. t ∈ [a, b], i = 1, 2

and, for every i ∈ {1, 2}, at least one of the following conditions be fulfilled:
(a) the inequality

b∫
a

gi(s) ds ≤ 1

holds;
(b) the inequality

b∫
a

gi(s)

s∫
µi(s)

gi(ξ) exp
( s∫
µi(ξ)

gi(η) dη
)

dξ ds ≤ 1

is satisfied;
(c) the inequality

t∫
µi(t)

gi(s) ds ≤ 1
e

for a. e. t ∈ [a, b]

holds.
Then the operator ` defined by the formula (4.32) belongs to the set S2

ab(a).

Remark 4.39. Using Theorem 4.5 and combining the results stated above,
we can immediately derive several conditions sufficient for the validity of
the inclusion ` ∈ S2

ab(a) if the operator ` is defined by the formula

`(v)(t) =

(
p11(t)v1

(
τ11(t)

)
− g1(t)v1

(
µ1(t)

)
+ p12(t)v2

(
τ12(t)

)
p21(t)v1

(
τ21(t)

)
+ p22(t)v2

(
τ22(t)

)
− g2(t)v2

(
µ2(t)

))

for a. e. t ∈ [a, b] and all v = (v1, v2)T ∈ C([a, b]; R2).
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where pik, gk ∈ L([a, b]; R+) and τik, µk : [a, b]→ [a, b] are measurable func-
tions (i, k = 1, 2). However, we do not formulate them here in detail.

4.3. Auxiliary lemmas. In this part, we give several lemmas that we will
need in the proofs of the results stated in Sections 4.1 and 4.2.

Lemma 4.40. Let ` ∈ P2
ab. Then ` ∈ S2

ab(a) if and only if there is no
nonzero non-negative vector function v ∈ AC([a, b]; R2) possessing the prop-
erties

v(a) = 0, (4.53)

v′(t) ≤ `(v)(t) for a. e. t ∈ [a, b]. (4.54)

Proof. If ` ∈ S2
ab(a), then it is clear that every non-negative vector function

v ∈ AC([a, b]; R2) satisfying the conditions (4.53) and (4.54) is identically
equal to zero.

Conversely, let there be no nonzero vector function v = (v1, v2)T ∈
AC([a, b]; R2) possessing the properties (4.53) and (4.54), and let u =
(u1, u2)T ∈ AC([a, b]; R2) be such that the conditions (4.3) and (4.4) are
satisfied. We will show that the vector function u is non-negative. Indeed,
put

v(t) = [u(t)]− for t ∈ [a, b].
According to the inequality (4.4), it is clear that the vector function v is
non-negative and satisfies the condition (4.53). Moreover, by virtue of the
assumption ` ∈ P2

ab and Remark 1.5, the inclusion `jk ∈ Pab holds for
j, k = 1, 2. Therefore, using the inequality (4.3) and Lemma 6.17 below, we
get

v′i(t) =
1
2
u′i(t)

(
sgnui(t)− 1

)
≤ 1

2
`i(u)(t)

(
sgnui(t)− 1

)
=

=
1
2

( 2∑
k=1

`ik(uk)(t) sgnui(t)− `i(u)(t)
)
≤

≤ 1
2

( 2∑
k=1

`ik(|uk|)(t)−
2∑
k=1

`ik(uk)(t)
)

=

=
2∑
k=1

`ik([uk]−)(t) =
2∑
k=1

`ik(vk)(t) =

= `i(v)(t) for a. e. t ∈ [a, b], i = 1, 2.

We have proved that the vector function v satisfies the conditions (4.53)
and (4.54), whence we get v ≡ 0. However, it means that the condition
(4.5) is fulfilled and thus ` ∈ S2

ab(a). �

Lemma 4.41. Let p ∈ L([a, b]; R), q̃ = (q̃1, q̃2)T ∈ L([a, b]; R2), and let
v = (v1, v2)T be a solution to the problem

v′ = A(t)v + q̃(t), v(a) = 0, (4.55)
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where

A(t) =
(

0 p(t)
p(t) 0

)
for a. e. t ∈ [a, b]. (4.56)

Then

vi(t) =

t∫
a

cosh
( t∫
s

p(ξ) dξ
)
q̃i(s) ds+

+

t∫
a

sinh
( t∫
s

p(ξ) dξ
)
q̃3−i(s) ds for t ∈ [a, b], i = 1, 2. (4.57)

Proof. It is easy to see that, for an arbitrary s ∈ [a, b], we have

A(t)
( t∫
s

A(s) ds
)

=
( t∫
s

A(s) ds
)
A(t) for t ∈ [a, b],

and thus the solution v to the problem (4.55) has the form

v(t) =

t∫
a

e

t∫
s

A(ξ) dξ
q̃(s) ds for t ∈ [a, b] (4.58)

(see, e. g., [42, Thm. 1.3]). It can be verified by direct calculation that

e

t∫
s

A(ξ) dξ
=

+∞∑
k=0

1
(2k)!

( t∫
s

p(ξ) dξ
)2k (1 0

0 1

)
+

+
+∞∑
k=0

1
(2k + 1)!

( t∫
s

p(ξ) dξ
)2k+1(0 1

1 0

)
for a ≤ s ≤ t ≤ b,

whence we get

e

t∫
s

A(ξ) dξ
=

=


cosh

( t∫
s

p(ξ) dξ
)

sinh
( t∫
s

p(ξ) dξ
)

sinh
( t∫
s

p(ξ) dξ
)

cosh
( t∫
s

p(ξ) dξ
)
 for a ≤ s ≤ t ≤ b. (4.59)

Therefore, the relations (4.58) and (4.3) yield the desired representation
(4.57) of the solution v. �

Lemma 4.42. Let h ∈ Pab be an a-Volterra operator. Then for an arbitrary
non-decreasing function z ∈ C([a, b]; R) the inequality

h(z)(t) ≤ h(1)(t)z(t) for a. e. t ∈ [a, b] (4.60)
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is satisfied.

Proof. Let z ∈ C([a, b]; R) be a non-decreasing function. It is clear that for
any t ∈ [a, b] we have

h(z)(s) ≤ h(1)(s)z(t) for a. e. s ∈ [a, t]. (4.61)

Moreover, there exists a set E ⊆ ]a, b] such that mesE = b− a5 and

d
dt

t∫
a

h(z)(s) ds = h(z)(t),
d
dt

t∫
a

h(1)(s) ds = h(1)(t) for t ∈ E. (4.62)

Let t ∈ E be arbitrary but fixed. Then, using the condition (4.61), we get

1
δ

t∫
t−δ

h(z)(s) ds ≤ z(t)1
δ

t∫
t−δ

h(1)(s) ds for 0 < δ ≤ t− a.

Passing to the limit as δ → 0+ in the last inequality and taking the relations
(4.62) into account, we obtain

h(z)(t) ≤ z(t)h(1)(t)

and thus the condition (4.60) is satisfied, because the point t ∈ E was chosen
arbitrarily. �

Lemma 4.43. Let the operator ` be defined by the formula (4.31) in which
pik ∈ L([a, b]; R+) and τik : [a, b] → [a, b] are measurable functions (i, k =
1, 2) and let the number τ∗ be given by the relation (4.33). Then ` ∈ S2

ab(a)
if and only if `aτ

∗ ∈ S2
aτ∗(a).6

Proof. According to the relations (4.31) and (4.33), it is clear that the
operator ` has the following property:

w ∈ C([a, b]; R2),

w(t) = 0 for t ∈ [a, τ∗]

}
=⇒ `(w)(t) = 0 for a. e. t ∈ [a, b]. (4.63)

Let ` ∈ S2
ab(a) and u ∈ AC([a, τ∗]; R2) be a vector function satisfying the

conditions

u′(t) ≥ `aτ
∗
(u)(t) for a. e. t ∈ [a, τ∗], u(a) ≥ 0. (4.64)

We will show that the function u is non-negative on the interval [a, τ∗]. Put

v(t) =


u(t) for; t ∈ [a, τ∗[ ,

u(τ∗) +

t∫
τ∗

`(uτ∗)(s) ds for t ∈ [τ∗, b],

5mesE stands for the Lebesgue measure of the set E.
6`aτ

∗
denotes the restriction of the operator ` to the space C([a, τ∗]; R2) (see Defini-

tion 1.8).
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where the function uτ∗ ∈ C([a, b]; R2) is defined by the formula

uτ∗(t) =

{
u(t) for t ∈ [a, τ∗[ ,
u(τ∗) for t ∈ [τ∗, b].

(4.65)

Using the relations (4.64), the property (4.63) and Definition 1.8, we easily
get

v′(t) ≥ `(uτ∗)(t) = `(v)(t) for a. e. t ∈ [a, b], v(a) ≥ 0.
However, the inclusion ` ∈ S2

ab(a) guarantees that the function v is non-
negative on the interval [a, b]. Consequently, the inequality u(t) ≥ 0 holds
for t ∈ [a, τ∗] and thus `aτ

∗ ∈ S2
aτ∗(a).

Conversely, let `aτ
∗ ∈ S2

aτ∗(a) and u ∈ AC([a, b]; R2) be a vector function
satisfying the conditions (4.3) and (4.4). We will show that the function u
is non-negative on the interval [a, b]. Let the function uτ∗ be defined by the
formula (4.65) and v ≡ u|[a,τ∗]. Taking the relation (4.3) and the property
(4.63) into account, we get

v′(t) = u′(t) ≥ `(u)(t) = `(uτ∗)(t) = `aτ
∗
(v)(t) for a. e. t ∈ [a, τ∗].

Moreover, the inequality v(a) ≥ 0 follows immediately from the relation
(4.4). Therefore, the inclusion `aτ

∗ ∈ S2
aτ∗(a) guarantees that the function

v is non-negative on the interval [a, τ∗]. Consequently, we have

u(t) ≥ 0 for t ∈ [a, τ∗].

Using the latter inequality and the property (4.63), it is easy to verify that

u′(t) ≥ `(u)(t) = `(uτ∗)(t) ≥ 0 for a. e. t ∈ [a, b],

because the functions pik (i, k = 1, 2) are non-negative. This means that
the vector function u is non-decreasing on the interval [a, b] and thus, in
view of the condition (4.4), we obtain u(t) ≥ 0 for t ∈ [a, b]. Consequently,
the inclusion ` ∈ S2

ab(a) holds. �

Lemma 4.44. Let pik ∈ L([a, b]; R+) (i, k = 1, 2) and numbers δ1 > 0,
δ2 > 0 be such that the relation (4.36) is satisfied for i = 1, 2. Let, moreover,
(u1, u2)T be a solution to the homogeneous problem

u′i(t) = pi1(t)u1

(
τi1(t)

)
+ pi2(t)u2

(
τi2(t)

) (
t ∈ [a, τ∗], i = 1, 2

)
(4.66)

u1(a) = 0, u2(a) = 0. (4.67)

Then both functions u1 and u2 do not change their signs on the interval
[a, τ∗]. If, in addition,

τ∗∫
a

p12(s) ds+

τ∗∫
a

p21(s) ds > 0, (4.68)

then the relation
u1(t)u2(t) ≥ 0 for t ∈ [a, τ∗] (4.69)

is satisfied.
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Proof. For i = 1, 2, we put

Mi = max
{
ui(t) : t ∈ [a, τ∗]

}
, mi = −min

{
ui(t) : t ∈ [a, τ∗]

}
. (4.70)

Choose ti, Ti ∈ [a, τ∗] (i = 1, 2) such that

ui(Ti) = Mi , ui(ti) = −mi for i = 1, 2 (4.71)

and denote

p̃ik =

τ∗∫
a

pik(s) ds for i, k = 1, 2. (4.72)

First suppose that both functions u1 and u2 change their signs on [a, τ∗].
Then we have

Mi > 0, mi > 0 (4.73i)
for i = 1, 2. We can assume without loss of generality that T1 < t1. The
integration of the equality (4.66) with i = 1 from T1 to t1, in view of the
conditions (4.70)–(4.72), yields

M1 +m1 = −
t1∫

T1

p11(s)u1

(
τ11(s)

)
ds−

t1∫
T1

p12(s)u2

(
τ12(s)

)
ds ≤

≤ m1

t1∫
T1

p11(s) ds+m2

t1∫
T1

p12(s) ds ≤ m1p̃11 +m2p̃12 . (4.74)

It is clear that either T2 < t2 or T2 > t2 is satisfied.

Case 1: T2 < t2 holds. The integration of the equality (4.66) with i = 2
from T2 to t2, on account of the conditions (4.70)–(4.72), implies

M2 +m2 = −
t2∫

T2

p21(s)u1

(
τ21(s)

)
ds−

t2∫
T2

p22(s)u2

(
τ22(s)

)
ds ≤

≤ m1

t2∫
T2

p21(s) ds+m2

t2∫
T2

p22(s) ds ≤ m1p̃21 +m2p̃22 . (4.75)

If δ1m2 ≤ δ2m1, then from the relations (4.74) and the equality (4.36)
with i = 1 we get

M1 +m1 ≤ m1p̃11 +
δ2
δ1
m1p̃12 = m1, (4.76)

which contradicts the first inequality in (4.731).
If δ1m2 > δ2m1, then the relations (4.75) and the equality (4.36) with

i = 2 result in
M2 +m2 ≤

δ1
δ2
m2p̃21 +m2p̃22 = m2,

which contradicts the first inequality in (4.732).
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Case 2: T2 > t2 holds. The integrations of the equality (4.66) with i = 2
from a to t2 and from t2 to T2, on account of the conditions (4.67) and
(4.70)–(4.72), yield

m2 = −
t2∫
a

p21(s)u1

(
τ21(s)

)
ds−

t2∫
a

p22(s)u2

(
τ22(s)

)
ds ≤

≤ m1

t2∫
a

p21(s) ds+m2

t2∫
a

p22(s) ds ≤ m1p̃21 +m2p̃22 (4.77)

and

M2 +m2 =

T2∫
t2

p21(s)u1

(
τ21(s)

)
ds+

T2∫
t2

p22(s)u2

(
τ22(s)

)
ds ≤

≤M1

T2∫
t2

p21(s) ds+M2

T2∫
t2

p22(s) ds ≤M1p̃21 +M2p̃22 . (4.78)

If δ1m2 ≤ δ2m1, then from the condition (4.74) and the equality (4.36)
with i = 1 we get the relation (4.76), which contradicts the first inequality
in (4.731).

If δ1m2 > δ2m1 and p̃21 > 0, then the relations (4.77) and the equality
(4.36) with i = 2 imply

m2 <
δ1
δ2
m2p̃21 +m2p̃22 = m2 ,

which is a contradiction.
If δ1m2 > δ2m1 and p̃21 = 0, then the relations (4.78) and the equality

(4.36) with i = 2 result in

M2 +m2 ≤M2p̃22 = M2 , (4.79)

which contradicts the second inequality in (4.732).

The contradictions obtained prove that at least one of the functions u1

and u2 does not change its sign on [a, τ∗]. We can assume without loss of
generality that

u1(t) ≥ 0 for t ∈ [a, τ∗]. (4.80)

Suppose that, on the contrary, u2 changes its sign. Then the inequalities
(4.732) are satisfied and either the relation T2 < t2 or T2 > t2 is true.

Case 1: T2 < t2 holds. The integration of the equality (4.66) with i = 2
from T2 to t2, in view of the equality (4.36) with i = 2 and the relations
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(4.70)–(4.72) and (4.80), implies

M2 +m2 = −
t2∫

T2

p21(s)u1

(
τ21(s)

)
ds−

t2∫
T2

p22(s)u2

(
τ22(s)

)
ds ≤

≤ m2

t2∫
T2

p22(s) ds ≤ m2,

which contradicts the first inequality in (4.732).

Case 2: T2 > t2 holds. The integrations of the equality (4.66) with i = 2
from t2 to T2 and from a to t2, with respect to the conditions (4.70)–(4.72)
and (4.80), result in the relations (4.78) and

m2 = −
t2∫
a

p21(s)u1

(
τ21(s)

)
ds−

t2∫
a

p22(s)u2

(
τ22(s)

)
ds ≤

≤ m2

t2∫
a

p22(s) ds ≤ m2p̃22. (4.81)

If p̃21 = 0, then from the condition (4.78) and the equality (4.36) with
i = 2 we get the relation (4.79), which contradicts the second inequality in
(4.732).

If p̃21 > 0, then the equality (4.36) with i = 2 guarantees that p̃22 < 1.
Consequently, the relation (4.81) implies m2 ≤ 0, which contradicts the
second inequality in (4.732).

We have proved that both functions u1 and u2 do not change their signs
on [a, τ∗]. Let, in addition, the relation (4.68) hold. We will show that the
inequality (4.69) is satisfied. We can assume without loss of generality that
p̃12 > 0 and the relation (4.80) is fulfilled. Suppose that, on the contrary,
the condition (4.69) does not hold. Then

u2(t) ≤ 0 for t ∈ [a, τ∗] (4.82)

and

M1 > 0. (4.83)

It is clear that the equality (4.36) with i = 1 implies

p̃11 < 1. (4.84)
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The integration of the equality (4.66) with i = 1 from a to T1, in view of
the conditions (4.67), (4.70)–(4.72), and (4.82), results in

M1 =

T1∫
a

p11(s)u1

(
τ11(s)

)
ds+

T1∫
a

p12(s)u2

(
τ12(s)

)
ds ≤

≤M1

T1∫
a

p11(s) ds ≤M1p̃11.

Using the condition (4.84) in the last relation we get M1 ≤ 0, which con-
tradicts the inequality (4.83). The contradiction obtained proves that the
desired relation (4.69) holds provided that the inequality (4.68) is satis-
fied. �

Lemma 4.45 ([24, Rem. 1.1]). Let h ∈ Pab. If the condition
b∫
a

h(1)(s) ds < 1

is satisfied, then h ∈ Sab(a).
If the equality

b∫
a

h(1)(s) ds = 1

holds, then the operator h belongs to the set Sab(a) if and only if the homo-
geneous problem

z′(t) = h(z)(t), z(a) = 0 (4.85)
has only the trivial solution.7

Lemma 4.46. Let the operator h be defined by the formula

h(z)(t) = f(t)z
(
ζ(t)

)
for a. e. t ∈ [a, b] and all z ∈ C([a, b]; R),

where f ∈ L([a, b]; R+) and ζ : [a, b]→ [a, b] is a measurable function. Put

ζ∗ = ess sup
{
ζ(t) : t ∈ [a, b]

}
. (4.86)

Then the following assertions are true:
(a) If the inequality

ζ∗∫
a

f(s) ds < 1 (4.87)

is satisfied, then the operator h belongs to the set Sab(a).

7Under a solution to the problem (4.85) is understood an absolutely continuous func-
tion z : [a, b]→ R satisfying the initial condition z(a) = 0 and the differential equality in
(4.85) almost everywhere on the interval [a, b].
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(b) Let
ζ∗∫
a

f(s) ds = 1. (4.88)

Then the operator h belongs to the set Sab(a) if and only if
ζ∗∫
a

f(s)
( ζ(s)∫

a

f(ξ) dξ
)

ds < 1. (4.89)

The results of the last lemma are partly contained in [24]. For the sake
of completeness, we prove it here in detail.

Proof. According to the notation (4.86), the restriction haζ
∗

of the operator
h to the space C([a, ζ∗]; R)8 is defined by the formula

haζ
∗
(z)(t) = f(t)z

(
ζ(t)

)
for a. e. t ∈ [a, ζ∗] and all z ∈ C([a, ζ∗]; R).

Since, moreover,
f(t) ≥ 0 for a. e. t ∈ [a, b], (4.90)

in a similar way as in the proof of Lemma 4.43 it can be shown that h ∈
Sab(a) if and only if haζ

∗ ∈ Saζ∗(a).

Case (a). Let the condition (4.87) be satisfied. By virtue of Lemma 4.45,
we find haζ

∗ ∈ Saζ∗(a) and thus h ∈ Sab(a).

Case (b). Let the condition (4.88) be fulfilled. According to Lemma 4.45,
the operator haζ

∗
belongs to the set Saζ∗(a) if and only if the homogeneous

problem

z′(t) = f(t)z
(
ζ(t)

) (
t ∈ [a, ζ∗]

)
, (4.91)

z(a) = 0 (4.92)

has only the trivial solution9. Consequently, to prove the item (b) of the
lemma it is sufficient to show that the homogeneous problem (4.91), (4.92)
has only the trivial solution if and only if the condition (4.89) is satisfied.

Let z be a solution to the problem (4.91), (4.92). Put

M = max
{
z(t) : t ∈ [a, ζ∗]

}
, m = min

{
z(t) : t ∈ [a, ζ∗]

}
(4.93)

and choose tM , tm ∈ [a, ζ∗] such that

z(tM ) = M, z(tm) = m. (4.94)

It is clear that the relations (4.92) and (4.93) imply

M ≥ 0. (4.95)

8See Definition 1.8.
9Under a solution to the problem (4.91), (4.92) is understood an absolutely continuous

function z : [a, ζ∗] → R satisfying the equality (4.91) almost everywhere on the interval

[a, ζ∗] and verifying also the initial condition (4.92).
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We can assume without loss of generality that tm ≤ tM . The integration of
the equality (4.91) from tm to tM , in view of the conditions (4.88), (4.90),
and (4.93)–(4.95), yields

M −m =

tM∫
tm

f(s)z
(
ζ(s)

)
ds ≤M

tM∫
tm

f(s) ds ≤M.

Hence we get m ≥ 0, i. e.,

z(t) ≥ 0 for t ∈ [a, ζ∗]. (4.96)

From the relations (4.90), (4.91), and (4.96) we obtain

z(t) ≤ z(ζ∗) for t ∈ [a, ζ∗]. (4.97)

Now we put

k(t) =

t∫
a

f(s) ds for t ∈ [a, ζ∗]. (4.98)

The integration of the equality (4.91) from t to ζ∗, on account of the con-
ditions (4.90) and (4.97), yields

z(ζ∗)− z(t) =

ζ∗∫
t

f(s)z
(
ζ(s)

)
ds ≤ z(ζ∗)

ζ∗∫
t

f(s) ds for t ∈ [a, ζ∗].

Using the conditions (4.88), (4.98) and the last relation, we get

z(ζ∗)k(t) = z(ζ∗)
(

1−
ζ∗∫
t

f(s) ds
)
≤ z(t) for t ∈ [a, ζ∗]. (4.99)

On the other hand, the integration of the equality (4.91) from a to t, on
account of the conditions (4.90), (4.92), (4.97), and (4.98), results in

z(t) =

t∫
a

f(s)z
(
ζ(s)

)
ds ≤ z(ζ∗)

t∫
a

f(s) ds = z(ζ∗)k(t) for t ∈ [a, ζ∗].

Now from the last relation and the condition (4.99) we obtain that

z(t) = z(ζ∗)k(t) for t ∈ [a, ζ∗]. (4.100)

Finally, the integration of the equality (4.91) from a to ζ∗, with respect to
the conditions (4.92) and (4.100), implies

z(ζ∗) =

ζ∗∫
a

f(s)z
(
ζ(s)

)
ds = z(ζ∗)

ζ∗∫
a

f(s)k
(
ζ(s)

)
ds,



36 J. Šremr

whence we get

z(ζ∗)
[
1−

ζ∗∫
a

f(s)
( ζ(s)∫

a

f(ξ) dξ
)

ds
]

= 0. (4.101)

We have proved that every solution z to the problem (4.91), (4.92) ad-
mits the representation (4.100), where z(ζ∗) satisfies the condition (4.101).
Consequently, if the inequality (4.89) holds, then the homogeneous problem
(4.91), (4.92) has only the trivial solution.

It remains to show that if the condition (4.89) is not satisfied, i. e.,

ζ∗∫
a

f(s)k
(
ζ(s)

)
ds = 1, (4.102)

then the homogeneous problem (4.91), (4.92) has a nontrivial solution. In-
deed, in view of the conditions (4.88) and (4.90), the notation (4.98) yields
that

k(t) ≤ k(ζ∗) = 1 for t ∈ [a, ζ∗].

Therefore, using the conditions (4.88), (4.90), and (4.102), it is easy to verify
that

0 ≤
t∫
a

f(s)
[
1− k

(
ζ(s)

)]
ds ≤

ζ∗∫
a

f(s)
[
1− k

(
ζ(s)

)]
ds =

= 1−
ζ∗∫
a

f(s)k
(
ζ(s)

)
ds = 0 for t ∈ [a, ζ∗],

whence we get

k(t) =

t∫
a

f(s)k
(
ζ(s)

)
ds for t ∈ [a, ζ∗].

Consequently, k is a nontrivial solution to the problem (4.91), (4.92). �

Lemma 4.47 ([24, Thm. 1.10]). Let the operator h be defined by the formula

h(z)(t) = −f(t)z
(
ζ(t)

)
for a. e. t ∈ [a, b] and all z ∈ C([a, b]; R),

where f ∈ L([a, b]; R+) and ζ : [a, b] → [a, b] is a measurable function such
that

f(t)
(
ζ(t)− t

)
≤ 0 for a. e. t ∈ [a, b].

Let, moreover, either
b∫
a

f(s) ds ≤ 1,
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or
b∫
a

f(s)

s∫
ζ(s)

f(ξ) exp
( s∫
ζ(ξ)

f(η) dη
)

dξ ds ≤ 1,

or
t∫

ζ(t)

f(s) ds ≤ 1
e

for a. e. t ∈ [a, b].

Then the operator h belongs to the set Sab(a).

4.4. Proofs. Now we prove the results stated in Sections 4.1 and 4.2.

Proof of Theorem 4.5. Let u ∈ AC([a, b]; R2) be a vector function satisfying
the conditions (4.3) and (4.4). We will show that the function u is non-
negative. According to the inclusion −`− ∈ S2

ab(a) and Proposition 4.3, the
problem

w′(t) = −`−(w)(t)− `+
(
[u]−

)
(t), (4.103)

w(a) = 0 (4.104)

has a unique solution w and

w(t) ≤ 0 for t ∈ [a, b]. (4.105)

Using the conditions (4.3), (4.103) and the assumption `+ ∈ P2
ab, we get

(u− w)′(t) ≥ −`−(u− w)(t) + `+([u]+)(t) ≥
≥ −`−(u− w)(t) for a. e. t ∈ [a, b]. (4.106)

Since the inclusion −`− ∈ S2
ab(a) holds, the relations (4.4), (4.104), and

(4.106) result in
u(t) ≥ w(t) for t ∈ [a, b]. (4.107)

In view of the relation (4.105), it follows from the inequality (4.107) that

−[u(t)]− ≥ w(t) for t ∈ [a, b]. (4.108)

Finally, by virtue of the inequalities (4.105), (4.108), and the assumptions
`+, `− ∈ P2

ab, from the equality (4.103) we get

w′(t) ≥ `+(w)(t) for a. e. t ∈ [a, b].

Hence, on account of the initial condition (4.104), the inclusion `+ ∈ S2
ab(a)

guarantees that
w(t) ≥ 0 for t ∈ [a, b],

which, together with the inequality (4.107), implies the validity of the con-
dition (4.5). Consequently, ` ∈ S2

ab(a). �
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Proof of Proposition 4.7. We can assume without loss of generality that
i = 1.

First suppose that

`11 ∈ Sab(a) and `22 ∈ Sab(a).

Let u = (u1, u2)T ∈ AC([a, b]; R2) be a vector function satisfying the condi-
tions (4.3) and (4.4). We will show that the function u is non-negative. In
view of the assumption `12 = 0, it follows from (4.3) and (4.4) that

u′1(t) ≥ `11(u1)(t) for a. e. t ∈ [a, b], u1(a) ≥ 0,

and thus the assumption `11 ∈ Sab(a) implies

u1(t) ≥ 0 for t ∈ [a, b]. (4.109)

Taking the assumption `21 ∈ Pab into account and using the inequality
(4.109) in the relation (4.3), we get

u′2(t) ≥ `21(u1)(t) + `22(u2)(t) ≥ `22(u2)(t) for a. e. t ∈ [a, b].

Hence, the inclusion `22 ∈ S2
ab(a) yields that

u2(t) ≥ 0 for t ∈ [a, b],

which, together with the inequality (4.109), guarantees the validity of the
condition (4.5). Consequently, we have proved that ` ∈ S2

ab(a).
Now suppose that ` ∈ S2

ab(a). We first show that `22 ∈ Sab(a). Indeed,
let z ∈ AC([a, b]; R) be a function such that

z′(t) ≥ `22(z)(t) for a. e. t ∈ [a, b], z(a) ≥ 0.

Put

u(t) =
(

0
z(t)

)
for t ∈ [a, b].

It is clear that the vector function u is absolutely continuous and satisfies
the conditions (4.3) and (4.4). Therefore, the assumption ` ∈ S2

ab(a) yields
that the vector function u is non-negative. Consequently,

z(t) ≥ 0 for t ∈ [a, b]

and thus `22 ∈ Sab(a).
It remains to show that also `11 ∈ Sab(a). Let y ∈ AC([a, b]; R) be

a function satisfying the conditions

y′(t) ≥ `11(y)(t) for a. e. t ∈ [a, b], y(a) ≥ 0.

