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Abstract. The presented work deals with the question on the existence
and uniqueness of a solution of the initial value problem for two-dimensional
systems of linear functional differential equations.

Unimprovable efficient conditions sufficient for the unique solvability of
the problem considered are established. The question on the existence of
a constant-sign solution is also studied in detail. In other words, theorems on
systems of linear functional differential inequalities (maximum principles)
are discussed, which play a crucial role not only in studies of solvability of
linear and non-linear problems but also for other topics related to the theory
of boundary value problems (e.g., oscillation theory, asymptotic theory,
etc.).

The general results are applied to special cases of functional differential
systems, namely, to systems of differential equations with arguments de-
viations and integro-differential systems, in which case further results are
derived; the criteria obtained contain results well-know for ordinary differ-
ential systems.
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PREFACE

The presented work is devoted to the study of certain qualitative proper-
ties of functional differential systems. The author’s first results, concerned
with the question on the solvability of a two-point boundary value problem
for the first-order scalar functional differential equations (see [26-31, 78]),
were published in a comprehensive form in the monograph [32]. The tech-
niques used therein had later been generalized and modified for the case of
higher dimensions and, as a result, some efficient conditions for the solv-
ability of the initial value problem for functional differential systems were
obtained. The present work collects material from the papers [73-77]. The
results established in [73-75] are reformulated for the two-dimensional case.
Some of the statements given in [76,77] are also incorporated into the text.

The main part of the work is Section 6, where the question on the unique
solvability of the initial value problem for two-dimensional systems of linear
functional differential equations is studied. Since the results stated therein
are proved using the techniques of differential inequalities, theorems on sys-
tems of functional differential inequalities are investigated in Sections 4
and 5.

For the sake of convenience, each section is organized as follows. At
first, all the main results are formulated and discussed. These results are
then applied to a special case of functional differential systems, namely,
to systems of differential equations with arguments deviations, in which
case further results are obtained. Then, necessary auxiliary lemmas and
the detailed proofs of all the statements formulated above are presented.
Finally, we construct several counterexamples showing that some of the
results obtained are unimprovable in a certain sense.

The results presented in this work were achieved using the subsidization
by the grants No. 201/04/P183 and No. 201/06/0254 of the Czech Science
Foundation. The research was also supported by the Academy of Sciences
of the Czech Republic, Institutional Research Plan No. AV0Z10190503.

1. BASIC NOTATION AND DEFINITIONS

(1) N is the set of all natural numbers.
(2) R is the set of all real numbers, R, = [0, 400].
(3) For any z € R, we put

(el = 3ol +2), [l = Ll — ).

(4) R? is the space of two-dimensional columns z = (z;)7_; with the
elements z1,x2 € R and the norm

]l = faa] + [

(5) R: = {(z:)2_; € R?: 21 >0, x5 > 0}.
(6) x -y denotes the scalar product of the vectors z,y € R2.
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(7)

(8)

(9)
(10)

(21)

R**? is the space of 2 x 2-matrices X = (%)} ;_, with the elements
i € R (i,k = 1,2) and the norm

2
X1 =" |wl.

ik=1

X1 denotes the inverse matrix to X € R2*2,
XT stands for the transposed matrix to an n x m-matrix X.
For v = (z:)i_1,y = (y)izy € R® and X = (zip)7,—y, ¥ =
(Yir)} =1 € R**?, we put

x <y if and only if z; <y; for i =1,2,

x <y if and only if z; <y; for i =1,2,

X <Y if and only if z;; < y; for i,k=1,2.

We write > 0 and > 0 instead of x > (0,0)” and = > (0,0)7,

respectively.
2

If x :2 ()7, € R?, tglen we denote |z| = 2(|xi|)¢:1’ [z]+ =
([xi]-‘r)i:p [I]_ = ([mi]—)i:p Sgn(‘f) = (|Sgnxi|)i:1a and
_ [sgnxy 0
Sen(z) = ( 0 sgnxg) .

Having x1, 22 € R, we put

N

T2

C([a,b]; R?) denotes the Banach space of continuous vector func-
tions u: [a,b] — R? equipped with the norm

lulle = max{||u(t)|| i te [a,b]}.

Ca([a,b]; D), where D C R2, is the set of the continuous vector
functions wu: [a,b] — D such that u(a) = 0.

AC([a,b]; R?) is the set of absolutely continuous vector functions
u: [a,b] — R2.

C([a,b]; R) denotes the Banach space of continuous scalar functions
z: [a,b] — R equipped with the norm

|2]lc = max {|z(t)| : t € [a,b]}.

C([a,b];Ry) = {2z € C([a,b;R) : 2(t) > 0fort € [a,b]}.

Cy([a,b]; R) is the set of the continuous functions u: [a,b] — R such
that u(a) = 0.

Cioc([a, b[; R) is the set of continuous functions z: [a,b][— R.
AC([a,b]; R) stands for the set of absolutely continuous scalar func-
tions z: [a,b] — R.

ACc([a,b[;R) is the set of the functions z: [a,b[ — R such that
2|[a,8) € AC([a, B]; R) for every (3 €a, b[.
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(22) L([a,b]; R?) is the Banach space of Lebesgue integrable vector func-
tions q: [a,b] — R? equipped with the norm

b
llallz :/||q(s)||ds.

(23) L([a,b];R) is the Banach space of Lebesgue integrable scalar func-
tions f: [a,b] — R equipped with the norm

b
1l = / 1£(s)] ds.

(24) L([a,b;Ry) = {f € L([a,b;R) : f(t) >0 for a.e. t € [a,b]}.

(25) L2, denotes the set of linear bounded operators ¢: C([a, b]; R?) —
£{{a, B R?).

(26) Lqp is the set of linear bounded operators ¢: C([a,b;R) —
L([a,b]; R).

(27) If £: C(la,b]; R?) — L([a,b];R?) is a linear operator, then for any
i € {1,2} and u € C([a,b];R?) ¢;(u) denotes the ith component
of the vector function ¢(u). Moreover, for any i,k € {1,2} and
z € C([a,b];R), we put

(2,007 if k=1,

lin(2) = €;(21), where zj, = {(O,Z)T if k=2

The linear operators ¢;: C([a,b];R) — L([a,b];R) (i, k = 1,2) are
said to be components of the operator £. Obviously, for any u =
(u1,u2)T € C([a,b]; R?), we have

2
(u) = (El(u),fg(u))T and 4;(u) = Z&k(uk) for i =1,2.
k=1

(28) Given a linear operator ¢: C([a, b]; R?) — L([a, b]; R?), we put
Pu(t) = (L (1)(1))?_, fora.c. ¢ € [a,b].
It is clear that P;: [a,b] — R2*? is an integrable matrix function.

Definition 1.1. An operator ¢ € £2, (resp., £ € L) is said to be strongly
bounded if there exists a function n € L([a,b]; Ry) such that

16(u)(t)]| < n(t)|jullc for a.e. t € [a,b] and all u € C([a,b]; R?)
(resp.7 [0(z)(t)] < n(t)||z]|c for a.e. t € [a,b] and all z € C([mb];R)).
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Example 1.2. Let the operator £: C([a,b]; R?) — L([a,b]; R?) be defined
by the relation

((w)(t) = (p n(to Eﬁl(t); + pra(t)v2 Em(t)D

P21 (t)v1 (121(t)) + p2z(t)va (T22(t)
for a.e. t € [a,b] and all v = (vy,v2)T € C([a,b];R?), (1.1)

where p;. € L([a,b;R) and 7: [a,b] — [a,b] are measurable functions
(i,k = 1,2). Then it is clear that ¢ is strongly bounded and

i (2)(t) = pik(t)z(nk(t)) for a.e. t € [a,b] and all z € C([a,d];R).

Definition 1.3. An operator £ € L2, (resp., { € Lyp) is said to be positive
if the relation
L(u)(t) >0 for a.e. t € [a,]
holds for every function u € C([a,b]; R?) (resp., u € C([a,b];R)) satisfying
the condition
u(t) >0 for t € [a,b].

We denote the set of positive operators by P2 (resp., Pap)-

We say that an operator £ € L2, (resp., £ € Lap) is negative if —¢ € P?
(resp., —¢ € Pa). An operator ¢ is called monotone if it is either positive
or negative.

Remark 1.4. Tt is clear that every monotone operator is strongly bounded.

Remark 1.5. Tt is not difficult to verify that £ € P2, if and only if
lir, € Pap for i,k =1,2.
In particular, the operator ¢ given by the formula (1.1) is positive if and
only if
pik(t) >0 for a.e. t € [a,b], i,k=1,2.
Definition 1.6. A linear operator ¢: C([a,b];R™) — L([a,b];R™), where
n € {1,2}, is said to be an a-Volterra operator if, for every by € ]a,b] and

v € C([a,b]; R™) such that v(t) = 0 holds for ¢ € [a, by], we have £(v)(t) =0
for a.e. t € [a, bo].

Remark 1.7. Clearly, ¢ € £2, is an a-Volterra operator if and only if all its
components £, (i,k = 1,2) are a-Volterra operators.

In particular, the operator ¢ given by the formula (1.1) is an a-Volterra
operator if and only if the condition

|pir ()| (T3 (t) — t) < 0 for a.e. t € [a,b], i,k=1,2

is satisfied.
Definition 1.8. Let ¢: C([a,b];R™) — L([a,b];R™), where n € {1,2}, be
an arbitrary operator and by €]a,b]. The operator (2% : C([a,bo]; R") —
L([a, bo]; R™) defined by the equality

0% (2)(t) = £ (zp,) (t) for a.e. t € [a,by] and all z € C([a, bo];R™),
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where
) z(t) for t € [a,bo],
z =
b 2(by) for t € [bo, b,

is called the restriction of the operator £ to the space C([a,bg]; R™).
If bp < by < band z € C([a,b1];R™), then we write £2%(2) instead of

4% (2 1a,b0]) -

Remark 1.9. If £: C([a,b];R) — L([a,b];R) is an a-Volterra operator, then
it is clear that for every by €la,b] and z € C([a, b]; R) the condition

(%% (2)(t) = £(2)(t) for a.e. t € [a, bo]

is satisfied.

2. MOTIVATION AND ILLUSTRATIVE EXAMPLE

It is well-known that differential equations appear in mathematical mod-
els of various phenomena in physics, economy, biology, engineering, and
other fields of science. In many cases, these equations can be written in the
form of the ordinary differential system

v = f(t,2), (2.1)

where f: [0, +oo[ xR™ — R™ is a certain vector function (in general non-
linear). The system (2.1) characterizes the evolution of the state variables
x € R™ in time. The basic assumption that is made on the process when
models of this kind are used is that the evolution of the system at the
moment ¢ is completely determined by the value of the state variables at
the same moment. In other words, for any ¢y € [0,4o0[, in order to find
the value of z(t) of the state variables at the moment ¢ > to, it is sufficient
to know the initial value z(to).

In practice, however, many phenomena cannot be satisfactorily modelled
by ordinary differential systems. Indeed, for many processes, the evolution
of the state variables x at the moment ¢ depends not only on the current
value x(¢) but also on their past or future values. Consequently, when
constructing mathematical models for such processes, we obtain differential
systems with deviating arguments or more general functional differential
systems. Many illustrative examples of such models can be found in the
literature (see, e. g., [18,35,35,48] and references therein).

In order to explain how the delay terms in differential systems may arise,
let us consider the modelling of regenerative effects in metal cutting in
a lathe. The situation under examination is described as follows. A cylin-
drical workpiece rotates with constant angular velocity w and the lathe
carriage moves along the axis of the workpiece with constant linear velocity
‘5—7{, where f denotes the feed rate in length per revolution (see Fig. 2.1(a),
which is taken from [18]). In such a way, the tool removes a chip whose
steady thickness is equal to the feed rate f. Because of some external per-
turbations, the tool starts a damped oscillation y(t) relative to the lathe
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(a) Geometry of turning (b) One-degree-of-freedom model
Fig. 2.1.

carriage and the surface of the workpiece becomes wavy. After a round of
the workpiece, the chip thickness will vary because of relative oscillation of
the tool. The cutting force is commensurable, among other quantities, to
the instantaneous chip thickness and thus depends not only on the steady
chip thickness and the actual relative displacement of the tool, but also on
the delayed values of relative displacement of the tool. It should be noted
that the value of the delay is equal to the time-period 7 of one revolution
of the workpiece.

The following one-degree-of-freedom model of the cutting process shown
on Fig. 2.1(b) goes back to 1950s (see, e. g., [1,16]). The equation of motion
takes the form

my" + ¢y’ + ky = —AF,(h, V),
where m, ¢, and k denote the inertia, damping, and stiffness characteristics
of the tool, F, is the component of the cutting-force in the direction of os-
cillations, h is the instantaneous chip thickness, and ¥ stands for the vector
of the other input quantities (cutting velocity, chip width, material charac-
teristics, etc.). The instantaneous chip thickness h(t) at the moment ¢ is
often written as a deviation from the steady chip thickness f, i.e.,

h(t) = f+y(t) —ylt —7),
where 7 is the time-period of one revolution of the workpiece (i.e., 7 = %’T)
Consequently, the equation of motion can be rewritten in the form

Y () +2Cwny’ (1) +wry(t) = —% (P (F +y() —y(t=7),9(1) = F, (£.90)),

where w,, is the natural angular frequency of the non-damped free oscil-
lator, ¢ is the relative damping factor, and ¥y is the steady value of the
input quantities. Hence, we have obtained a second-order non-linear delay
differential equation.

Assuming that the vector of the input quantities ¢ is constant in time,
after linearization of the cutting-force Fy at the steady chip thickness f, the
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linearized equation of motion becomes (see, e. g., [80])

k k
V(0 + 2/ 0+ (G Dy - Lye - =0, 22)
m m
where k1 = w R which is a second-order linear delay differential

equation.