We will show that
y(t) ≥ 0 for t ∈ [a, b]. (4.110)

According to Proposition 4.3 and the above-proved inclusion `22 ∈ Sab(a),
the problem

v′(t) = `22(v)(t) + `21(y)(t), v(a) = 0
has a unique solution v. Put

u(t) =
(
y(t)
v(t)

)
for t ∈ [a, b].
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It is clear that the vector function u is absolutely continuous and satisfies
the conditions (4.3) and (4.4). Therefore, the assumption ` ∈ S2

ab(a) yields
that the vector function u is non-negative. Consequently, the condition
(4.110) holds and thus `11 ∈ Sab(a). �

Proof of Theorem 4.8. First suppose that there exists γ ∈ AC([a, b]; R2)
satisfying the inequalities (4.7) and (4.8). Let u ∈ AC([a, b]; R2) be such
that the conditions (4.3) and (4.4) hold. We will show that the vector
function u is non-negative. Put

A =
{
λ ∈ R+ : λγ(t) + u(t) ≥ 0 for t ∈ [a, b]

}
. (4.111)

Since the function γ is positive, we have A 6= ∅. Setting

λ0 = inf A, (4.112)

we put
w(t) = λ0γ(t) + u(t) for t ∈ [a, b]. (4.113)

It is clear that λ0 ≥ 0, w ∈ AC([a, b]; R2), and

w(t) ≥ 0 for t ∈ [a, b]. (4.114)

Therefore, by virtue of the assumption ` ∈ P2
ab, we get

w′(t) ≥ `(w)(t) ≥ 0 for a. e. t ∈ [a, b]. (4.115)

Assume that
λ0 > 0. (4.116)

Then it follows from the relations (4.4), (4.7) and (4.116) that w(a) > 0.
Hence, using the inequality (4.115), we get

w(t) > 0 for t ∈ [a, b].

Consequently, there exists ε ∈ ]0, λ0] such that

w(t) ≥ εγ(t) for t ∈ [a, b],

i. e.,
(λ0 − ε)γ(t) + u(t) ≥ 0 for t ∈ [a, b].

Hence, by virtue of the notation (4.111), we get λ0−ε ∈ A, which contradicts
the relation (4.112).

The contradiction obtained proves that λ0 = 0. Consequently, the rela-
tions (4.113) and (4.114) yield the validity of the condition (4.5) and thus
` ∈ S2

ab(a).
Now suppose that ` ∈ S2

ab(a). Then, according to Proposition 4.3, the
problem

γ′(t) = `(γ)(t), γ(a) = (1, 1)T (4.117)

has a unique solution γ and

γ(t) ≥ 0 for t ∈ [a, b].
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Hence, by virtue of the assumption ` ∈ P2
ab, the first equation in (4.117)

implies that

γ′(t) = `(γ)(t) ≥ 0 for a. e. t ∈ [a, b].

Therefore, in view of the initial condition in (4.117), we get

γ(t) ≥ γ(a) > 0 for t ∈ [a, b].

Consequently, the function γ ∈ AC([a, b]; R2) satisfies the conditions (4.7)
and (4.8). �

Proof of Corollary 4.9. Put

γ(t) = (1− α)
k∑
j=1

%j(t) +
m∑

j=k+1

%j(t) for t ∈ [a, b].

It is clear that γ ∈ AC([a, b]; R2). According to the relations (4.10)–(4.12)
and the assumption ` ∈ P2

ab, it is not difficult to verify that

γ(t) ≥ (1− α)%1 > 0 for t ∈ [a, b],

i. e., the condition (4.7) is satisfied. Moreover, we have

γ′(t) = (1− α)
k−1∑
j=1

`
(
%j
)
(t) +

m−1∑
j=k

`
(
%j
)
(t) =

= `(γ)(t) + `
(
α%k − %m

)
(t) for a. e. t ∈ [a, b].

Therefore, in view of the inequality (4.9) and the assumption ` ∈ P2
ab,

the condition (4.8) holds. Consequently, using Theorem 4.8, we get ` ∈
S2
ab(a). �

Proof of Corollary 4.11. The validity of the corollary follows immediately
from Corollary 4.9 with k = 1, m = 2, %1 = (δ1, δ2)T , and

α = max
{

1
δi

2∑
k=1

δk

b∫
a

`ik(1)(s) ds : i = 1, 2
}
.

�

Proof of Proposition 4.13. Put %1 = (δ1, δ2)T . We first show that

b∫
a

`j
(
ϕ(%1)

)
(s) ds < δj for j = 1, 2, (4.118)

where the operator ϕ is given by the formula (4.12). Indeed, according to
the assumption ` ∈ P2

ab and Remark 1.5, the inclusion `jk ∈ Pab holds for



On the Initial Value Problem for Two-Dimensional Linear FDS 41

j, k = 1, 2. Therefore, we get

b∫
a

`j
(
ϕ
(
%1
))

(s) ds =
2∑
k=1

b∫
a

`jk
(
ϕk
(
%1
))

(s) ds ≤

≤
2∑
k=1

b∫
a

`k
(
%1
)
(η) dη

b∫
a

`jk(1)(s) ds =

=
2∑
k=1

b∫
a

`jk(1)(s) ds
2∑

m=1

b∫
a

`km(δm)(η) dη =

=
2∑
k=1

b∫
a

`jk(1)(s) ds
2∑

m=1

b∫
a

δm`km(1)(η) dη for j = 1, 2. (4.119)

Then, by virtue of the assumptions (4.15) and (4.16), we obtain

2∑
k=1

b∫
a

`ik(1)(s) ds
2∑

m=1

b∫
a

δm`km(1)(η) dη ≤
2∑
k=1

δk

b∫
a

`ik(1)(s) ds < δi .

On the other hand, according to the condition (4.17), the relation
b∫
a

`3−ii(1)(s) ds > 0

holds. Therefore, using the assumptions (4.15) and (4.16), we get

2∑
k=1

b∫
a

`3−ik(1)(s) ds
2∑

m=1

δm

b∫
a

`km(1)(η) dη <

< δi

b∫
a

`3−ii(1)(s) ds+ δ3−i

b∫
a

`3−i3−i(1)(s) ds =

=
2∑
k=1

δk

b∫
a

`3−ik(1)(s) ds = δ3−i .

Consequently, the relation (4.119) yields the validity of the condition
(4.118). If we put

α = max
{

1
δj

b∫
a

`j
(
ϕ(%1)

)
(s) ds : j = 1, 2

}
, (4.120)

it is clear α ∈ [0, 1[ and

%3(b) ≤ α(δ1, δ2)T = α%1,
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where the function %3 is defined by the formula (4.11). Consequently, the
assumptions of Corollary 4.9 are satisfied with k = 1, m = 3, and α given
by the relation (4.120). �

Proof of Proposition 4.14. First suppose that the homogeneous problem
(3.3) has only the trivial solution. We will show that ` ∈ S2

ab(a). According
to Proposition 3.1, the problem (4.117) has a unique solution γ = (γ1, γ2)T .
Put

γ∗ = max
{
− γi(t)

δi
: t ∈ [a, b], i = 1, 2

}
.

Then there exist t0 ∈ [a, b] and i0 ∈ {1, 2} such that

−γi0(t0) = γ∗δi0 . (4.121)

It is clear that

−γi(t) ≤ γ∗δi for t ∈ [a, b], i = 1, 2. (4.122)

Note also that, by virtue of the assumption ` ∈ P2
ab and Remark 1.5, the

inclusion `jk ∈ Pab holds for j, k = 1, 2.
Assume that

γ∗ ≥ 0. (4.123)

Then it follows from the relations (4.117) that

1− γi(t0) = −
t0∫
a

`i(γ)(s) ds for i = 1, 2.

Therefore, in view of the conditions (4.14) and (4.121)–(4.123), we get

1 + γ∗δi0 = −
t0∫
a

`i0(γ)(s) ds = −
t0∫
a

2∑
k=1

`i0k(γk)(s) ds =

=
2∑
k=1

t0∫
a

`i0k(−γk)(s) ds ≤
2∑
k=1

γ∗δk

t0∫
a

`i0k(1)(s) ds =

= γ∗
2∑
k=1

δk

t0∫
a

`i0k(1)(s) ds ≤ γ∗δi0 ,

which is impossible.
The contradiction obtained proves that γ∗ < 0. Hence the relation

(4.122) implies the validity of the inequality

γ(t) ≥ −γ∗(δ1, δ2)T > 0 for t ∈ [a, b]

and thus Theorem 4.8 guarantees that ` ∈ S2
ab(a).

The converse implication follows immediately from Proposition 4.3. �
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Proof of Corollary 4.15. According to Lemma 4.40, to prove the corollary
it is sufficient to show that there is no nonzero non-negative vector function
v ∈ AC([a, b]; R2) satisfying the conditions (4.53) and (4.54).

We first show that ˜̀∈ S2
ab(a), (4.124)

where the operator ˜̀∈ P2
ab is defined by the formula˜̀(w)(t)=P`(t)w(t)+¯̀(w)(t) for a. e. t∈ [a, b] and all w∈C([a, b]; R2).10

According to the inequality (4.21), there exists a two-dimensional vector
ε > 0 such that

B

(
Y (b)Y −1(a)ε+ Y (b)

b∫
a

Y −1(s)q̃(s) ds
)
≤ 1, (4.125)

where 1 = (1, 1)T . Put

z(t) = Y (t)Y −1(a)ε+ Y (t)

t∫
a

Y −1(s)q̃(s) ds for t ∈ [a, b].

It is clear that z is a solution to the Cauchy problem

z′ = P̃ (t)z + q̃(t), z(a) = ε, (4.126)

because Y is a fundamental matrix of the system (4.18). In view of the
relations (4.19) and (4.22), we get

P̃ (t) ≥ Θ, q̃(t) ≥ 0 for a. e. t ∈ [a, b], (4.127)

where Θ denotes the zero matrix, and thus

0 < z(t) ≤ z(b) for t ∈ [a, b]. (4.128)

Put

γi(t) = zi(t) e

t∫
a

`ii(1)(s) ds
for t ∈ [a, b], i = 1, 2. (4.129)

It is not difficult to verify that, on account of the conditions (4.19), (4.22),
(4.126) and (4.129), γ = (γ1, γ2)T ∈ AC([a, b]; R2) is a solution to the
system

γ′ = P`(t)γ + ¯̀(1)(t). (4.130)
Moreover, the conditions (4.125) and (4.128) imply

0 < γ(t) ≤ Bz(b) ≤ 1 for t ∈ [a, b].

Therefore, the vector function γ satisfies the condition (4.7) and, in view of
the assumption ¯̀∈ P2

ab, from the equality (4.130) we get

γ′(t) ≥ P`(t)γ(t) + ¯̀(γ)(t) = ˜̀(γ)(t) for a. e. t ∈ [a, b].

Consequently, by virtue of Theorem 4.8, the inclusion (4.124) is fulfilled.

9For the definition of the matrix function P`, see the item 28 in Section 1.
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Let v ∈ AC([a, b]; R2) be a non-negative vector function satisfying the
conditions (4.53) and (4.54). We will show that v ≡ 0. Put

u(t) = ϕ(v)(t) for t ∈ [a, b], (4.131)

where the operator ϕ is defined by the formula (4.12). Obviously, the con-
ditions (4.53), (4.54) and (4.131) yield

u′(t) = `(v)(t) for a. e. t ∈ [a, b], u(a) = 0,

and

0 ≤ v(t) ≤
t∫
a

`(v)(s) ds = ϕ(v)(t) = u(t) for t ∈ [a, b]. (4.132)

On the other hand, since the operator ` is positive, we have

u′(t) = `(v)(t) ≤ `(u)(t) =

= P`(t)u(t) + `
(
ϕ(v)

)
(t)− P`(t)ϕ(v)(t) for a. e. t ∈ [a, b].

Now, by virtue of the conditions (4.20), (4.53), and (4.132), the last relation
yields

u′(t) ≤ P`(t)u(t) + ¯̀(v)(t) for a. e. t ∈ [a, b].
Hence, in view of the inequalities (4.132) and the assumption ¯̀∈ P2

ab, we
get

u′(t) ≤ P`(t)u(t) + ¯̀(u)(t) = ˜̀(u)(t) for a. e. t ∈ [a, b].
Consequently, the inclusion (4.124) yields

u(t) ≤ 0 for t ∈ [a, b],

and thus it follows from the condition (4.132) that v ≡ 0. However,
this means that there exists no nonzero non-negative vector function v ∈
AC([a, b]; R2) satisfying the conditions (4.53) and (4.54). �

Proof of Corollary 4.16. We will show that all the assumptions of Corol-
lary 4.15 are satisfied. To do this, it is sufficient to show that the inequality
(4.23) yields the validity of the condition (4.21). Since Y is a fundamental
matrix of the system (4.18), the condition (4.21) is fulfilled if and only if
the solution x = (x1, x2)T to the Cauchy problem

x′ = P̃ (t)x+ q̃(t), x(a) = 0 (4.133)

satisfies the condition

xi(b) e

b∫
a

`ii(1)(s) ds
< 1 for i = 1, 2. (4.134)

Put

vi(t) =

t∫
a

h(s) e

t∫
s

p(ξ) dξ
ds for t ∈ [a, b], i = 1, 2. (4.135)
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It is clear that
vi(t) ≥ 0 for t ∈ [a, b], i = 1, 2,

because P̃ and q̃ satisfy the relations (4.127). Therefore, from the equality
(4.135) we get

v′i(t) = p(t)vi(t) + h(t) ≥ p̃i3−i(t)vi(t) + q̃i(t) =

=
2∑
k=1

p̃ik(t)vk(t) + q̃i(t) for a. e. t ∈ [a, b], i = 1, 2.

But this means that the vector function v = (v1, v2)T satisfies the initial
condition v(a) = 0 and the differential inequality

v′(t) ≥ P̃ (t)v(t) + q̃(t) for a. e. t ∈ [a, b].

According to Proposition 4.1, we get

x(t) ≤ v(t) for t ∈ [a, b],

where x is the unique solution to the problem (4.133). Consequently, by
virtue of the relations (4.23) and (4.135), the solution x = (x1, x2)T to the
problem (4.133) fulfills the condition (4.134), and thus the inequality (4.21)
holds. Hence, the assumptions of Corollary 4.15 are satisfied. �

Proof of Corollary 4.18. We will show that all the assumptions of Corol-
lary 4.15 are satisfied. To do this, it is sufficient to show that the inequality
(4.26) yields the validity of the condition (4.21). Since Y is a fundamental
matrix of the system (4.18), the condition (4.21) is fulfilled if and only if the
solution x = (x1, x2)T to the problem (4.133) satisfies the condition (4.134).

Let x = (x1, x2)T be the unique solution to the problem (4.133). The
vector function x is non-negative, because the relations (4.127) hold. There-
fore, the equation in (4.133) yields that

x′(t) ≤ A(t)x(t) + q̃(t) for a. e. t ∈ [a, b],

where the matrix function A is given by the formula (4.56). According to
Proposition 4.1, we get

x(t) ≤ v(t) for t ∈ [a, b],

where v is a solution to the problem (4.55). Consequently, by virtue of the
condition (4.26) and Lemma 4.41, the functions x1 and x2 satisfy the con-
dition (4.134) and thus the inequality (4.21) holds. Hence, the assumptions
of Corollary 4.15 are satisfied. �

Proof of Proposition 4.20. According to Remarks 1.5 and 1.7, the compo-
nents `ik (i, k = 1, 2) of the operator ` are positive a-Volterra operators.
Using Lemma 4.42, it is not difficult to verify that, for any v ∈ C([a, b]; R2

+),
the inequality

`ik
(
ϕk(v)

)
(t) ≤ `ik(1)(t)ϕk(v)(t) for a. e. t ∈ [a, b], i, k = 1, 2,
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holds, where the operator ϕ is defined by the formula (4.12) and ϕk denotes
its kth component.

Consequently, the assumptions of Corollary 4.15 are satisfied with
¯̀= 0.11 �

Proof of Theorem 4.21. First suppose that the conditions (4.29) and (4.30)
hold. Let u = (u1, u2)T ∈ AC([a, b]; R2) be a vector function satisfying the
conditions (4.3) and (4.4). We will show that the function u is non-negative.
According to the assumption (4.30), we have

u′i(t) ≥ `ii(ui)(t) for a. e. t ∈ [a, b], ui(a) ≥ 0

for i = 1, 2 and thus, by virtue of the inclusions (4.29), we get

ui(t) ≥ 0 for t ∈ [a, b], i = 1, 2.

Consequently, the operator ` belongs to the set S2
ab(a).

Now suppose that ` ∈ S2
ab(a). According to the assumption −` ∈ Pab

and Remark 1.5, we have

−`ik ∈ Pab for i, k = 1, 2. (4.136)

We will show that `11 ∈ Sab(a) (the validity of the inclusion `22 ∈ Sab(a)
can be proved analogously). Let u1 ∈ AC([a, b]; R) be a function satisfying
the relations

u′1(t) ≥ `11(u1)(t) for a. e. t ∈ [a, b], u1(a) ≥ 0. (4.137)

Put

u2(t) =

t∫
a

|`21(u1)(s)|ds for t ∈ [a, b]. (4.138)

Then it is clear that

u′2(t) = |`21(u1)(t)| ≥ `21(u1)(t) for a. e. t ∈ [a, b]. (4.139)

Moreover, the relation (4.138) guarantees that

u2(t) ≥ 0 for t ∈ [a, b].

From the inequalities (4.137) and (4.139), in view of the conditions (4.136)
we get

u′i(t) ≥ `i1(u1)(t) ≥
2∑
k=1

`ik(uk)(t) = `i(u)(t) for a. e. t ∈ [a, b], i = 1, 2,

where u = (u1, u2)T . Consequently, the vector function u satisfies the con-
ditions (4.3) and (4.4) which, together with the assumption ` ∈ S2

ab(a),
guarantees the validity of the condition (4.5). Hence,

u1(t) ≥ 0 for t ∈ [a, b],

and thus `11 ∈ Sab(a).

11The symbol 0 stands here for the zero operator.
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It remains to show that `21 = 012 (the equality `12 = 0 can be proved
analogously). We have proved above that `11 ∈ Sab(a) and thus, by virtue
of the inclusion −`11 ∈ Pab and [6, Thm. 2], the operator `11 is an a-Volterra
one. Define the operators ˜̀ and ¯̀ by the formulas

˜̀(v)(t)=
(
`12(v2)(t)
`2(v)(t)

)
for a. e. t∈ [a, b] and all v=(v1, v2)T∈C([a, b]; R2)

and

¯̀(v)(t) =
(
−`11(v1)(t)

0

)
for a. e. t ∈ [a, b] and all v = (v1, v2)T ∈ C([a, b]; R2).

It is clear that ¯̀∈ P2
ab and ˜̀= ¯̀+ `. Since `11 is an a-Volterra operator,

the operator ¯̀ is also an a-Volterra one (see Remark 1.7). Hence, using
Proposition 4.20, we get ¯̀ ∈ S2

ab(a) and thus, by virtue of Theorem 4.5
(with `+ = ¯̀ and `− = −`), we obtain that ˜̀∈ S2

ab(a). Consequently, the
problem

u′(t) = ˜̀(u)(t), (4.140)

u(a) = (1, 0)T (4.141)

has a unique solution u = (u1, u2)T and this solution is non-negative (see
Proposition 4.3). Therefore, in view of the inclusions (4.136), the second
equation in the system (4.140) implies

u′2(t) = ˜̀
2(u)(t) = `2(u)(t) =

2∑
k=1

`2k(uk)(t) ≤ 0 for a. e. t ∈ [a, b],

which, together with the conditions (4.5) and (4.141), yields that u2 ≡ 0.
On the other hand, from the first equation in the system (4.140) we get

u′1(t) = ˜̀
1(u)(t) = `12(u2)(t) = 0 for a. e. t ∈ [a, b],

and thus u1 ≡ 1. Finally, the second equation in the system (4.140) implies

0 = u′2(t) = ˜̀
2(u)(t) = `2(u)(t) = `21(1)(t) for a. e. t ∈ [a, b],

i. e., `21(1) ≡ 0. However, this means that `21 = 0, because the operator `21
is negative. �

Proof of Corollary 4.22. Each of the conditions (a)–(c) of the corollary guar-
antees the validity of the inclusion `i ∈ Sab(a) (see Theorems 1.2 and 1.3,
and Corollary 1.2 established in the paper [24]). �

Proof of Theorem 4.24. Let the operator ` be defined by the formula (4.31).
It is clear that ` ∈ P2

ab. Moreover, according to the condition (4.34), we
have

%3(t) ≤ α%2(t) for t ∈ [a, b],

12The symbol 0 stands here for the zero operator.
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where the functions %2, %3 are given by the formulas (4.11), (4.12), and

%1 = (δ1, δ2)T .

Therefore, the assumptions of Corollary 4.9 are satisfied with k = 2 and
m = 3. �

Proof of Corollary 4.26. The validity of the corollary follows immediately
from Theorem 4.24 with

α = max
{

1
δi

2∑
k=1

δk

τ∗∫
a

pik(s) ds : i = 1, 2
}
.

�

Proof of Theorem 4.28. We can assume without loss of generality that i = 1.
Let the operator ` be defined by the formula (4.31). It is clear that ` ∈ P2

ab.
Lemma 4.43 guarantees that

` ∈ S2
ab(a) ⇐⇒ `aτ

∗
∈ S2

aτ∗(a). (4.142)

According to the notation (4.33), the restriction `aτ
∗

of the operator ` to
the space C([a, τ∗]; R) is given by the formula

`aτ
∗
(v)(t) =

(
p11(t)v1

(
τ11(t)

)
+ p12(t)v2

(
τ12(t)

)
p21(t)v1

(
τ21(t)

)
+ p22(t)v2

(
τ22(t)

))
for a. e. t ∈ [a, τ∗] and all v = (v1, v2)T ∈ C([a, τ∗]; R2). (4.143)

Moreover, in view of Example 1.2, the components `aτ
∗

ik (i, k = 1, 2) of the
operator `aτ

∗
are defined by the relations

`aτ
∗

ik (z)(t) = pik(t)z
(
τik(t)

)
for a. e. t ∈ [a, τ∗] and all z ∈ C([a, τ∗]; R), i, k = 1, 2. (4.144)

It is clear that `aτ
∗

ik ∈ Pab for i, k = 1, 2.
We first note that the condition (4.37) implies

τ∗22∫
a

p22(s) ds < 1.

Hence, Lemma 4.46(a) guarantees that

`aτ
∗

22 ∈ Saτ∗(a). (4.145)

Case (a). If p12 6≡ 0 on the interval [a, τ∗], then, in view of the impli-
cation (4.142), the assertion of the theorem follows from Proposition 4.13.
Therefore, suppose that p12 ≡ 0. Then, by virtue of the inclusion (4.145),
Proposition 4.7 and the implication (4.142), it is sufficient to show that
`aτ

∗

11 ∈ Saτ∗(a). However, using the condition (4.38) and Lemma 4.46(a),
we see that the inclusion desired holds.
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Case (b). According to the conditions (4.36) and (4.39), we find that
p12 ≡ 0 on the interval [a, τ∗]. By virtue of the inclusion (4.145), Propo-
sition 4.7 and the implication (4.142), the operator ` belongs to the set
S2
ab(a) if and only if `aτ

∗

11 ∈ Saτ∗(a). However, in view of the condition
(4.39) and Lemma 4.46(b), the inclusion `aτ

∗

11 ∈ Saτ∗(a) holds if and only if
the condition (4.40) is satisfied. �

Proof of Theorem 4.29. Let the operator ` be defined by the formula (4.31).
It is clear that ` ∈ P2

ab. Lemma 4.43 guarantees that

` ∈ S2
ab(a) ⇐⇒ `aτ

∗
∈ S2

aτ∗(a).

According to the notation (4.33), the restriction `aτ
∗

of the operator ` to
the space C([a, τ∗]; R2) is given by the formula (4.143). Moreover, in view
of Example 1.2, the components `aτ

∗

ik (i, k = 1, 2) of the operator `aτ
∗

are
defined by the relations (4.144). It is clear that `aτ

∗

ik ∈ Pab for i, k = 1, 2.
Case (a). Using the condition (4.38) and Lemma 4.46(a), we get

`aτ
∗

11 ∈ Saτ∗(a), `aτ
∗

22 ∈ Saτ∗(a).

Hence, by virtue of the condition (4.41) and Proposition 4.7, it is clear that
`aτ

∗ ∈ S2
aτ∗(a) and thus ` ∈ S2

ab(a).

Case (b). It is easy to see from the equality (4.36) that for i = 1, 2 either
the inequality (4.38) or the equality (4.39) is satisfied. Therefore, in view of
the condition (4.41), the assertion of the theorem follows immediately from
the implication (4.142), Proposition 4.7 and Lemma 4.46.

Case (c). Since the equality (4.36) is satisfied for i = 1, 2, by virtue of
Proposition 4.14 the operator `aτ

∗
belongs to the set S2

aτ∗(a) if and only if
the homogeneous problem (4.66), (4.67) has only the trivial solution. Con-
sequently, to prove the item (c) of the theorem it is sufficient to show that
the homogeneous problem (4.66), (4.67) has only the trivial solution if and
only if there exists i ∈ {1, 2} such that the inequality (4.43) is satisfied.

Let u = (u1, u2)T be a solution to the problem (4.66), (4.67). According
to the condition (4.42) and Lemma 4.44, we can assume without loss of
generality that

ui(t) ≥ 0 for t ∈ [a, τ∗], i = 1, 2.

Therefore from the system (4.66) we get

ui(t) ≤ ui(τ∗) for t ∈ [a, τ∗], i = 1, 2. (4.146)

Put

u∗i =
1
δi
ui(τ∗) for i = 1, 2, (4.147)

fi(t) =
2∑
k=1

δk

t∫
a

pik(s) ds for t ∈ [a, τ∗], i = 1, 2. (4.148)
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The integration of the system (4.66) from t to τ∗, on account of the inequal-
ities (4.146), implies

ui(τ∗)− ui(t) =

τ∗∫
t

pi1(s)u1

(
τi1(s)

)
ds+

τ∗∫
t

pi2(s)u2

(
τi2(s)

)
ds ≤

≤ u1(τ∗)

τ∗∫
t

pi1(s) ds+ u2(τ∗)

τ∗∫
t

pi2(s) ds for t ∈ [a, τ∗], i = 1, 2.

Using the notation (4.147), we get

δiu
∗
i +

2∑
k=1

δku
∗
k

t∫
a

pik(s) ds ≤

≤ ui(t) +
2∑
k=1

δku
∗
k

τ∗∫
a

pik(s) ds for t ∈ [a, τ∗], i = 1, 2. (4.149)

On the other hand, the integration of the system (4.66) from a to t, in view
of the conditions (4.67), (4.146) and (4.147), yields that

ui(t) =

t∫
a

pi1(s)u1

(
τi1(s)

)
ds+

t∫
a

pi2(s)u2

(
τi2(s)

)
ds ≤

≤
2∑
k=1

δku
∗
k

t∫
a

pik(s) ds for t ∈ [a, τ∗], i = 1, 2. (4.150)

Now, from the inequalities (4.149) and (4.150) we obtain

δiu
∗
i ≤

2∑
k=1

δku
∗
k

τ∗∫
a

pik(s) ds for i = 1, 2,

whence we get

u∗i

δi − δi τ
∗∫

a

pii(s) ds

 ≤ u∗3−iδ3−i τ
∗∫

a

pi3−i(s) ds for i = 1, 2.

By virtue of the conditions (4.36) and (4.42), the last relation yields u∗i ≤
u∗3−i for i = 1, 2 and thus we have

u∗1 = u∗2
(

:= u∗
)
. (4.151)
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Now the inequality (4.149), in view of the conditions (4.36) and (4.148),
implies

ui(t) ≥ u∗
2∑
k=1

δk

t∫
a

pik(s) ds+ u∗
(
δi −

2∑
k=1

δk

τ∗∫
a

pik(s) ds
)

=

= u∗fi(t) for t ∈ [a, τ∗], i = 1, 2. (4.152)

On the other hand, using the conditions (4.148) and (4.151), the relation
(4.150) can be rewritten as

ui(t) ≤ u∗
2∑
k=1

δk

t∫
a

pik(s) ds = u∗fi(t) for t ∈ [a, τ∗], i = 1, 2. (4.153)

Hence, the inequalities (4.152) and (4.153) arrive at

ui(t) = u∗fi(t) for t ∈ [a, τ∗], i = 1, 2. (4.154)

Finally, the integration of the system (4.66) from a to τ∗, in view of the
conditions (4.67) and (4.154), yields that

ui(τ∗) =

τ∗∫
a

pi1(s)u1

(
τi1(s)

)
ds+

τ∗∫
a

pi2(s)u2

(
τi2(s)

)
ds =

= u∗
2∑
j=1

τ∗∫
a

pij(s)fj
(
τij(s)

)
ds for t ∈ [a, τ∗], i = 1, 2,

whence we get

u∗
[
δi −

2∑
j=1

τ∗∫
a

pij(s)
( 2∑
k=1

δk

τij(s)∫
a

pjk(ξ) dξ
)

ds
]

= 0 for i = 1, 2, (4.155)

because of the notation (4.147), (4.148) and (4.151).
We have proved that every solution u to the problem (4.66), (4.67) admits

the representation
u(t) = u∗f(t) for t ∈ [a, τ∗],

where f = (f1, f2)T and the number u∗ satisfies the condition (4.155).
Consequently, if there exists i ∈ {1, 2} such that the inequality (4.43) is
fulfilled, then the homogeneous problem (4.66), (4.67) has only the trivial
solution.