Another type of linearization of the cutting-force in the equation of mo-
tion is presented in [79]. Assuming that p describes the shape of the station-
ary stress distribution along the active face of the tool in the time-domain
[—0,0], where o is the time-period needed for the chip to slip along the
active face of the tool, the linearized equation has the form

Y (1) + 20wy (8) + why(t) + = / p(s —t)(y(s) —y(s — 7)) ds =0, (2.3)

where ko is a suitable constant, which is a second-order linear integro-
differential equation with o delayed argument.

Now let us go back to the equation (2.2). We will consider this equation
on the interval [0, 7], where T > 0 is large enough. Because of the delayed
term y(t —7), to define correctly the initial value problem for (2.2), it is not
sufficient to prescribe the initial values y(0) and y’(0); we must prescribe
values of the function y on the interval [—7,0]. Consequently, the initial
conditions subjected to the equation (2.2) can be written in the form

y(t) = ¢(t) for t€[-T1,0], %' (0)=d, (2.4)

where d € R and ¢: [-7,0] — R is a suitable initial function. From the
application point of view, the problem on the stability of the equation (2.2)
is very interesting. But the first very important question reads as follows:
Does there exist any solution of the equation (2.2) satisfying the condition
(2.4)? It can be easily shown by the method of steps that, for any initial
function ¢ € C([—7,0];R) and an arbitrary d € R, there exists a unique
function y € C([—7,T]; R), possessing the continuous on [0, 7] second-order
derivative, such that the initial conditions (2.4) hold and the equality (2.2)
is satisfied for every t € [0, 7.

The equation (2.2) can be reduced to the form in which the deviation
maps the interval [0, T] into itself. Indeed, if we put

0 for te|0,7[, ﬁ@(t—q—) for t € [0, 7],
g(t) =1 ky qp(t) =g m
— fOI‘ te [’T, T], 0 fOI‘ te [Ta T]a

~n_ )0 for t € [0, 7],
) = {t T for t e [r,T], (25)
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then the problem (2.2), (2.4) takes the form

(0 + 2w (1) + (34 2)y0) — g FD) = at), (26)
y(0) = 0(0), o/(0)=d (27)

in which 7: [0,T] — [0, T].

Equations of the type (2.6) are often studied in the phase space (“dis-
placement—velocity”). To do this, one puts u = (y,y’)? and rewrites the
equation (2.6) as follows:

0 -1
W (t) = (wi +% , Cwﬂ) ult) + <g(0t) 8) w(7(t) + (%O(t)) . (28)

We thus obtain a two-dimensional differential system with a delayed argu-
ment, which is a particular case of the system (6.20) considered in Sec-
tion 6.1.3 below. Moreover, the initial condition (2.7) takes the form

u(a) = (wglo)) . (2.9)

As it has been noted above, for any function ¢ € C([-7,0;R) and an
arbitrary d € R there exists a unique vector function v € C([0, T]; R?),
continuously differentiable on [0, 7], such that the initial condition (2.9)
holds and the equality (2.8) is satisfied for every ¢ € [0,T]. In other words,
for every ¢ and d the initial value problem (2.8), (2.9) has a unique solution
without any additional assumption. However, if the system (2.8) is not
a delay system, i.e., 7(t) > t for some ¢t € [0,T], then certain additional
assumptions are necessary to ensure the unique solvability of the problem
(2.8),(2.9). Some such additional conditions can be found in Section 6.1.3
and one of them reads as

<w3+2%+2gwn+1) (?(t)—t) g% for t € [0,

and means that the deviation 7(¢) — ¢ is “small enough”.
In a similar way we can rewrite the equation (2.3) in the form of the
two-dimensional integro-differential system with a delayed argument

u'(t) = —Gru(t) — / Ga(s — t)u(s)ds+
(®)
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_Jo for te0,0f, . . O for t € 0,07,
X(t)_{l for t € [0,T], U(t)_{t—o for t € [0, T,
5(t)
1) =2 [ pls 1) (s — ) — (s)) s+
t—o
ko /

+ poey (1 —x(s)p(s —t)yp(s—7)ds for t €[0,T],
(1)
the function 7 is defined by the relation (2.5), and ¢ € C([-7 — 0,0;R) is
the initial function appearing in the initial conditions
y(t) =(t) for t € [-7—0,0], 3y'(0)=d

subjected to the second-order equation (2.3).

Finally, we note that the systems (2.8) and (2.10) have many common
properties irrespective of their representations, namely, the so-called Fred-
holm property of the linear boundary value problems, continuous depen-
dence of solutions on the initial conditions and parameters, etc. They both
are particular cases of the linear functional differential system in the general
form (3.1) in which the operator ¢ and the vector function ¢ are defined by
the formulas

(0= (20 s g )0+ (0 o) oGF0)
for t € [a,b], v € C([a,b];R?)
and ¢ = (0,¢,)T, and
t t
L(v)(t) = —Ghu(t) — / Ga(s — t)u(s)ds + / xX(s)Ga(s — t)u(7(s)) ds
5(t) a(t)
for t € [a,b], v € C([a,b];R?)
and ¢ = (0,qy)7, respectively.
Below we investigate functional differential systems in the general form

(3.1). TIts particular cases are also considered in order to illustrate the
applicability of the main results.

3. STATEMENT OF THE PROBLEM

On the interval [a,b], we consider the Cauchy problem for the two-di-
mensional linear differential system

u'(t) = L(u)(t) + q(t),
u(a) =c

—~

.C«O
N =
~— ~—

)



On the Initial Value Problem for Two-Dimensional Linear FDS 13

where £ € £2,, q € L([a,b]; R?), and ¢ € R?. As usual in the Carathéodory
case, by a solution to this problem we understand a vector function u €
AC([a, b]; R?) satisfying the equality (3.1) almost everywhere on the interval
[a,b] and verifying the initial condition (3.2). Using the components £
(i,k = 1,2) of the operator ¢ (see the item 27 in Section 1), the system (3.1)
can be rewritten to the form

uy (t) = La1(ur)(t) + a2 (u2)(t) + qr(t),
us(t) = o1 (uz)(t) + Loz (ua)(t) + ga(t).

Along with the problem (3.1), (3.2) we consider the corresponding homo-
geneous problem

u'(t) = L(u)(t), wu(a)=0. (3.3)
It is well-known that the linear problem (3.1), (3.2) has the so-called Fred-

holm property (see [33]; for the case where the operator £ is strongly boun-
ded, see also [1,16]). More precisely, the following statement holds.

Proposition 3.1. The problem (3.1), (3.2) is uniquely solvable for any q €
L([a,b];R?) and c € R? if and only if the homogeneous problem (3.3) has
only the trivial solution.

The differential system with argument deviations
uy (t) = pra(t)ur (111(t)) + pr2(t)ua (r2(t)) + @ (1),
b (t) = par(t)us (721 (t)) + paa(t)ua (T22(t)) + q2(1)

is investigated in more detail. Here we suppose that p;x,qx € L([a,b];R)
and 7k : [a,b] — [a, b] are measurable functions (i, k = 1,2). It is clear that
the system (3.1’) is a particular case of (3.1) in which the operator ¢ is
defined by the formula (1.1).

(3.1)

4. THEOREMS ON DIFFERENTIAL INEQUALITIES

It is well-known that theorems on differential inequalities play an im-
portant role not only in the theory of boundary value problems, but also
in many topics related to the theory of differential equations (asymptotic
theory, oscillation theory, etc.). Therefore, the question on the validity of
theorems on differential inequalities is studied by many authors (see, e.g.,
[2,9,10,15,17,21,24,28,29,32,36,37,39,46,47,55,63,65,66,69,71,74,81,82,84]).
Although for ordinary differential equations and their systems the question
indicated is studied in detail (see, e. g., [9,10,14,36,37,47,82,84] and refer-
ences therein), for functional differential systems, and even for rather simple
systems (3.1"), there is still a broad field for further investigation.

Consider the initial value problem for the system of ordinary differential
equations

u = P(t)u+q(t), ula)=c (4.1)
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with an integrable matrix function P: [a, b] — R2*2. The following proposi-
tion on systems of ordinary differential inequalities is well-known (see, e. g.,
[42]).

Proposition 4.1. Let the matriz function P = (pik)?,kzl satisfy
p12(t) >0, poi(t) >0 fora.e. t€la,b].
Then every absolutely continuous vector function x: [a,b] — R? such that
2’ (t) < P(t)z(t) + q(t) for a.e. t €la,b], z(a) <c
satisfies the condition
x(t) <u(t) for t € la,bl, (4.2)
where u is a solution to the problem (4.1).

Below we will give sufficient conditions under which an analogous result
is true also for the problem (3.1),(3.2). In other words, we will establish
efficient conditions for the operator ¢ which guaranteeing that a certain
maximum principle holds for the functional differential system (3.1).

We first introduce

Definition 4.2. Let n € {1,2}. We say that a linear bounded operator
£: C([a,b];R™) — L([a,b];R™) belongs to the set S¥ (a) if for an arbitrary
function u € AC([a, b]; R™) such that

u'(t) > (u)(t) for a.e. t € [a,b], (4.3)
u(a) >0,
the relation
u(t) >0 for t € [a,b] (4.5)

is satisfied.

If £ € 8% (a), then we say that the theorem on differential inequalities
holds for the system (3.1). Note also that, following [24], we write Sqp(a)
instead of S}, (a).

From Definition 4.2 it immediately follows

Proposition 4.3. Letn € {1,2}. The following three statements are equiv-
alent:

(1) € S2(a);

(2) The problem (3.1),(3.2) has a unique solution w for arbitrary q €
L([a,b];R™) and c € R™. Moreover, the solution u satisfies the con-
dition (4.5) provided that

q(t) >0 fora.e. t€lab], ¢>0;
(3) The operator Kp: AC([a,b];R™) — L([a,b]; R™) defined by the for-

mula

Ky(v)(t) =v'(t) — L(v)(t) for a.e. t € a,b] and all v e AC([a,b]; R™)
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is inverse positive' in the set B = {v € AC(la,b];R") : v(a) > 0}.

Remark 4.4. The following analogue of Proposition 4.1 for the problem
(3.1),(3.2) is true.

Let ¢ € 8%, (a). Then for an arbitrary vector function x € AC([a,b]; R?)
satisfying the conditions

z'(t) < l(z)(t) + q(t) for a.e. t€ab], z(a) <c,
the inequality (4.2) holds, where u is a solution to the problem (3.1),(3.2).

In what follows, we establish efficient conditions under which the theorem
on differential inequalities holds for the system (3.1). Analogous results for
the first and second-order scalar functional differential equations are given
in [24] and [55], respectively. As mentioned above, these results play very
important role not only in the theory of boundary value problems, but also
in many topics related to the theory of differential equations. In particular,
results of this section will be used in further sections for the study of the
solvability of the Cauchy problem for linear functional differential systems.

In Section 4.1, main results are formulated, their proofs being postponed
till Section 4.4. Differential systems with argument deviations are studied
in more detail in Section 4.2, in which case further results are obtained.
In Section 4.5, counterexamples are constructed verifying that the results
obtained are unimprovable in a certain sense.

4.1. Main results. A certain “characteristic” structure of the set 8% (a)
is described in the following theorem.

Theorem 4.5. Let { = (T —{~, where (T, (= € P2, are such that

€+ S Sgb(a)7 0~ S Sgb(a) (46)
Then ¢ € 82, (a).
Remark 4.6. The assumption (4.6) in Theorem 4.5 can be replaced neither

by the assumption
(1—e)t €82 (a), —0 €8%(a)
nor by the assumption
reSha), —(1—e)l” €8xa),
no matter how small € > 0 is (see Examples 4.48 and 4.49).

In order to apply Theorem 4.5, we should find some conditions sufficient
for the inclusion ¢ € 8% (a) both if the operator ¢ is positive and negative.
The conditions indicated are given in Sections 4.1.1 and 4.1.2.

Below we will show (see Theorem 4.21) that if £ € S (a) is a negative
operator, then the components £15 and £9; of the operator £ are necessarily

IThe notion of an inverse positive operator is used by A. Cabada, P. Torres, and
others (see, e.g., [8,82]).
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zero operators. Consequently, using Theorem 4.5 and the results of Sec-
tions 4.1.1 and 4.1.2, we can derive several efficient conditions sufficient for
the inclusion ¢ € 82, (a) if the operator ¢ satisfies

by = U — 0, with 05,0, € Pay (i=1,2) and {12,021 € Py .
Now we give a rather simple assertion.
Proposition 4.7. Let ¢ € L2, be such that either
lis—i =0, l3_4; € Pap

holds for some i € {1,2}. Then ¢ € 82 (a) if and only if {11 € Su(a) and
lao € Sab(a).

Recall that the efficient conditions sufficient for the validity of the inclu-
sion £ € Syp(a) are established in the paper [24].

4.1.1. The case ¢ € P?,. A sufficient and necessary condition for a positive
operator £ is stated in the next theorem.

Theorem 4.8. Let ¢ € P%. Then { € 8% (a) if and only if there exists
v € AC([a, b]; R?) satisfying

() >0 for t € [a,b], (4.7)
Y (t) > l(y)(t) for a.e. t€ [a,b]. (4.8)

By a suitable choice of the function v in Theorem 4.8, we obtain the
following corollary.

Corollary 4.9. Let { € P?, and let there exist numbers m,k € N and
a € [0,1] such that m >k and

Qm(t) < Olgk(t) for t e [avb]’ (4'9)

where o' € R? is such that

o' >0, (4.10)
0T (t) = w(0")(t) for t € a,b], i €N, (4.11)

and
p(v)(t) = /é(v)(s) ds for t € [a,b], v e C([a,b];R?). (4.12)

a

Then ¢ € 82, (a).