It remains to show that if the condition (4.43) is not satisfied for every
i ∈ {1, 2}, i. e.,

2∑
j=1

τ∗∫
a

pij(s)fj
(
τij(s)

)
ds = δi for i = 1, 2, (4.156)
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then the problem (4.66), (4.67) has a nontrivial solution. Indeed, the rela-
tions (4.36) and (4.148) yield

fi(t) ≤ fi(τ∗) = δi for t ∈ [a, τ∗], i = 1, 2.

Therefore, using the conditions (4.36) and (4.156), it is easy to verify that

0 ≤
2∑
k=1

t∫
a

pik(s)
[
δk − fk

(
τik(s)

)]
ds ≤

≤
2∑
k=1

τ∗∫
a

pik(s)
[
δk − fk

(
τik(s)

)]
ds =

= δi −
2∑
k=1

τ∗∫
a

pik(s)fk
(
τik(s)

)
ds = 0 for t ∈ [a, τ∗], i = 1, 2.

Hence we get

fi(t) =
2∑
k=1

t∫
a

pik(s)fk
(
τik(s)

)
ds for t ∈ [a, τ∗], i = 1, 2.

Consequently, f = (f1, f2)T is a nontrivial solution to the problem (4.66),
(4.67). �

Proof of Theorem 4.30. Let the operator ` be defined by the formula (4.31).
It is clear that ` ∈ P2

ab. According to the conditions (4.44) and (4.45), there
exist x0 > 0 and ε ∈ [0, 1[ such that

τik(t)∫
t

p(s) ds ≤ 1
x0

ln
(
x0 +

εx0

e
x0

τ∗∫
a

p(s) ds
−ε

)

holds for a. e. t ∈ [a, b], i, k = 1, 2. Hence we get

e
x0

τik(t)∫
a

p(s) ds
−ε ≤ x0 e

x0

t∫
a

p(s) ds
for a. e. t ∈ [a, b], i, k = 1, 2. (4.157)

Put

γi(t) = e
x0

t∫
a

p(s) ds
−ε for t ∈ [a, b], i = 1, 2. (4.158)

Obviously, γ = (γ1, γ2)T ∈ AC([a, b]; R2) and the inequality (4.7) is satis-
fied. Moreover, by virtue of the conditions (4.46), (4.157), and (4.158), we
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get

γ′i(t) = x0p(t) e
x0

t∫
a

p(s) ds
≥

2∑
k=1

pik(t)x0 e
x0

t∫
a

p(s) ds
≥

≥
2∑
k=1

pik(t)
(

e
x0

τik(t)∫
a

p(s) ds
−ε
)

=

=
2∑
k=1

pik(t)γk
(
τik(t)

)
= `i(γ)(t) for a. e. t ∈ [a, b], i = 1, 2.

Therefore, the vector function γ also satisfies the condition (4.8) and thus,
using Theorem 4.8, we get ` ∈ S2

ab(a). �

Proof of Corollary 4.31. The validity of the corollary follows immediately
from Theorem 4.30 (see also Corollary 4.26 in the case where pik ≡ 0 on
the interval [a, τ∗] for every i, k ∈ {1, 2}). �

Proof of Theorem 4.32. Let the operator ` be defined by the formula (4.31).
It is clear that ` ∈ P2

ab. Let, moreover, the operator ¯̀=
(¯̀

1, ¯̀
2

)T be defined
by the formula

¯̀
i(v)(t) =

2∑
k=1

pik(t)ωik(t)
( 2∑

j=1

τik(t)∫
t

pkj(s)vj
(
τkj(s)

)
ds
)

for a. e. t ∈ [a, b] and all v = (v1, v2)T ∈ C([a, b]; R2), i = 1, 2, (4.159)

where the functions ωik (i, k = 1, 2) are given by the relation (4.49). Obvi-
ously, ¯̀∈ P2

ab and

`i
(
ϕ(v)

)
(t)−

2∑
k=1

pik(t)ϕk(v)(t) =

=
2∑
k=1

pik(t)
( 2∑

j=1

τik(t)∫
t

pkj(s)vj
(
τkj(s)

)
ds
)
≤ ¯̀

i(v)(t)

for a. e. t ∈ [a, b] and all v = (v1, v2)T ∈ Ca([a, b]; R2
+), i = 1, 2,

where the operator ϕ is defined by the formula (4.12) and ϕk denotes
its kth component. Consequently, the inequality (4.20) holds on the set
Ca([a, b]; R2

+). Therefore, the assumptions of Corollary 4.15 are satisfi-
ed. �

Proof of Corollary 4.33. Let the operator ` be defined by the formula (4.31).
It is clear that ` ∈ P2

ab. Analogously to the proof of Theorem 4.32, one
can show that the inequality (4.20) holds on the set Ca([a, b]; R2

+), where
the operators ϕ and ¯̀ = (¯̀

1, ¯̀
2)T are given by the formulas (4.12) and
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(4.159), respectively. Moreover, in view of the condition (4.51), the inequal-
ity (4.23) is fulfilled as well. Therefore, by virtue of Corollary 4.16, we get
` ∈ S2

ab(a). �

Proof of Corollary 4.35. Let the operator ` be defined by the formula (4.31).
It is clear that ` ∈ P2

ab. Analogously to the proof of Theorem 4.32, one can
show that the inequality (4.20) holds on the set Ca([a, b]; R2

+), where the
operators ϕ and ¯̀= (¯̀

1, ¯̀
2)T are given by the formulas (4.12) and (4.159),

respectively. On the other hand, the inequality (4.52) yields the validity of
the condition (4.26) and thus, using Corollary 4.18, we get ` ∈ S2

ab(a). �

Proof of Proposition 4.37. Let the operator ` be defined by the formula
(4.31). It is clear that ` ∈ P2

ab. According to the assumptions of the
proposition, there exists ε > 0 such that

n∑
k=1

pik(t)
[
δk
(
τik(t)− a

)
+ ε
]
≤ δi for a. e. t ∈ [a, b], i = 1, 2. (4.160)

Put

γi(t) = δi(t− a) + ε for t ∈ [a, b], i = 1, 2.

Clearly, γ = (γ1, γ2)T ∈ AC([a, b]; R2) and the inequality (4.7) is satisfied.
Moreover, by virtue of the relation (4.160), we get

γ′i(t) = δi ≥
2∑
k=1

pik(t)
[
δk
(
τik(t)− a

)
+ ε
]

=

=
2∑
k=1

pik(t)γk
(
τik(t)

)
= `i(γ)(t) for a. e. t ∈ [a, b], i = 1, 2.

Therefore, the condition (4.8) is satisfied and thus, using Theorem 4.8, we
get ` ∈ S2

ab(a). �

Proof of Theorem 4.38. Let the operator ` be defined by the formula (4.32).
It is clear that −` ∈ P2

ab and the components `12 and `21 of the operator ` are
zero operators. Moreover, by virtue of Lemma 4.47, each of the conditions
(a)–(c) in the theorem guarantees the validity of the inclusion `ii ∈ Sab(a).
Consequently, using Theorem 4.21, we get ` ∈ S2

ab(a). �

4.5. Counterexamples. In this section, we construct several counterex-
amples verifying that some of the results presented in Sections 4.1 and 4.2
are unimprovable in a certain sense.
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Example 4.48. Let ε ∈ ]0, 1[ and functions pik, gi ∈ L([a, b]; R+) (i, k =
1, 2) be such that

b∫
a

pi1(s) ds+

b∫
a

pi2(s) ds = 1 + ε,

b∫
a

gi(s) ds < 1 for i = 1, 2, (4.161)

b∫
a

p21(s) ds > ε. (4.162)

Let ` = `+ − `−, where `+, `− ∈ P2
ab are defined by the formulas

`+(v)(t) =
(
p11(t) p12(t)
p21(t) p22(t)

)
v(b)

for a. e. t ∈ [a, b] and all v ∈ C([a, b]; R2) (4.163)

and

`−(v)(t) =
(
g1(t) 0
; 0 g2(t)

)
v(a)

for a. e. t ∈ [a, b] and all v ∈ C([a, b]; R2). (4.164)

According to the condition (4.161) and Corollary 4.26 with δ1 = δ2 = 1, we
find

(1− ε)`+ ∈ S2
ab(a).

Moreover, in view of the condition (4.161) and Theorem 4.38(a), we get

−`− ∈ S2
ab(a).

We first show that the homogeneous problem (3.3) has only the trivial
solution. Indeed, let û = (û1, û2)T be a solution to the problem (3.3). Then

ûi(b) = û1(b)

b∫
a

pi1(s) ds+ û2(b)

b∫
a

pi2(s) ds for i = 1, 2. (4.165)

By virtue of the conditions (4.161) and (4.162), the last relations yield
û1(b) = û2(b) = 0. Therefore, from (3.3) we get û ≡ 0. According to
Proposition 3.1, the problem (3.1), (3.2) with q ≡ 0 and c = (1, 0)T has
a unique solution u = (u1, u2)T . Obviously, the vector function u satisfies
the conditions (4.3) and (4.4).



56 J. Šremr

On the other hand, it is easy to verify that

ui(b)− ui(a) = u1(b)

b∫
a

pi1(s) ds+

+ u2(b)

b∫
a

pi2(s) ds− ui(a)

b∫
a

gi(s) ds (4.166)

for i = 1, 2. Therefore, using the conditions (4.161) and (4.162), from the
equalities (4.166) we get

− ε
( b∫
a

p12(s) ds+

b∫
a

p21(s) ds− ε
)
u1(b) =

=
(

1−
b∫
a

g1(s) ds
)( b∫

a

p21(s) ds− ε
)
,

and thus u1(b) < 0. Consequently, ` 6∈ S2
ab(a).

This example shows that the assumption (4.6) in Theorem 4.5 cannot be
replaced by the assumption

(1− ε)`+ ∈ S2
ab(a), −`− ∈ S2

ab(a),

no matter how small ε > 0 is.

Example 4.49. Let ε ∈ ]0, 1[ and functions pij , gi ∈ L([a, b]; R+) (i, j =
1, 2) be such that

b∫
a

pi1(s) ds+

b∫
a

pi2(s) ds < 1,

b∫
a

gi(s) ds = 1 + ε for i = 1, 2. (4.167)

Let ` = `+−`−, where `+, `− ∈ P2
ab are defined by the relations (4.163) and

(4.164), respectively. According to the condition (4.167) and Corollary 4.26
with δ1 = δ2 = 1, we find

`+ ∈ S2
ab(a).

Moreover, in view of the condition (4.167) and Theorem 4.38(a), we get

−(1− ε)`− ∈ S2
ab(a).

We first show that the homogeneous problem (3.3) has only the trivial
solution. Indeed, let û = (û1, û2)T be a solution to the problem (3.3). Then
the equalities (4.165) are fulfilled. By virtue of the condition (4.167), the
relations (4.165) yield û1(b) = û2(b) = 0. Therefore, from (3.3) we get
û ≡ 0. According to Proposition 3.1, the problem (3.1), (3.2) with q ≡ 0
and c = (1, 0)T has a unique solution u = (u1, u2)T . Obviously, the vector
function u satisfies the conditions (4.3) and (4.4).
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On the other hand, it is easy to verify that the relations (4.166) hold.
Therefore, using the conditions (4.167), from the equalities (4.166) we get

(
1−

b∫
a

p11(s) ds
)(

1−
b∫
a

p22(s) ds
)
u1(b)−

− u1(b)

b∫
a

p12(s) ds

b∫
a

p21(s) ds = −ε
(

1−
b∫
a

p22(s) ds
)
,

and thus u1(b) < 0. Consequently, ` 6∈ S2
ab(a).

This example shows that the assumption (4.6) in Theorem 4.5 cannot be
replaced by the assumption

`+ ∈ S2
ab(a), −(1− ε)`− ∈ S2

ab(a),

no matter how small ε > 0 is.

Example 4.50. Let τik ≡ b for i, k = 1, 2. Choose pik ∈ L([a, b]; R+)
(i, k = 1, 2) such that

p11 ≡ p22, p12 ≡ p21,

and
b∫
a

p11(s) ds+

b∫
a

p12(s) ds = 1.

Let the operator ` be defined by the formula (4.31). Obviously, ` ∈ P2
ab

and, for any m > k, the condition (4.9) with α = 1 is satisfied, where
the functions %m (m = 2, 3, . . . ) are defined by the relation (4.11) and
%1 = (1, 1)T . Moreover, the condition (4.14) is fulfilled with δ1 = δ2 = 1
and the inequality (4.20) holds on the set Ca([a, b]; R2

+), where the operator
ϕ is given by the relation (4.12) and ¯̀ =

(¯̀
1, ¯̀

2

)T ∈ P2
ab is defined by the

formula

¯̀
i(v)(t) =

2∑
j=1

pij(t)
( b∫
t

2∑
k=1

pjk(s)vk(b) ds
)

for a. e. t ∈ [a, b] and all v = (v1, v2)T ∈ C([a, b]; R2), i = 1, 2.

Since
b∫
a

2∑
j=1

pij(s)
( b∫
s

2∑
k=1

pjk(ξ) dξ
)

e

b∫
s

2∑
ν=1

piν(η) dη
ds = 1 for i = 1, 2,

the conditions

e
max

{ b∫
a

`11(1)(s) ds,
b∫
a

`22(1)(s) ds
} b∫
a

h(s) e

b∫
s

p(ξ) dξ
ds = 1
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and

max
{
λ1 e

b∫
a

`11(1)(s) ds
, λ2 e

b∫
a

`22(1)(s) ds }
= 1

are fulfilled, where the functions h, p and the numbers λ1, λ2 are given by
the relations (4.25), (4.24), and (4.27), respectively (note that p̃12 ≡ p̃21 ≡
p12 ≡ p21 and q̃i (i = 1, 2) are given by the formula (4.22)).

On the other hand, the vector function u = (u1, u2)T , where

ui(t) =

t∫
a

pi1(s) ds+

t∫
a

pi2(s) ds for t ∈ [a, b], i = 1, 2,

is a nontrivial solution to the problem (3.3). Therefore, by virtue of Propo-
sition 4.3, we get ` 6∈ S2

ab(a).
This example shows that the assumption α ∈ [0, 1[ in Corollary 4.9

and Theorem 4.24 cannot be replaced by the assumption α ∈ [0, 1], and
the strict inequalities (4.13), (4.23), and (4.26) in Corollaries 4.11, 4.16,
and 4.18, respectively, cannot be replaced by the nonstrict ones.

Moreover, this example shows that the strict inequalities (4.35), (4.51),
and (4.52) in Corollaries 4.26, 4.33, and 4.35, respectively, cannot be re-
placed by the nonstrict ones.

5. Weak Theorems on Differential Inequalities

In the previous section, we have established conditions sufficient for the
validity of the inclusion ` ∈ S2

ab(a) in the case where both components13

`12 and `21 of the operator ` are positive. A question that naturally arises
is what happens in the case where the components indicated are not both
positive. Proposition 4.1 claims that for the ordinary differential system

u′ = P (t)u+ q(t)

in which P = (pik)2i,k=1 : [a, b]→ R2×2 is an integrable matrix function and
q ∈ L([a, b]; R2), a theorem on differential inequalities holds if

p12(t) ≥ 0, p21(t) ≥ 0 for a. e. t ∈ [a, b]. (5.1)

In other words, the condition (5.1) is sufficient for the validity of the
inclusion ` ∈ S2

ab(a), where the operator ` is defined by the relation

`(v)(t) = P (t)v(t) for a. e. t ∈ [a, b] and all v ∈ C([a, b]; R2).

If the coefficients pik (i, k = 1, 2) are continuous, then the condition (5.1) is
not only sufficient but also necessary (see, e. g., [42, § 1.7]).

Therefore, the requirement of the validity of the condition (4.5) in Def-
inition 4.2 seems to be too restrictive in the case where the components
`12 and `21 of the operator ` are not both positive. We can weaken the
condition (4.5) in the following way.

13See the item 27 in Section 1.
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Definition 5.1. Let k ∈ {1, 2}. We say that a linear bounded operator
` : C([a, b]; R2)→ L([a, b]; R2) belongs to the set Ŝ 2,k

ab (a) if for an arbitrary
function u = (u1, u2)T ∈ AC([a, b]; R2) satisfying the inequalities (4.3) and
(4.4) the relation

uk(t) ≥ 0 for t ∈ [a, b] (5.2)
is fulfilled.

If ` ∈ Ŝ 2,k
ab (a), then we say that the weak theorem on differential inequal-

ities holds for the system (3.1).

Remark 5.2. Let k ∈ {1, 2}. It follows immediately from Definitions 4.2
and 5.1 that:

(a) S2
ab(a) is a proper subset of the set Ŝ 2,k

ab (a).
(b) If the operator ` is such that `3−kk ∈ Pab and `3−k3−k ∈ Sab(a),

then
` ∈ Ŝ 2,k

ab (a) ⇐⇒ ` ∈ S2
ab(a).

In this section, we establish weak theorems on differential inequalities for
the “anti-diagonal” two-dimensional system

u′1(t) = h1(u2)(t) + q1(t),

u′2(t) = h2(u1)(t) + q2(t),
(5.3)

where h1, h2 ∈ Lab and q1, q2 ∈ L([a, b]; R), in the case where either h1 or
h2 is a positive operator.

Remark 5.3. For the sake of convenience, if the weak theorem on differential
inequalities (resp., the theorem on differential inequalities) holds for the
system (5.3), then we write (h1, h2) ∈ Ŝ 2,k

ab (a) (resp., (h1, h2) ∈ S2
ab(a))

instead of ` ∈ Ŝ 2,k
ab (a) (resp., ` ∈ S2

ab(a)) with

`(v)(t)=
(
h1(v2)(t)
h2(v1)(t)

)
for a. e. t∈ [a, b] and all v=(v1, v2)T∈C([a, b]; R2).

Remark 5.4. It follows immediately from Definition 5.1 that:
(a) (0, h) ∈ Ŝ 2,1

ab (a) for every h ∈ Lab.14

(b) (h, 0) ∈ Ŝ 2,2
ab (a) for every h ∈ Lab.

(c) For any k = 1, 2 and h1, h2 ∈ Lab, we have

(h1, h2) ∈ Ŝ 2,k
ab (a) ⇐⇒ (h2, h1) ∈ Ŝ 2,3−k

ab (a).

(d) For any k = 1, 2 and h1, h2 ∈ Pab, we have

(h1, h2) ∈ Ŝ 2,k
ab (a) ⇐⇒ (h2, h1) ∈ Ŝ 2,k

ab (a).

Remark 5.5. Let k ∈ {1, 2} and (h1, h2) ∈ Ŝ 2,k
ab (a). Then it is clear that

the homogeneous problem
u′1(t) = h1(u2)(t), u′2(t) = h2(u1)(t),

u1(a) = 0, u2(a) = 0
(5.4)

14The symbol 0 stands here for the zero operator.
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has only the trivial solution. Indeed, if (u1, u2)T is a solution to the prob-
lem (5.4), then the inclusion (h1, h2) ∈ Ŝ 2,k

ab (a) yields that uk ≡ 0. Conse-
quently, u3−k ≡ 0 as well and thus the problem (5.4) has only the trivial
solution.

Therefore, according to Proposition 3.1, the Cauchy problem

u1(a) = c1, u2(a) = c2 (5.5)

subjected to the system (5.3) has a unique solution for all q1, q2 ∈ L([a, b]; R)
and c1, c2 ∈ R. However, the inclusion (h1, h2) ∈ Ŝ 2,k

ab (a) guarantees, in
addition, that the solution (u1, u2)T to this problem satisfies the condition
(5.2) whenever q1, q2 and c1, c2 are such that

qk(t) ≥ 0 for a. e. t ∈ [a, b], ck ≥ 0 (k = 1, 2).

In Section 5.1, main results are formulated, their proofs being postponed
till Section 5.4. Differential systems with argument deviations are studied
in more detail in Section 5.2, in which case further results are obtained. In
Section 5.5, the counterexamples are constructed verifying that the results
obtained are unimprovable in a certain sense.

5.1. Main results. The next statement describes a characteristic property
of the set Ŝ 2,k

ab (a).

Theorem 5.6. Let k ∈ {1, 2}, hk ∈ Pab, and h3−k = h3−k,0 − h3−k,1 with
h3−k,0, h3−k,1 ∈ Pab. Assume that

(h1, h2,0) ∈ Ŝ 2,1
ab (a), (h1,−h2,1) ∈ Ŝ 2,1

ab (a) if k = 1,

and
(h1,0, h2) ∈ Ŝ 2,2

ab (a), (−h1,1, h2) ∈ Ŝ 2,2
ab (a) if k = 2.

Then (h1, h2) ∈ Ŝ 2,k
ab (a).

It is proved in [40, Ch. VII, § 1.2] that h ∈ Lab admits the represen-
tation h = h0 − h1 with h0, h1 ∈ Pab if and only if the operator h is
strongly bounded.15 Consequently, due to the results given in Sections 5.1.1
and 5.1.2, Theorem 5.6 allows one to obtain several efficient conditions for
positive hk and strongly bounded h3−k that guarantee the validity of the
inclusion (h1, h2) ∈ Ŝ 2,k

ab (a).

5.1.1. The case h1, h2 ∈ Pab. We first consider the case where both opera-
tors h1 and h2 are positive. In this case, we have

(h1, h2) ∈ Ŝ 2,k
ab (a) ⇐⇒ (h1, h2) ∈ S2

ab(a)

(see Remark 5.2(b)). We have studied properties of the set S2
ab(a) in Sec-

tion 4. For the sake of completeness, we formulate here a general result (see
Theorem 5.7) and two of its corollaries. Then we derive two new corollar-
ies of this general theorem (namely, Corollary 5.14 and Proposition 5.15),
which cannot be found above.

15See Definition 1.1.
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Theorem 5.7 (Theorem 4.8). Let k ∈ {1, 2} and h1, h2 ∈ Pab. Then
(h1, h2) ∈ Ŝ 2,k

ab (a) if and only if there exist functions γ1, γ2 ∈ AC([a, b]; R)
such that

γ1(t) > 0, γ2(t) > 0 for t ∈ [a, b] (5.6)
and

γ′1(t) ≥ h1(γ2)(t), γ′2(t) ≥ h2(γ1)(t) for a. e. t ∈ [a, b]. (5.7)

Corollary 5.8 (Corollary 4.16). Let h1, h2 ∈ Pab and there exist operators
h̃1, h̃2 ∈ Pab such that the inequalities

hi
(
ψ
(
h3−i(z)

))
(t)− hi(1)(t)ψ

(
h3−i(z)

)
(t) ≤ h̃i(z)(t)

for a. e. t ∈ [a, b] and all z ∈ C([a, b]; R+), i = 1, 2 (5.8)

hold, where

ψ(f)(t) =

t∫
a

f(s) ds for t ∈ [a, b], f ∈ L([a, b]; R). (5.9)

Let, moreover,
b∫
a

g(s) e

b∫
s

ω(ξ) dξ
ds < 1, (5.10)

where

ω(t) = max
{
h1(1)(t), h2(1)(t)

}
for a. e. t ∈ [a, b], (5.11)

g(t) = max
{
h̃1(1)(t), h̃2(1)(t)

}
for a. e. t ∈ [a, b].

Then (h1, h2) ∈ Ŝ 2,1
ab (a) ∩ Ŝ 2,2

ab (a).

Remark 5.9. The strict inequality (5.10) in the previous corollary cannot be
replaced by the nonstrict one (see Example 4.50 with p11 ≡ 0 and p22 ≡ 0).

Corollary 5.10 (Corollary 4.18). Let h1, h2 ∈ Pab and let there exist oper-
ators h̃1, h̃2 ∈ Pab such that the inequalities (5.8) hold, where the operator
ψ is defined by the relation (5.9). Let, moreover,

max
{
λ1, λ2

}
< 1, (5.12)

where

λi =

b∫
a

cosh
( b∫
s

ω(ξ) dξ
)
h̃i(1)(s) ds+

+

b∫
a

sinh
( b∫
s

ω(ξ) dξ
)
h̃3−i(1)(s) ds for i = 1, 2

and the function ω is defined by the relation (5.11). Then the pair (h1, h2)
belongs both to Ŝ 2,1

ab (a) and Ŝ 2,2
ab (a).
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Remark 5.11. The strict inequality (5.12) in the previous corollary can-
not be replaced by the nonstrict one (see Example 4.50 with p11 ≡ 0 and
p22≡ 0).

Now we introduce a simple notation.

Notation 5.12. For any ` ∈ Lab, we put

b∗` = inf A(`),

where A(`) denotes the set of all t ∈ [a, b] for which the implication

z ∈ C([a, b]; R),

z(ξ) = 0 for ξ ∈ [a, t]

}
=⇒ `(z)(ξ) = 0 for a. e. ξ ∈ [a, b]

holds.

Remark 5.13. It is easy to verify that b∗` ∈ A(`), i. e.,

z ∈ C([a, b]; R),

z(ξ) = 0 for ξ ∈ [a, b∗` ]

}
=⇒ `(z)(ξ) = 0 for a. e. ξ ∈ [a, b].

The following statements can also be derived from Theorem 5.7.

Corollary 5.14. Let h1, h2 ∈ Pab and there exist i ∈ {1, 2} such that

b∗h3−i∫
a

hi
(
ψ
(
h3−i(1)

))
(s) ds < 1, (5.13)

where the operator ψ is given by the relation (5.9) and the number b∗h3−i
is

defined in Notation 5.12. Then (h1, h2) ∈ Ŝ 2,1
ab (a) ∩ Ŝ 2,2

ab (a).

The next proposition can be regarded as a complement of the previous
corollary.

Proposition 5.15. Let k ∈ {1, 2}, h1, h2 ∈ Pab, and there exist i ∈ {1, 2}
such that

b∗h3−i∫
a

hi
(
ψ
(
h3−i(1)

))
(s) ds = 1, (5.14)

where the operator ψ is given by the relation (5.9) and the number b∗h3−i

is defined in Notation 5.12. Then (h1, h2) ∈ Ŝ 2,k
ab (a) if and only if the

homogeneous problem (5.4) has only the trivial solution.
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Example 5.16. On the interval [0, π/4], we consider the integro-differential
system

u′1(t) = d1 sin t

t/2∫
0

su2

(
s/2
)

ds+ q1(t),

u′2(t) = d2 cos(2t)

t∫
0

cos(2s)u1

(
τ(s)

)
ds+ q2(t),

(5.15)

where τ : [0, π/4]→ [0, π/4] is a measurable function, q1, q2 ∈ L[0, π/4]; R),
and d1, d2 ∈ R+ are such that

d1d2 <
212

4π
(
1 + 2

√
2
)
− π2

(
1 +
√

2
)
− 24

.

It is clear that the system (5.15) is a particular case of the system (5.3) in
which a = 0, b = π/4, and h1, h2 are given by the formulas

h1(z)(t) = d1 sin t

t/2∫
0

sz
(
s/2
)

ds,

h2(z)(t) = d2 cos(2t)

t∫
0

cos(2s)z
(
τ(s)

)
ds

(5.16)

for a. e. t ∈ [0, π/4] and all z ∈ C([0, π/4]; R). It is not difficult to verify
that b∗h2

= ess sup
{
τ(t) : t ∈ [0, π/4]

}
(see Notation 5.12) and

ψ
(
h2(1)

)
(t) =

t∫
0

h2(1)(s) ds =

t∫
0

d2 cos(2s)

s∫
0

cos(2ξ) dξ ds =

=
d2

16
(
1− cos(4t)

)
for t ∈ [0, π/4].

Consequently, we have

b∗h2∫
0

h1

(
ψ
(
h2(1)

))
(s) ds ≤

π/4∫
0

h1

(
ψ
(
h2(1)

))
(s) ds =

=

π/4∫
0

d1 sin s

s/2∫
0

ξ
d2

16
(
1− cos(2ξ)

)
dξ ds =

=
d1d2

212

(
4π
(
1 + 2

√
2
)
− π2

(
1 +
√

2
)
− 24

)
< 1.