Remark 4.10. The assumption « € [0, 1] in Corollary 4.9 cannot be replaced
by the assumption « € [0, 1] (see Example 4.50).

From the last corollary we get

2The symbol 0 stands here for the zero operator.
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Corollary 4.11. Let £ € P2, and there exist numbers §; > 0 and 6y > 0
such that

max{;iék/bﬁik(l)(s) ds: i= 1,2} <1. (4.13)
it

Then ¢ € 82,(a).

Remark 4.12. Example 4.50 shows that, in general, the strict inequality
(4.13) in Corollary 4.11 cannot be replaced by the nonstrict one. However,
in the case where the equality

max{;ig(sk a/beik(m(s) ds: i= 1,2} —1 (4.14)

is satisfied with some 6; > 0 and d> > 0, the inclusion ¢ € S8 (a) is still
true under additional assumptions. Some such additional conditions are
presented in the next proposition.

Proposition 4.13. Let { € ’be and there exist numbers 61 > 0, do > 0,
and i € {1,2} such that

2 b
5300 [t ds <1 (4.15)

k=1 %
&
L / famin(1)(s) ds = 1, (4.16)
k=1
and
l3—4;(1) £ 0. (4.17)

Then ¢ € 82,(a).

The last proposition cannot be applied to the case where

2 b
%Zék/&-k(l)(s)ds:l for i =1,2.

k=1

Nevertheless, the following more general statement can be used in the case
indicated.

Proposition 4.14. Let { € Pgb and there exist numbers 61 > 0 and 6o > 0
such that the equality (4.14) is fulfilled. Then ¢ € S2,(a) if and only if the
homogeneous problem (3.3) has only the trivial solution.

The next corollary of Theorem 4.8 contains another type of conditions
sufficient for the validity of the inclusion ¢ € 82/ (a).
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Corollary 4.15. Let ¢ € P2, and Y : [a,b] — R?**? be a fundamental matriz
of the ordinary differential system

' = P(t)z, (4.18)

where the matriz function P = (ﬁik)ikzl: [a,b] — R2*2Z s defined by the
formulas
P11 =0, p22=0,
t
- Jla—iz—s(1)(s)—£::(1)(s)] ds
Pis—i(t) = liz—i(1)(t) e®
for a.e. t €la,b], i=1,2. (4.19)
Let, moreover, there exist an operator { € Pgb such that the inequality
p())(t) = Po(t)p(v)(t) < L(v)(t) for a.e. t € [a,b]? (4.20)
holds on the set Cq([a,b];R3) and

b
BY(b)/Y*l(s)zj(s) ds <1, (4.21)

where the operator ¢ is defined by the relation (4.12), 1 = (1,1)7, the vector
function ¢ = (q1,2)" € L([a,b]; R?) is given by the formula

— f l”(l)(s) ds

() =14;(1)(t) e fora.e. t€lab], i=1,2, (4.22)

and

b b
L11(1)(s)ds [ £22(1)(s)ds
Bzdiag(eaf " ,et{ 22 )

Then ¢ € 82, (a).

In Corollaries 4.16 and 4.18 efficient conditions are given under which the
fundamental matrix ¥ of the system (4.18) satisfies the condition (4.21).

Corollary 4.16. Let £ € P2, and there exist an operator { € P% such that
the inequality (4.20) holds on the set Cq([a,b); R%) and

b b b b
max \ [ £11(1)(s) ds, [ £22(1)(s) d: (&) d¢§
e {af i s} /h(s)e{p ds <1, (4.23)
where the operator ¢ is defined by the relation (4.12),
p(t) = max{p12(t), p21(t)} for a.e. t € [a,b], (4.24)
h(t) = max{q(t),q2(t)}  for a.e. t € [a,b], (4.25)

and the functions p12, pa1 and q1, Go are given by the formulas (4.19) and
(4.22), respectively. Then { € 82, (a).

3For the definition of the matrix function Py, see the item 28 in Section 1.
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Remark 4.17. The strict inequality (4.23) in Corollary 4.16 cannot be re-
placed by the nonstrict one (see Example 4.50).

Corollary 4.18. Let { € P2, and there exist an operator le P2, such that
the inequality (4.20) is satisfied on the set Cy([a,b];R2). Let, moreover, the
inequality

b b
[ 211 (1)(s)ds [ £22(1)(s)ds
max{)\l eaf " s A2 e! = } <1 (4.26)

hold, where

b

Ai = /bcosh (/p(f) df)@'(s) ds+

S

b b
—|—/sinh (/p(f) df)fjgi(s) ds for i=1,2, (4.27)
p(t) = max {p12(t),pa1(t)} for a.e. t € [a,b], (4.28)

and the functions p12, pe1 and q1, ¢2 are defined by the relations (4.19) and
(4.22), respectively. Then ¢ € §? (a).

Remark 4.19. Example 4.50 shows that the strict inequality (4.26) in Corol-
lary 4.18 cannot be replaced by the nonstrict one.

The next proposition also follows from Corollary 4.15.

Proposition 4.20. Let ¢ € P2, be an a-Volterra operator. Then { belongs
to the set 8%, (a).

4.1.2. The case —¢ € P?,. In the case of a negative operator ¢ we have also
sufficient and necessary condition for the validity of the inclusion ¢ € S, (a),
which requires that the system considered consists of two independent scalar
equations such that a theorem on scalar differential inequalities holds for
each of them.

Theorem 4.21. Let —¢ € P2,. Then { € 83 (a) if and only if
U1 € Sap(a), Loz € Sap(a) (4.29)

and
l1p =0, fly =04 (4.30)

Using the results stated in [20,24], we can immediately formulate the
following corollary of Theorem 4.21.

4The symbol 0 stands here for the zero operator.
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Corollary 4.22. Let the operator ¢ be defined by the formula

E(U)(t)z(ﬁ;zgz;;gg) for a.e. te(a,b] and all v=(vi,v2)" €C([a,b];R?),

where 1,0 € Lgp are negative a-Volterra operators. Let, moreover, for
every i € {1,2}, at least one of the following conditions be satisfied:

(a) there exists an absolutely continuous function ~y: [a,b] — R such
that
v(t) >0 for t € [a,b],
v (t) < Li(y)(t) for a.e. t € |a,b];

(b) the inequality
b

/ 16:(1)(s)]ds < 1

a

holds;
(c) the condition

b S
- 2;(1)(8)| de¢
/|€i(1)(s)|e£‘ el ds <1

1s fulfilled, where

Gi(2)() = 6:(6:(2)) (8) — £:(1)(1)0:(2) (1)
for a.e. t €[a,b] and all z € C([a,b];R),
0:(2)(t) = /Ei (wi(2))(s)ds fora.e. t € a,b and all z € C([a,b];R),

a

and

ft&y(l)(s) ds
wi(2)(t) = z(t) e for a.e. t €[a,b] and all z € C([a,b];R).

Then £ € 82 (a).

Remark 4.23. The assumption on the operators £; and /5 to be a-Volterra
ones is necessary in Corollary 4.22 (see [6, Thm. 2]).

4.2. Systems with argument deviations. In this part, we establish some
corollaries of the results stated in the previous section for the differential
system with argument deviations (3.1"). More precisely, efficient conditions
are found for the validity of the inclusion ¢ € S (a) whenever the operator
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¢ is defined by one of the formulas

o) (8) — pr1(t)or (111(t)) + pra(t)va (T12(t))
E( )(t) - <p21(t)vl (7'21(15)) +p22(t)1)2 (7’22@)))
for a.e. t € [a,b] and all v = (vy,v2)T € C([a,b];R?) (4.31)

and

() — — (o (pa(t))
5( )(t) B (92( )Uz (M2( ))>

for a.e. t € [a,b] and all v = (vi,v2)" € C([a,b];R?). (4.32)

Here we suppose that pii, gx € L([a,b];Ry) and 7, g : [a,b] — [a,b] are
measurable functions (i,k = 1,2). Throughout this section, the following
notation is used:

i =esssup {r1(t): t € [a,b]}, T3, =esssup{ma(t): t € [a,b]},
T = max{ess sup {7 (t) : t € [a,b]}: i,k = 1,2}. (4.33)

Theorem 4.24. Let there exist numbers 1 > 0, d2 > 0, and a € [0,]1]
such that

9 t 9 Tij(8)

> Pij(S)(Z&c / pjk(f)dg)dsg
P

j=ly a

<a25k/plk ds for t€la,b], i=1,2. (4.34)

a

Then the operator ¢ defined by the formula (4.31) belongs to the set 8% (a).

Remark 4.25. Example 4.50 shows that the assumption « € [0, 1] in Theo-
rem 4.24 cannot be replaced by the assumption « € [0, 1].

The following corollary follows immediately from Theorem 4.24.

Corollary 4.26. Let there exist numbers 61 > 0 and d2 > 0 such that the
inequality

2 T*
1
max{dZ&c/pik(s) ds: i = 1,2} <1 (4.35)
Yk=1

is satisfied. Then the operator £ defined by the formula (4.31) belongs to the
set 82, (a).

Remark 4.27. Example 4.50 shows that, in general, the strict inequality
(4.35) in Corollary 4.26 cannot be replaced by the nonstrict one. However,
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in the case where the equality

2 T
1
max{ézék/pik(s)ds: i:l,Z}zl
Ck=1

is satisfied with some §; > 0 and d2 > 0, the operator ¢ defined by the
formula (4.31) still belongs to the set 82, (a) under additional assumptions.
Such additional conditions are presented in the next two theorems.

Theorem 4.28. Let i € {1,2} and there exist 61 > 0 and d2 > 0 such that

* *

51 /pll(s) ds + 52 /plg(s) ds = 52 (436)
and
01 /pg_ﬂ(s) ds + 9o /pg_iQ(S) ds < d5_;. (437)

Then the following assertions are true:
(a) If the condition

*

Tii

/pn'(s) ds <1 (4.38)
is satisfied, then the operator ¢ defined by the formula (4.31) belongs
to the set 8% (a).
(b) Let

Tii

/pu‘(s) ds =1. (4.39)
Then the operator £ defined by the formula (4.31) belongs to the set
82, (a) if and only if

T Tii ()

/ Pn‘(s)< / pl-z-@)df) ds < 1. (4.40)

Theorem 4.29. Let there exist 61 > 0 and d5 > 0 such that the relation
(4.36) is satisfied for i = 1,2. Then the following assertions are true:

(a) Let

/Plz(s) ds /Pm(s) ds=0 (4.41)

and the condition (4.38) hold for i = 1,2. Then the operator ¢
defined by the formula (4.31) belongs to the set S% (a).
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(b) Let the condition (4.41) hold and there exist i € {1,2} such that
the condition (4.39) is fulfilled. Then the operator £ defined by the
formula (4.31) belongs to the set 8% (a) if and only if the condition
(4.40) is satisfied for every i € {1,2} verifying the condition (4.39).

(¢) Let

T* *

/p12(8) dS/pzl(S) ds # 0. (4.42)

a a

Then the operator £ defined by the formula (4.31) belongs to the set
82, (a) if and only if there exists i € {1,2} such that the inequality

Tij(s)

i:l]pij@)(éék a/ pik(§) dg) ds < §; (4.43)

holds.

The following theorem can be regarded as a supplement of Corollary 4.26
and Theorems 4.28 and 4.29 for the case where neither of the statements
indicated can be applied.

Theorem 4.30. Let p;;; Z 0 on the interval [a,7*] for some i,k € {1,2}
and let the condition

Tik (t)
ess sup{ / p(s)ds: t e [mb]} <n* for i,k=1,2 (4.44)
t
hold, where
1
n*:sup{xln T+ — ) : x>0} (4.45)
exp (z [ p(s)ds) — 1
a
and

p(t) = max{pn(t) + p12(t), p21(t) + pgg(t)} fora.e. t€la,b]. (4.46)
Then the operator { defined by the formula (4.31) belongs to the set 8% (a).
The previous theorem yields
Corollary 4.31. Let the condition
Tik (t)
p(s)ds < % fora.e. t€la,b], i,k=1,2
t

hold, where the function p is given by the relation (4.46). Then the operator
¢ defined by the formula (4.31) belongs to the set S (a).

The next theorem follows from Corollary 4.15.
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Theorem 4.32. Let Y: [a,b] — R?*2 be a fundamental matriz of the or-
dinary differential system (4.18), where P = (Dit); p—y: [a,b] — R**? is
defined by the relations
P11 =0, p22 =0,
- f[pii—iii—i(s)_pii(s)] ds . (447)
Dis—i(t)=pis—i(t)ee for a.e. t€la,b], i=1,2.

Let, moreover, the inequality (4.21) hold, where the vector function q¢ =
(@)%, € L([a,b];R?) is defined by the formula

2 Tik(t)

qi(t) = éﬁm(t) wik(t)<z t/ Prj(s) d5> ef‘fp“(") a

Jj=1

for a.e. t€la,b], i=1,2, (4.48)

(1+sgn(mx(t) —t)) fora.e. t€lab], i,k=1,2, (4.49)

N =

Wik (t) =
and

b b
) (s)ds (s)ds
B = diag (ef{pn ,eﬂ[ " ) (4.50)

Then the operator ¢ defined by the formula (4.31) belongs to the set 8% (a).

In the following two corollaries, efficient conditions are presented under
which the fundamental matrix Y of the system (4.18) satisfies the condition

(4.21) in the case where the matrix function P is defined by the relations
(4.47).

Corollary 4.33. Let

b b b b
max q | (s)ds,, (s)ds [ p(€)dE
o {({Pu {{Pzz }/h(s)e{P ds<1, (451)

where the functions p and h are given by the equalities (4.24) and (4.25),
respectively, and the functions p12, pa1 and q1, g2 are defined by the relations
(4.47)—(4.49). Then the operator ¢ defined by the formula (4.31) belongs to
the set 82, (a).

Remark 4.34. The strict inequality (4.51) in the last corollary cannot be
replaced by the nonstrict one (see Example 4.50).

Corollary 4.35. Let

1, (4.52)

b b
[ (s)ds ' (s)ds
rnax{/\l etjlp11 ,)\QQJLP22 }

where the numbers A1, Az are given by the equalities (4.27), (4.28) and the
functions P12, D21 and q1, o are defined by the relations (4.47)—(4.49). Then
the operator ¢ defined by the formula (4.31) belongs to the set 82, (a).



On the Initial Value Problem for Two-Dimensional Linear FDS 25

Remark 4.36. Example 4.50 shows that the strict inequality (4.52) in Corol-
lary 4.35 cannot be replaced by the nonstrict one.

Theorem 4.8 also yields the following proposition which is a particular
case of Theorem 3.2(a) stated in [69].

Proposition 4.37. Let the functions pi, (i, k = 1,2) be essentially bounded
and there exist numbers 1 > 0, 02 > 0 such that the inequality

max{(sli ess sup{iékpik(t)(nk(t) —a): te [a,b}} D= 1,2} <1

k=1
holds. Then the operator ¢ defined by the formula (4.31) belongs to the set
S (a).
From Corollary 4.22 and the results stated in [24] we obtain
Theorem 4.38. Let
gi(t)(pi(t) —t) <0 for a.e. t€[a,b], i=1,2

and, for every i € {1,2}, at least one of the following conditions be fulfilled:

(a) the inequality

b
/gi(s) ds<1

holds;
(b) the inequality
b s s
/91‘(5) / Qi(f)exp< / gi(n) d77> d¢ds <1
a wi(s) wi(8)

is satisfied;
(¢c) the inequality
/ 1
/ gi(s)ds < = for a.e. t € [a,b
e
i (t)
holds.
Then the operator ¢ defined by the formula (4.32) belongs to the set 8% (a).
Remark 4.39. Using Theorem 4.5 and combining the results stated above,

we can immediately derive several conditions sufficient for the validity of
the inclusion ¢ € 8% (a) if the operator ¢ is defined by the formula

(o)(t) = (pu(t)vl (r11(8) = g1 (o1 (11 (1)) + pra(t)v2 (Tlg(t))>
pa1(t)vr (721(2)) + p22(t)v2 (T22(t)) — g2 (t)va (p2(t))

for a.e. t € [a,b] and all v = (vy,v2)" € C([a,b]; R?).
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where pik, gr € L([a,b]; Ry) and 75, p : [a, b] — [a, b] are measurable func-
tions (i, k = 1,2). However, we do not formulate them here in detail.

4.3. Auxiliary lemmas. In this part, we give several lemmas that we will
need in the proofs of the results stated in Sections 4.1 and 4.2.

Lemma 4.40. Let ¢ € P?. Then { € S (a) if and only if there is no
nonzero non-negative vector function v € AC([a, b]; R?) possessing the prop-
erties

v(a) =0, (4.53)
V'(t) < L(v)(t) for a.e. t € [a,b]. (4.54)

Proof. If £ € 8%, (a), then it is clear that every non-negative vector function
v € AC([a,b]; R?) satisfying the conditions (4.53) and (4.54) is identically
equal to zero.

Conversely, let there be no nonzero vector function v = (vy,v9)7 €
AC([a, b]; R?) possessing the properties (4.53) and (4.54), and let u =
(u1,u2)T € AC([a,b];R?) be such that the conditions (4.3) and (4.4) are
satisfied. We will show that the vector function u is non-negative. Indeed,
put

v(t) = [u(t)]- for t € [a,b].
According to the inequality (4.4), it is clear that the vector function v is
non-negative and satisfies the condition (4.53). Moreover, by virtue of the
assumption ¢ € P2 and Remark 1.5, the inclusion ¢;; € Py, holds for
j, k = 1,2. Therefore, using the inequality (4.3) and Lemma 6.17 below, we
get

, 1

vi(t) = 3 up(t)(sgnui(t) — 1) < = i(u)(t)(sgnug(t) — 1) =

| —

2
= 2 (X talun) 1) sgut) — L)1) <
k=1
1/ 2
< (3 ) ()~ Y talwn) (1)) =
k=1 =1

2 2
3 lan(un] ) (1) = D Lixor) (1) =
k=1 1

={;(v)(t) for a.e. t € [a,b], i=1,2.

We have proved that the vector function v satisfies the conditions (4.53)
and (4.54), whence we get v = 0. However, it means that the condition
(4.5) is fulfilled and thus ¢ € 82, (a). O

Lemma 4.41. Let p € L([a,b];R), ¢ = (¢1,q2)" € L([a,b];R?), and let
v = (v1,v2)T be a solution to the problem

v =A(t)v+q(t), v(a)=0, (4.55)
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where

At) = (p?t) péﬂ) for a.e. t € la,b). (4.56)

Then
t t

) = [ oo ([ o€ a€)i(s) st

+/tsinh (/tp(ﬁ) d§)q~3i(s) ds for t €la,b], i=1,2. (4.57)

S

Proof. Tt is easy to see that, for an arbitrary s € [a, b], we have

s fara) = ( [ aras)ac) sr 1<

and thus the solution v to the problem (4.55) has the form

J A(g) deg

o(t) = / o i(s)ds for t € [a,b] (4.58)

a

(see, e.g., [42, Thm. 1.3]). It can be verified by direct calculation that

£)d§ +00 ¢ 2% 10
il [r0u) (o))

k=0 :

p 2k+1 0 1
2k+ </ (§)d€> (1 0) for a <s<t<b,

M*M

k=0

whence we get

J A€ de
es =
t t
cosh (/p(f) df) sinh (/p(ﬁ) d§>
= s s for a <s<t<b. (4.59)

sinh ( / p(6) ds) cosh ( / p() d£>

S

Therefore, the relations (4.58) and (4.3) yield the desired representation
(4.57) of the solution v. O

Lemma 4.42. Let h € Py, be an a-Volterra operator. Then for an arbitrary
non-decreasing function z € C([a,b);R) the inequality

h(2)(t) < h(1)(t)z(t) for a.e. t € [a,b] (4.60)
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is satisfied.
Proof. Let z € C([a,b]; R) be a non-decreasing function. It is clear that for
any t € [a,b] we have

h(z)(s) < h(1)(s)z(t) for a.e. s € [a,t]. (4.61)
Moreover, there exists a set E CJa, b] such that mes E = b — a® and

t t

%/h(z)(s) ds = h(z2)(t), %/h(l)(s) ds = h(1)(t) for t € E. (4.62)

a a

Let t € E be arbitrary but fixed. Then, using the condition (4.61), we get

% / h(z)(s)ds < z(t)% / h(1)(s)ds for 0 < <t—a.
=6 t—6

Passing to the limit as § — 0+ in the last inequality and taking the relations
(4.62) into account, we obtain

h(z)(t) < 2(t)h(1)(t)
and thus the condition (4.60) is satisfied, because the point ¢ € E was chosen
arbitrarily. O

Lemma 4.43. Let the operator £ be defined by the formula (4.31) in which
pit € L([a,b];R:) and 7i: [a,b] — [a,b] are measurable functions (i,k =
1,2) and let the number T* be given by the relation (4.33). Then ¢ € 8% (a)
if and only if (%7 € S§2,.(a).b

Proof. According to the relations (4.31) and (4.33), it is clear that the
operator £ has the following property:
w € O(la, 0 R, fw)(t) =0 & tefab). (463)
= e. t€la,b]. (4.
w(t) =0 for t € [a, "] v orae ¢

Let ¢ € 8§2,(a) and u € AC([a, 7*]; R?) be a vector function satisfying the
conditions

W' (t) > 097 (u)(t) for a.e. t € la, 7], wu(a)>0. (4.64)
We will show that the function w is non-negative on the interval [a, 7*]. Put

u(t) for; ¢ € [a,7*],
t

u(T*)—!—/E(uT*)(s) ds for ¢ € [%,0],

T*

v(t) =

5mes E stands for the Lebesgue measure of the set E.

6¢a7" denotes the restriction of the operator £ to the space C([a, 7*]; R2) (see Defini-
tion 1.8).
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where the function u.« € C([a, b]; R?) is defined by the formula

tne (t) = {u(t) for t € [a, 7],

u(r*) for t e [r*,b]. (4.65)

Using the relations (4.64), the property (4.63) and Definition 1.8, we easily
get

v'(t) > l(ur)(t) = £(v)(t) for a.e. t € [a,b], wv(a)>0.
However, the inclusion ¢ € 82 (a) guarantees that the function v is non-
negative on the interval [a,b]. Consequently, the inequality u(t) > 0 holds
for t € [a,7*] and thus (°7" € S2,.(a).

Conversely, let 27" € S2_.(a) and u € AC([a,b]; R?) be a vector function
satisfying the conditions (4.3) and (4.4). We will show that the function u
is non-negative on the interval [a, b]. Let the function u,~ be defined by the
formula (4.65) and v = ul, ;+. Taking the relation (4.3) and the property
(4.63) into account, we get

V() = (1) > L(u)(t) = L(ur)(t) = €97 (v)(t) for a.e. t € [a,T"].
Moreover, the inequality v(a) > 0 follows immediately from the relation
(4.4). Therefore, the inclusion £*7" € S2 . (a) guarantees that the function
v is non-negative on the interval [a, 7*]. Consequently, we have

u(t) >0 for t € [a,T"].
Using the latter inequality and the property (4.63), it is easy to verify that
u'(t) > L(u)(t) = l(u~)(t) >0 for a.e. t € [a,b],

because the functions p;; (i,k = 1,2) are non-negative. This means that
the vector function w is non-decreasing on the interval [a,b] and thus, in
view of the condition (4.4), we obtain u(t) > 0 for ¢ € [a,b]. Consequently,
the inclusion ¢ € 8% (a) holds. O

Lemma 4.44. Let p;, € L([a,b;Ry) (4, k = 1,2) and numbers 6; > 0,
02 > 0 be such that the relation (4.36) is satisfied fori = 1,2. Let, moreover,
(u1,u2)T be a solution to the homogeneous problem

U;(t) = pil(t)ul (Tll(t)) -+ piQ(t)UQ (Tig(t)) (t S [a, T*}, 7= 1, 2) (466)
ui(a) =0, wg(a)=0. (4.67)
Then both functions w1 and us do not change their signs on the interval

[a, 7*]. If, in addition,

* *

/ pra(s)ds + / por(s)ds > 0, (4.68)

then the relation
ur(t)uz(t) >0 for t € la, 7" (4.69)
1s satisfied.
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Proof. For i = 1,2, we put
M; = max {u;(t) : t € [a,7*]}, m; =—min{w;(t): t € [a,7*]}. (4.70)
Choose t;,T; € [a,7*] (i = 1,2) such that
ui(T;) = My, w;i(t;) =—m; for 1 =1,2 (4.71)

and denote

T

Dik = /pik(s) ds for ¢,k=1,2. (4.72)
a
First suppose that both functions u; and ug change their signs on [a, 7*].
Then we have

M; >0, m; >0 (4731)
for i = 1,2. We can assume without loss of generality that 77 < t;. The
integration of the equality (4.66) with ¢ = 1 from T3 to t1, in view of the

conditions (4.70)—(4.72), yields

t1 ty

My +my = — /P11(8)U1(T11(8)) ds — /plQ(S)UQ (T12(s)) ds <

T1 Tl
t1 ty

<my /pu(s) ds + mq /p12(8) ds <mipi1 +mepra. (4.74)
T1 Tl
It is clear that either 75 < t9 or Ty > to is satisfied.

Case 1: Ty < ty holds. The integration of the equality (4.66) with ¢ = 2
from T to t3, on account of the conditions (4.70)—(4.72), implies

to to

My +mg = — /pzl(s)ul (T21(s)) ds — /p22(5)U2 (T22(s)) ds <

T2 T2
t 2 t 2

<my /P21(8) ds +mgy /Pzz(s) ds < miDa1 + maDoa . (4.75)
T2 T2

If 5ymao < Jamq, then from the relations (4.74) and the equality (4.36)
with ¢ = 1 we get

_ 0 _
My +my <mupn + 5*2 mipiz = ma, (4.76)
1
which contradicts the first inequality in (4.731).
If §ymg > damy, then the relations (4.75) and the equality (4.36) with
1 = 2 result in

0 - _
My +mg < 5, M2P21 + mapas = ma,
2

which contradicts the first inequality in (4.733).
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Case 2: Ty > to holds. The integrations of the equality (4.66) with ¢ = 2
from a to ty and from ¢o to Ty, on account of the conditions (4.67) and
(4.70)—(4.72), yield

tz t2
mo = — /pgl(s)ul (Tgl(S)) dS — /pQQ(S)UQ (7—22(8)) dS S
to (2
<my /p21(8) ds + mao /p22(8) ds < mipa1 + maopaa  (4.77)
and
Ts T>
MQ + meo = /pgl(s)ul (7'21(3)) ds + /pQQ(S)UQ (TQQ(S)) ds S
to to
T2 T2
< M, /p21(5) ds + M /p22(5)d8 < Mipa1 + Mapas . (4.78)
to ta

If 61mo < damy, then from the condition (4.74) and the equality (4.36)
with ¢ = 1 we get the relation (4.76), which contradicts the first inequality
in (4.731).

If §yme > Jomy and pa; > 0, then the relations (4.77) and the equality
(4.36) with i = 2 imply

0 . ~
mo < 5 MaP21 + Mapa2 = Ma,
2

which is a contradiction.
If §ymo > damy and pa; = 0, then the relations (4.78) and the equality
(4.36) with 4 = 2 result in

My 4+ mg < Mapoe = My, (4.79)

which contradicts the second inequality in (4.732).