Therefore, according to Corollary 5.14 with i = 1 and Remark 5.5, the
Cauchy problem

u1(0) = c1, u2(0) = c2 (5.17)
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subjected to the system (5.15) has a unique solution for arbitrary q1, q2 ∈
L([0, π/4]; R) and c1, c2 ∈ R. Moreover, if q1, q2 and c1, c2 fulfil the addi-
tional condition

qk(t) ≥ 0 for a. e. t ∈ [0, π/4], ck ≥ 0 (k = 1, 2), (5.18)

then the unique solution (u1, u2)T to this problem satisfies the relation

u1(t) ≥ 0, u2(t) ≥ 0 for t ∈ [0, π/4].

Example 5.17. On the interval [0, 1], we consider the Cauchy problem

u′′(t) =
d

(1− t)λ

t∫
0

u
(
τ(s)

)
(1− s)λ

ds+ q(t); u(0) = c1, u′(0) = c2, (5.19)

where λ < 1, 0 ≤ d < (3 − 2λ)(2 − λ), τ : [0, 1] → [0, 1] is a measurable
function, q ∈ L([0, 1]; R), and c1, c2 ∈ R.

It is clear that the problem (5.19) can be regarded as a particular case
of the problem (5.3), (5.5) in which a = 0, b = 1, q1 ≡ 0, q2 ≡ q, and h1, h2

are given by the formulas

h1(z)(t) = z(t), h2(z)(t) =
d

(1− t)λ

t∫
0

z
(
τ(s)

)
(1− s)λ

ds (5.20)

for a. e. t ∈ [0, 1] and all z ∈ C([0, 1]; R). It is not difficult to verify that
b∗h2

= ess sup
{
τ(t) : t ∈ [0, 1]

}
(see Notation 5.12) and

b∗h2∫
0

h1

(
ψ
(
h2(1)

))
(s) ds =

b∗h2∫
0

(b∗h2
− s)h2(1)(s) ds ≤

≤
1∫

0

(1− s)h2(1)(s) ds = d

1∫
0

(1− s)1−λ
s∫

0

dξ
(1− ξ)λ

ds =

=
d

(3− 2λ)(2− λ)
< 1.

Therefore, according to Corollary 5.14 with i = 1 and Remark 5.5, the
problem (5.19) has a unique solution for arbitrary q ∈ L([0, 1]; R) and
c1, c2 ∈ R. Moreover, if q and c1, c2 fulfil the additional condition

q(t) ≥ 0 for a. e. t ∈ [0, 1], c1 ≥ 0, c2 ≥ 0, (5.21)

then the unique solution u to this problem satisfies the relation

u(t) ≥ 0, u′(t) ≥ 0 for t ∈ [0, 1].
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5.1.2. The case hk ∈ Pab and −h3−k ∈ Pab. Now we consider the case
where the operators hk and h3−k are positive and negative, respectively.
Here we have a sufficient and necessary condition for the validity of the
inclusion (h1, h2) ∈ Ŝ 2,k

ab (a) provided that both operators h1 and h2 are
a-Volterra ones.

Theorem 5.18. Let k ∈ {1, 2}, −h3−k, hk ∈ Pab and let the operators h1,
h2 be a-Volterra ones. Then (h1, h2) ∈ Ŝ 2,k

ab (a) if and only if there exist
functions γ1, γ2 ∈ ACloc([a, b[ ; R) such that γk ∈ C([a, b]; R),

γ′k(t) ≤ hk(γ3−k)(t) for a. e. t ∈ [a, b], 16 (5.22)

γ′3−k(t) ≤ h3−k(γk)(t) for a. e. t ∈ [a, b], (5.23)

γk(t) ≥ 0 for t ∈ [a, b], (5.24)

γk(a) > 0, γ3−k(a) ≤ 0, (5.25)

and
|γ1(t)|+ |γ2(t)| 6= 0 for t ∈ ]a, b[ . (5.26)

Remark 5.19. Since possibly γ3−k(t)→ −∞ as t→ b−, the condition (5.22)
of the previous theorem is understood in the sense that for any b0 ∈ ]a, b[
the relation

γ′k(t) ≤ hab0k (γ3−k)(t) for a. e. t ∈ [a, b0]

holds, where hab0k denotes the restriction of the operator hk to the space
C([a, b0]; R).17

Remark 5.20. Observe that the function γ3−k in Theorem 5.18 necessarily
satisfies the condition

γ3−k(t) ≤ 0 for t ∈ [a, b[ . (5.27)

Theorem 5.18 yields the following corollary.

Corollary 5.21. Let k ∈ {1, 2}, −h3−k, hk ∈ Pab and let the operators h1,
h2 be a-Volterra ones. If, moreover, the inequality

b∫
a

∣∣hk(ψ(h3−k(1)
))

(s)
∣∣ ds ≤ 1 (5.28)

holds, where the operator ψ is defined by (5.9), then (h1, h2) ∈ Ŝ 2,k
ab (a).

Remark 5.22. The inequality (5.28) of the previous corollary cannot be
replaced by the inequality

b∫
a

∣∣hk(ψ(h3−k(1)
))

(s)
∣∣ ds ≤ 1 + ε, (5.29)

16See Remark 5.19.
17See Definition 1.8.
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no matter how small ε > 0 is (see Example 5.40).

Example 5.23. On the interval [0, π/4], we consider the integro-differential
system (5.15), where τ : [0, π/4]→ [0, π/4] is a measurable function, τ(t) ≤ t
for a. e. t ∈ [0, π/4], q1, q2 ∈ L([0, π/4]; R), and d1 ≥ 0, d2 ≤ 0 are such that

d1|d2| ≤
212

4π
(
1 + 2

√
2
)
− π2

(
1 +
√

2
)
− 24

.

It is clear that the system (5.15) is a particular case of the system (5.3)
in which a = 0, b = π/4, and h1, h2 are given by the formulas (5.16).
Analogously to Example 5.16, we get the relation
π/4∫
0

∣∣h1

(
ψ
(
h2(1)

))
(s)
∣∣ ds =

d1|d2|
212

(
4π
(
1 + 2

√
2
)
− π2

(
1 +
√

2
)
− 24

)
≤ 1.

Therefore, according to Corollary 5.21 with k = 1 and Remark 5.5, the
problem (5.15), (5.17) has a unique solution for every q1, q2 ∈ L([0, π/4]; R)
and c1, c2 ∈ R. Moreover, if q1, q2 and c1, c2 fulfil the additional condi-
tion (5.18), then the unique solution (u1, u2)T to this problem satisfies the
relation

u1(t) ≥ 0 for t ∈ [0, π/4].

Example 5.24. On the interval [0, 1], we consider the problem (5.19),
where λ < 1, d ≤ 0, |d| ≤ (3− 2λ)(2− λ), τ : [0, 1]→ [0, 1] is a measurable
function, τ(t) ≤ t for a. e. t ∈ [0, 1], q ∈ L([0, 1]; R), and c1, c2 ∈ R.

It is clear that the problem (5.19) can be regarded as a particular case
of the problem (5.3), (5.5) in which a = 0, b = 1, q1 ≡ 0, q2 ≡ q, and h1, h2

are given by the formulas (5.20). Analogously to Example 5.17, we get the
relation

1∫
0

∣∣h1

(
ψ
(
h2(1)

))
(s)
∣∣ ds =

|d|
(3− 2λ)(2− λ)

≤ 1.

Therefore, according to Corollary 5.21 with k = 1 and Remark 5.5,
the problem (5.19) has a unique solution for arbitrary q ∈ L([0, 1]; R) and
c1, c2 ∈ R. Moreover, if q and c1, c2 fulfil the additional condition (5.21),
then the unique solution u to the this problem satisfies the relation

u(t) ≥ 0 for t ∈ [0, 1].

5.2. Systems with argument deviations. In this part, we establish some
corollaries of the results stated in the previous section for the differential
system with argument deviations (3.1′) in which p11 ≡ 0 and p22 ≡ 0.
More precisely, efficient conditions are found for the validity of the inclusion
(h1, h2) ∈ Ŝ 2,k

ab (a) whenever the operators h1, h2 are defined by the formula

hk(z)(t) = fk(t)z
(
τk(t)

)
for a. e. t ∈ [a, b] and all z ∈ C([a, b]; R), k = 1, 2, (5.30)
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where f1, f2 ∈ L([a, b]; R) and τ1, τ2 : [a, b]→ [a, b] are measurable functions.
Throughout this section, the following notation is used:

τ∗k = ess sup
{
τk(t) : t ∈ [a, b]

}
for k = 1, 2.

As was mentioned above, if the operators h1 and h2 are both positive,
then (h1, h2) ∈ Ŝ 2,k

ab (a) if and only if (h1, h2) ∈ S2
ab(a) (see Remarks 5.2(b)

and 5.3). Therefore, having the operators h1 and h2 given by the relation
(5.30), the efficient conditions guaranteeing the validity of the inclusion
(h1, h2) ∈ Ŝ 2,k

ab (a) can be immediately derived from those stated in Sec-
tion 4.2 provided that

f1(t) ≥ 0, f2(t) ≥ 0 for a. e. t ∈ [a, b]. (5.31)

For the sake of completeness, we reformulate here three main results stated
in Section 4.2 and then we establish two new statements which can be
derived from Corollary 5.14 and Proposition 5.15 (namely, Theorems 5.30
and 5.31).

Theorem 5.25 (Theorem 4.30). Let h1, h2 be the operators defined by the
relation (5.30) and let the condition (5.31) hold. Put

ω(t) = max
{
f1(t), f2(t)

}
for a. e. t ∈ [a, b] (5.32)

and assume that ω 6≡ 0 on [a, τ∗] and

ess sup
{ τi(t)∫

t

ω(s) ds : t ∈ [a, b]
}
< η∗ for i = 1, 2,

where τ∗ = max{τ∗1 , τ∗2 } and

η∗ = sup
{

1
x

ln
(
x+

x

exp
(
x
τ∗∫
a

ω(s) ds
)
− 1

)
: x > 0

}
.

Then the pair (h1, h2) belongs both to Ŝ 2,1
ab (a) and Ŝ 2,2

ab (a).

Theorem 5.26 (Corollary 4.33). Let h1, h2 be the operators defined by the
relation (5.30) and let the condition (5.31) hold. Assume that the inequality
(5.10) holds, where the function ω is defined by the relation (5.32) and

g(t) = max
{
g1(t), g2(t)

}
for a. e. t ∈ [a, b]

in which

gi(t) = fi(t)σi(t)

τi(t)∫
t

f3−i(s) ds for a. e. t ∈ [a, b], i = 1, 2,

and

σi(t) =
1
2

(
1 + sgn

(
τi(t)− t

))
for a. e. t ∈ [a, b], i = 1, 2. (5.33)

Then (h1, h2) ∈ Ŝ 2,1
ab (a) ∩ Ŝ 2,2

ab (a).
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Remark 5.27. The strict inequality (5.10) in the last theorem cannot be
replaced by the nonstrict one (see Example 4.50 with p11 ≡ 0 and p22 ≡ 0).

Theorem 5.28 (Corollary 4.35). Let h1, h2 be the operators defined by the
relation (5.30) and let the condition (5.31) hold. Assume that the inequality
(5.12) holds, where

λi =

b∫
a

cosh
( b∫
s

ω(ξ) dξ
)
fi(s)σi(s)

( τi(s)∫
s

f3−i(ξ) dξ
)

ds+

+

b∫
a

sinh
( b∫
s

ω(ξ) dξ
)
f3−i(s)σ3−i(s)

( τ3−i(s)∫
s

fi(ξ) dξ
)

ds

for i = 1, 2 in which the functions ω and σ1, σ2 are defined, respectively,
by the relations (5.32) and (5.33). Then the pair (h1, h2) belongs both to
Ŝ 2,1
ab (a) and Ŝ 2,2

ab (a).

Remark 5.29. The strict inequality (5.12) in the previous theorem cannot be
replaced by the nonstrict one (see Example 4.50 with p11 ≡ 0 and p22 ≡ 0).

For the operator hk given by the relation (5.30), according to Nota-
tion 5.12, we have b∗hk ≤ τ∗k . It is however easy to see that the equality
b∗hk = τ∗k does not hold in general. On the other hand, it is clear that the
number τ∗k is easier to compute than b∗hk . Therefore, the results obtained
below by using Corollary 5.14 and Proposition 5.15 are formulated in terms
of the number τ∗k instead of b∗hk .

Theorem 5.30. Let h1, h2 be the operators defined by the relation (5.30)
and let the condition (5.31) hold. If the inequality

τ∗3−i∫
a

fi(s)
( τi(s)∫

a

f3−i(ξ) dξ
)

ds < 1

holds for some i ∈ {1, 2}, then the pair (h1, h2) belongs both to Ŝ 2,1
ab (a) and

Ŝ 2,2
ab (a).

The next theorem can be regarded as a complement of the previous one.

Theorem 5.31. Let i, k ∈ {1, 2}, h1, h2 be the operators defined by the
relation (5.30), the condition (5.31) hold and let the equality

τ∗3−i∫
a

fi(s)
( τi(s)∫

a

f3−i(ξ) dξ
)

ds = 1 (5.34)
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be satisfied. Then (h1, h2) ∈ Ŝ 2,k
ab (a) if and only if

τ∗3−i∫
a

fi(s)
( τi(s)∫

a

f3−i(ξ)xi
(
τ3−i(ξ)

)
dξ
)

ds < 1, (5.35)

where

xi(t) =

t∫
a

fi(s)
( τi(s)∫

a

f3−i(ξ) dξ
)

ds for t ∈ [a, b]. (5.36)

In what follows, we give two statements dealing with the validity of the
inclusion (h1, h2) ∈ Ŝ 2,k

ab (a) in the case where one of the operators h1 and
h2 given by the relation (5.30) is positive and the second one is negative.

The next result follows from Corollary 5.21.

Theorem 5.32. Let k ∈ {1, 2}, h1 and h2 be the operators defined by the
relation (5.30),

fk(t) ≥ 0, f3−k(t) ≤ 0 for a. e. t ∈ [a, b], (5.37)

and

|fi(t)|
(
τi(t)− t

)
≤ 0 for a. e. t ∈ [a, b], i = 1, 2. (5.38)

If, moreover, the inequality

b∫
a

fk(s)
( τk(s)∫

a

|f3−k(ξ)|dξ
)

ds ≤ 1 (5.39)

is satisfied, then the pair (h1, h2) belongs to the set Ŝ 2,k
ab (a).

Remark 5.33. The inequality (5.39) in the previous theorem cannot be re-
placed by the inequality

b∫
a

fk(s)
( τk(s)∫

a

|f3−k(ξ)|dξ
)

ds ≤ 1 + ε, (5.40)

no matter how small ε > 0 is (see Example 5.40).

The next statement contains the so-called Vallée-Poussin type conditions.

Theorem 5.34. Let k ∈ {1, 2}, h1 and h2 be the operators defined by the
relation (5.30), and let the conditions (5.37) and (5.38) be satisfied. Assume
that there exist numbers α1, α2 ∈ R+, α3 > 0, λ ∈ [0, 1[ , and ν ∈ [0, λ] such
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that
+∞∫
0

ds
α1 + α2s+ α3s2

≥ (b− a)1−λ

1− λ
, (5.41)

(b− t)λ−νfk(t) ≤

≤ α3

[
1 + δk(t)

t∫
τk(t)

( ν

b− s
+

α2

(b− s)λ
)

ds
]

for a. e. t ∈ [a, b], (5.42)

(b− t)λ+ν |f3−k(t)| ≤ α1 for a. e. t ∈ [a, b], (5.43)

and

α3(b−t)ν |f3−k(t)|
(
t−τ3−k(t)

)
≤ α2+

ν

(b− t)1−λ
for a. e. t ∈ [a, b], (5.44)

where

δk(t) =
1
2

(
1 + sgn

(
t− τk(t)

))
for a. e. t ∈ [a, b].

Then the pair (h1, h2) belongs to the set Ŝ 2,k
ab (a).

Remark 5.35. The inequality (5.41) in the previous theorem cannot be re-
placed by the inequality

+∞∫
0

ds
α1 + α2s+ α3s2

≥ (1− ε) (b− a)1−λ

1− λ
, (5.45)

no matter how small ε > 0 is (see Example 5.41).

Remark 5.36. Using Theorem 5.6 and combining the results stated above,
we can immediately derive several conditions sufficient for the validity of
the inclusion (h1, h2) ∈ Ŝ 2,k

ab (a) if the operators h1 and h2 are defined by
the formulas

hk(z)(t) = fk(t)z
(
τk(t)

)
for a. e. t ∈ [a, b] and all z ∈ C([a, b]; R)

and

h3−k(z)(t) = f3−k,0(t)z
(
τ3−k,0(t)

)
− f3−k,1(t)z

(
τ3−k,1(t)

)
for a. e. t ∈ [a, b] and all z ∈ C([a, b]; R),

where fk, f3−k,0, f3−k,1 ∈ L([a, b]; R+) and τk, τ3−k,0, τ3−k,1 : [a, b] → [a, b]
are measurable functions. However, we do not formulate them here in detail.

5.3. Auxiliary lemmas. In this part we give several lemmas that we will
need in the proofs of the results stated in Sections 5.1 and 5.2.

Lemma 5.37. Let k ∈ {1, 2}, −h3−k, hk ∈ Pab and let the operators h1

and h2 be a-Volterra ones. Assume that there exist functions γ1, γ2 ∈
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ACloc([a, b[ ; R) such that γk ∈ C([a, b]; R) and the relations (5.22)–(5.25)
hold. Then, for any u1, u2 ∈ AC([a, b]; R) fulfilling the inequalities

u′1(t) ≥ h1(u2)(t), u′2(t) ≥ h2(u1)(t) for a. e. t ∈ [a, b] (5.46)

and
u1(a) ≥ 0, u2(a) ≥ 0, (5.47)

the condition
uk(t) ≥ 0 for t ∈ [a, bk] (5.48)

holds, where

bk = sup
{
x ∈ ]a, b] : γk(t) > 0 for t ∈ [a, x]

}
. (5.49)

Proof. Let functions u1, u2 ∈ AC([a, b]; R) satisfy the inequalities (5.46) and
(5.47). Define the number bk by the relation (5.49). It is clear that bk > a
and

γ1(t) > 0 for t ∈ [a, bk[ . (5.50)
Assume that, on the contrary, the relation (5.48) does not hold. Then there
exists t0 ∈ ]a, bk[ such that

uk(t0) < 0. (5.51)
Put

λ = max
{uk(t)
γk(t)

: t ∈ [a, t0]
}
. (5.52)

It is clear that
0 ≤ λ < +∞. (5.53)

Define the functions w1 and w2 by setting

wi(t) = λγi(t)− ui(t) for t ∈ [a, t0], i = 1, 2. (5.54)

Since the operators h1, h2 are a-Volterra ones, using the conditions (5.46),
(5.22), (5.23), (5.53) and Remark 5.19, we get

w′i(t) = λγ′i(t)− u′i(t) ≤ h
at0
i (λγ3−i − u3−i)(t) =

= hat0i (w3−i)(t) for a. e. t ∈ [a, t0], i = 1, 2, (5.55)

where hat01 and hat02 are the restrictions of the operators h1 and h2 to the
space C([a, t0]; R).18

On the other hand, by virtue of the relation (5.52), it is clear that

wk(t) ≥ 0 for t ∈ [a, t0] (5.56)

and there exists t1 ∈ [a, t0[ such that

wk(t1) = 0. (5.57)

Since we suppose that −h3−k ∈ Pab, we get from (5.25), (5.47) and (5.53)–
(5.56) that

w′3−k(t) ≤ hat03−k(wk)(t) ≤ 0 for a. e. t ∈ [a, t0]

18See Definition 1.8.
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and
w3−k(a) = λγ3−k(a)− u3−k(a) ≤ 0.

Hence we obtain
w3−k(t) ≤ 0 for t ∈ [a, t0]. (5.58)

However, we suppose that hk ∈ Pab, and thus we get from (5.55) and (5.58)
that

w′k(t) ≤ hat0k (w3−k)(t) ≤ 0 for a. e. t ∈ [a, t0]. (5.59)
Finally, by virtue of (5.24), (5.53) and (5.57), the relation (5.59) yields

0 = wk(t1) ≥ wk(t0) = λγk(t0)− uk(t0) ≥ −uk(t0),

which contradicts the inequality (5.51).
The contradiction obtained proves the validity of the desired relation

(5.48). �

Lemma 5.38. Let i ∈ {1, 2}, f1, f2 ∈ L([a, b]; R+), and τ1, τ2 : [a, b] →
[a, b] be measurable functions such that the equality (5.34) holds. Then the
homogeneous problem

u′1(t) = f1(t)u2

(
τ1(t)

)
, u′2(t) = f2(t)u1

(
τ2(t)

)
, (5.60)

u1(a) = 0, u2(a) = 0 (5.61)

has only the trivial solution if and only if the inequality (5.35) is satisfied,
where the function xi is defined by the formula (5.36).

Proof. Let (u1, u2)T be a solution to the problem (5.60), (5.61). We first
show that the function ui does not change its sign on the interval [a, τ∗3−i].
Assume that, on the contrary, ui changes its sign on [a, τ∗3−i]. Put

M=max
{
ui(t) : t∈ [a, τ∗3−i]

}
, m=−min

{
ui(t) : t∈ [a, τ∗3−i]

}
, (5.62)

and choose tM , tm ∈ [a, τ∗3−i] such that

ui(tM ) = M, ui(tm) = −m. (5.63)

Clearly,
M > 0, m > 0, (5.64)

and we can assume without loss of generality that tm < tM . By virtue of
the relations (5.62), it follows from the (3− i)th condition in (5.61) and the
(3− i)th equation in (5.60) that

u3−i(t) =

t∫
a

f3−i(s)ui
(
τ3−i(s)

)
ds ≤M

t∫
a

f3−i(s) ds for t ∈ [a, b]. (5.65)

Therefore, the integration of the ith equation in (5.60) from tm to tM , in
view of the conditions (5.34), (5.63) and (5.65), yields

M +m =

tM∫
tm

fi(s)u3−i
(
τi(s)

)
ds ≤M

tM∫
tm

fi(s)
( τi(s)∫

a

f3−i(ξ) dξ
)

ds ≤M,
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which contradicts the second inequality in (5.64).
The contradiction obtained proves that the function ui does not change

its sign on the interval [a, τ∗3−i]. Therefore, we can assume without loss of
generality that

ui(t) ≥ 0 for t ∈ [a, τ∗3−i].

It follows from (5.60) and (5.61) that

ui(t) =

t∫
a

fi(s)
( τi(s)∫

a

f3−i(ξ)ui
(
τ3−i(ξ)

)
dξ
)

ds for t ∈ [a, b]. (5.66)

Since τ3−i(t) ≤ τ∗3−i for a. e. t ∈ [a, b] and the function ui is non-negative
on [a, τ∗3−i], the last relation yields

ui
(
τ3−i(t)

)
≤ u(τ∗3−i) for a. e. t ∈ [a, b].

Therefore, in view of the notation (5.36), the representation (5.66) implies
that

ui(t) ≤ u(τ∗3−i)

t∫
a

fi(s)
( τi(s)∫

a

f3−i(ξ) dξ
)

ds =

= ui(τ∗3−i)xi(t) for t ∈ [a, b] (5.67)

and

ui(τ∗3−i)− ui(t) =

τ∗3−i∫
t

fi(s)
( τi(s)∫

a

f3−i(ξ)ui
(
τ3−i(ξ)

)
dξ
)

ds ≤

≤ ui(τ∗3−i)

τ∗3−i∫
t

fi(s)
( τi(s)∫

a

f3−i(ξ) dξ
)

ds for t ∈ [a, τ∗3−i]. (5.68)

Using the equality (5.34) and the notation (5.36) in the relation (5.68), we
get

ui(τ∗3−i)xi(t) = ui(τ∗3−i)
(

1−

τ∗3−i∫
t

fi(s)
( τi(s)∫

a

f3−i(ξ) dξ
)

ds
)
≤ ui(t)

for t ∈ [a, τ∗3−i], which together with the above-proved relation (5.67) yields

ui(t) = ui(τ∗3−i)xi(t) for t ∈ [a, τ∗3−i]. (5.69)

Finally, (5.66) and (5.69) result in

ui(t)=ui(τ∗3−i)

t∫
a

fi(s)
( τi(s)∫

a

f3−i(ξ)xi
(
τ3−i(ξ)

)
dξ
)

ds for t∈ [a, b], (5.70)
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whence we obtain

ui(τ∗3−i)
[
1−

τ∗3−i∫
a

fi(s)
( τi(s)∫

a

f3−i(ξ)xi
(
τ3−i(ξ)

)
dξ
)

ds
]

= 0. (5.71)

We have proved that every solution (u1, u2)T to the problem (5.60), (5.61)
satisfies the relation (5.70), where ui(τ∗3−i) fulfils the equality (5.71). Conse-
quently, if the inequality (5.35) holds, then ui ≡ 0 on the interval [a, b], and
thus the homogeneous problem (5.60), (5.61) has only the trivial solution.

It remains to show that if the inequality (5.35) is not satisfied, i. e.,
τ∗3−i∫
a

fi(s)
( τi(s)∫

a

f3−i(ξ)xi
(
τ3−i(ξ)

)
dξ
)

ds = 1, (5.72)

then the homogeneous problem (5.60), (5.61) has a nontrivial solution. In-
deed, in view of the equality (5.34), the relation (5.36) yields

xi
(
τ3−i(t)

)
≤ xi(τ∗3−i) = 1 for a. e. t ∈ [a, b].

Therefore, using the equality (5.72), it is easy to verify that

0 ≤
t∫
a

fi(s)
( τi(s)∫

a

f3−i(ξ)
[
1− xi

(
τ3−i(ξ)

)]
dξ
)

ds ≤

≤

τ∗3−i∫
a

fi(s)
( τi(s)∫

a

f3−i(ξ)
[
1− xi

(
τ3−i(ξ)

)]
dξ
)

ds =

= 1−

τ∗3−i∫
a

fi(s)
( τi(s)∫

a

f3−i(ξ)xi
(
τ3−i(ξ)

)
dξ
)

ds = 0

for t ∈ [a, τ∗3−i]. Hence we get

xi(t) =

t∫
a

fi(s)
( τi(s)∫

a

f3−i(ξ)xi
(
τ3−i(ξ)

)
dξ
)

ds for t ∈ [a, τ∗3−i]. (5.73)

Put

u3−i(t) =

t∫
a

f3−i(s)xi
(
τ3−i(s)

)
ds, ui(t) =

t∫
a

fi(s)u3−i
(
τi(s)

)
ds

for t ∈ [a, b]. By virtue of the equality (5.73), it is clear that ui(t) = xi(t)
for t ∈ [a, τ∗3−i], and thus

u3−i(t) =

t∫
a

f3−i(s)ui
(
τ3−i(s)

)
ds for t ∈ [a, b].
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Consequently, (u1, u2)T is a nontrivial solution to the problem (5.60),
(5.61). �

Lemma 5.39. Let the numbers α1, α2 ∈ R+, α3 > 0 and λ ∈ [0, 1[ be such
that

+∞∫
0

ds
α1 + α2s+ α3s2

=
(b− a)1−λ

1− λ
. (5.74)

Then for an arbitrary ν ∈ [0, λ] there exist functions γk ∈ C([a, b]; R) and
γ3−k ∈ Cloc([a, b[ ; R) such that γ′k, γ

′′
k , γ
′
3−k ∈ Cloc([a, b[ ; R),

γk(t) > 0 for t ∈ [a, b[ , (5.75)

γ3−k(a) = 0, γ3−k(t) < 0 for t ∈ ]a, b[ , (5.76)

γ′k(t) =
α3

(b− t)λ−ν
γ3−k(t) for t ∈ [a, b[ , (5.77)

γ′3−k(t) = − α1

(b− t)λ+ν
γk(t)+

+
( ν

b− t
+

α2

(b− t)λ
)
γ3−k(t) for t ∈ [a, b[ , (5.78)

and
γ′′k (t) ≤ 0 for t ∈ [a, b[ . (5.79)

Proof. Define the function % : [a, b[→ R+ by setting
+∞∫
%(t)

ds
α1 + α2s+ α3s2

=
(b− t)1−λ

1− λ
for t ∈ [a, b[ .

In view of the equality (5.74), we get

%(a) = 0, %(t) > 0 for t ∈ ]a, b[ , (5.80)

and

%′(t) =
α1 + α2%(t) + α3%

2(t)
(b− t)λ

for t ∈ [a, b[ .

Put

γk(t) = exp
(
−

t∫
a

α3%(s)
(b− s)λ

ds
)
, γ3−k(t) = −%(t)γk(t)

(b− t)ν
for t ∈ [a, b[ .