The contradictions obtained prove that at least one of the functions uq
and ug does not change its sign on [a, 7*]. We can assume without loss of
generality that

ui(t) >0 for t € [a,77]. (4.80)

Suppose that, on the contrary, us changes its sign. Then the inequalities
(4.735) are satisfied and either the relation Ty < tg or Ty > to is true.

Case 1: Ty < ty holds. The integration of the equality (4.66) with ¢ = 2
from T5 to ta, in view of the equality (4.36) with ¢ = 2 and the relations
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(4.70)~(4.72) and (4.80), implies

My +mg =— [ par(s)ur(721(s)) ds — [ paa(s)uz(7a2(s)) ds <
/ /

ta

< mgo /pzz(S) ds < my,
T

which contradicts the first inequality in (4.732).

Case 2: Ty > to holds. The integrations of the equality (4.66) with ¢ = 2
from t5 to T and from a to t2, with respect to the conditions (4.70)—(4.72)
and (4.80), result in the relations (4.78) and

tz t2

my = */Pm(s)ul (121(s)) ds — /P22(S)U2 (T22(s)) ds <

a a
to

S mo /pQQ(S) ds S mgﬁgg. (481)

a

If p21 = 0, then from the condition (4.78) and the equality (4.36) with
i = 2 we get the relation (4.79), which contradicts the second inequality in
(4.735).

If o1 > 0, then the equality (4.36) with i = 2 guarantees that pay < 1.
Consequently, the relation (4.81) implies my < 0, which contradicts the
second inequality in (4.732).

We have proved that both functions u; and us do not change their signs
on [a,7*]. Let, in addition, the relation (4.68) hold. We will show that the
inequality (4.69) is satisfied. We can assume without loss of generality that
P12 > 0 and the relation (4.80) is fulfilled. Suppose that, on the contrary,
the condition (4.69) does not hold. Then

u2(t) <0 for t € [a,77] (4.82)

and

M, > 0. (4.83)

It is clear that the equality (4.36) with ¢ = 1 implies

P11 < 1. (4.84)
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The integration of the equality (4.66) with ¢ = 1 from a to T3, in view of
the conditions (4.67), (4.70)—(4.72), and (4.82), results in

M1 = /pu(s)ul (7’11(8)) ds + /p12(8)U2 (’7'12(8)) ds S

T
< M /pll(s) ds < Mip11.

a

Using the condition (4.84) in the last relation we get M; < 0, which con-
tradicts the inequality (4.83). The contradiction obtained proves that the
desired relation (4.69) holds provided that the inequality (4.68) is satis-
fied. O

Lemma 4.45 ([24, Rem. 1.1]). Let h € Pyyp. If the condition

b
/h(l)(s) ds <1

is satisfied, then h € Syp(a).
If the equality
b

/h(l)(s) ds=1

a
holds, then the operator h belongs to the set Sap(a) if and only if the homo-
geneous problem
2'(t) = h(z)(t), z2(a)=0 (4.85)

has only the trivial solution.”

Lemma 4.46. Let the operator h be defined by the formula
h(z)(t) = f(t)z(¢(t)) for a.e. t € [a,b] and all z € C([a,b];R),
where f € L([a,b;Ry) and ¢: [a,b] — [a,b] is a measurable function. Put
¢ =esssup{¢(t): t € [a,b]}. (4.86)
Then the following assertions are true:
(a) If the inequality

=
/f(s) ds <1 (4.87)
a

is satisfied, then the operator h belongs to the set Sqp(a).

7Under a solution to the problem (4.85) is understood an absolutely continuous func-
tion z: [a,b] — R satisfying the initial condition z(a) = 0 and the differential equality in
(4.85) almost everywhere on the interval [a, b].
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(b) Let
c
/f(s) ds =1. (4.88)

Then the operator h belongs to the set Syp(a) if and only if
¢(s

7f<s>( / )f(é‘) df) ds < 1. (4.89)

The results of the last lemma are partly contained in [24]. For the sake
of completeness, we prove it here in detail.

Proof. According to the notation (4.86), the restriction h?<” of the operator
h to the space C([a,(*];R)® is defined by the formula

RS (2)(t) = f()z(¢(t)) for a.e. t € [a,¢*] and all z € C([a,(*];R).
Since, moreover,

f(t) >0 for a.e. t€[a,b], (4.90)
in a similar way as in the proof of Lemma 4.43 it can be shown that h €
Sap(a) if and only if K% € S,¢-(a).

Case (a). Let the condition (4.87) be satisfied. By virtue of Lemma 4.45,
we find h¢" € Sy¢+(a) and thus h € Syp(a).

Case (b). Let the condition (4.88) be fulfilled. According to Lemma 4.45,
the operator h*" belongs to the set Soc+(a) if and only if the homogeneous
problem

Z(t) = f(t)z(¢t) (t€ o, C7), (4.91)

z(a) =0 (4.92)

has only the trivial solution?. Consequently, to prove the item (b) of the
lemma it is sufficient to show that the homogeneous problem (4.91), (4.92)

has only the trivial solution if and only if the condition (4.89) is satisfied.
Let z be a solution to the problem (4.91), (4.92). Put

M =max{z(t): t € [a,(*]}, m=min{z(t): t € [a,(*]} (4.93)
and choose tyr, ty, € [a,(*] such that

2(tv) =M, z(tm)=m. (4.94)
It is clear that the relations (4.92) and (4.93) imply
M >0. (4.95)

8See Definition 1.8.

9Under a solution to the problem (4.91), (4.92) is understood an absolutely continuous
function z: [a,(*] — R satisfying the equality (4.91) almost everywhere on the interval
[a, ¢*] and verifying also the initial condition (4.92).
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We can assume without loss of generality that ¢,, < t;;. The integration of
the equality (4.91) from ¢, to tps, in view of the conditions (4.88), (4.90),
and (4.93)—(4.95), yields

M-—m= /f ds<M/f )ds < M.

Hence we get m > 0, i.e.,
2(t) >0 for t € [a,("]. (4.96)
From the relations (4.90), (4.91), and (4.96) we obtain
z(t) < 2(¢*) for t € [a,("]. (4.97)

Now we put
(t) = / f(s)ds for t € [a,¢"]. (4.98)

The integration of the equality (4.91) from ¢ to ¢*, on account of the con-
ditions (4.90) and (4.97), yields

/f )ds < 2(¢ /f )ds for t € [a,("].

Using the conditions (4.88), (4.98) and the last relation, we get

2(C*)k(t) (1 —/f > (t) for t € [a,C"]. (4.99)

On the other hand, the integration of the equality (4.91) from a to t, on
account of the conditions (4.90), (4.92), (4.97), and (4.98), results in

/f )ds < 2(¢ /f CIR(E) for t€ [a, 7]

Now from the last relation and the condition (4.99) we obtain that
z(t) = 2(C*)k(t) for t € [a,(7]. (4.100)

Finally, the integration of the equality (4.91) from a to ¢*, with respect to
the conditions (4.92) and (4.100), implies

- -
A6 = [ F2(¢() ds = =) [ R{c(s) ds,

a a
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whence we get
* ¢(s)

2(¢7) [1 - 7f(8)< [ 1 df) ds] 0. (4.101)

We have proved that every solution z to the problem (4.91),(4.92) ad-
mits the representation (4.100), where z(¢*) satisfies the condition (4.101).
Consequently, if the inequality (4.89) holds, then the homogeneous problem
(4.91), (4.92) has only the trivial solution.

It remains to show that if the condition (4.89) is not satisfied, i.e.,

o
/f(S)k(C(S)) ds =1, (4.102)

then the homogeneous problem (4.91), (4.92) has a nontrivial solution. In-
deed, in view of the conditions (4.88) and (4.90), the notation (4.98) yields
that

k() <k(¢*)=1 for t € [a,(].
Therefore, using the conditions (4.88), (4.90), and (4.102), it is easy to verify
that

t ¢
0< [ o)1=k as < [ 16)[1- k)] as -
.

1 /f(s)k(g(s)) ds=0 for t € [a,C7],

whence we get

k(t) = /f(s)k(((s)) ds for t € [a,("].

Consequently, k is a nontrivial solution to the problem (4.91),(4.92). O

Lemma 4.47 ([24, Thm. 1.10]). Let the operator h be defined by the formula
h(z)(t) = = f(t)z(¢(t)) for a.e. t € [a,b] and all z € C([a,b];R),

where f € L([a,b];Ry) and ¢: [a,b] — [a,b] is a measurable function such
that

f()(¢(@)—t) <0 fora.e. t€[a,b].

Let, moreover, either

JECEES

a
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or
b

JEC / f(é)exp( / f(n)dn) deds <1,

a ¢(s) 4¢3)]

or
t

1
f(s)ds < = fora.e. t€la,bl].
e
¢(t)
Then the operator h belongs to the set Sqp(a).

4.4. Proofs. Now we prove the results stated in Sections 4.1 and 4.2.

Proof of Theorem 4.5. Let u € AC([a, b]; R?) be a vector function satisfying
the conditions (4.3) and (4.4). We will show that the function u is non-
negative. According to the inclusion —¢~ € §? (a) and Proposition 4.3, the
problem

w'(t) = =0 (w)(t) — £ ([u]-) (1), (4.103)
w(a) =0 (4.104)
has a unique solution w and
w(t) <0 for t € [a,b]. (4.105)
Using the conditions (4.3), (4.103) and the assumption £T € P2, | we get
(u—w)'(t) > =€ (u—w)(t) + £ ([u]+)(t) >
> —0" (u—w)(t) for a.e. t €[a,b]. (4.106)

Since the inclusion —¢~ € 82, (a) holds, the relations (4.4), (4.104), and
(4.106) result in

u(t) > w(t) for t € [a,b]. (4.107)
In view of the relation (4.105), it follows from the inequality (4.107) that
—[u(®)]= > w(t) for ¢ € [a,b]. (4.108)
Finally, by virtue of the inequalities (4.105), (4.108), and the assumptions
T 0= € P, from the equality (4.103) we get
w'(t) > €7 (w)(t) for a.e. t € [a,b].

Hence, on account of the initial condition (4.104), the inclusion ¢ € §2 (a)
guarantees that

w(t) >0 for ¢ € [a,b],
which, together with the inequality (4.107), implies the validity of the con-
dition (4.5). Consequently, ¢ € 82, (a). O
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Proof of Proposition 4.7. We can assume without loss of generality that
i=1.
First suppose that
l € Sab(a) and {9y € Sab(a).

Let u = (u1,u2)” € AC([a, b]; R?) be a vector function satisfying the condi-
tions (4.3) and (4.4). We will show that the function w is non-negative. In
view of the assumption ¢15 = 0, it follows from (4.3) and (4.4) that
uy(t) > l11(up)(t) for a.e. t € [a,b], wui(a) >0,

and thus the assumption ¢1; € Sgp(a) implies

u (t) >0 for t € [a,b]. (4.109)
Taking the assumption f3; € P, into account and using the inequality
(4.109) in the relation (4.3), we get

UIQ(t) Z égl(ul)(t) + €22(u2)(t) Z éQQ(Ug)(t) for a.e. t € [CL, b]

Hence, the inclusion f52 € 82 (a) yields that

uz(t) >0 for ¢t € [a,b],

which, together with the inequality (4.109), guarantees the validity of the
condition (4.5). Consequently, we have proved that ¢ € 82, (a).
Now suppose that ¢ € S (a). We first show that l32 € Sup(a). Indeed,
let z € AC([a,b];R) be a function such that
2'(t) > laa(2)(t) for a.e. t € [a,b], z(a)>0.
Put

ult) = (Z?t)) for t € [a,b].

It is clear that the vector function u is absolutely continuous and satisfies
the conditions (4.3) and (4.4). Therefore, the assumption ¢ € 8% (a) yields
that the vector function u is non-negative. Consequently,

z(t) >0 for t € [a,b]

and thus ly9 € Syp(a).
It remains to show that also ¢11 € Sup(a). Let y € AC([a,b];R) be
a function satisfying the conditions

y'(t) > l11(y)(t) for a.e. t € [a,b], y(a) > 0.

We will show that
y(t) >0 for ¢ € [a,b]. (4.110)
According to Proposition 4.3 and the above-proved inclusion fag € Syp(a),
the problem
V(1) = La2(0)(t) + L1 (y)(t), wv(a) =0
has a unique solution v. Put

u(t) = @3) for ¢ € [a,b].
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It is clear that the vector function u is absolutely continuous and satisfies
the conditions (4.3) and (4.4). Therefore, the assumption £ € S (a) yields
that the vector function u is non-negative. Consequently, the condition
(4.110) holds and thus ¢11 € Sgp(a). O

Proof of Theorem 4.8. First suppose that there exists v € AC([a,b]; R?)
satisfying the inequalities (4.7) and (4.8). Let u € AC([a,b]; R?) be such
that the conditions (4.3) and (4.4) hold. We will show that the vector
function u is non-negative. Put

A= {)\GR+ s AY(E) +u(t) >0fort e [mb}}. (4.111)
Since the function ~ is positive, we have A # @. Setting
Ao = inf A, (4.112)
we put
w(t) = Aoy (t) + u(t) for t € [a,b]. (4.113)
It is clear that Ao > 0, w € AC([a, b]; R?), and
w(t) >0 for t € [a,b]. (4.114)
Therefore, by virtue of the assumption ¢ € Pgb, we get
w'(t) > L(w)(t) >0 for a.e. t € [a,b]. (4.115)
Assume that
Ao > 0. (4.116)

Then it follows from the relations (4.4), (4.7) and (4.116) that w(a) > 0.
Hence, using the inequality (4.115), we get

w(t) >0 for t € [a,b].
Consequently, there exists € €]0, \g] such that
w(t) > ey(t) for ¢ € [a, b,
i.e.,
(Mo —&)y(t) +u(t) >0 for ¢ € [a,b)].
Hence, by virtue of the notation (4.111), we get A\g—e € A, which contradicts
the relation (4.112).

The contradiction obtained proves that Ao = 0. Consequently, the rela-
tions (4.113) and (4.114) yield the validity of the condition (4.5) and thus
0 e 82 (a).

Now suppose that £ € Sgb(a). Then, according to Proposition 4.3, the
problem

7 () =), yla) = (1,1)F (4.117)
has a unique solution + and

~(t) > 0 for t € [a,b].
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Hence, by virtue of the assumption ¢ € P?

&, the first equation in (4.117)
implies that

v (t) =€(y)(t) > 0 for a.e. t € [a,b].
Therefore, in view of the initial condition in (4.117), we get
~(t) > v(a) > 0 for t € [a,b].

Consequently, the function v € AC([a,b]; R?) satisfies the conditions (4.7)
and (4.8). O

Proof of Corollary 4.9. Put

k m
(1-a) Zgﬂ Z o (t) for t € [a,b].
j=1 Jj=k+1

It is clear that v € AC([a, b]; R?). According to the relations (4.10)—(4.12)
and the assumption £ € P2, it is not difficult to verify that

ab’
() > (1 —a)e' >0 for t € [a,b],

i.e., the condition (4.7) is satisfied. Moreover, we have

k—1 m—
~'( (1-a) Zﬁ z
j=1 j=k

=0(y)(t) + ( ao® —o )(t) for a.e. t € [a,b].

Therefore, in view of the inequality (4.9) and the assumption ¢ € P2,
the condition (4.8) holds. Consequently, using Theorem 4.8, we get ¢ €
82, (a). O

Proof of Corollary 4.11. The validity of the corollary follows immediately
from Corollary 4.9 with k =1, m = 2, o' = (§1,62)7, and

9 b
1 .
o= max{(sikg_lék/&k(l)(s) ds: i= 1,2}. -

Proof of Proposition 4.13. Put o' = (81,d2)T. We first show that
/E s)ds < §; for j=1,2, (4.118)

where the operator ¢ is given by the formula (4.12). Indeed, according to
the assumption £ € ’Pgb and Remark 1.5, the inclusion ¢;;, € Py holds for
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j,k =1,2. Therefore, we get

_ Z/Kjk(l)(s)ds 3 /5mzkm( Y(n)dn for j=1,2. (4119)

Then, by virtue of the assumptions (4.15) and (4.16), we obtain

2 0 2 b
z/ ‘ z/ (D dn <3 [ b

m=1 k=1 a

On the other hand, according to the condition (4.17), the relation

/€3 i d8>0

holds. Therefore, using the assumptions (4.15) and (4.16), we get

2 b 2
Z/eg ik(1)(s)ds > o /ekm n)dn <
k=1 m=1
b b
< 6; /63,“(1)(8) ds + d3_; /6371371(1)(5) ds =
b
= Z‘S’f /fs—ik(l)(s) ds = 03
k=1

Consequently, the relation (4.119) yields the validity of the condition
(4.118). If we put

a :max{ /z cj=1 2} (4.120)

it is clear a € [0, 1] and
0°(b) < a(61,62)" = g,
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where the function g3 is defined by the formula (4.11). Consequently, the
assumptions of Corollary 4.9 are satisfied with £k = 1, m = 3, and « given
by the relation (4.120). O

Proof of Proposition 4.14. First suppose that the homogeneous problem
(3.3) has only the trivial solution. We will show that ¢ € §2,(a). According
to Proposition 3.1, the problem (4.117) has a unique solution v = (71, 72)%.
Put

~y* :max{ - ’716(15) s telab], i = 1,2}.
Then there exist ¢y € [a, b] and 7o 16 {1,2} such that
—Yio (to) = 7", (4.121)
It is clear that
—vi(t) <~*9; for t € [a,b], i=1,2. (4.122)

Note also that, by virtue of the assumption ¢ € P2 and Remark 1.5, the
inclusion £;;, € Pgyp holds for 5,k =1,2.
Assume that

7" =0. (4.123)
Then it follows from the relations (4.117) that
to
1—(to) = 7/&-(7)(5) ds for i =1,2.

Therefore, in view of the conditions (4.14) and (4.121)—(4.123), we get

to to 2
1+~ = */Eio /Z ik (k) (s)ds =
k=1
2t 2 to
-y / bu(—70)(5)ds < 3295 /

=7 Z&c/&ok s)ds < ¥"6i,,

which is impossible.
The contradiction obtained proves that v* < 0. Hence the relation
(4.122) implies the validity of the inequality

Y(t) > —7*(61,82)T > 0 for t € [a,b]

and thus Theorem 4.8 guarantees that ¢ € S (a).
The converse implication follows immediately from Proposition 4.3. O
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Proof of Corollary 4.15. According to Lemma 4.40, to prove the corollary
it is sufficient to show that there is no nonzero non-negative vector function
v € AC([a, b]; R?) satisfying the conditions (4.53) and (4.54).
We first show that B
(€ 82 (a), (4.124)

where the operator (e P2, is defined by the formula
U(w)(t) =Py (t)w(t)+l(w)(t) for a.e. te [a,b] and all we C([a,b]; R?).1°

According to the inequality (4.21), there exists a two-dimensional vector
€ > 0 such that

b
B(Y(b)Yl(a)s+ Y (b) /Y’l(s)ij(s) ds) <1, (4.125)
where 1 = (1,1)T. Put
(1) :Y(t)Y’l(a)e+Y(t)/Y’l(s)fj(s) ds for ¢ € [a, 1]

It is clear that z is a solution to the Cauchy problem

2 =P(t)z+4q(t), z(a)=c¢, (4.126)

because Y is a fundamental matrix of the system (4.18). In view of the
relations (4.19) and (4.22), we get

P(t)>©, §(t)>0 fora.e. t€la,bl, (4.127)
where © denotes the zero matrix, and thus
0 < z(t) < 2(b) for t € [a,b]. (4.128)

Put

j 4”(1)(5) ds )
7i(t) = z;(t) ee for t € [a,b], i=1,2. (4.129)

It is not difficult to verify that, on account of the conditions (4.19), (4.22),
(4.126) and (4.129), v = (y1,72)T € AC([a,b];R?) is a solution to the
system -

v = Po(t)y + £(1)(2). (4.130)
Moreover, the conditions (4.125) and (4.128) imply

0 <~(t) < Bz(b) <1 for t € [a,b)].
Therefore, the vector function v satisfies the condition (4.7) and, in view of
the assumption ¢ € P2, from the equality (4.130) we get
V() = PUt)y(#) + L)1) = H)(E) for ae. t € [a,b].

Consequently, by virtue of Theorem 4.8, the inclusion (4.124) is fulfilled.

9For the definition of the matrix function Py, see the item 28 in Section 1.



44 J. Sremr

Let v € AC([a,b]; R?) be a non-negative vector function satisfying the
conditions (4.53) and (4.54). We will show that v = 0. Put

u(t) = p(v)(t) for t € [a,b], (4.131)
where the operator ¢ is defined by the formula (4.12). Obviously, the con-
ditions (4.53), (4.54) and (4.131) yield

o' (t) = L(v)(t) for a.e. t € [a,b], wu(a)=0,

and
0<w(t) < /[(U)(s) ds = p(v)(t) = u(t) for t € [a,b]. (4.132)

On the other hand, since the operator £ is positive, we have
u'(t) = £(v)(t) < L(u)(t) =
= Py(t)u(t) + £(p(v))(t) — Pi(t)p(v)(t) for a.e. t € [a,b].

Now, by virtue of the conditions (4.20), (4.53), and (4.132), the last relation
yields

u'(t) < Pyp(t)u(t) + L(v)(t) for a.e. t € [a,b].
Hence, in view of the inequalities (4.132) and the assumption ¢ € P2, we
get

o' (t) < Po(t)u(t) + (u)(t) = L(u)(t) for a.e. t € [a,b].
Consequently, the inclusion (4.124) yields
u(t) <0 for t € [a,b],

and thus it follows from the condition (4.132) that v = 0. However,
this means that there exists no nonzero non-negative vector function v €
AC([a, b]; R?) satisfying the conditions (4.53) and (4.54). O

Proof of Corollary 4.16. We will show that all the assumptions of Corol-
lary 4.15 are satisfied. To do this, it is sufficient to show that the inequality
(4.23) yields the validity of the condition (4.21). Since Y is a fundamental
matrix of the system (4.18), the condition (4.21) is fulfilled if and only if
the solution x = (21, 22)” to the Cauchy problem

¥ =P(t)x +q(t), z(a)=0 (4.133)
satisfies the condition
b
"2 (1)(s)ds
z;(b eZ <1 for i=1,2. (4.134)
Put
ftp(é) 13

v(t) = /h(s)es ds for t € [a,b], i=1,2. (4.135)

a
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It is clear that
vi(t) >0 for ¢ € [a,b], i=1,2,

because P and § satisfy the relations (4.127). Therefore, from the equality
(4.135) we get

ol(t) = p(t)vi(t) + h(t) > Pis—i(t)vi(t) + Gi(t) =
2
= Zﬁik(t)vk(t) +q(t) for a.e. t€a,b], i=1,2.
k=1

But this means that the vector function v = (v1,v)? satisfies the initial
condition v(a) = 0 and the differential inequality

V' (t) > P(t)u(t) + §(t) for a.e. t € [a,b].
According to Proposition 4.1, we get
z(t) <w(t) for t € [a,b],

where z is the unique solution to the problem (4.133). Consequently, by
virtue of the relations (4.23) and (4.135), the solution x = (z1,22)7 to the
problem (4.133) fulfills the condition (4.134), and thus the inequality (4.21)
holds. Hence, the assumptions of Corollary 4.15 are satisfied. ]

Proof of Corollary 4.18. We will show that all the assumptions of Corol-
lary 4.15 are satisfied. To do this, it is sufficient to show that the inequality
(4.26) yields the validity of the condition (4.21). Since Y is a fundamental
matrix of the system (4.18), the condition (4.21) is fulfilled if and only if the
solution # = (1, 72)T to the problem (4.133) satisfies the condition (4.134).

Let 2 = (z1,72)T be the unique solution to the problem (4.133). The
vector function z is non-negative, because the relations (4.127) hold. There-
fore, the equation in (4.133) yields that

2'(t) < A(t)x(t) + q(t) for a.e. t € [a,b],
where the matrix function A is given by the formula (4.56). According to
Proposition 4.1, we get
x(t) <w(t) for t € [a,b],

where v is a solution to the problem (4.55). Consequently, by virtue of the
condition (4.26) and Lemma 4.41, the functions z; and z, satisfy the con-
dition (4.134) and thus the inequality (4.21) holds. Hence, the assumptions
of Corollary 4.15 are satisfied. O

Proof of Proposition 4.20. According to Remarks 1.5 and 1.7, the compo-
nents ¢, (i,k = 1,2) of the operator ¢ are positive a-Volterra operators.
Using Lemma 4.42, it is not difficult to verify that, for any v € C([a, b]; R2),
the inequality

Cir (01 () () < Lin(1)(t)pr(v)(t) for a.e. t € [a,b], i,k=1,2,
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holds, where the operator ¢ is defined by the formula (4.12) and ¢y denotes
its kth component.

Consequently, the assumptions of Corollary 4.15 are satisfied with
(=01 O

Proof of Theorem 4.21. First suppose that the conditions (4.29) and (4.30)
hold. Let u = (uy,u2)” € AC([a,b];R?) be a vector function satisfying the
conditions (4.3) and (4.4). We will show that the function u is non-negative.
According to the assumption (4.30), we have

w,(t) > li;(u;)(t) for a.e. t € [a,b], wu;(a) >0
for i = 1,2 and thus, by virtue of the inclusions (4.29), we get
u;(t) >0 for t € [a,b], i=1,2.

Consequently, the operator ¢ belongs to the set Sgb(a).
Now suppose that ¢ € 8% (a). According to the assumption —¢ € Pgy,
and Remark 1.5, we have

0y, € Pap for ik =1,2. (4.136)

We will show that £1; € Syp(a) (the validity of the inclusion f95 € Sqp(a)
can be proved analogously). Let u; € AC([a,b]; R) be a function satisfying
the relations

uy(t) > l11(u1)(t) for a.e. t € [a,b], wuyi(a)>0. (4.137)
Put

t

ua(t) :/\Egl(ul)(sﬂds for ¢ € [a,b]. (4.138)

Then it is clear that
uh(t) = [la1(u1)(t)] > o1 (u1)(t) for a.e. t € [a,b]. (4.139)
Moreover, the relation (4.138) guarantees that
ug(t) >0 for ¢ € [a,b].

From the inequalities (4.137) and (4.139), in view of the conditions (4.136)
we get

2
wi(t) > L (uq)(t) > Z&k(uk)(t) =(;(u)(t) for a.e. t € [a,b], i=1,2,
k=1

where u = (uy,us)?. Consequently, the vector function u satisfies the con-
ditions (4.3) and (4.4) which, together with the assumption ¢ € S (a),
guarantees the validity of the condition (4.5). Hence,

ui(t) >0 for t € [a, b,
and thus £ € Syp(a).

HThe symbol 0 stands here for the zero operator.
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It remains to show that fo; = 0'? (the equality /15 = 0 can be proved
analogously). We have proved above that £1; € Sy,(a) and thus, by virtue
of the inclusion —¢1; € P, and [6, Thm. 2], the operator ¢1; is an a-Volterra
one. Define the operators {and 7 by the formulas
Z(v)(t)_<€12(v2)(t)) for a.e. t€[a,b] and all v=(vy,v2)T€C([a,b]; R?)