It is not difficult to verify that γk, γ3−k ∈ Cloc([a, b[ ; R) and the conditions
(5.77) and (5.78) are satisfied. Therefore, γ′k, γ

′
3−k ∈ Cloc([a, b[ ; R), as well.

Moreover, in view of the relations (5.80), it is clear that the conditions
(5.75) and (5.76) are fulfilled. Consequently, by direct calculation we can
verify that γ′′k ∈ Cloc([a, b[ ; R) and that the inequality (5.79) is satisfied.
Since the function γk is positive and non-increasing on [a, b[ , there exists
a finite limit limt→b− γk(t). Therefore, γk ∈ C([a, b]; R) when we put γk(b) =
limt→b− γk(t). �
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5.4. Proofs. First recall (see Remark 5.3) that we write (h1, h2) ∈ Ŝ 2,k
ab (a)

instead of ` ∈ Ŝ 2,k
ab (a) with ` given by the formula

`(v)(t) =
(
h1(v2)(t)
h2(v1)(t)

)
for a. e. t ∈ [a, b] and all v = (v1, v2)T ∈ C([a, b]; R2).

Therefore, the inequalities (4.3) and (4.4) appearing in Definition 5.1, ex-
pressed in terms of its components, have the form

u′1(t) ≥ h1(u2)(t), u′2(t) ≥ h2(u1)(t) for a. e. t ∈ [a, b] (5.81)

and
u1(a) ≥ 0, u2(a) ≥ 0 (5.82)

in the case indicated.

Proof of Theorem 5.6. In view of Remark 5.4(c), we can assume without
loss of generality that k = 1. Let (u1, u2)T ∈ AC([a, b]; R2) be a vector
function satisfying the inequalities (5.81) and (5.82). We will show that the
function u1 is non-negative.

According to the inclusion (h1,−h2,1) ∈ Ŝ 2,1
ab (a) and Remark 5.5, the

problem

α′1(t) = h1(α2)(t), α′2(t) = −h2,1(α1)(t) + h2,0([u1]−)(t), (5.83)

α1(a) = 0, α2(a) = 0 (5.84)

has a unique solution (α1, α2)T and

α1(t) ≥ 0 for t ∈ [a, b]. (5.85)

In view the conditions (5.81), (5.82), (5.83), (5.84) and the assumption
h2,0 ∈ Pab, we get

α′1(t) + u′1(t) ≥ h1(α2 + u2)(t) for a. e. t ∈ [a, b],

α′2(t) + u′2(t) ≥ −h2,1(α1 + u1)(t) + h2,0(u1 + [u1]−)(t) ≥
≥ −h2,1(α1 + u1)(t) for a. e. t ∈ [a, b],

and
α1(a) + u1(a) ≥ 0, α2(a) + u2(a) ≥ 0.

Consequently, the inclusion (h1,−h2,1) ∈ Ŝ 2,1
ab (a) yields

α1(t) + u1(t) ≥ 0 for t ∈ [a, b]. (5.86)

Now, the inequalities (5.85) and (5.86) imply that

[u1(t)]− ≤ α1(t) for t ∈ [a, b]. (5.87)

On the other hand, by virtue of the conditions (5.83), (5.85), (5.87) and
the assumptions h2,0, h2,1 ∈ Pab, we obtain

α′1(t) = h1(α2)(t), α′2(t) ≤ h2,0(α1)(t) for a. e. t ∈ [a, b].
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Hence, on account of the equalities (5.84), the inclusion (h1, h2,0) ∈ Ŝ 2,1
ab (a)

yields that
α1(t) ≤ 0 for t ∈ [a, b].

The latter relation, together with the inequality (5.86), guarantees that the
function u1 is non-negative and thus (h1, h2) ∈ Ŝ 2,1

ab (a). �

Proof of Corollary 5.14. According to the inequality (5.13) and the assump-
tion h1 ∈ Pab, there exists ε > 0 such that

ε

(
1 +

b∗h3−i∫
a

hi(1)(s) ds
)

+

b∗h3−i∫
a

hi
(
ψ
(
h3−i(1)

))
(s) ds ≤ 1. (5.88)

Put

γ3−i(t) = ε+

t∫
a

h3−i(1)(s) ds for t ∈ [a, b], (5.89)

γi(t) = ε+

t∫
a

hi(γ3−i)(s) ds for t ∈ [a, b]. (5.90)

It is clear that γ1, γ2 ∈ AC([a, b]; R) satisfy the inequalities (5.6) because
the operators h1 and h2 are positive. Put

γ̃i(t) =

{
γi(t) for t ∈ [a, b∗h3−i

[ ,
γi
(
b∗h3−i

)
for t ∈ [b∗h3−i

, b].
(5.91)

Then the relations (5.88)–(5.90) yield

γ̃i(t) ≤ γi
(
b∗h3−i

)
= ε+

b∗h3−i∫
a

hi
(
ε+ ψ(h3−i(1))

)
(s) ds =

= ε

(
1+

b∗h3−i∫
a

hi(1)(s) ds
)

+

b∗h3−i∫
a

hi
(
ψ
(
h3−i(1)

))
(s) ds≤1 for t∈ [a, b]. (5.92)

On the other hand, in view of the relations (5.91), (5.92), the assumption
h3−i ∈ Pab and Remark 5.13, it follows from the equalities (5.89) and (5.90)
that

γ′i(t) = hi(γ3−i)(t) for a. e. t ∈ [a, b]

and

γ′3−i(t) = h3−i(1)(t) ≥ h3−i
(
γ̃i
)
(t) = h3−i(γi)(t) for a. e. t ∈ [a, b],

i. e., the inequalities (5.7) are fulfilled. Consequently, using Theorem 5.7,
we get that (h1, h2) ∈ Ŝ 2,1

ab (a) ∩ Ŝ 2,2
ab (a). �
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Proof of Proposition 5.15. Suppose that the equality (5.14) holds and the
problem (5.4) has only the trivial solution. We will show that the pair
(h1, h2) belongs both to Ŝ 2,1

ab (a) and Ŝ 2,2
ab (a). According to Proposition 3.1,

the problem

γ′1(t) = h1(γ2)(t), γ′2(t) = h2(γ1)(t), (5.93)

γ1(a) = 1, γ2(a) = 1 (5.94)

has a unique solution (γ1, γ2)T . Put

m = min
{
γi(t) : t ∈

[
a, b∗h3−i

]}
(5.95)

and choose tm ∈
[
a, b∗h3−i

]
such that γi(tm) = m.

Assume that
m ≤ 0 (5.96)

By virtue of the notation (5.95) and the assumption h3−i ∈ Pab, the rela-
tions (5.93) and (5.94) yield

γ3−i(t) = 1 +

t∫
a

h3−i(γi)(s) ds ≥ m
t∫
a

h3−i(1)(s) ds = mψ
(
h3−i(1)

)
(t)

for t ∈ [a, b]. Consequently, in view of the inequality (5.96) and the assump-
tion hi ∈ Pab, the relations (5.93) and (5.94) imply that

m = 1 +

tm∫
a

hi(γ3−i)(s) ds ≥ 1 +m

tm∫
a

hi
(
ψ
(
h3−i(1)

))
(s) ds ≥

≥ 1 +m

b∗h3−i∫
a

hi
(
ψ
(
h3−i(1)

))
(s) ds.

Using the equality (5.14) in the last relation, we get the contradiction m ≥
m+ 1.

The contradiction obtained proves that m > 0, i. e.,

γi(t) > 0 for t ∈
[
a, b∗h3−i

]
. (5.97)

Now we define the function γ̃i by the formula (5.91). Obviously, γ̃i(t) > 0
holds for t ∈ [a, b] and therefore, by virtue of the assumption h3−i ∈ Pab
and Remark 5.13, the (3− i)th equation in (5.93) yields that

γ′3−i(t) = h3−i(γi)(t) = h3−i
(
γ̃i
)
(t) ≥ 0 for a. e. t ∈ [a, b].

Since γ3−i(a) > 0, the last relation guarantees that γ3−i(t) > 0 holds for
t ∈ [a, b]. Now, the ith equation in (5.93) implies

γ′i(t) = hi(γ3−i)(t) ≥ 0 for a. e. t ∈ [a, b],

which, together with the inequality (5.97), results in γi(t) > 0 for t ∈ [a, b].
Consequently, Theorem 5.7 guarantees that (h1, h2) ∈ Ŝ 2,1

ab (a) ∩ Ŝ 2,2
ab (a).
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Now suppose that (h1, h2) ∈ Ŝ 2,k
ab (a) for some k ∈ {1, 2}. Then, ac-

cording to Remark 5.5, the homogeneous problem (5.4) has only the trivial
solution. �

Proof of Theorem 5.18. First suppose that (h1, h2) ∈ Ŝ 2,k
ab (a). According

to Remark 5.5, the system (5.93) has a unique solution (γ1, γ2)T satisfying
the initial conditions

γk(a) = 1, γ3−k(a) = 0, (5.98)

and, moreover, the relation

γk(t) ≥ 0 for t ∈ [a, b] (5.99)

holds. It is clear that γ1, γ2 ∈ AC([a, b]; R) satisfy the relations (5.22)–
(5.25). We will show that the condition (5.26) also holds. Assume that, on
the contrary, the relation (5.26) is not satisfied. Then there exists t0 ∈ ]a, b[
such that γ3−k(t0) = 0 and

γk(t0) = 0. (5.100)

By virtue of the inequality (5.99) and the assumption −h3−k ∈ Pab, the
conditions (5.23), (5.98) and γ3−k(t0) = 0 imply that γ3−k(t) = 0 holds for
t ∈ [a, t0]. Since hk is an a-Volterra operator, the kth equation in (5.93)
implies that

γ′k(t) = 0 for a. e. t ∈ [a, t0].

This relation, together with the condition γk(a) = 1, yields that γk(t0) = 1,
which contradicts the equality (5.100). The contradiction obtained proves
the validity of the desired relation (5.26).

Now suppose that there exist functions γ1, γ2 ∈ ACloc([a, b[ ; R) such that
γk ∈ C([a, b]; R) and the relations (5.22)–(5.25) hold. We will show that
(h1, h2) ∈ Ŝ 2,k

ab (a). Let a vector function (u1, u2)T ∈ AC([a, b]; R2) satisfy
the inequalities (5.81) and (5.82). By virtue of Lemma 5.37, the relation
(5.48) holds, where the number bk is defined by the formula (5.49).

If bk = b, then the proof is complete. Assume that bk < b and let
b0 ∈ ]bk, b[ be arbitrary but fixed. We will show that

uk(t) ≥ 0 for t ∈ [a, b0]. (5.101)

It follows from the relations (5.24) and (5.49) that the inequality (5.50)
holds and

γk(t) = 0 for t ∈ [bk, b].

Consequently, by virtue of the assumptions (5.26) and (5.27), there exist
a0 ∈ ]a, bk[ and λ1 ∈ R+ such that

u3−k(t) ≥ λ1γ3−k(t) for t ∈ [a0, b0]. (5.102)

On the other hand, in view of the inequality (5.50), there exist λ2 ∈ R+

such that
uk(t) ≤ λ2γk(t) for t ∈ [a, a0]. (5.103)
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Since the negative operator h3−k is an a-Volterra one, using the conditions
(5.23), (5.81) and (5.103), we get

u′3−k(t)− λ2γ
′
3−k(t) ≥ haa0

3−k(uk − λ2γk)(t) ≥ 0 for a. e. t ∈ [a, a0],

where haa0
3−k is the restriction of the operator h3−k to the space C

(
[a, a0]; R

)
.19

However, the functions u3−k and γ3−k satisfy the inequalities (5.82) and
(5.25), and thus the previous relation yields

u3−k(t) ≥ λ2γ3−k(t) for t ∈ [a, a0]. (5.104)

Therefore, if we put λ = max{λ1, λ2}, then, in view of the inequality (5.27),
we get from the relations (5.102) and (5.104) that

u3−k(t) ≥ λγ3−k(t) for t ∈ [a, b0]. (5.105)

Since the positive operator h1 is an a-Volterra one, the inequalities (5.22)
and (5.27) imply

γ′k(t) ≤ hab0k (γ3−k)(t) ≤ 0 for a. e. t ∈ [a, b0],

where hab0k is the restriction of the operator hk to the space C
(
[a, b0]; R

)
.20

The function γk vanishes on the interval [bk, b], and thus we have

hab0k (γ3−k)(t) = 0 for a. e. t ∈ [bk, b0]. (5.106)

Now the relations (5.105) and (5.106) imply

hab0k (u3−k)(t) ≥ λhab0k (γ3−k)(t) = 0 for a. e. t ∈ [bk, b0],

which, together with the inequalities (5.81) and (5.48), results in the desired
relation (5.101). Since the point b0 was chosen arbitrarily, we have proved
that the function uk is non-negative on [a, b]. Consequently, the inclusion
(h1, h2) ∈ Ŝ 2,k

ab (a) holds. �

Proof of Corollary 5.21. Put

γk(t) = 1−
t∫
a

∣∣hk(ψ(h3−k(1)
))

(s)
∣∣ ds for t ∈ [a, b] (5.107)

and

γ3−k(t) =

t∫
a

h3−k(1)(s) ds for t ∈ [a, b]. (5.108)

Obviously, we have γ1, γ2 ∈ AC([a, b]; R). In view of the inequality (5.28),
it is clear that the conditions (5.24) and (5.25) are satisfied and

γk(t) ≤ 1 for t ∈ [a, b]. (5.109)

Since −h3−k, hk ∈ Pab, we get from the relations (5.107)–(5.109) that

γ′k(t) = hk
(
ψ
(
h3−k(1)

))
(t) = hk(γ3−k)(t) for a. e. t ∈ [a, b]

19See Definition 1.8.
20See Definition 1.8.
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and
γ′2(t) = h3−k(1)(t) ≤ h3−k(γk)(t) for a. e. t ∈ [a, b],

i. e., the functions γ1, γ2 satisfy the inequalities (5.22) and (5.23).
We will show that the condition (5.26) is satisfied. Assume that, on the

contrary, the relation (5.26) does not hold. Then there exists t0 ∈ ]a, b[ such
that γ3−k(t0) = 0 and

γk(t0) = 0. (5.110)

Therefore, the equality (5.108) yields

h3−k(1)(t) = 0 for a. e. t ∈ [a, t0].

Since the operator hk is an a–Volterra one, the last relation results in

hk
(
ψ
(
h3−k(1)

))
(t) = 0 for a. e. t ∈ [a, t0].

Hence, the equality (5.107) implies that γk(t0) = 1, which contradicts the
relation (5.110). The contradiction obtained proves the validity of the de-
sired condition (5.26).

Consequently, using Theorem 5.18, we obtain (h1, h2) ∈ Ŝ 2,k
ab (a). �

Proof of Theorem 5.30. It is clear that h1, h2 ∈ Pab. According to No-
tation 5.12, we get b∗h3−i

≤ τ∗3−i. Therefore, the validity of the theorem
follows immediately from Corollary 5.14. �

Proof of Theorem 5.31. It is clear that h1, h2 ∈ Pab.
First suppose that (h1, h2) ∈ Ŝ 2,k

ab (a). In view of Remark 5.5, the ho-
mogeneous problem (5.60), (5.61) has only the trivial solution and thus
Lemma 5.38 guarantees that the inequality (5.35) is satisfied.

Now suppose that the inequality (5.35) is fulfilled. According to Nota-
tion 5.12, we have b∗h3−i

≤ τ∗3−i. If

b∗h3−i∫
a

hi
(
ψ
(
h3−i(1)

))
(s) ds =

b∗h3−i∫
a

fi(s)
( τi(s)∫

a

f3−i(ξ) dξ
)

ds < 1,

then Corollary 5.14 yields that (h1, h2) ∈ Ŝ 2,k
ab (a). If

b∗h3−i∫
a

hi
(
ψ
(
h3−i(1)

))
(s) ds =

b∗h3−i∫
a

fi(s)
( τi(s)∫

a

f3−i(ξ) dξ
)

ds = 1,

then, by virtue of Proposition 5.15, the inclusion (h1, h2) ∈ Ŝ 2,k
ab (a) holds

provided that the the homogeneous problem (5.60), (5.61) has only the triv-
ial solution. But the absence of nontrivial solutions of this problem is guar-
anteed by the inequality (5.35) (see Lemma 5.38). Consequently, we have
(h1, h2) ∈ Ŝ 2,k

ab (a), as well. �
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Proof of Theorem 5.32. It is clear that hk ∈ Pab and −h3−k ∈ Pab. More-
over, the inequalities (5.38) guarantee that the operators h1 and h2 are both
a-Volterra ones. Therefore, the validity of the theorem follows immediately
from Corollary 5.21. �

Proof of Theorem 5.34. It is clear that hk ∈ Pab and −h3−k ∈ Pab. More-
over, the inequalities (5.38) guarantee that the operators h1 and h2 are
both a-Volterra ones. According to the inequalities (5.41) and (5.43), the
number α1 can be increased so that the equality (5.74) is satisfied instead
of the inequality (5.41), and the condition (5.43) is still true. Then, by
virtue of Lemma 5.39, there exist functions γk ∈ C([a, b]; R) and γ3−k ∈
Cloc([a, b[ ; R) such that γ′k, γ

′′
k , γ
′
3−k ∈ Cloc([a, b[ ; R), and the conditions

(5.75)–(5.79) are satisfied. Obviously, γ1, γ2 ∈ ACloc([a, b[ ; R). Using the
inequalities (5.75)–(5.78), we get

γ′k(t) ≤ 0, γ′3−k(t) ≤ 0 for t ∈ [a, b[ . (5.111)

Put

A =
{
t ∈ [a, b] : fk(t) > 0

}
, B =

{
t ∈ [a, b] : f3−k(t) < 0

}
.

If we take the conditions (5.38) into account, by direct calculation we obtain

γ3−k
(
τk(t)

)
= γ3−k(t)−

t∫
τk(t)

γ′3−k(s) ds =

= γ3−k(t) +

t∫
τk(t)

α1

(b− s)λ+ν
γk(s) ds−

t∫
τk(t)

[ ν

b− s
+

α2

(b− s)λ
]
γ3−k(s) ds ≥

≥ γ3−k(t)− γ3−k
(
τk(t)

) t∫
τk(t)

[ ν

b− s
+

α2

(b− s)λ
]

ds for a. e. t ∈ A

and

− γk
(
τ3−k(t)

)
=−γk(t) +

t∫
τ3−k(t)

γ′k(s) ds≥−γk(t)+γ′k(t)
(
t−τ3−k(t)

)
=

= −γk(t) +
α3

(b− t)λ−ν
(
t− τ3−k(t)

)
γ3−k(t) for a. e. t ∈ B.

By virtue of the inequalities (5.42), (5.43), (5.44) and (5.75)–(5.78), we get
from the last relations that

fk(t)γ3−k
(
τk(t)

)
≥ fk(t)

1 +
t∫

τk(t)

[
ν
b−s + α2

(b−s)λ

]
ds

γ3−k(t) ≥

≥ α3

(b− t)λ−ν
γ3−k(t) = γ′k(t) for a. e. t ∈ A
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and

− |f3−k(t)|γk
(
τ3−k(t)

)
≥

≥ −|f3−k(t)|γk(t) +
α3

(b− t)λ−ν
|f3−k(t)|

(
t− τ3−k(t)

)
γ3−k(t) ≥

≥ − α1

(b− t)λ+ν
γk(t) +

(
ν

b− t
+

α2

(b− t)λ

)
γ3−k(t) =

= γ′3−k(t) for a. e. t ∈ B,

which, together with the inequalities (5.37) and (5.111), guarantees that

γ′k(t) ≤ fk(t)γ3−k
(
τk(t)

)
, γ′3−k(t) ≤ f3−k(t)γk

(
τ3−k(t)

)
for a. e. t ∈ [a, b], i. e., γ1 and γ2 satisfies the inequalities (5.22) and (5.23).
Consequently, using Theorem 5.18, we get (h1, h2) ∈ Ŝ 2,k

ab (a). �

5.5. Counterexamples.

Example 5.40. Let k ∈ {1, 2}, the operators h1 and h2 be defined by the
relations (5.30), where the inequalities (5.37) hold and τ3−k ≡ a. Then the
condition (5.28) (i. e., (5.39)) is not only sufficient but also necessary for the
validity of the inclusion (h1, h2) ∈ Ŝ 2,k

ab (a).
Indeed, let (h1, h2) ∈ Ŝ 2,k

ab (a). Then, according to Remark 5.5, the prob-
lem

u′k(t) = fk(t)u3−k
(
τk(t)

)
, u′3−k(t) = f3−k(t)uk(a), (5.112)

uk(a) = 1, u3−k(a) = 0 (5.113)

has a unique solution (u1, u2)T and, moreover, the inequality (5.2) is satis-
fied. It follows from (5.112) and (5.113) that

uk(t) = 1 +

t∫
a

fk(s)u3−k
(
τk(s)

)
ds = 1 +

t∫
a

fk(s)
( τk(s)∫

a

f3−k(ξ) dξ
)

ds

for t ∈ [a, b]. Hence, we get

uk(b) = 1−
b∫
a

fk(s)
( τk(s)∫

a

|f3−k(ξ)|dξ
)

ds,

which, in view of the relation (5.2), guarantees the validity of the inequality
(5.39).

This example shows that the inequalities (5.28) and (5.39) in Corol-
lary 5.21 and Theorem 5.32 cannot be replaced by the inequalities (5.29)
and (5.40), respectively, no matter how small ε > 0 is.

Example 5.41. Let k ∈ {1, 2}, ε > 0, α = π
2(1−ε)(b−a) , and the operators

h1 and h2 be defined by the relations (5.30), where fk ≡ α, f3−k ≡ −α,
and τi(t) = t for t ∈ [a, b], i = 1, 2. It is clear that the conditions (5.37),
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(5.38), (5.42)–(5.44), and (5.45) are fulfilled with α1 = α3 = α, α2 = 0, and
λ = ν = 0. On the other hand, the functions

uk(t) = cosα(t− a), u3−k(t) = − sinα(t− a) for t ∈ [a, b]

fulfils the inequalities (5.81) and (5.82). However, the function uk is not
non-negative on the entire interval [a, b], and thus (h1, h2) 6∈ Ŝ 2,k

ab (a).
This example shows that the inequality (5.41) cannot be replaced by the

inequality (5.45), no matter how small ε > 0 is.

6. Existence and Uniqueness Theorems

In this section, the question on the existence and uniqueness to a solu-
tion of the linear problem (3.1), (3.2) is investigated. Unlike the case of an
ordinary differential system, where the Cauchy problem (4.1) is uniquely
solvable, the unique solvability of the initial value problem for functional
differential systems is not guaranteed in general even for the rather sim-
ple system (3.1′). The reason lays in a non-local character of functional
differential systems, i. e., in the presence of argument deviations τik in the
system (3.1′). That is why the notions of local solution and extendability
of solutions have no sense for the problem (3.1), (3.2).

The question on the solvability of various boundary value problems for
systems of linear functional differential equations was studied by many au-
thors (see, e. g., [3–5,7,13,19,22,23,25–27,34,43–45,53,54,56,57,59–62,64,
69,70,76–78,83,85] and references therein). As for the initial value problem
(3.1), (3.2), we mention the monograph [44], where the system (3.1) with
a strongly bounded operator ` is considered. Among the rest, in [44], the
authors prove the unique solvability of the initial value problem for linear
delay differential systems, i. e., for the system (3.1′) in which deviations τik
satisfy the inequality τik(t) ≤ t for almost every t ∈ [a, b]. Efficient solvabil-
ity conditions for the problem (3.1′), (3.2) with arbitrary deviations τik can
also be found in [49,69].

The results presented in this section complement the previously known
results. To prove them, we apply theorems on functional differential inequal-
ities stated in Sections 4 and 5. In the first part, we consider the general
two-dimensional systems. In the second part, the so-called anti-diagonal
systems are studied, the special case of which is also the second-order func-
tional differential equation, and the last part deals with the two-dimensional
differential systems with monotone operators. All the results are applied to
differential systems with argument deviations (3.1′), in which case further
results are established. The counterexamples constructed in Section 6.3
show that some of the results obtained are unimprovable in a certain sense.

6.1. General two-dimensional systems. In this part, we consider the
general two-dimensional differential system (3.1) in which the operator
` : C([a, b]; R2)→ L([a, b]; R2) is linear and bounded (not strongly bounded
in general).
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6.1.1. Main results. We first give a rather simple statement (namely, Theo-
rem 6.1), which implies, in particular, the unique solvability of the Cauchy
problem for linear delay differential systems (see Corollary 6.12 below).

Theorem 6.1. Let there exist an operator

ϕ0 ∈ S2
ab(a) (6.1)

such that the inequality

Sgn
(
v(t)

)
`(v)(t) ≤ ϕ0(|v|)(t) for a. e. t ∈ [a, b] (6.2)

holds on the set Ca([a, b]; R2). Then the problem (3.1), (3.2) has a unique
solution.

Remark 6.2. The assumption (6.1) of the last theorem cannot be replaced
by the assumption

(1− ε)ϕ0 ∈ S2
ab(a), (6.3)

no matter how small ε > 0 is (see Example 6.36).

Theorem 6.3. Let there exist an operator

ψ0 ∈ Sab(a) (6.4)

such that the inequality

`(v)(t) · sgn
(
v(t)

)
≤ ψ0(‖v‖)(t) for a. e. t ∈ [a, b] (6.5)

holds on the set Ca([a, b]; R2). Then the problem (3.1), (3.2) has a unique
solution.

Remark 6.4. Sufficient conditions for the validity of the inclusion (6.4) are
established in the paper [24].

The assumption (6.4) of Theorem 6.3 cannot be replaced by the assump-
tion

(1− ε)ψ0 ∈ Sab(a), (6.6)

no matter how small ε > 0 is (see Example 6.36).

Example 6.5. Consider the two-dimensional system

u′1(t) = p1(t)u1

(
τ(t)

)
+ g(t)u2(t) + q1(t),

u′2(t) = p2(t)u1

(
τ(t)

)
− g(t)u2(t) + q2(t),

(6.7)

where p1, p2, q1, q2 ∈ L([a, b]; R), g ∈ L([a, b]; R+), and τ : [a, b] → [a, b] is
a measurable function. It is clear that the system (6.7) is a particular case
of the system (3.1) in which the operator ` is defined by the formula

`(v)(t) =
(
p1(t)v1

(
τ(t)

)
+ g(t)v2(t)

p2(t)v1
(
τ(t)

)
− g(t)v2(t)

)
for a. e. t ∈ [a, b] and all v = (v1, v2)T ∈ C([a, b]; R2).

Then:
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(a) The inequality (6.2) is fulfilled on the set C([a, b]; R2), where

ϕ0(v)(t) =
(
|p1(t)|v1

(
τ(t)

)
+ g(t)v2(t)

|p2(t)|v1
(
τ(t)

) )
for a. e. t ∈ [a, b] and all v = (v1, v2)T ∈ C([a, b]; R2).

Using Corollary 4.31, we obtain ϕ0 ∈ S2
ab(a) if the condition

τ(t)∫
t

p̂(s) ds ≤ 1
e

for a. e. t ∈ [a, b] (6.8)

holds, where p̂(t) = max
{
|p1(t)| + g(t), |p2(t)|

}
for a. e. t ∈ [a, b].

Therefore, Theorem 6.1 guarantees the unique solvability of the
problem (6.7), (3.2) provided that the condition (6.8) is satisfied.

(b) The inequality (6.5) is satisfied on the set C([a, b]; R2), where

ψ0(z)(t) = p̃(t)z
(
τ(t)

)
for a. e. t ∈ [a, b] and all z ∈ C([a, b]; R)

in which p̃(t) = |p1(t)|+ |p2(t)| for a. e. t ∈ [a, b]. Using Lemma 6.18
below (with m = 1), we get ψ0 ∈ Sab(a) provided that

τ(t)∫
t

p̃(s) ds ≤ 1
e

for a. e. t ∈ [a, b]. (6.9)

Therefore, by virtue of Theorem 6.3, the problem (6.7), (3.2) has
a unique solution under the condition (6.9).

Consequently, if we apply Theorem 6.1 to obtain the unique solvability of
the considered problem in the case where

g(t) ≥ |p2(t)| for a. e. t ∈ [a, b],

then a stronger condition is required in comparison with Theorem 6.3.

The next theorem contains a certain both-sided restriction imposed on
the right-hand side of the system (3.1).

Theorem 6.6. Let there exist operators ϕ0 ∈ P2
ab and ϕ1 ∈ S2

ab(a) such
that the inequality∣∣`(v)(t)− ϕ1(v)(t)

∣∣ ≤ ϕ0(|v|)(t) for a. e. t ∈ [a, b] (6.10)

holds on the set Ca([a, b]; R2). If, moreover,

ϕ0 + ϕ1 ∈ S2
ab(a),

then the problem (3.1), (3.2) has a unique solution.

Remark 6.7. The assumption

ϕ1 ∈ S2
ab(a), ϕ0 + ϕ1 ∈ S2

ab(a) (6.11)

in the last theorem can be replaced neither by the assumption

(1− ε)ϕ1 ∈ S2
ab(a), ϕ0 + ϕ1 ∈ S2

ab(a) (6.12)
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nor by the assumption

ϕ1 ∈ S2
ab(a), (1− ε)

(
ϕ0 + ϕ1

)
∈ S2

ab(a), (6.13)

no matter how small ε > 0 is (see Examples 6.36 and 6.37).

Theorem 6.6 yields Corollary 6.9 below in which we assume that the linear
operator ` on the right-hand side of the system (3.1) is not only bounded
but it is strongly bounded (see Definition 1.1). It is well-known (see, e. g.,
[40, Ch. VII, § 1.2]) that a linear operator ` : C([a, b]; R2)→ L([a, b]; R2) is
strongly bounded if and only if it is regular, i. e., it admits the representation
` = `0−`1 with `0, `1 ∈ P2

ab. Therefore, we assume in the corollary indicated
that ` can be expressed in such a form. Before formulation of the corollary
we introduce the following notation.

Notation 6.8. Let ` = `0− `1, where `0, `1 ∈ P2
ab. Having the components

`0ik and `1ik (see the item 27 in Section 1) of the operators `0 and `1, for any
δ ∈ R, we put

`0,δ(v)(t) =

((
`011 + [1− 2δ]`111

)
(v1)(t) +

(
`012 + `112

)
(v2)(t)(

`021 + `121
)
(v1)(t) +

(
`022 + [1− 2δ]`122

)
(v2)(t)

)
for a. e. t ∈ [a, b] and all v = (v1, v2)T ∈ C([a, b]; R2)

and

`1,δ(v)(t) = δ

(
`111(v1)(t)

`122(v2)(t)

)
for a. e. t ∈ [a, b] and all v = (v1, v2)T ∈ C([a, b]; R2).

Corollary 6.9. Let ` = `0 − `1, where `0, `1 ∈ P2
ab and the components `111

and `122 of the operator `1 are a-Volterra operators. If there exists a number
γ ∈ [0, 1/2] such that

`0,γ ∈ S2
ab(a), −`1,γ ∈ S2

ab(a),

then the problem (3.1), (3.2) has a unique solution.

Remark 6.10. The assumption on the operators `111 and `122 to be a-Volterra
ones cannot be omitted in the previous corollary, because it is necessary for
the validity of the inclusion −`1,γ ∈ S2

ab(a) (see Remark 4.23).

6.1.2. Systems with argument deviations. In the sequel, general results of
the previous section are applied to one of special types of the system (3.1),
namely, the differential system with argument deviations (3.1′), i. e., the
system

u′1(t) = p11(t)u1

(
τ11(t)

)
+ p12(t)u2

(
τ12(t)

)
+ q1(t),

u′2(t) = p21(t)u1

(
τ21(t)

)
+ p22(t)u2

(
τ22(t)

)
+ q2(t)

in which pik, qk ∈ L([a, b]; R) and τik : [a, b]→ [a, b] are measurable functions
(i, k = 1, 2).

The next statement can be derived from Theorem 6.1.
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Theorem 6.11. Let
τik(t)∫
t

p(s) ds ≤ 1
e

for a. e. t ∈ [a, b], i, k = 1, 2, (6.14)

where

p(t) = max
{
|p11(t)|+ |p12(t)|, |p21(t)|+ |p22(t)|

}
for a. e. t ∈ [a, b].

Then the problem (3.1′), (3.2) has a unique solution.

Theorem 6.11 yields

Corollary 6.12. Let

τik(t) ≤ t for a. e. t ∈ [a, b], i, k = 1, 2. (6.15)

Then the problem (3.1′), (3.2) has a unique solution.

If the deviations τ11 and τ22 are delays, then the following statement can
be derived from Corollary 6.9.

Theorem 6.13. Let, for each i ∈ {1, 2} the functions [pii]− and τii satisfy
the inequality

τii(t) ≤ t for a. e. t ∈ [a, b]
and at least one of the conditions:

(a)
t∫

τii(t)

[pii(s)]− ds ≤ 2
e

for a. e. t ∈ [a, b];

(b)
b∫
a

[pii(s)]−

s∫
τii(s)

[pii(ξ)]− exp
(

1
2

s∫
τii(ξ)

[pii(η)]− dη
)

dξ ds ≤ 4;

(c)
b∫
a

[pii(s)]− ds ≤ 2.

On the other hand, assume that for the functions [pii]+, pi3−i, and τi3−i
(i = 1, 2) at least one of the following conditions is fulfilled:

(A) the inequality
τi3−i(t)∫
t

p(s) ds ≤ 1
e

for a. e. t ∈ [a, b], i = 1, 2

holds, where

p(t) = max
{

[p11(t)]+ + |p12(t)|, |p21(t)|+ [p22(t)]+
}
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for a. e. t ∈ [a, b];
(B) the inequality

e
max

{ b∫
a

[p11(s)]+ ds,
b∫
a

[p22(s)]+ ds
} b∫
a

h(s) e

b∫
s

p(ξ) dξ
ds < 1

is satisfied, where

p(t) = max
{
p̃12(t), p̃21(t)

}
for a. e. t ∈ [a, b],

h(t) = max
{
q̃1(t), q̃2(t)

}
for a. e. t ∈ [a, b]

in which

p̃i3−i(t) = |pi3−i(t)| e
t∫
a

([p3−i3−i(s)]+−[pii(s)]+) ds

for a. e. t ∈ [a, b], i = 1, 2 (6.16)

and

q̃i(t) = |pi3−i(t)|ωi3−i(t)zi(t) e
−

t∫
a

[pii(η)]+ dη

for a. e. t ∈ [a, b], i = 1, 2 (6.17)

with

zi(t) =

τi3−i(t)∫
t

(
|p3−ii(s)|+[p3−i3−i(s)]+

)
ds for a. e. t∈ [a, b], i=1, 2 (6.18)

and

ωi3−i(t) =
1
2

(
1 + sgn

(
τi3−i(t)− t

))
for a. e. t ∈ [a, b], i = 1, 2; (6.19)

(C) the inequality

max
{
λ1 e

b∫
a

[p11(s)]+ ds
, λ2 e

b∫
a

[p22(s)]+ ds }
< 1

holds, where

λi =

b∫
a

cosh
( b∫
s

p(ξ) dξ
)
q̃i(s) ds+

b∫
a

sinh
( b∫
s

p(ξ) dξ
)
q̃3−i(s) ds

for i = 1, 2 and

p(t) = max
{
p̃12(t), p̃21(t)

}
for a. e. t ∈ [a, b]

in which the functions p̃12, p̃21 and q̃1, q̃2 are defined, respectively,
by the relations (6.16) and (6.17) with z1, z2 and ω12, ω21 given by
the formulas (6.18) and (6.19).

Then the problem (3.1′), (3.2) has a unique solution.
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6.1.3. Modified pantograph equation. In this section, we consider the linear
two-dimensional system

u′(t) = P (t)u(t) +G(t)u
(
τ(t)

)
+ q(t), (6.20)

where P,G : [0, T ]→ R2×2 are integrable matrix functions, τ : [0, T ]→ [0, T ]
is a measurable function, q ∈ L([0, T ]; R2), and T > 0. The system of the
type (6.20) arises in applications and has been studied by many authors.
We mention the problem of the motion of a pantograph head on an electric
locomotive, where the system of the type (6.20) arises in the dimension 4,
on the unbounded interval [0,+∞[ , and when

τ(t) = λt for t ≥ 0

with 0 < λ < 1, and it is referred to as a pantograph equation (see, e. g.,
[41,51,58,67,68] and references therein). Recently, the pantograph equation
has been generalized in a number of ways (see, e. g., [11–13,38,49,50,52]).

It is well-known (see, e. g., [44, § 1.3.2]) that if the deviation τ in the sys-
tem (6.20) is a delay, then, without any additional assumption, the system
(6.20) has a unique solution u satisfying the initial condition

u(0) = c, (6.21)

where c ∈ R2. In any case, we can derive from Theorem 6.3 the following
statements.

Theorem 6.14. Let the deviation τ and the matrix functions P = (pik)2i,k=1

and G = (gik)2i,k=1 satisfy the condition

τ(t)∫
t

(
[p(s)]+ + g(s)

)
ds ≤ 1

e
for a. e. t ∈ [0, T ], (6.22)

where

p(t) = max
{
p11(t) + |p21(t)|, |p12(t)|+ p22(t)

}
for a. e. t ∈ [0, T ] (6.23)

and

g(t) = max
{
|g11(t)|+|g21(t)|, |g12(t)|+|g22(t)|

}
for a. e. t ∈ [0, T ]. (6.24)

Then the problem (6.20), (6.21) has a unique solution.

Theorem 6.14 yields

Corollary 6.15. The problem (6.20), (6.21) is uniquely solvable provided
that the condition

τ(t)∫
t

(
‖P (s)‖+ ‖G(s)‖

)
ds ≤ 1

e
for a. e. t ∈ [0, T ]

holds.
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Theorem 6.16. Let the deviation τ and the matrix functions P = (pik)2i,k=1

and G = (gik)2i,k=1 satisfy the condition

T∫
0

g(s)σ(s)
( τ(s)∫

s

f(ξ) dξ
)

e

T∫
s

f(η) dη
ds < 1, (6.25)

where

σ(t) =
1
2

(
1 + sgn

(
τ(t)− t

))
for a. e. t ∈ [0, T ]

and f ≡ [p]+ + g with p and g given by the relations (6.23) and (6.24),
respectively. Then the problem (6.20), (6.21) has a unique solution.

6.1.4. Auxiliary lemmas. Let us first formulate the following obvious lemma.

Lemma 6.17. Let z ∈ AC([a, b]; R). Then |z| ∈ AC([a, b]; R) and the
relation

|z(t)|′ = z′(t) sgn z(t) for a. e. t ∈ [a, b]

is satisfied.

Now we give two lemmas established in the paper [20].

Lemma 6.18 ([20, Cor. 1.1(ii)]). Let fk ∈ L([a, b]; R+), τk : [a, b] → [a, b]
be measurable functions (k = 1, . . . ,m), and let

τi(t)∫
t

m∑
k=1

fk(s) ds ≤ 1
e

for a. e. t ∈ [a, b], i = 1, . . . ,m.

Then the operator ` defined by the formula

`(z)(t)=
m∑
k=1

fk(t)z
(
τk(t)

)
for a. e. t∈ [a, b] and all z∈C([a, b]; R) (6.26)

belongs to the set Sab(a).

Lemma 6.19 ([20, Cor. 1.1(iii)]; see also [32, Thm. 3.1(c)]). Let fk ∈
L([a, b]; R+), τk : [a, b]→ [a, b] be measurable functions (k = 1, . . . ,m), and
let the inequality

b∫
a

m∑
k=1

fk(s)σk(s)
( τk(s)∫

s

m∑
j=1

fj(ξ) dξ
)

exp
( b∫

s

m∑
i=1

fi(η) dη
)

ds < 1

be satisfied, where

σk(t) =
1
2

(
1 + sgn

(
τk(t)− t

))
for a. e. t ∈ [a, b], k = 1, . . . ,m.

Then the operator ` defined by the formula (6.26) belongs to the set Sab(a).
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6.1.5. Proofs.

Proof of Theorem 6.1. Let u be a solution to the homogeneous problem
(3.3). Then, in view of the condition (6.2) and Lemma 6.17, we get

|u(t)|′ = Sgn
(
u(t)

)
u′(t) = Sgn

(
u(t)

)
`(u)(t) ≤
≤ ϕ0(|u|)(t) for a. e. t ∈ [a, b].

Since |u(a)| = 0, the inclusion ϕ0 ∈ S2
ab(a) yields

|u(t)| ≤ 0 for t ∈ [a, b]

and thus u ≡ 0. We have proved that the homogeneous problem (3.3)
has only the trivial solution. Hence, Proposition 3.1 guarantees the unique
solvability of the problem (3.1), (3.2). �

Proof of Theorem 6.3. Let u be a solution to the homogeneous problem
(3.3). Then ‖u(a)‖=0 and, by virtue of the condition (6.5) and Lemma 6.17,
we get

‖u(t)‖′ = u′(t) · sgn
(
u(t)

)
= `(u)(t) · sgn

(
u(t)

)
≤

≤ ψ0(‖u‖)(t) for a. e. t ∈ [a, b].

Therefore, the inclusion ψ0 ∈ Sab(a) implies

‖u(t)‖ ≤ 0 for t ∈ [a, b],

and thus u ≡ 0. We have proved that the homogeneous problem (3.3)
has only the trivial solution. Hence, Proposition 3.1 guarantees the unique
solvability of the problem (3.1), (3.2). �

Proof of Theorem 6.6. Let u be a solution to the homogeneous problem
(3.3). By virtue of the inclusion ϕ1 ∈ S2

ab(a) and Proposition 4.3, the
problem

v′(t) = ϕ1(v)(t) + ϕ0(|u|)(t), v(a) = 0 (6.27)
has a unique solution v. Combining the relations (3.3), (6.10) and (6.27),
we get

u′(t)− v′(t) = ϕ1(u− v)(t) + `(u)(t)− ϕ1(u)(t)− ϕ0(|u|)(t) ≤
≤ ϕ1(u− v)(t) for a. e. t ∈ [a, b],

u′(t) + v′(t) = ϕ1(u+ v)(t) + `(u)(t)− ϕ1(u)(t) + ϕ0(|u|)(t) ≥
≥ ϕ1(u+ v)(t) for a. e. t ∈ [a, b],

and
u(a)− v(a) = 0, u(a) + v(a) = 0.

Consequently, the inclusion ϕ1 ∈ S2
ab(a) implies

u(t)− v(t) ≤ 0, u(t) + v(t) ≥ 0 for t ∈ [a, b],

that is
|u(t)| ≤ v(t) for t ∈ [a, b]. (6.28)
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Taking now the assumption ϕ0 ∈ P2
ab into account, we get from the differ-

ential equation in (6.27) that

v′(t) ≤
(
ϕ0 + ϕ1

)
(v)(t) for a. e. t ∈ [a, b]. (6.29)

However, we also suppose that ϕ0 + ϕ1 ∈ S2
ab(a) and thus the inequality

(6.29) results in v(t) ≤ 0 for t ∈ [a, b]. Therefore, the inequality (6.28) yields
u ≡ 0, i. e., the homogeneous problem (3.3) has only the trivial solution.
Hence, Proposition 3.1 guarantees the unique solvability of the problem
(3.1), (3.2). �

Proof of Corollary 6.9. It follows from Notation 6.8 that the inequality∣∣`1(v)(t)− `1,γ(v)(t)
∣∣ ≤ `0, γ2 (|v|)(t)− `0(|v|)(t) for a. e. t ∈ [a, b]

holds on the set C([a, b]; R2). Furthermore, it is clear that

`0,γ = `0,
γ
2 − `1,γ .

Consequently, the assumptions of Theorem 6.6 with ϕ0 = `0,
γ
2 and ϕ1 =

−`1,γ are satisfied. �

Proof of Theorem 6.11. It is clear that the system (3.1′) is a particular case
of the system (3.1) in which the operator ` is defined by the formula

`(v)(t) =

(
p11(t)v1

(
τ11(t)

)
+ p12(t)v2

(
τ12(t)

)
p21(t)v1

(
τ21(t)

)
+ p22(t)v2

(
τ22(t)

))
for a. e. t ∈ [a, b] and all v = (v1, v2)T ∈ C([a, b]; R2). (6.30)

Obviously, the condition (6.2) is fulfilled on the set C([a, b]; R2), where the
operator ϕ0 is given by the relation

ϕ0(v)(t) =

(
|p11(t)|v1

(
τ11(t)

)
+ |p12(t)|v2

(
τ12(t)

)
|p21(t)|v1

(
τ21(t)

)
+ |p22(t)|v2

(
τ22(t)

))
for a. e. t ∈ [a, b] and all v = (v1, v2)T ∈ C([a, b]; R2).

Moreover, by virtue of the condition (6.14), Corollary 4.31 yields the validity
of the inclusion ϕ0 ∈ S2

ab(a). Consequently, the assumptions of Theorem 6.1
are satisfied. �

Proof of Corollary 6.12. The assertion of the corollary follows immediately
from Theorem 6.11, because the assumption (6.15) implies the validity of
the condition (6.14). �

Proof of Theorem 6.13. It is clear that the system (3.1′) is a particular case
of the system (3.1) in which the operator ` is given by the formula (6.30).
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Let the operators `0 and `1 be defined by the relations

`0(v)(t) =

(
[p11(t)]+v1

(
τ11(t)

)
+ [p12(t)]+v2

(
τ12(t)

)
[p21(t)]+v1

(
τ21(t)

)
+ [p22(t)]+v2

(
τ22(t)

))
for a. e. t ∈ [a, b] and all v = (v1, v2)T ∈ C([a, b]; R2)

and

`1(v)(t) =

(
[p11(t)]−v1

(
τ11(t)

)
+ [p12(t)]−v2

(
τ12(t)

)
[p21(t)]−v1

(
τ21(t)

)
+ [p22(t)]−v2

(
τ22(t)

))
for a. e. t ∈ [a, b] and all v = (v1, v2)T ∈ C([a, b]; R2),

respectively. Obviously, we have `0, `1 ∈ P2
ab and ` = `0 − `1.

By virtue of the conditions (a)–(c) of the theorem, Theorem 4.38 yields
that

−`1, 12 ∈ S2
ab(a).

On the other hand, it follows from Corollaries 4.31, 4.33, and 4.35 that
each of the conditions (A)–(C) of the theorem guarantees the validity of the
inclusion

`0,
1
2 ∈ S2

ab(a).

Consequently, the assumptions of Corollary 6.9 with γ = 1
2 are satisfied. �

Proof of Theorem 6.14. It is clear that the system (6.20) is a particular case
of the system (3.1) in which a = 0, b = T , and the operator ` is defined by
the formula

`(v)(t) = P (t)v(t) +G(t)v
(
τ(t)

)
for a. e. t ∈ [0, T ] and all v ∈ C([0, T ]; R2). (6.31)

Obviously, the condition (6.5) is fulfilled on the set C([0, T ]; R2), where the
operator ψ0 is given by the relation

ψ0(z)(t) = [p(t)]+z(t) + g(t)z
(
τ(t)

)
for a. e. t ∈ [0, T ] and all z ∈ C([0, T ]; R) (6.32)

and the functions p and g are given by the formulas (6.23) and (6.24), re-
spectively. Moreover, by virtue of Lemma 6.18 (with m = 2), the condition
(6.22) yields the validity of the inclusion ψ0 ∈ S0T (0). Consequently, the
assumptions of Theorem 6.3 are satisfied. �

Proof of Corollary 6.15. In view of the inequality

[p(t)]+ + g(t) ≤ ‖P (t)‖+ ‖G(t)‖ for a. e. t ∈ [0, T ]

in which the functions p and g are given by the formulas (6.23) and (6.24),
the assertion of the corollary follows immediately from Theorem 6.14. �
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Proof of Theorem 6.16. It is clear that the system (6.20) is a particular case
of the system (3.1) in which a = 0, b = T , and the operator ` is defined
by the formula (6.31). Moreover, the condition (6.5) is fulfilled on the set
C([0, T ]; R2), where the operator ψ0 is given by the relation (6.32) and the
functions p and g are given by the formulas (6.23) and (6.24), respectively.
Therefore, the assumptions of Theorem 6.3 are satisfied, because the in-
equality (6.25) guarantees the validity of the inclusion ψ0 ∈ S0T (0) (see
Lemma 6.19 with m = 2). �

6.2. Anti-diagonal systems. In this part, we consider the two-dimensio-
nal linear system with the so-called anti-diagonal right-hand side, i. e., the
system (3.1) in which `11 = 0 and `22 = 0.21 More precisely, in what follows
we consider the system

u′1(t) = h1(u2)(t) + q1(t),

u′2(t) = h2(u1)(t) + q2(t),
(6.33)

where h1, h2 ∈ Lab and q1, q2 ∈ L([a, b]; R). Obviously, the initial condition
(3.2) expressed in terms of its components has the form

u1(a) = c1, u2(a) = c2, (6.34)

where c1, c2 ∈ R.
It should be noted here that the second-order functional differential equa-

tion
u′′(t) = h(u)(t) + q(t), (6.35)

where h ∈ Lab and q ∈ L([a, b]; R), can be also regarded as a particular
case of (6.33). Therefore, the results stated below can be immediately
reformulated in order to guarantee the unique solvability of the Cauchy
problem subjected to the second-order equation (6.35).

6.2.1. Main results. We first give two existence results for the problem
(6.33), (6.34) the proofs of which are based on the technique of differen-
tial inequalities.

Theorem 6.20. Let k ∈ {1, 2}, m ∈ {0, 1}, and hi = hi,0 − hi,1 with
hi,j ∈ Pab (i = 1, 2, j = 0, 1). Assume that there exist functions β1, β2 ∈
AC([a, b]; R) such that

β1(t) > 0, β2(t) > 0 for t ∈ [a, b], (6.36)

β′1(t) ≥ hk,0(β2)(t) + hk,1(β2)(t) for a. e. t ∈ [a, b], (6.37)

β′2(t) ≤ −h3−k,0(β1)(t)− h3−k,1(β1)(t) for a. e. t ∈ [a, b], (6.38)
b∫
a

hk,1−m(β2)(s) ds ≤ β1(a), (6.39)

21The symbol 0 stands here for the zero operator.
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and
b∫
a

h3−k,m(β1)(s) ds+

b∫
a

h3−k,1−m
(
χ
(
hk,1−m(β2)

))
(s) ds ≤ β2(b), (6.40)

whereas the inequality (6.40) is supposed to be strict if h3−k,m = 0.22 Here,
the operator χ is defined by the formula

χ(f)(t) =

t∫
a

f(s) ds for t ∈ [a, b], f ∈ L([a, b]; R).

Then the problem (6.33), (6.34) has a unique solution.

If the operators h1 and h2 are monotone and one of them is an a-Volterra
operator, then the assumption β1 ∈ AC([a, b]; R) in the previous theorem
can be weakened (see Theorem 6.21). On the other hand, if the operators h1

and h2 are both a-Volterra ones, then the problem (6.33), (6.34) is uniquely
solvable without any additional assumptions (see, e. g., [44, § 1.3.2]).

Theorem 6.21. Let k ∈ {1, 2}, m ∈ {0, 1}, (−1)mhk, (−1)1−mh3−k ∈
Pab, and the operator h3−k be an a-Volterra one. Assume that there exist
functions γ1 ∈ ACloc([a, b[ ; R) and γ2 ∈ AC([a, b]; R) such that

γ1(t) > 0 for t ∈ [a, b[ , γ2(t) > 0 for t ∈ [a, b], (6.41)

γ′1(t) ≥ (−1)mhk(γ2)(t) for a. e. t ∈ [a, b], (6.42)

and
γ′2(t) ≤ (−1)mh3−k(γ1)(t) for a. e. t ∈ [a, b].23 (6.43)

Then the problem (6.33), (6.34) has a unique solution.

Remark 6.22. Since possibly γ1(t) → +∞ as t → b−, the condition (6.43)
of the previous theorem is understood in the sense that for any b0 ∈ ]a, b[
the relation

γ′2(t) ≤ (−1)mhab03−k(γ1)(t) for a. e. t ∈ [a, b0] (6.44)

holds, where hab03−k is the restriction of the operator h3−k to the space
C([a, b0]; R).24

The next statement is proved by using weak theorems on differential
inequalities discussed in Section 5.

Theorem 6.23. Let k ∈ {1, 2}, m ∈ {0, 1}, (−1)mhk ∈ Pab, and let there
exist operators g0 ∈ Lab and g1 ∈ Pab such that(

(−1)mhk, g0
)
∈ Ŝ 2,1

ab (a),
(
(−1)mhk, g0 + g1

)
∈ Ŝ 2,1

ab (a), (6.45)

22The symbol 0 stands here for the zero operator.
23See Remark 6.22.
24See Definition 1.8.
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and the inequality∣∣h3−k(z)(t) + (−1)1−mg0(z)(t)
∣∣ ≤ g1(|z|)(t) for a. e. t ∈ [a, b] (6.46)

holds on the set Ca([a, b]; R). Then the problem (6.33), (6.34) has a unique
solution.

Remark 6.24. The assumption (6.45) in the previous theorem can be re-
placed neither by the assumption (

(−1)mhk, g0
)
∈ Ŝ 2,1

ab (a),(
(−1)m(1− ε1)hk, (1− ε2)(g0 + g1)

)
∈ Ŝ 2,1

ab (a),
(6.47)

nor by the assumption(
(−1)m(1− ε1)hk, (1− ε2)g0

)
∈ Ŝ 2,1

ab (a),(
(−1)mhk, g0 + g1

)
∈ Ŝ 2,1

ab (a),
(6.48)

no matter how small ε1, ε2 ∈ [0, 1[ with ε1 + ε2 > 0 are (see Examples 6.38
and 6.39).

Theorem 6.23 yields

Corollary 6.25. Let k ∈ {1, 2}, m ∈ {0, 1}, (−1)mhk ∈ Pab, and let
h3−k = h3−k,0 − h3−k,1 with h3−k,0, h3−k,1 ∈ Pab. If(

(−1)mhk, h3−k,m
)
∈ Ŝ 2,1

ab (a),(
(−1)mhk,−

1
2
h3−k,1−m

)
∈ Ŝ 2,1

ab (a),
(6.49)

then the problem (6.33), (6.34) has a unique solution.

Remark 6.26. In Section 5, there is proved the following assertion (see The-
orem 5.6): If h1 ∈ Pab and h2 = h2,0 − h2,1 with h2,0, h2,1 ∈ Pab are such
that

(h1, h2,0) ∈ Ŝ 2,1
ab (a), (h1,−h2,1) ∈ Ŝ 2,1

ab (a),

then (h1, h2) ∈ Ŝ 2,1
ab (a), as well. It is easy to find operators h1, h2,0, h2,1 ∈

Pab such that under the assumption(
h1, h2,0

)
∈ Ŝ 2,1

ab (a),
(
h1,−

1
2
h2,1

)
∈ Ŝ 2,1

ab (a), (6.50)

the weak theorem on differential inequalities does not hold for the system
(6.33) with h2 = h2,0−h2,1, i. e., (h1, h2) 6∈ Ŝ 2,1

ab (a). However, Corollary 6.25
guarantees that the problem (6.33), (6.34) remains to be uniquely solvable,
if the inclusions (6.50) are satisfied.

As it was said above, the Cauchy problem for the second order functional
differential equations can be regarded as a particular case of (6.33), (6.34).
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As an example, we consider on the interval [0, 1] the problem

x′′(t) =
1

(1− t)ν

t∫
0

d1x
(
τ(s)

)
− d2x(λs)

(1− s)ν
ds+ q(t), (6.51)

x(0) = c1, x′(0) = c2, (6.52)

where d1, d2 ∈ R+, ν < 1, λ ∈ [0, 1], τ : [0, 1] → [0, 1] is a measurable
function, q ∈ L([0, 1]; R), and c1, c2 ∈ R.

Corollary 6.27. Let at least one of the following conditions be fulfilled:
(a) The deviation τ is a delay, i. e.,

τ(t) ≤ t for a. e. t ∈ [0, 1];

(b) The numbers d1 and d2 satisfy the inequalities

d1 < (3− 2ν)(2− ν), d2 ≤ 2(3− 2ν)(2− ν). (6.53)

Then the problem (6.51), (6.52) has a unique solution.

6.2.2. Systems with argument deviations. Now we give some corollaries of
Theorems 6.20 and 6.21 for two-dimensional differential systems with argu-
ment deviations. Consider the system

u′1(t) = f1(t)u2

(
τ1(t)

)
+ q1(t),

u′2(t) = f2(t)u1

(
τ2(t)

)
+ q2(t),

(6.54)

where f1, f2, q1, q2 ∈ L([a, b]; R) and τ1, τ2 : [a, b] → [a, b] are measurable
functions.

In order to simplify formulation of the next statement, we put

fi,0 ≡ [fi]+ , fi,1 ≡ [fi]− for i = 1, 2. (6.55)

Theorem 6.20 implies the following Vallée-Poussin type result.