2(v)(t)

and

iw)(t) = (—ffn%let))

for a.e. t € [a,b] and all v = (vy,v2)" € C([a,b]; R?).

It is clear that (e P2, and ¢ =0+ (. Since {1, is an a-Volterra operator,
the operator £ is also an a-Volterra one (see Remark 1.7). Hence, using
Proposition 4.20, we get ¢ € 8% (a) and thus, by virtue of Theorem 4.5

(with £+ = 7 and £~ = —¢), we obtain that ¢ € 82,(a). Consequently, the
problem
' (8) = Uu)(t), (4.140)
u(a) = (1,0)7 (4.141)

has a unique solution u = (u1,u2)” and this solution is non-negative (see
Proposition 4.3). Therefore, in view of the inclusions (4.136), the second
equation in the system (4.140) implies

2
uy(t) = Lo(u)(t) = la(u)(t) = Zﬁgk(uk)(t) <0 for a.e. t € [a,b],
k=1

which, together with the conditions (4.5) and (4.141), yields that us = 0.
On the other hand, from the first equation in the system (4.140) we get
wy(t) = 1 (u)(t) = 1o (uz)(t) = 0 for a.e. t € [a,b],
and thus u; = 1. Finally, the second equation in the system (4.140) implies
0=u5(t) = Zg(u)(t) = ly(u)(t) = a1 (1)(t) for a.e. t € [a,b],
i.e., £51(1) = 0. However, this means that £5; = 0, because the operator £o;

is negative. (I

Proof of Corollary 4.22. Each of the conditions (a)—(c) of the corollary guar-
antees the validity of the inclusion ¢; € Syp(a) (see Theorems 1.2 and 1.3,
and Corollary 1.2 established in the paper [24]). O

Proof of Theorem 4.24. Let the operator £ be defined by the formula (4.31).
It is clear that £ € P2. Moreover, according to the condition (4.34), we
have

03 (t) < ap?(t) for t € [a,b],

12The symbol 0 stands here for the zero operator.
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where the functions o2, o> are given by the formulas (4.11), (4.12), and
Ql = (61752)T'
Therefore, the assumptions of Corollary 4.9 are satisfied with £ = 2 and

m = 3. O

Proof of Corollary 4.26. The validity of the corollary follows immediately
from Theorem 4.24 with

*

2
1 .
a:max{éikg_lék/pik(s)ds: 1:172}. 0

Proof of Theorem 4.28. We can assume without loss of generality that ¢ = 1.
Let the operator ¢ be defined by the formula (4.31). It is clear that £ € PZ,.
Lemma 4.43 guarantees that

(eS8 (a) —= 77 €S2 . (a). (4.142)

According to the notation (4.33), the restriction 097" of the operator £ to
the space C([a, 7*];R) is given by the formula

A (D)(1) = pri(t)vr (T11(t)) + pra(t)va (ri2(t))
el = <p21(t)v1 (T21(t)) + paz(t)va (7'22(75))>

for a.e. ¢t € [a,7*] and all v = (vy,v2)" € C([a,7*];R?). (4.143)

Moreover, in view of Example 1.2, the components E%* (i,k = 1,2) of the
operator /%" are defined by the relations

i (2)(8) = pir(D)z(Tik (¢))
fora.e. t € [a,7"] and all z € C([a, 7*];R), i,k =1,2. (4.144)

It is clear that £ € Py for 4,k = 1,2.
We first note that the condition (4.37) implies
T5o
/pQQ(S) ds < 1.

Hence, Lemma 4.46(a) guarantees that

087" € Sur-(a). (4.145)

Case (a). If p1a # 0 on the interval [a,7*], then, in view of the impli-
cation (4.142), the assertion of the theorem follows from Proposition 4.13.
Therefore, suppose that pjo = 0. Then, by virtue of the inclusion (4.145),
Proposition 4.7 and the implication (4.142), it is sufficient to show that
037" € Sur-(a). However, using the condition (4.38) and Lemma 4.46(a),
we see that the inclusion desired holds.
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Case (b). According to the conditions (4.36) and (4.39), we find that
p12 = 0 on the interval [a,7*]. By virtue of the inclusion (4.145), Propo-
sition 4.7 and the implication (4.142), the operator ¢ belongs to the set
S2,(a) if and only if £4]" € Su,-(a). However, in view of the condition
(4.39) and Lemma 4.46(b), the inclusion £4] € S,.~(a) holds if and only if
the condition (4.40) is satisfied. O

Proof of Theorem 4.29. Let the operator £ be defined by the formula (4.31).
It is clear that ¢ € P?. Lemma 4.43 guarantees that

(e S%(a) = (v € 82 . (a).

According to the notation (4.33), the restriction £47 of the operator £ to

the space C([a, 7*]; R?) is given by the formula (4.143). Moreover, in view

of Example 1.2, the components E;‘,CT (i,k = 1,2) of the operator £*7" are

defined by the relations (4.144). It is clear that E?,;r* € Pyp for i,k =1,2.
Case (a). Using the condition (4.38) and Lemma 4.46(a), we get

(H* € Sur+(a), gg* € Sur+(a).

Hence, by virtue of the condition (4.41) and Proposition 4.7, it is clear that
097" € 82_.(a) and thus £ € S%(a).

Case (b). It is easy to see from the equality (4.36) that for i = 1,2 either
the inequality (4.38) or the equality (4.39) is satisfied. Therefore, in view of
the condition (4.41), the assertion of the theorem follows immediately from
the implication (4.142), Proposition 4.7 and Lemma 4.46.

Case (c). Since the equality (4.36) is satisfied for ¢ = 1,2, by virtue of
Proposition 4.14 the operator £7 belongs to the set S2 . (a) if and only if
the homogeneous problem (4.66), (4.67) has only the trivial solution. Con-
sequently, to prove the item (c) of the theorem it is sufficient to show that
the homogeneous problem (4.66), (4.67) has only the trivial solution if and
only if there exists ¢ € {1,2} such that the inequality (4.43) is satisfied.

Let u = (u1,uz2)” be a solution to the problem (4.66), (4.67). According
to the condition (4.42) and Lemma 4.44, we can assume without loss of
generality that

u;(t) >0 for t € la,77], i=1,2.

Therefore from the system (4.66) we get

w;(t) <w(r*) for t €la, 7], i=1,2. (4.146)
Put
u; = 6—%(7 ) for i=1,2, (4.147)
2 ¢ l
fit) = Zék /plk(s) ds for t € [a,7"], i=1,2. (4.148)

k=1
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The integration of the system (4.66) from ¢ to 7%, on account of the inequal-
ities (4.146), implies

* *

ui(77) — u;(t) = /pi1<5)ul (Ti1(s)) ds + /pm(S)’lm (Tiz(s)) ds <
< ul(T*)/pil(s) ds+u2(7*)/pi2(s) ds for t € [a,7*], i=1,2.

Using the notation (4.147), we get

t

2
oiul + Zéku}; /pzk(s) ds <

k=1 2

*
T

2
< u(t) + Z(Sku}i/pik(s) ds for t € [a,7"], i =1,2. (4.149)

k=1 2

On the other hand, the integration of the system (4.66) from a to ¢, in view
of the conditions (4.67), (4.146) and (4.147), yields that

t t

ui(t) = /pﬂ(S)Ul (Ti1(s)) ds + /Piz(s)w (Tiz(s)) ds <

2
< deu}';/pik(s) ds for t € [a,7"], i =1,2. (4.150)
k=1

a

Now, from the inequalities (4.149) and (4.150) we obtain

*
T

2
dju; < ZékuZ/pik(s) ds for 1 =1,2,

k=1 s

whence we get

* *
T T

u; | 0 —6i/pii(s)ds < ué_iég_i/pig_i(s)ds for 1 =1,2.

a a

By virtue of the conditions (4.36) and (4.42), the last relation yields u} <
uj_,; for i = 1,2 and thus we have

uj = ub (=u"). (4.151)
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Now the inequality (4.149), in view of the conditions (4.36) and (4.148),
implies
2 £ 2 T
ui(t) > u* Z5k /pik(s) ds + u” <5i - Z5k /pik(s) ds) =
k=1 k=1
=u"fi(t) for t €la, 7], i=1,2. (4.152)

On the other hand, using the conditions (4.148) and (4.151), the relation
(4.150) can be rewritten as

a

5 ¢
ui(t) < u* 25’“ /pik(s) ds =u*fi(t) for t € [a,7"], 1 =1,2. (4.153)
k=1 %

Hence, the inequalities (4.152) and (4.153) arrive at
ui(t) = u*fi(t) for t € a, 7], i=1,2. (4.154)

Finally, the integration of the system (4.66) from a to 7*, in view of the
conditions (4.67) and (4.154), yields that

* *

ui(T*) — /pil(s)ul (Tll(s)) ds + /piQ(S)UQ (Tig(s)) ds =

*
T

= /fw@ﬁﬂﬁﬂﬂ)&9brt6[mrﬂ,i:lg,

j=1y

whence we get

7ij(s)

u* [@—i?pij(s)(i:ék / pik(€) dg) ds} =0 for i=1,2, (4.155)
=14 k=1

because of the notation (4.147), (4.148) and (4.151).

We have proved that every solution u to the problem (4.66), (4.67) admits
the representation

u(t) =u*f(t) for t € [a,77],

where f = (f1,f2)7 and the number u* satisfies the condition (4.155).
Consequently, if there exists ¢ € {1,2} such that the inequality (4.43) is
fulfilled, then the homogeneous problem (4.66), (4.67) has only the trivial
solution.

It remains to show that if the condition (4.43) is not satisfied for every
ie{1,2),ie.,

2 T
Z /pij(s)fj (1ij(s)) ds = &; for i=1,2, (4.156)
=1y,
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then the problem (4.66), (4.67) has a nontrivial solution. Indeed, the rela-
tions (4.36) and (4.148) yield

filt) < fi(r*) =6; for t € [a, 7], i=1,2.

Therefore, using the conditions (4.36) and (4.156), it is easy to verify that

0< Z/pik(s) [0k — fu(Tie(s))] ds <
k=17

*

< Z/pm(s) [0k — fr(Tin(s))] ds =
k=179

*
T

2
Z/pm ) [ le( )) ds=0 for t €la, 7], i=1,2.

k=17

Hence we get

5
Z/pm ) fre Tz}c( )) ds for t € [a,7"], i=1,2.
k=1

Consequently, f = (fi, f2)7 is a nontrivial solution to the problem (4.66),
(4.67). O

Proof of Theorem 4.30. Let the operator ¢ be defined by the formula (4.31).
It is clear that £ € P%,. According to the conditions (4.44) and (4.45), there
exist zg > 0 and € € [0, 1] such that

Tik(t)

1
p(s)ds < —1n (a:o + *6x()>
o y

zo [ p(s)ds
e a —£&

holds for a.e. ¢ € [a,b], i,k = 1,2. Hence we get

Tik (1) t
To (s)ds zo [ p(s)ds
e L fegscoeof{p for a.e. t € [a,b], i,k =1,2. (4.157)

Put

2o [ p(s) ds

Yi(t) =e —¢ for t€[a,b], i=1,2. (4.158)

Obviously, v = (y1,72)T € AC([a,b]; R?) and the inequality (4.7) is satis-
fied. Moreover, by virtue of the conditions (4.46), (4.157), and (4.158), we



On the Initial Value Problem for Two-Dimensional Linear FDS 53

get
‘ 2
zo [ p(s)ds zo [ p(s)ds
Vz(t) = Top e ¢ Z Zplk(t)l'oe @ =
k=1

2 )

0 p(s)ds
=Yo7 ) -

k=1

=3 v (ran(t)) = (1) (1) for ace. t € [a,b], i=1,2.

Therefore, the vector function ~ also satisfies the condition (4.8) and thus,
using Theorem 4.8, we get ¢ € S2,(a). O

Proof of Corollary 4.31. The validity of the corollary follows immediately
from Theorem 4.30 (see also Corollary 4.26 in the case where p;; = 0 on
the interval [a, 7*] for every i,k € {1,2}). O

Proof of Theorem 4.32. Let the operator £ be defined by the formula (4.31).
It is clear that ¢ € PZ,. Let, moreover, the operator = (Zl,EQ)T be defined
by the formula

9 9 Tik(t)
Gi(v)(t) = ) pir(t)win(t) i(s)v; (Th;(5)) ds

];pk k (7_21 t/ Pk ( K ) )
for a.e. t € [a,b] and all v = (vy,v2)" € C([a,b);R?), i=1,2, (4.159)

where the functions w;x (i,k = 1,2) are given by the relation (4.49). Obvi-
ously, £ € P2, and

4 (gp(v)) (t) — Zpik(t)s%(v)(t) =
k=1

2 Tik (t)

- é pik(t)< > / Pri(8)v; (Tkj(s))ds) < 0;(v)(t)

j=1
for a.e. t € [a,b] and all v = (vy,v2)T € Co(la,b];R%), i=1,2,

where the operator ¢ is defined by the formula (4.12) and ¢ denotes
its kth component. Consequently, the inequality (4.20) holds on the set
Cou([a,b];R%). Therefore, the assumptions of Corollary 4.15 are satisfi-
ed. (]

Proof of Corollary 4.33. Let the operator £ be defined by the formula (4.31).
It is clear that ¢ € P?. Analogously to the proof of Theorem 4.32, one
can show that the inequality (4.20) holds on the set Cy([a,b]; R%), where
the operators ¢ and £ = (£1,03)T are given by the formulas (4.12) and
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(4.159), respectively. Moreover, in view of the condition (4.51), the inequal-
ity (4.23) is fulfilled as well. Therefore, by virtue of Corollary 4.16, we get
(€ 8% (a). O

Proof of Corollary 4.35. Let the operator £ be defined by the formula (4.31).
It is clear that £ € PZ. Analogously to the proof of Theorem 4.32, one can
show that the 1nequahty (4.20) holds on the set C,([a,b];R2), where the
operators ¢ and £ = (£1,05)T are given by the formulas (4.12) and (4.159),
respectively. On the other hand, the inequality (4.52) yields the validity of
the condition (4.26) and thus, using Corollary 4.18, we get £ € 82, (a). O

Proof of Proposition 4.37. Let the operator ¢ be defined by the formula
(4.31). Tt is clear that ¢ € P?,. According to the assumptions of the
proposition, there exists € > 0 such that

me [(5k Tik(t) — )—1—5} <§; fora.e. t€la,b], i=1,2. (4.160)

Put
vi(t) =6;(t —a) +¢& for t €la,b], i=1,2.