Theorem 6.28. Let k ∈ {1, 2}, m ∈ {0, 1} and the functions fi,j (i = 1, 2,
j = 0, 1) be defined by the relations (6.55). Assume that there exist numbers
αi ∈ R+ (i = 1, . . . , 4), at least one of which is positive, and λ ∈ [0, 1[ such
that

ω2∫
ω1

ds
α1 + (α2 + α3)s+ α4s2

>
(b− a)1−λ

1− λ
, (6.56)

α1(b− t)λ
( τ3−k(t)∫

t

ds
(b− s)λ

)
|f3−k(t)| ≤

≤ α2

(
1 +

t∫
τ3−k(t)

α3

(b− s)λ
ds
)

for a. e. t ∈ [a, b], (6.57)
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(b− t)λ|f3−k(t)| ≤ α4

(
1 +

t∫
τ3−k(t)

α3

(b− s)λ
ds
)

for a. e. t ∈ [a, b], (6.58)

(b− t)λ|fk(t)| ≤ α1

(
1 +

τk(t)∫
t

α2

(b− s)λ
ds
)

for a. e. t ∈ [a, b], (6.59)

and

α4(b− t)λ
( t∫
τk(t)

ds
(b− s)λ

)
|fk(t)| ≤

≤ α3

(
1 +

τk(t)∫
t

α2

(b− s)λ
ds
)

for a. e. t ∈ [a, b], (6.60)

where ω1 = ‖fk,1−m‖L and the number ω2 has the following properties:

(i) If fk,1−m ≡ 0 and f3−k,m ≡ 0 then ω2 = +∞;
(ii) If fk,1−m ≡ 0 and f3−k,m 6≡ 0 then ω2 = ‖f3−k,m‖−1

L ;
(iii) If fk,1−m 6≡ 0 and f3−k,m 6≡ 0 then ‖fk,1−m‖L < ω2 ≤ ‖f3−k,m‖−1

L

and

b∫
a

f3−k,1−m(s)
( τ3−k(s)∫

a

fk,1−m(ξ) dξ
)

ds ≤

≤
(

1− ω2‖f3−k,m‖L
)

exp
(
−

b∫
a

α2 + α4ω2

(b− s)λ
ds
)

; (6.61)

(iv) If fk,1−m 6≡ 0 and f3−k,m ≡ 0 then ‖fk,1−m‖L < ω2 < +∞ and

b∫
a

f3−k,1−m(s)
( τ3−k(s)∫

a

fk,1−m(ξ) dξ
)

ds<exp
(
−

b∫
a

α2+α4ω2

(b−s)λ
ds
)
. (6.62)

Then the problem (6.54), (6.34) has a unique solution.

If neither of the functions f1 and f2 changes its sign and at least one
of the deviations τ1 and τ2 is a delay, then we can derive the following
statement from Theorem 6.21.

Theorem 6.29. Let k ∈ {1, 2}, m ∈ {0, 1},

(−1)mfk(t) ≥ 0, (−1)1−mf3−k(t) ≥ 0 for a. e. t ∈ [a, b], (6.63)

and
|f3−k(t)|

(
τ3−k(t)− t

)
≤ 0 for a. e. t ∈ [a, b]. (6.64)
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Assume that there exist numbers α1, α2, α3 ∈ R+, at least one of which is
positive, λ ∈ [0, 1[ , and ν ∈ [0, λ] such that

+∞∫
0

ds
α1 + α2s+ α3s2

>
(b− a)1−λ

1− λ
, (6.65)

(b− t)λ+ν |fk(t)| ≤ α1 for a. e. t ∈ [a, b], (6.66)

α3(b− t)ν |fk(t)|
(
t− τk(t)

)
≤ α2 +

ν

(b− t)1−λ
for a. e. t ∈ [a, b], (6.67)

and

(b− t)λ−ν |f3−k(t)| ≤ α3

(
1 + σ3−k(t)

t∫
τ3−k(t)

( ν

b− s
+

α2

(b− s)λ
)

ds
)

for a. e. t ∈ [a, b], (6.68)

where

σ3−k(t) =
1
2

(
1 + sgn

(
t− τ3−k(t)

))
for a. e. t ∈ [a, b].

Then the problem (6.54), (6.34) has a unique solution.

Theorem 6.29 implies

Corollary 6.30. Let

f1(t) ≥ 0, f2(t) ≤ 0 for a. e. t ∈ [a, b].

Assume that there exist numbers α, β ∈ R+, λ ∈ [0, 1[ and ν ∈ [0, λ] such
that

+∞∫
0

ds
α+ βs2

>
(b− a)1−λ

1− λ
,

and let either the conditions

f1(t)
(
τ1(t)− t

)
≤ 0, |f2(t)|

(
τ2(t)− t

)
≥ 0 for a. e. t ∈ [a, b],

(b− t)λ−νf1(t) ≤ β, (b− t)λ+ν |f2(t)| ≤ α for a. e. t ∈ [a, b],

or the inequalities

f1(t)
(
τ1(t)− t

)
≥ 0, |f2(t)|

(
τ2(t)− t

)
≤ 0 for a. e. t ∈ [a, b],

(b− t)λ+νf1(t) ≤ α, (b− t)λ−ν |f2(t)| ≤ β for a. e. t ∈ [a, b]

be satisfied. Then the problem (6.54), (6.34) has a unique solution.

In order to illustrate Theorem 6.23, we consider the differential system

u′1(t) = f1(t)u2

(
τ1(t)

)
+ q1(t),

u′2(t) = f2,0(t)u1

(
τ2,0(t)

)
− f2,1(t)u1

(
τ2,1(t)

)
+ q2(t),

(6.69)

where f1, f2,0, f2,1 ∈ L([a, b]; R+), τ1, τ2,0, τ2,1 : [a, b]→ [a, b] are measurable
functions, and q1, q2 ∈ L([a, b]; R).
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Corollary 6.31. Let

τ1(t) ≤ t, τ2,1(t) ≤ t for a. e. t ∈ [a, b]

and the functions f1, τ1, f2,0, τ2,0 satisfy at least one of the following con-
ditions:

(a)
τ2,0(t)∫
t

ω(s) ds ≤ 1
e

for a. e. t ∈ [a, b],

where

ω(t) = max
{
f1(t), f2,0(t)

}
for a. e. t ∈ [a, b]; (6.70)

(b)

b∫
a

cosh
( b∫
s

ω(ξ) dξ
)
f2,0(s)α(s)

( τ2,0(s)∫
s

f1(ξ) dξ
)

ds < 1,

where the function ω is defined by the formula (6.70) and

α(t) =
1
2

(
1 + sgn

(
τ2,0(t)− t

))
for a. e. t ∈ [a, b];

(c) either
τ∗2,0∫
a

f1(s)
( τ1(s)∫

a

f2,0(ξ) dξ
)

ds < 1

or
τ∗1∫
a

f2,0(s)
( τ2,0(s)∫

a

f1(ξ) dξ
)

ds < 1,

where

τ∗1 = ess sup
{
τ1(t) : t ∈ [a, b]

}
, τ∗2,0 = ess sup

{
τ2,0(t) : t ∈ [a, b]

}
.

Furthermore, assume that the functions f1, τ1, f2,1, τ2,1 satisfy at least one
of the following conditions:

(A)

b∫
a

f1(s)
( τ1(s)∫

a

f2,1(ξ) dξ
)

ds ≤ 2;
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(B) there exist numbers α1, α2 ∈ R+, α3 > 0, λ ∈ [0, 1[ , and ν ∈ [0, λ]
such that

+∞∫
0

ds
α1 + α2s+ α3s2

≥ (b− a)1−λ

1− λ
,

(b− t)λ−νf1(t) ≤ α3

[
1 +

t∫
τ1(t)

( ν

b− s
+

α2

(b− s)λ
)

ds
]

for a. e. t ∈ [a, b],

(b− t)λ+νf2,1(t) ≤ 2α1 for a. e. t ∈ [a, b],

and

α3(b− t)νf2,1(t)
(
t− τ2,1(t)

)
≤ 2
(
α2 +

ν

(b− t)1−λ
)

for a. e. t ∈ [a, b].

Then the problem (6.69), (6.34) has a unique solution.

6.2.3. Auxiliary lemmas. Consider the homogeneous problem

u′1(t) = h1(u2)(t), u′2(t) = h2(u1)(t), (6.71)

u1(a) = 0, u2(a) = 0 (6.72)

corresponding to the problem (6.33), (6.34). For the sake of convenience,
we formulate the following obvious lemma.

Lemma 6.32. (u1, u2)T is a solution to the problem (6.71), (6.72) if and
only if (−u1, u2)T is a solution to the problem

v′1(t) = −h1(v2)(t), v′2(t) = −h2(v1)(t),

v1(a) = 0, v2(a) = 0.

Lemma 6.33. Let hi = hi,0 − hi,1 with hi,0, hi,1 ∈ Pab (i = 1, 2). Assume
that there exist functions α1, α2, β1, β2 ∈ AC([a, b]; R) such that

α1(t) ≤ β1(t), α2(t) ≤ β2(t) for t ∈ [a, b], (6.73)

α′1(t) ≤ h1,0(α2)(t)− h1,1(β2)(t) for a. e. t ∈ [a, b], (6.74)

α′2(t) ≥ h2,0(β1)(t)− h2,1(α1)(t) for a. e. t ∈ [a, b], (6.75)

β′1(t) ≥ h1,0(β2)(t)− h1,1(α2)(t) for a. e. t ∈ [a, b], (6.76)

and
β′2(t) ≤ h2,0(α1)(t)− h2,1(β1)(t) for a. e. t ∈ [a, b]. (6.77)

Then, for arbitrary c1 ∈
[
α1(a), β1(a)

]
and c2 ∈

[
α2(b), β2(b)

]
, the system

(6.71) has at least one solution (u1, u2)T satisfying the conditions u1(a) =
c1, u2(b) = c2 and

αi(t) ≤ ui(t) ≤ βi(t) for t ∈ [a, b], i = 1, 2. (6.78)
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Proof. For any k = 1, 2 and z ∈ C([a, b]; R), we put

χk(z)(t)=
1
2

(
|z(t)−αk(t)|−|z(t)−βk(t)|+αk(t)+βk(t)

)
for t∈ [a, b].

It is clear that χ1, χ2 : C([a, b]; R) → C([a, b]; R) are continuous operators
and

αk(t) ≤ χk(z)(t) ≤ βk(t) for t ∈ [a, b], z ∈ C([a, b]; R), k = 1, 2. (6.79)

Put

T1(z)(t) = c1 +

t∫
a

h1

(
χ2(z)

)
(s) ds for t ∈ [a, b], z ∈ C([a, b]; R),

T2(z)(t) = c2 −
b∫
t

h2

(
χ1(z)

)
(s) ds for t ∈ [a, b], z ∈ C([a, b]; R).

By virtue of the inequalities (6.79) and the assumptions hi,0, hi,1 ∈ Pab
(i = 1, 2), for any z ∈ C([a, b]; R) the functions T1(z) and T2(z) belong to
the set AC([a, b]; R),

|Tk(z)(t)| ≤Mk for t ∈ [a, b], k = 1, 2, (6.80)

and

hk,0(α3−k)(t)− hk,1(β3−k)(t) ≤ d
dt

Tk(z)(t) ≤

≤ hk,0(β3−k)(t)− hk,1(α3−k)(t) for a. e. t ∈ [a, b], k = 1, 2, (6.81)

where

Mk = |ck|+
b∫
a

(
hk,0 + hk,1

)(
|α3−k|+ |β3−k|

)
(s) ds for k = 1, 2.

Now we define the operator T : C([a, b]; R2)→ C([a, b]; R2) by the formula

T (v)(t) =
(
T1(v2)(t)
T2(v1)(t)

)
for t ∈ [a, b], v = (v1, v2)T ∈ C([a, b]; R2).

In view of the conditions (6.80) and (6.81), it is clear that the operator T
maps continuously the Banach space C([a, b]; R2) into its relatively compact
subset. Therefore, using the Schauder fixed point theorem, we conclude that
the operator T has a fixed point, i. e., there exist u1, u2 ∈ C([a, b]; R) such
that

u1(t) = T1(u2)(t), u2(t) = T2(u1)(t) for t ∈ [a, b]. (6.82)

Obviously, u1, u2 ∈ AC([a, b]; R), u1(a) = c1, u2(b) = c2, and thus we have

α1(a) ≤ u1(a) ≤ β1(a), α2(b) ≤ u2(b) ≤ β2(b). (6.83)
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On the other hand, by virtue of the conditions (6.76), (6.81) and (6.82), we
get

u′1(t)− β′1(t) =
d
dt

T1(u2)(t)− β′1(t) ≤

≤ h1,0(β2)(t)− h1,1(α2)(t)− β′1(t) ≤ 0 for a. e. t ∈ [a, b],

which, together with the first relation in (6.83), implies that u1(t) ≤ β1(t)
holds for t ∈ [a, b]. The other inequalities in the condition (6.78) can be
proved analogously using the inequalities (6.74), (6.75) and (6.77). However,
this means that

u1(t) = c1 +

t∫
a

h1(u2)(s) ds, u2(t) = c2 −
b∫
t

h2(u1)(s) ds for t ∈ [a, b],

i. e., the vector function (u1, u2)T is a solution to the system (6.71) satisfying
the conditions u1(a) = c1, u2(b) = c2, and (6.78). �

Lemma 6.34. Let hi = hi,0 − hi,1 with hi,0, hi,1 ∈ Pab (i = 1, 2). As-
sume that there exist positive functions β1, β2 ∈ AC([a, b]; R) satisfying the
conditions

β′1(t) ≥ h1,0(β2) + h1,1(β2) for a. e. t ∈ [a, b], (6.84)

β′2(t) ≤ −h2,0(β1)− h2,1(β1) for a. e. t ∈ [a, b]. (6.85)

Then the problem
u1(a) = 0, u2(b) = 0 (6.86)

subjected to the system (6.71) has only the trivial solution.

Proof. Let the operator ω : C([a, b]; R)→ C([a, b]; R) be defined by the for-
mula

ω(z)(t) = z(a+ b− t) for t ∈ [a, b], z ∈ C([a, b]; R).

For any z ∈ C([a, b]; R) and m = 0, 1, we put

h̃1,m(z)(t) = h1,m

(
ω(z)

)
(t) for a. e. t ∈ [a, b]

and
h̃2,m(z)(t) = h2,m(z)(a+ b− t) for a. e. t ∈ [a, b].

It is clear that h̃k,m ∈ Pab for k = 1, 2 and m = 0, 1.
If (u1, u2)T is a solution to the problem (6.71), (6.86), then the vector

function (u1, ω(u2))T is a solution to the problem

v′1(t) = h̃1,0(v2)(t)− h̃1,1(v2)(t), v′2(t) = h̃2,1(v1)(t)− h̃2,0(v1)(t), (6.87)

v1(a) = 0, v2(a) = 0, (6.88)

and vice versa, if (v1, v2)T is a solution to the problem (6.87), (6.88), then
the vector function (v1, ω(v2))T is a solution to the problem (6.71), (6.86).
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On the other hand, it follows from the inequalities (6.36), (6.84) and
(6.85) that the functions γ1 ≡ β1 and γ2 ≡ ω(β2) are positive and satisfy
the inequalities

γ′1(t) ≥ h̃1,0(γ2)(t) + h̃1,1(γ2)(t) for a. e. t ∈ [a, b]

and
γ′2(t) ≥ h̃2,0(γ1)(t) + h̃2,1(γ1)(t) for a. e. t ∈ [a, b].

Consequently, using Theorem 4.8, we obtain

h̃ ∈ S2
ab(a), (6.89)

where the operator h̃ is defined by the relation

h̃(w)(t) =

(
h̃1,0(w2)(t) + h̃1,1(w2)(t)
h̃2,0(w1)(t) + h̃2,1(w1)(t)

)
for a. e. t ∈ [a, b] and all w = (w1, w2)T ∈ C([a, b]; R2).

It is also easy to verify that the inequality

Sgn
(
w(t)

)(h̃1,0(w2)(t)− h̃1,1(w2)(t)
h̃2,1(w1)(t)− h̃2,0(w1)(t)

)
≤ h̃(|w|)(t) for a. e. t ∈ [a, b]

holds for every w = (w1, w2)T ∈ C([a, b]; R2). Therefore, by virtue of The-
orem 6.1, the inclusion (6.89) and the above-mentioned equivalence, we get
the assertion of the lemma. �

Lemma 6.35. Let numbers αi ∈ R+ (i = 1, . . . , 4), at least one of which is
positive, %a, %b ∈ ]0,+∞[ , and λ ∈ [0, 1[ be such that %a < %b and

%b∫
%a

ds
α1 + (α2 + α3)s+ α4s2

=
(b− a)1−λ

1− λ
. (6.90)

Then there exist positive functions β1, β2 ∈ AC([a, b]; R) satisfying β′1, β
′
2 ∈

Cloc([a, b[ ; R) and the conditions

β′1(t) =
α3

(b− t)λ
β1(t) +

α1

(b− t)λ
β2(t) for t ∈ [a, b[ , (6.91)

β′2(t) = − α4

(b− t)λ
β1(t)− α2

(b− t)λ
β2(t) for t ∈ [a, b[ , (6.92)

β1(a) = %a , β1(b) = %bβ2(b), β2(a) = 1 (6.93)

and

β2(b) ≥ exp
(
−

b∫
a

α2 + α4%b
(b− s)λ

ds
)
. (6.94)
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Proof. Define the function % : [a, b]→ R+ by setting
%b∫

%(t)

ds
α1 + (α2 + α3)s+ α4s2

=
(b− t)1−λ

1− λ
for t ∈ [a, b].

In view of the equality (6.90), we get

%(t) > 0 for t ∈ [a, b], %(a) = %a, %(b) = %b , (6.95)

and

%′(t) =
α1 + (α2 + α3)%(t) + α4%

2(t)
(b− t)λ

for t ∈ [a, b[ . (6.96)

Put

β2(t) = exp
(
−

t∫
a

α2 + α4%(s)
(b− s)λ

ds
)
, β1(t) = %(t)β2(t) for t ∈ [a, b].

It is not difficult to verify that β1, β2 ∈ AC([a, b]; R) and, in view of the
condition (6.96), the equalities (6.91) and (6.92) are satisfied. Therefore,
we have β′1, β

′
2 ∈ Cloc([a, b[ ; R). Moreover, by virtue of the relations (6.95)

and (6.96), it is clear that the conditions (6.36), (6.93) and (6.94) hold as
well. �

6.2.4. Proofs.

Proof of Theorem 6.20. According to Proposition 3.1, to prove the theorem
it is sufficient to show that the homogeneous problem (6.71), (6.72) has only
the trivial solution. In view of Lemma 6.32, we can assume without loss of
generality that k = 1 and m = 0. Let (u1, u2)T be a solution to the problem
(6.71), (6.72).

It follows from the conditions (6.36)–(6.38) that

β1(t) ≥ β1(a) + χ
(
h1,0(β2)

)
(t), β2(t) ≥ β2(b) for t ∈ [a, b],

and thus the inequality (6.40) yields

β1(a)

b∫
a

h2,0(1)(s) ds+ β2(b)

b∫
a

h2,0

(
χ
(
h1,0(1)

))
(s) ds+

+ β2(b)

b∫
a

h2,1

(
χ
(
h1,1(1)

))
(s) ds ≤ β2(b).

Consequently, using the condition (6.36), we get
b∫
a

h2,0

(
χ
(
h1,0(1)

))
(s) ds+

b∫
a

h2,1

(
χ
(
h1,1(1)

))
(s) ds < 1, (6.97)

because we suppose that the inequality (6.40) is strict if h2,0(1) ≡ 0.
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Put

α1(t) = −
t∫
a

h1,1(β2)(s) ds for t ∈ [a, b] (6.98)

and

α2(t) =

t∫
a

h2,0(β1)(s) ds−
t∫
a

h2,1(α1)(s) ds for t ∈ [a, b]. (6.99)

It is clear that
α1(t) ≤ 0, α2(t) ≥ 0 for t ∈ [a, b] (6.100)

and, using the inequality (6.39), it is easy to verify that

−α1(t) =

t∫
a

h1,1(β2)(s) ds ≤ β1(a) ≤ β1(t) for t ∈ [a, b]. (6.101)

By virtue of the conditions (6.100) and (6.101), from the relations (6.37),
(6.38), (6.98) and (6.99) we get

α′1(t)=−h1,1(β2)(t)≤h1,0(α2)(t)−h1,1(β2)(t) for a. e. t∈ [a, b],

α′2(t) = h2,0(β1)(t)− h2,1(α1)(t) for a. e. t ∈ [a, b],

β′1(t)≥h1,0(β2)(t)≥h1,0(β2)(t)−h1,1(α2)(t) for a. e. t∈ [a, b],

(6.102)

and

β′2(t) ≤ −h2,0(β1)(t)− h2,1(β1)(t) ≤
≤ h2,0(α1)(t)− h2,1(β1)(t) for a. e. t ∈ [a, b], (6.103)

i. e., the inequalities (6.74)–(6.77) are satisfied. Moreover, in view of the
first inequality in (6.100), it is clear that

α1(t) ≤ β1(t) for t ∈ [a, b]. (6.104)

On the other hand, the relations (6.40), (6.98) and (6.99) result in

α2(b) =

b∫
a

h2,0(β1)(s) ds+

b∫
a

h2,1

(
χ
(
h1,1(β2)

))
(s) ds ≤ β2(b).

Furthermore, the conditions (6.102)–(6.104) yield that

α′2(t) = h2,0(β1)(t)− h2,1(α1)(t) ≥
≥ h2,0(α1)(t)− h2,1(β1)(t) ≥ β′2(t) for a. e. t ∈ [a, b].

Hence, the last two relations guarantee that α2(t) ≤ β2(t) holds for t ∈ [a, b],
and thus the condition (6.73) is satisfied.

Therefore, by virtue of Lemma 6.33, the system (6.71) has a solution
(x1, x2)T satisfying the conditions

x1(a) = 0, x2(b) = β2(b), (6.105)
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and
αk(t) ≤ xk(t) ≤ βk(t) for t ∈ [a, b], k = 1, 2. (6.106)

We will show that
x2(a) > 0. (6.107)

Indeed, the inequalities (6.100) and (6.106) imply that x2(t) ≥ 0 for t ∈
[a, b], and since (x1, x2)T is a solution to the problem (6.71), (6.105), the
first equation in (6.71) yields

x1(t) ≤
t∫
a

h1,0(x2)(s) ds, −x1(t) ≤
t∫
a

h1,1(x2)(s) ds for t ∈ [a, b].

Using these relations in the second equation of the system (6.71), we get

x′2(t) ≤ h2,0

(
χ
(
h1,0(x2)

))
(t)+

+ h2,1

(
χ
(
h1,1(x2)

))
(t) for a. e. t ∈ [a, b]. (6.108)

Put M = max
{
x2(t) : t ∈ [a, b]} and choose tM ∈ [a, b] such that x2(tM ) =

M . The integration of the inequality (6.108) from a to tM yields

M ≤ x2(a) +

tM∫
a

h2,0

(
χ
(
h1,0(x2)

))
(s) ds+

tM∫
a

h2,1

(
χ
(
h1,1(x2)

))
(s) ds ≤

≤ x2(a)+M
( b∫
a

h2,0

(
χ
(
h1,0(1)

))
(s) ds+

b∫
a

h2,1

(
χ
(
h1,1(1)

))
(s) ds

)
. (6.109)

In view of the conditions (6.36) and (6.105), we have M > 0. Therefore, the
relations (6.97) and (6.109) arrive at M < x2(a) +M , and thus the desired
inequality (6.107) holds.

At last, we put

wk(t) = x2(b)uk(t)− xk(t)u2(b) for t ∈ [a, b], k = 1, 2.

Obviously, the vector function (w1, w2)T is a solution to the problem (6.71),
(6.86). Therefore, Lemma 6.34 yields that w1 ≡ 0 and w2 ≡ 0. Conse-
quently, we have

0 = w2(a) = −x2(a)u2(b),
which, together with the inequality (6.107), implies u2(b) = 0. However, this
means that the vector function (u1, u2)T is also a solution to the problem
(6.71), (6.86), and thus Lemma 6.34 yields that u1 ≡ 0 and u2 ≡ 0.

Consequently, the homogeneous problem (6.71), (6.72) has only the trivial
solution. �

Proof of Theorem 6.21. According to Proposition 3.1, to prove the theorem
it is sufficient to show that the homogeneous problem (6.71), (6.72) has only
the trivial solution. In view of Lemma 6.32, we can assume without loss of
generality that k = 1 and m = 0. Assume that, on the contrary, (u1, u2)T
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is a nontrivial solution to the problem (6.71), (6.72). Then it is clear that
u1 6≡ 0 and u2 6≡ 0.

First suppose that u2 does not change its sign. Then we can assume
without loss of generality that u2(t) ≥ 0 holds for t ∈ [a, b]. Since the
operator h1 is positive, the first equation in the system (6.71) implies that
u′1(t) ≥ 0 is satisfied for a. e. t ∈ [a, b]. Therefore, by virtue of the initial
condition (6.72), we have u1(t) ≥ 0 for t ∈ [a, b]. On the other hand, the
operator h2 is negative, and thus the second equation in the system (6.71)
yields that u′2(t) ≤ 0 holds for a. e. t ∈ [a, b]. Consequently, using the
condition u2(a) = 0, we get the contradiction u2 ≡ 0.

Now suppose that the function u2 changes its sign. Put

λ1 = inf A, λ2 = max
{u2(t)
γ2(t)

: t ∈ [a, b]
}
, (6.110)

where

A =
{
λ > 0 : λγ1(t)− u1(t) ≥ 0 for t ∈ [a, b[

}
. (6.111)

It is clear that
0 ≤ λ1 < +∞, 0 < λ2 < +∞, (6.112)

and there exists t0 ∈ ]a, b] such that

u2(t0)
γ2(t0)

= λ2 . (6.113)

Without loss of generality, we can assume that t0 < b and that there exists
b0 ∈ ]t0, b[ such that

u2(b0) = 0. (6.114)
Indeed, if either t0 = b or u2(t) > 0 for t ∈ [t0, b[ , then there exists t∗ ∈
]a, t0[ with the properties

u2(t) > 0 for t ∈ ]t∗, b[ , u2(t∗) = 0.

Then we can redefine the numbers λ1, λ2, t0 for the solution (−u1,−u2)T to
the problem (6.71), (6.72), and we can take b0 = t∗.

Now we put

w1(t) = λ1γ1(t)−u1(t) for t ∈ [a, b[ , w2(t) = λ2γ2(t)−u2(t) for t ∈ [a, b].

Obviously, we have w1 ∈ ACloc([a, b[ ; R) and w2 ∈ AC([a, b]; R). By virtue
of the conditions (6.41), (6.110) and (6.113), it is clear that

w1(t) ≥ 0 for t ∈ [a, b[ , w2(t) ≥ 0 for t ∈ [a, b], (6.115)

and
w2(t0) = 0. (6.116)

Moreover, either the relation λ1 < λ2 or λ1 ≥ λ2 holds.
First suppose that λ1 < λ2. Then, in view of the conditions (6.41),

(6.44), (6.71), (6.112), (6.115) and the fact that h2 is a negative a-Volterra
operator, we get

w′2(t) ≤ hab02 (λ2γ1 − u1)(t) ≤ hab02 (w1)(t) ≤ 0 for a. e. t ∈ [a, b0].
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Therefore, by virtue of the conditions (6.41), (6.112) and (6.114), the last
relation yields

w2(t0) ≥ w2(b0) = λ2γ2(b0) > 0,

which contradicts the equality (6.116).
Now suppose that λ1 ≥ λ2. Then the second relation in (6.112) implies

λ1 > 0. (6.117)

Using the conditions (6.41), (6.42), (6.71), (6.72), (6.115), (6.117) and the
assumption h1 ∈ Pab, we get

w′1(t) ≥ h1(λ1γ2 − u2)(t) ≥ h1(w2)(t) ≥ 0 for a. e. t ∈ [a, b]

and
w1(a) = λ1γ1(a) > 0.

Consequently, the inequality w1(t) > 0 holds for t ∈ [a, b[ . Therefore, there
exists ε > 0 such that

w1(t) ≥ εu1(t) for t ∈ [a, b[ ,

i. e.,
λ1

1 + ε
γ1(t)− u1(t) ≥ 0 for t ∈ [a, b[ .

However, in view of the definition (6.111) of the set A, the last relation
implies that λ1

1+ε ∈ A, which contradicts the first equality in (6.110).
The contradictions obtained prove that the homogeneous problem (6.71),

(6.72) has only the trivial solution. �

Proof of Theorem 6.23. According to Proposition 3.1, to prove the theorem
it is sufficient to show that the homogeneous problem (6.71), (6.72) has only
the trivial solution. In view of Lemma 6.32, we can assume without loss of
generality that k = 1 and m = 0.

Let (u1, u2)T be a solution to the problem (6.71), (6.72). By virtue of the
assumption (h1, g0) ∈ Ŝ 2,1

ab (a) and Remark 5.5, the problem

x′1(t) = h1(x2)(t), x′2(t) = g0(x1)(t) + g1(|u1|)(t), (6.118)

x1(a) = 0, x2(a) = 0 (6.119)

has a unique solution (x1, x2)T . Combining the conditions (6.46), (6.71),
(6.72), (6.118) and (6.119), we get

x′1(t) + u′1(t) = h1(x2 + u2)(t) for a. e. t ∈ [a, b],

x′2(t) + u′2(t) = g0(x1 + u1)(t) + h2(u1)(t)− g0(u1)(t) + g1(|u1|)(t) ≥
≥ g0(x1 + u1)(t) for a. e. t ∈ [a, b],

x1(a) + u1(a) = 0,
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and

x′1(t)− u′1(t) = h1(x2 − u2)(t) for a. e. t ∈ [a, b],

x′2(t)− u′2(t) = g0(x1 − u1)(t)− h2(u1)(t) + g0(u1)(t) + g1(|u1|)(t) ≥
≥ g0(x1 − u1)(t) for a. e. t ∈ [a, b],

x1(a)− u1(a) = 0.

Consequently, the inclusion (h1, g0) ∈ Ŝ 2,1
ab (a) guarantees that

x1(t) + u1(t) ≥ 0, x1(t)− u1(t) ≥ 0 for t ∈ [a, b],

and thus
|u1(t)| ≤ x1(t) for t ∈ [a, b]. (6.120)

Taking now the assumption g1 ∈ Pab into account, we get from the equalities
(6.118) that

x′1(t) = h1(x2)(t), x′2(t) ≤ (g0 + g1)(x1)(t) for a. e. t ∈ [a, b]. (6.121)

However, we also suppose that
(
h1, g0+g1

)
∈ Ŝ 2,1

ab (a), and thus the relations
(6.119) and (6.121) guarantee that x1(t) ≤ 0 holds for t ∈ [a, b]. Therefore,
the inequality (6.120) yields that u1 ≡ 0. Consequently, (6.71) and (6.72)
imply u2 ≡ 0, i. e., the homogeneous problem (6.71), (6.72) has only the
trivial solution. �

Proof of Corollary 6.25. It is not difficult to verify that the assumptions of
Theorem 6.23 are satisfied with g0 = − 1

2 h3−k,1−m and g1 = h3−k,m +
1
2 h3−k,1−m. �

Proof of Corollary 6.27. It is clear that the problem (6.51), (6.52) is a par-
ticular case of (6.33), (6.34) with a = 0, b = 1, q1 ≡ 0, q2 ≡ q and h2 =
h2,0− h2,1, where h1, h2,0, h2,1 are defined by the formulas h1(z)(t) def= z(t)
and

h2,0(z)(t) =
d1

(1− t)ν

t∫
0

z
(
τ(s)

)
(1− s)ν

ds, h2,1(z)(t) =
d2

(1− t)ν

t∫
0

x(λs)
(1− s)ν

ds

for a. e. t ∈ [0, 1] and all z ∈ C
(
[0, 1]; R

)
. Obviously, h1, h2,0, h2,1 ∈ P01

and the operators h1, h2,1 are 0-Volterra ones.
Case (a): Since τ is a delay, the operator h2,0 is a 0-Volterra one. There-

fore, the operator ` defined by the formula

ϕ(v)(t) =
(

h1(v2)(t)
h2,0(v1)(t) + h2,1(v1)(t)

)
for a. e. t ∈ [a, b] and all v = (v1, v2)T ∈ C([a, b]; R2).

is a 0-Volterra one, and thus Proposition 4.20 yields that ϕ ∈ S2
01(0). On

the other hand, for any z = (z1, z2)T ∈ C([0, 1]; R2) we have

Sgn
(
z(t)

)(h1(z2)(t)
h2(z1)(t)

)
≤ ϕ(|z|)(t) for a. e. t ∈ [a, b].
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Consequently, the validity of the corollary follows from Theorem 6.1.
Case (b): Analogously to Example 5.17, using the inequalities (6.53) we

get
1∫

0

h1

(
ψ
(
h2,0(1)

))
(s) ds < 1,

1∫
0

h1

(
ψ
(
h2,1(1)

))
(s) ds ≤ 2,

where the operator ψ is defined by the relation (5.9). Therefore, Corollar-
ies 5.14 and 5.21 guarantee that(

h1, h2,0

)
∈ Ŝ 2,1

01 (0),
(
h1,−

1
2
h2,1

)
∈ Ŝ 2,1

01 (0).

Consequently, the assumptions of Corollary 6.25 with k = 1 and m = 0 are
satisfied. �

Proof of Theorem 6.28. It is clear that the system (6.54) is a particular case
of the system (6.33) in which the operators h1, h2 are given by the formula

hi(z)(t) = fi(t)z
(
τi(t)

)
for a. e. t ∈ [a, b] and all z ∈ C([a, b]; R), i = 1, 2. (6.122)

Let the operators hi,j be defined by the relations

hi,j(z)(t) = fi,j(t)z
(
τi(t)

)
for a. e. t ∈ [a, b] and all z ∈ C([a, b]; R), i = 1, 2, j = 0, 1,

where the functions fi,j are given by the formula (6.55). It is clear that
hi,j ∈ Pab (i = 1, 2, j = 0, 1) and hi = hi,0 − hi,1 for i = 1, 2. By virtue of
the inequality (6.56), there exist %a, %b ∈ R+ such that ω1 < %a < %b < ω2

and the equality (6.90) is fulfilled. According to Lemma 6.35, we can find
functions β1, β2 ∈ AC([a, b]; R) satisfying the relations (6.36) and (6.91)–
(6.94). Using these conditions, we get

β′1(t) ≥ 0, β′2(t) ≤ 0 for t ∈ [a, b[ . (6.123)

Put
Ai =

{
t ∈ [a, b] : fi(t) 6= 0

}
for i = 1, 2. (6.124)

If we take the relations (6.36), (6.91), (6.92) and (6.123) into account, by
direct calculation we obtain

β2

(
τk(t)

)
= β2(t)−

t∫
τk(t)

β′2(s) ds =

= β2(t) +

t∫
τk(t)

α4

(b− s)λ
β1(s) ds+

t∫
τk(t)

α2

(b− s)λ
β2(s) ds ≤
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≤ β2(t)+β1(t)

t∫
τk(t)

α4

(b− s)λ
ds+β2

(
τk(t)

) t∫
τk(t)

α2

(b−s)λ
ds for a. e. t∈ [a, b]

and

− β1

(
τ3−k(t)

)
= −β1(t) +

t∫
τ3−k(t)

β′1(s) ds =

= −β1(t) +

t∫
τ3−k(t)

α3

(b− s)λ
β1(s) ds+

t∫
τ3−k(t)

α1

(b− s)λ
β2(s) ds ≥

≥ −β1(t) + β1

(
τ3−k(t)

) t∫
τ3−k(t)

α3

(b− s)λ
ds+ β2(t)

t∫
τ3−k(t)

α1

(b− s)λ
ds

for a. e. t ∈ [a, b].

Therefore, by virtue of the conditions (6.36), (6.28)–(6.60), (6.91) and (6.92),
we get from the last two relations that

|fk(t)|β2

(
τk(t)

)
≤

≤
|fk(t)|

t∫
τk(t)

α4
(b−s)λ ds

1 +
τk(t)∫
t

α2
(b−s)λ ds

β1(t) +
|fk(t)|

1 +
τk(t)∫
t

α2
(b−s)λ ds

β2(t) ≤

≤ α3

(b− t)λ
β1(t) +

α1

(b− t)λ
β2(t) = β′1(t) for a. e. t ∈ Ak

and

− |f3−k(t)|β1

(
τ3−k(t)

)
≥

≥ − |f3−k(t)|

1 +
t∫

τ3−k(t)

α3
(b−s)λ ds

β1(t)−
|f3−k(t)|

τ3−k(t)∫
t

α1
(b−s)λ ds

1 +
t∫

τ3−k(t)

α3
(b−s)λ ds

β2(t) ≥

≥ − α4

(b− t)λ
β1(t)− α2

(b− t)λ
β2(t) = β′2(t) for a. e. t ∈ A3−k ,

which, together with the inequalities (6.123), guarantees that

β′1(t) ≥ |fk(t)|β2

(
τk(t)

)
for a. e. t ∈ [a, b]
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and

β′2(t) ≤ −|f3−k(t)|β1

(
τ3−k(t)

)
for a. e. t ∈ [a, b].

Consequently, the functions β1, β2 satisfy the conditions (6.37) and (6.38).
On the other hand, in view of the relations (6.93) and (6.123), we get

b∫
a

fk,1−m(s)β2

(
τk(s)

)
ds ≤ β2(a)‖fk,1−m‖L = ω1 < %a = β1(a),

and thus the inequality (6.39) holds. Finally, we will show that the inequal-
ity (6.40) is satisfied in all cases (i)–(iv). Note that in view of (6.93) and
(6.123) we have

Φ :=

b∫
a

f3−k,m(s)β1

(
τ3−k(s)

)
ds+

+

b∫
a

f3−k,1−m(s)
( τ3−k(s)∫

a

fk,1−m(ξ)β2

(
τk(ξ)

)
dξ
)

ds ≤

≤ %bβ2(b)‖f3−k,m‖L +

b∫
a

f3−k,1−m(s)
( τ3−k(s)∫

a

fk,1−m(ξ) dξ
)

ds. (6.125)

Case (i): fk,1−m ≡ 0 and f3−k,m ≡ 0. In this case, we have Φ = 0 and
thus the inequality (6.40) trivially holds as the strict one.

Case (ii): fk,1−m ≡ 0 and f3−k,m 6≡ 0. The relation (6.125) yields

Φ ≤ %bβ2(b)‖f3−k,m‖L < ω2‖f3−k,m‖Lβ2(b) = β2(b),

i. e., the inequality (6.40) holds.

Case (iii): fk,1−m 6≡ 0 and f3−k,m 6≡ 0. In view of the conditions (6.61)
and (6.94), the relation (6.125) implies

Φ ≤ %bβ2(b)‖f3−k,m‖L+
(

1−ω2‖f3−k,m‖L
)

exp
(
−

b∫
a

α2+α4ω2

(b−s)λ
ds
)
≤

≤ %bβ2(b)‖f3−k,m‖L +
(

1− %b‖f3−k,m‖L
)

exp
(
−

b∫
a

α2 + α4%b
(b− s)λ

ds
)
≤

≤ %bβ2(b)‖f3−k,m‖L +
(

1− %b‖f3−k,m‖L
)
β2(b) = β2(b),

i. e., the inequality (6.40) is satisfied.
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Case (iv): fk,1−m 6≡ 0 and f3−k,m ≡ 0. Using (6.62) and (6.94), we get
from (6.125) the relation

Φ < exp
(
−

b∫
a

α2 + α4ω2

(b− s)λ
ds
)
≤ exp

(
−

b∫
a

α2 + α4%b
(b− s)λ

ds
)
≤ β2(b),

and thus the inequality (6.40) holds as the strict one.
Consequently, the assumptions of Theorem 6.20 are satisfied in all cases

(i)–(iv). �

Proof of Theorem 6.29. It is clear that the system (6.54) is a particular case
of the system (6.33) in which the operators h1, h2 are defined by the formula
(6.122). Obviously, the inclusions (−1)mhk, (−1)1−mh3−k ∈ Pab hold, and
the operator h3−k is an a-Volterra one. By virtue of the inequality (6.65),
there exist %a, %b ∈ ]0,+∞[ such that %a < %b and

%b∫
%a

ds
α1 + α2s+ α3s2

=
(b− a)1−λ

1− λ
.

Therefore, according to Lemma 6.35, we can find ω1, ω2 ∈ AC([a, b]; R) such
that ω′1, ω

′
2 ∈ Cloc([a, b[ ; R) and the conditions

ω′1(t) =
α2

(b− t)λ
ω1(t) +

α1

(b− t)λ
ω2(t) for t ∈ [a, b[ , (6.126)

ω′2(t) = − α3

(b− t)λ
ω1(t) for t ∈ [a, b[ (6.127)

and

ωi(t) > 0 for t ∈ [a, b], i = 1, 2,

are satisfied. Put

γ1(t) =
ω1(t)

(b− t)ν
for t ∈ [a, b[ , γ2(t) = ω2(t) for t ∈ [a, b].

It is easy to see that γ1 ∈ ACloc([a, b[ ; R), γ2 ∈ AC([a, b]; R), and the
condition (6.41) holds. Using the equalities (6.126) and (6.127), we get

γ′1(t) =
( ν

b− t
+

α2

(b− t)λ
)
γ1(t) +

α1

(b− t)λ+ν
γ2(t) for t ∈ [a, b[ (6.128)

and

γ′2(t) = − α3

(b− t)λ−ν
γ1(t) for t ∈ [a, b[ . (6.129)

Consequently, it is clear that γ′2 is continuous and non-increasing on the
interval [a, b[ and

γ′1(t) ≥ 0, γ′2(t) ≤ 0 for t ∈ [a, b[ . (6.130)
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Let the set A3−k be defined by the formula (6.124). If we take the conditions
(6.41), (6.64) and (6.128)–(6.130) into account, by direct calculation we
obtain

γ2

(
τk(t)

)
= γ2(t) +

τk(t)∫
t

γ′2(s) ds ≤ γ2(t) + γ′2(t)
(
τk(t)− t

)
=

=
α3

(b− t)λ−ν
(
t− τk(t)

)
γ1(t) + γ2(t) for a. e. t ∈ [a, b]

and

−γ1

(
τ3−k(t)

)
= −γ1(t) +

t∫
τ3−k(t)

γ′1(s) ds =

= −γ1(t)+

t∫
τ3−k(t)

( ν

b− s
+

α2

(b−s)λ
)
γ1(s) ds+

t∫
τ3−k(t)

α1

(b− s)λ+ν
γ2(s) ds ≥

≥ −γ1(t)+γ1

(
τ3−k(t)

) t∫
τ3−k(t)

( ν

b−s
+

α2

(b−s)λ
)

ds for a. e. t∈A3−k .

Therefore, by virtue of the conditions (6.41), (6.63), (6.64), (6.66)–(6.68),
(6.128) and (6.129), from the last relations we get

(−1)mfk(t)γ2

(
τk(t)

)
= |fk(t)|γ2

(
τk(t)

)
≤

≤ α3

(b− t)λ−ν
|fk(t)|

(
t− τk(t)

)
γ1(t) + |fk(t)|γ2(t) ≤

≤
( ν

b−t
+

α2

(b−t)λ
)
γ1(t)+

α1

(b−t)λ+ν
γ2(t)=γ′1(t) for a. e. t∈ [a, b]

and

(−1)mf3−k(t)γ1

(
τ3−k(t)

)
= −|f3−k(t)|γ1

(
τ3−k(t)

)
≥

≥ − |f3−k(t)|

1 +
t∫

τ3−k(t)

(
ν
b−s + α2

(b−s)λ

)
ds

γ1(t) ≥

≥ − α3

(b− t)λ−ν
γ1(t) = γ′2(t) for a. e. t ∈ A3−k ,

which, together with the second inequality in (6.130), guarantees that

γ′1(t) ≥ (−1)mfk(t)γ2

(
τk(t)

)
for a. e. t ∈ [a, b]

and
γ′2(t) ≤ (−1)mf3−k(t)γ1

(
τ3−k(t)

)
for a. e. t ∈ [a, b],

and thus the functions γ1, γ2 satisfy the conditions (6.42) and (6.43).
Consequently, the assumptions of Theorem 6.21 are fulfilled. �
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Proof of Corollary 6.30. The validity of the corollary follows from Theo-
rem 6.29 with α1 = α, α2 = 0, α3 = β and k = 2, m = 1 (resp. k = 1,
m = 0). �

Proof of Corollary 6.31. It is clear that the system (6.69) is a particular
case of the system (6.33) in which

h1(z)(t) = f1(t)z
(
τ1(t)

)
for a. e. t ∈ [a, b] and all z ∈ C([a, b]; R)

and h2 = h2,0 − h2,1, where

h2,i(z)(t) = f2,i(t)z
(
τ2,i(t)

)
for a. e. t ∈ [a, b] and all z ∈ C([a, b]; R), i = 0, 1.

Obviously, h1, h2,0, h2,1 ∈ Pab. By virtue of the assumption (a) (resp.,
(b), resp., (c)) of the corollary, it follows from Theorem 5.25 (resp., Theo-
rem 5.28, resp., Theorem 5.30) that(

h1, h2,0

)
∈ Ŝ 2,1

ab (a).

On the other hand, in view of the assumption (A) (resp., (B)) of the corol-
lary, Theorem 5.32 (resp., Theorem 5.34) yields that(

h1,−
1
2
h2,1

)
∈ Ŝ 2,1

ab (a).

Consequently, the assumptions of Corollary 6.25 with k = 1 and m = 0
are satisfied. �

6.3. Counterexamples. In this section, we construct counterexamples
verifying that some of the results stated above are unimprovable in a certain
sense.

Example 6.36. Let ε ∈ ]0, 1[ and the operator ` be defined by the formula

`(v)(t) =
1

2(b− a)

(
1 −1
−1 1

)
v(b) for t ∈ [a, b], v ∈ C([a, b]; R2).

It is clear that the inequalities (6.2), (6.5) and (6.10) are satisfied on the set
C([a, b]; R2), where ϕ1 = 0,25

ϕ0(v)(t) =
1

2(b− a)

(
1 1
1 1

)
v(b) for t ∈ [a, b], v ∈ C([a, b]; R2)

and

ψ0(z)(t) =
z(b)
b− a

for t ∈ [a, b], z ∈ C([a, b]; R).

Moreover, using Corollary 4.26 (with δ1 = δ2 = 1) and Lemma 4.45, we get
the inclusions

0 ∈ S2
ab(a), (1− ε)ϕ0 ∈ S2

ab(a), (1− ε)ψ0 ∈ Sab(a).

25The symbol 0 stands here for the zero operator.
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On the other hand, the problem (3.1), (3.2) with qi ≡ 0 and ci = 0 (i = 1, 2)
has a nontrivial solution (u1, u2)T , where

u1(t) = t− a, u2(t) = a− t for t ∈ [a, b].

This example shows that the assumptions (6.1), (6.4) and (6.11) of The-
orems 6.1, 6.3 and 6.6 cannot be replaced by the assumptions (6.3), (6.6)
and (6.13), respectively, no matter how small ε > 0 is.

Example 6.37. Let ε ∈ ]0, 1[ , α ∈ ]0, 1], and a < t0 < t1 < b. Choose
functions pik ∈ L([a, b]; R) (i, k = 1, 2) such that

pik(t)(t− t0)(t− t1) ≤ 0 for a. e. t ∈ [a, b], i, k = 1, 2,

2∑
k=1

t0∫
a

|pik(s)|ds =
α

1 + ε
,

b∫
t1

|pii(s)|ds = 2 + ε for i = 1, 2,

p12 ≡ p21 ≡ 0 on the interval [t1, b], and

2∑
k=1

t1∫
t0

pik(s) ds = 1− α for i = 1, 2.

Let the operator ` be defined by the formula

`(v)(t) =
(
p11(t) p12(t)
p21(t) p22(t)

)
v
(
τ(t)

)
for a. e. t ∈ [a, b] and all v ∈ C([a, b]; R2),

where

τ(t) =

{
b for t ∈ [a, t0[ ,
t1 for t ∈ [t0, b].

It is easy to verify that the inequality (6.10) is satisfied on the set
C([a, b]; R2), where

ϕ0(v)(t) =
(
p̃1(t) |p12(t)|
|p21(t)| p̃2(t)

)
v
(
τ(t)

)
for a. e. t ∈ [a, b] and all v ∈ C([a, b]; R2),

ϕ1(v)(t) = −
(
g1(t) 0

0 g2(t)

)
v
(
µ(t)

)
for a. e. t ∈ [a, b] and all v ∈ C([a, b]; R2),
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in which

p̃i(t) =


|pii(t)| for t ∈ [a, t1[ ,

1 + ε

2 + ε
|pii(t)| for t ∈ [t1, b],

gi(t) =


0 for t ∈ [a, t1[ ,

1 + ε

2 + ε
|pii(t)| for t ∈ [t1, b],

and

µ(t) =

{
a for t ∈ [a, t1[ ,
t1 for t ∈ [t1, b].

Obviously, ϕ0 + ϕ1 ∈ P2
ab, −ϕ1 ∈ P2

ab, and ϕ1 is an a-Volterra operator.
Moreover,

(1− ε)
b∫
a

gi(s) ds =
1− ε2

2 + ε

b∫
t1

|pii(s)|ds = 1− ε2 < 1 for i = 1, 2,

and thus, by Theorem 4.38(a), we get the inclusion

(1− ε)ϕ1 ∈ S2
ab(a).

Furthermore, since

b∫
a

(
p̃i(s) + |pi3−i(s)|

)
ds =

t1∫
a

(
|pi1(s)|+ |pi2(s)|

)
ds =

=
α

1 + ε
+ 1− α =

1 + (1− α)ε
1 + ε

< 1

for i = 1, 2, using Corollary 4.26 (with δ1 = δ2 = 1) we obtain the inclusion

ϕ0 + ϕ1 ∈ S2
ab(a).

On the other hand, the problem (3.1), (3.2) with qi ≡ 0 and ci = 0 (i = 1, 2)
has a nontrivial solution (u1, u2)T , where

ui(t) =


(1 + ε)

t∫
a

|pi1(s)|ds+ (1 + ε)

t∫
a

|pi2(s)|ds for t ∈ [a, t0[ ,

α+

t∫
t0

pi1(s) ds+

t∫
t0

pi2(s) ds for t ∈ [t0, b].

This example shows that the assumption (6.11) of Theorem 6.6 cannot
be replaced by the assumption (6.12), no matter how small ε > 0 is.
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Example 6.38. Let ε1, ε2 ∈ [0, 1[ , ε1 + ε2 > 0, and the operators h1, h2

be defined by the relations

h1(z)(t) = f1(t)z
(
τ(t)

)
for a. e. t ∈ [a, b] and all z ∈ C([a, b]; R)

and

h2(z)(t) = f2(t)z(b) for a. e. t ∈ [a, b] and all z ∈ C([a, b]; R),

where f1, f2 ∈ L([a, b]; R+) and τ : [a, b] → [a, b] is a measurable function
such that

b∫
a

f1(s)
( τ(s)∫

a

f2(ξ) dξ
)

ds = 1.

It is clear that h1, h2 ∈ Pab and, for any z ∈ C([a, b]; R), the inequality
(6.46) with k = 1 and m = 0 is satisfied, where g0 = 026 and g1 = h2.
Moreover,

(1− ε1)(1− ε2)

b∫
a

f1(s)
( τ(s)∫

a

f2(ξ) dξ
)

ds < 1,

and thus, using Theorem 5.30, we get(
(1− ε1)h1, (1− ε2)h2

)
∈ Ŝ 2,1

ab (a).

It is also clear that (h1, 0) ∈ Ŝ 2,1
ab (a) (see, e. g., Theorem 5.30). Conse-

quently, the assumptions of Theorem 6.23 with k = 1 and m = 0 are
satisfied, except the condition (6.45), instead of which the condition (6.47)
is fulfilled. On the other hand, the problem (6.33), (6.34) with qi ≡ 0 and
ci = 0 (i = 1, 2) has a nontrivial solution (u1, u2)T , where

u1(t) =

t∫
a

f1(s)
( τ(s)∫

a

f2(ξ) dξ
)

ds, u2(t) =

t∫
a

f2(s) ds for t ∈ [a, b].

This example shows that the assumption (6.45) of Theorem 6.23 cannot
be replaced by the assumption (6.47), no matter how small ε1, ε2 ∈ [0, 1[
with ε1 + ε2 > 0 are.

26The symbol 0 stands here for the zero operator.
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Example 6.39. Let α ∈ ]0, 1[ , ε1, ε2 ∈ [0, 1[ , ε1 + ε2 > 0, and a < t1 <
t2 < b. Put ε = max{ε1, ε2} and choose f1, f2 ∈ L([a, b]; R) such that

f1(t) ≥ 0, (t− t1)(t− t2)f2(t) ≤ 0 for a. e. t ∈ [a, b],
t1∫
a

f1(s)
( s∫
a

|f2(ξ)|dξ
)

ds =
α

1 + ε
,

t2∫
t1

f1(s)
(

(1 + ε)

t1∫
a

|f2(ξ)|dξ +

s∫
t1

f2(ξ) dξ
)

ds = 1− α,

b∫
t2

f1(s) ds=εmin


t2∫
t1

f1(s) ds
t1∫
a

|f2(s)|ds

t2∫
a

|f2(s)|ds
,

1

(1+ε)
t1∫
a

|f2(s)|ds+
t2∫
t1

f2(s) ds

 ,

and
b∫

t2

f1(s)
( s∫

t2

|f2(ξ)|dξ
)

ds = 2(1 + ε).

Furthermore, we put

u2(t) =


(1 + ε)

t∫
a

|f2(s)|ds for t ∈ [a, t1[ ,

(1 + ε)

t1∫
a

|f2(s)|ds+

t∫
t1

f2(s) ds for t ∈ [t1, b],

and

u1(t) =

t∫
a

f1(s)u2(s) ds for t ∈ [a, b].

It is clear that u1, u2 ∈ AC([a, b]; R), u1(t2) = 1 and u1(b) ≤ −(1 + ε), and
thus there exists t0 ∈ [t2, b] such that u1(t0) = −(1 + ε). Let the operators
h1 and h2 be defined by the relations

h1(z)(t) = f1(t)z(t) for a. e. t ∈ [a, b] and all z ∈ C([a, b]; R)

and

h2(z)(t) = f2(t)z
(
τ(t)

)
for a. e. t ∈ [a, b] and all z ∈ C([a, b]; R),

where

τ(t) =

{
t0 for t ∈ [a, t1[ ,
t2 for t ∈ [t1, b].
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It is not difficult to verify that for any z ∈ C([a, b]; R) the inequality (6.46)
with k = 1 and m = 0 is satisfied, where

g0(z)(t) = −p0(t)z
(
τ0(t)

)
for a. e. t ∈ [a, b] and all z ∈ C([a, b]; R),

g1(z)(t) = p1(t)z
(
τ(t)

)
for a. e. t ∈ [a, b] and all z ∈ C([a, b]; R),

p0(t) =


0 for t ∈ [a, t2[ ,

1
2
|f2(t)| for t ∈ [t2, b],

p1(t) =


|f2(t)| for t ∈ [a, t2[ ,

1
2
|f2(t)| for t ∈ [t2, b],

and

τ0(t) =

{
a for t ∈ [a, t2[ ,
t2 for t ∈ [t2, b].

Obviously, we have h1 ∈ Pab and(
g0 + g1

)
(z)(t) = f̃(t)z

(
τ(t)

)
for a. e. t ∈ [a, b] and all z ∈ C([a, b]; R),

where

f̃(t) =

{
|f2(t)| for t ∈ [a, t2[ ,
0 for t ∈ [t2, b].

Therefore, g0 + g1 ∈ Pab and

b∫
a

f1(s)
( s∫
a

f̃(ξ) dξ
)

ds =

t1∫
a

f1(s)
( s∫
a

|f2(ξ)|dξ
)

ds+

+

t2∫
t1

f1(s)
(

(1 + ε)

t1∫
a

|f2(ξ)|dξ +

s∫
t1

f2(ξ) dξ
)

ds−

−
(
ε

t2∫
t1

f1(s) ds

t1∫
a

|f2(s)|ds−
b∫

t2

f1(s) ds

t2∫
a

|f2(s)|ds
)
≤

≤ α

1 + ε
+ 1− α =

1 + ε(1− α)
1 + ε

< 1.

Hence, Theorem 5.30 yields that(
h1, g0 + g1

)
∈ Ŝ 2,1

ab (a).

Furthermore, −g0 ∈ Pab, the operators h1, g0 are a-Volterra ones, and since

(1− ε1)(1− ε2)

b∫
a

f1(s)
( s∫

a

p0(ξ) dξ
)

ds ≤

≤ 1− ε
2

b∫
t2

f1(s)
( s∫
t2

|f2(ξ)|dξ
)

ds = 1− ε2 < 1,
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using Theorem 5.32 we get(
(1− ε1)h1, (1− ε2) g0

)
∈ Ŝ 2,1

ab (a).

Consequently, the assumptions of Theorem 6.23 with k = 1 and m = 0
are satisfied, except the condition (6.45), instead of which the condition
(6.48) is fulfilled. On the other hand, (u1, u2)T is a nontrivial solution to
the problem (6.33), (6.34) with qi ≡ 0 and ci = 0 (i = 1, 2).

This example shows that the assumption (6.45) of Theorem 6.23 cannot
be replaced by the assumption (6.48), no matter how small ε1, ε2 ∈ [0, 1[
with ε1 + ε2 > 0 are.
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24. R. Hakl, A. Lomtatidze, and B. Půža, On nonnegative solutions of first order
scalar functional differential equations. Mem. Differential Equations Math. Phys.

23 (2001), 51–84.
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