Clearly, v = (71,72)T € AC([a,b]; R?) and the inequality (4.7) is satisfied.
Moreover, by virtue of the relation (4.160), we get

[5k Tie(t) — )—|—€:|=

pie()7 (Tie(t)) = Li(y)(t) for a.e. t € [a,b], i=1,2.

M '»Mw

Therefore, the condition (4.8) is satisfied and thus, using Theorem 4.8, we
get £ € 8% (a). O

Proof of Theorem 4.38. Let the operator ¢ be defined by the formula (4.32).
It is clear that —¢ € Pgb and the components £15 and £57 of the operator £ are
zero operators. Moreover, by virtue of Lemma 4.47, each of the conditions
(a)—(c) in the theorem guarantees the validity of the inclusion £;; € Sqp(a).
Consequently, using Theorem 4.21, we get £ € S2(a). O

4.5. Counterexamples. In this section, we construct several counterex-
amples verifying that some of the results presented in Sections 4.1 and 4.2
are unimprovable in a certain sense.
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Example 4.48. Let € €]0,1[ and functions p;x,g; € L([a,b];Ry) (i, k =
1,2) be such that

b b b
/pil(s) ds—l—/pig(s) ds=1+¢, /gl(s) ds <1 for i=1,2, (4.161)
a a

a
b

/p21(s) ds > e. (4.162)

a

Let ¢ = ¢+ — ¢~ where ¢, 0~ € P2 are defined by the formulas
t) pia(t)
Az £ = P11 ( b
i = (22 7)) v

for a.e. t € [a,b] and all v € C([a,b];R?) (4.163)

for a.e. t € [a,b] and all v € C([a,b];R?). (4.164)

According to the condition (4.161) and Corollary 4.26 with 6; = dy = 1, we
find

(1 - €)£+ € Sgb(a).
Moreover, in view of the condition (4.161) and Theorem 4.38(a), we get
—~ € Sgb(a).

We first show that the homogeneous problem (3.3) has only the trivial
solution. Indeed, let @ = (1, U2)T be a solution to the problem (3.3). Then

b b
u;(b) = uy (b) /pﬂ (s)ds + uz(b) /pig(s) ds for i=1,2. (4.165)

a a

By virtue of the conditions (4.161) and (4.162), the last relations yield
u1(b) = ug(b) = 0. Therefore, from (3.3) we get u = 0. According to
Proposition 3.1, the problem (3.1),(3.2) with ¢ = 0 and ¢ = (1,0)T has
a unique solution u = (u,u2)?. Obviously, the vector function u satisfies
the conditions (4.3) and (4.4).
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On the other hand, it is easy to verify that

b
w) ~ ui() = wr(b) [ pia(s)ds+

b b
+uQ(b)/pi2(s) ds—ui(a)/gi(s) ds (4.166)
for ¢ = 1,2. Therefore, using the conditions (4.161) and (4.162), from the
equalities (4.166) we get

b

([ matorts [ Yusto -
=O—jw@ﬂ%<imﬁﬂ*¢)

and thus u; (b) < 0. Consequently, ¢ & S2(a).
This example shows that the assumption (4.6) in Theorem 4.5 cannot be
replaced by the assumption

(L—e)t € 83(a), — €8%(a),
no matter how small € > 0 is.

Example 4.49. Let ¢ €]0,1[ and functions p;;,9; € L([a,b];Ry) (i,j =
1,2) be such that

b b b
/pil(s) dS"‘/pig(S) ds < 1, /gi(s) ds=1+¢ for i =1,2. (4.167)

Let £ = (T — (=, where £T,¢~ € P2 are defined by the relations (4.163) and
(4.164), respectively. According to the condition (4.167) and Corollary 4.26
with §; = §o = 1, we find
€+ S Sgb(a:)
Moreover, in view of the condition (4.167) and Theorem 4.38(a), we get
—(1—e)™ € 82 (a).

We first show that the homogeneous problem (3.3) has only the trivial
solution. Indeed, let U = (U1, u2)” be a solution to the problem (3.3). Then
the equalities (4.165) are fulfilled. By virtue of the condition (4.167), the
relations (4.165) yield @;(b) = u2(b) = 0. Therefore, from (3.3) we get
u = 0. According to Proposition 3.1, the problem (3.1),(3.2) with ¢ = 0
and ¢ = (1,0)” has a unique solution v = (uy,us)?. Obviously, the vector
function u satisfies the conditions (4.3) and (4.4).
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On the other hand, it is easy to verify that the relations (4.166) hold.
Therefore, using the conditions (4.167), from the equalities (4.166) we get

(1- /b ) (1- /b paa(s) ds ) )~

b b b
—uy(b) /plg(s) ds/pgl(s) ds = —¢ (1 — /pgg(s) ds),
and thus u;(b) < 0. Consequently, ¢ € 82 (a).
This example shows that the assumption (4.6) in Theorem 4.5 cannot be
replaced by the assumption
e Shla), —(1—e)l” € Sg(a),

no matter how small € > 0 is.

Example 4.50. Let 7;, = b for i,k = 1,2. Choose p;, € L([a,b];Ry)
(i,k = 1,2) such that
P11 = P22, P12 = P21,

and
b b

/pll(s) d8+/p12(3) ds = 1.

Let the operator ¢ be defined by the formula (4.31). Obviously, ¢ € P2
and, for any m > k, the condition (4.9) with a@ = 1 is satisfied, where
the functions ™ (m = 2,3,...) are defined by the relation (4.11) and
o' = (1,1)T. Moreover, the condition (4.14) is fulfilled with §; = do = 1
and the inequality (4.20) holds on the set C,([a, b]; R% ), where the operator
¢ is given by the relation (4.12) and ¢ = (Zl,gg)T € P2, is defined by the
formula

t
for a.e. t € [a,b] and all v = (vy,v2)” € C([a,b];R?), i=1,2.

Since

b 5 b b 2
/Zpij(5)</zpjk(§) d§> oL EON G0 oy i — 1,2,

w J=1 s k=1

the conditions

s=1

{F @ ds ] tamasy [ [ode
max 11(1)(s) ds, 1)(s)ds
e a o /h(s)esp d
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and

b b
J €1 (1)(s) ds [ 22(1)(s) ds
max{)\leaf " ,)\26‘{ * }
are fulfilled, where the functions h, p and the numbers A, Ay are given by
the relations (4.25), (4.24), and (4.27), respectively (note that pjo = po1 =

p12 = p21 and q; (i = 1,2) are given by the formula (4.22)).

On the other hand, the vector function u = (uy,u2)?, where
t t

u; (t) :/pil(s) ds+/p¢2(s)d5 for t € [a,b], i=1,2,

a a

is a nontrivial solution to the problem (3.3). Therefore, by virtue of Propo-
sition 4.3, we get ¢ & S2,(a).

This example shows that the assumption o € [0,1] in Corollary 4.9
and Theorem 4.24 cannot be replaced by the assumption « € [0, 1], and
the strict inequalities (4.13), (4.23), and (4.26) in Corollaries 4.11, 4.16,
and 4.18, respectively, cannot be replaced by the nonstrict ones.

Moreover, this example shows that the strict inequalities (4.35), (4.51),
and (4.52) in Corollaries 4.26, 4.33, and 4.35, respectively, cannot be re-
placed by the nonstrict ones.

5. WEAK THEOREMS ON DIFFERENTIAL INEQUALITIES

In the previous section, we have established conditions sufficient for the
validity of the inclusion ¢ € 82 /(a) in the case where both components'?
£15 and fo; of the operator ¢ are positive. A question that naturally arises
is what happens in the case where the components indicated are not both
positive. Proposition 4.1 claims that for the ordinary differential system

u' = P(t)u+q(t)
in which P = (pi1.)7 4—; : [a,b] — R**? is an integrable matrix function and
q € L([a,b]; R?), a theorem on differential inequalities holds if
p12(t) >0, poi(t) >0 for a.e. t € [a,b)]. (5.1)
In other words, the condition (5.1) is sufficient for the validity of the
inclusion ¢ € 8% (a), where the operator ¢ is defined by the relation
((v)(t) = P(t)v(t) for a.e. t € [a,b] and all v € C([a,b]; R?).

If the coefficients p; (i, k = 1,2) are continuous, then the condition (5.1) is
not only sufficient but also necessary (see, e.g., [42, § 1.7]).

Therefore, the requirement of the validity of the condition (4.5) in Def-
inition 4.2 seems to be too restrictive in the case where the components
l12 and f21 of the operator £ are not both positive. We can weaken the
condition (4.5) in the following way.

13See the item 27 in Section 1.
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Definition 5.1. Let k € {1,2}. We say that a linear bounded operator
¢: C(la, b); R?) — L([a, b]; R?) belongs to the set S %" (a) if for an arbitrary
function u = (uy,uz)” € AC([a,b]; R?) satisfying the inequalities (4.3) and
(4.4) the relation
ug(t) >0 for t € [a,b] (5.2)

is fulfilled,

Ife e Sfék(a), then we say that the weak theorem on differential inequal-
ities holds for the system (3.1).

Remark 5.2. Let k € {1,2}. It follows immediately from Definitions 4.2
and 5.1 that:
(a) S%(a) is a proper subset of the set S5 (a).
(b) If the operator ¢ is such that l3_gr € Pap and l3_g3_k € Sap(a),
then R
(e 83 (a) «= (eS8 a).
In this section, we establish weak theorems on differential inequalities for
the “anti-diagonal” two-dimensional system

uy (t) = ha(u2)(t) + qi (),
us(t) = ha(ur)(t) + ga(t),

where hy, he € L4, and g1, 92 € L([a,b]; R), in the case where either hy or
ho is a positive operator.

(5.3)

Remark 5.3. For the sake of convenience, if the weak theorem on differential
inequalities (resp., the theorem on differential inequalities) holds for the
system (5.3), then we write (hi,he) € S5%(a) (resp., (h1,ha) € 8%(a))
instead of ¢ € Sagb’k(a) (resp., £ € 8% (a)) with
L(v)(t)= i (v2) (2) for a.e. t€(a,b] and all v=(vy,v2)"€C([a,b];R?).
ha(v1)(t)

Remark 5.4. Tt follows immediately from Definition 5.1 that:

a) (0,h) € 8> (a) for every h € Lgp.1

( ) ’ ) ab y ab

(b) (h,0) € Sff(a) for every h € L.

(¢) For any k = 1,2 and hq, hy € L4p, we have

(h1,h2) € 855 (a) <= (ha, 1) € 85 (a).
(d) For any k =1,2 and hq, hs € Pup, we have
(hl,hg) S gjék(a) < (hg, hl) e §;b’k(a).

Remark 5.5. Let k € {1,2} and (h1,ho) € gfgk(a). Then it is clear that
the homogeneous problem

uy (t) = ha(ug)(t),
ui(a) =0,

uy(t) = ho(u)(t),

wfa) — 0 (5.4)

14The symbol 0 stands here for the zero operator.
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has only the trivial solution. Indeed, if (u1,u2)? is a solution to the prob-
lem (5.4), then the inclusion (hq, hs) € §5gk(a) yields that ug = 0. Conse-
quently, us_, = 0 as well and thus the problem (5.4) has only the trivial
solution.

Therefore, according to Proposition 3.1, the Cauchy problem

ui(a) =c1, wuz(a)=cy (5.5)
subjected to the system (5.3) has a unique solution for all g1, g2 € L([a, b]; R)
and c¢1,c2 € R. However, the inclusion (hq,hs) € ngk(a) guarantees, in

addition, that the solution (u,uz)T to this problem satisfies the condition
(5.2) whenever ¢1, ¢2 and ¢y, co are such that

qr(t) >0 for a.e. t€a,b], ¢ >0 (k=1,2).

In Section 5.1, main results are formulated, their proofs being postponed
till Section 5.4. Differential systems with argument deviations are studied
in more detail in Section 5.2, in which case further results are obtained. In
Section 5.5, the counterexamples are constructed verifying that the results
obtained are unimprovable in a certain sense.

5.1. Main results. The next statement describes a characteristic property
32,k
of the set S_;"(a).

Theorem 5.6. Let k € {1,2}, hy, € Pap, and hs_ = hs_o — hs—k,1 with
hs—k,0,h3—k1 € Pap. Assume that
(hla hQ,O) S 3\(1261(@)7 (hla 7h2,1) € gfl;l(a) Zf k = 17
and N R
(h1,0,h2) € 85%(a),  (=haj,hs) € 8352 (a) if k=2,
Then (hy, hs) € S5 (a).

It is proved in [40, Ch. VII, § 1.2] that h € L,, admits the represen-
tation h = hg — hy with hg,hy € Py if and only if the operator A is
strongly bounded.'® Consequently, due to the results given in Sections 5.1.1
and 5.1.2, Theorem 5.6 allows one to obtain several efficient conditions for

positive hy and strongly bounded hs_j that guarantee the validity of the
inclusion (hq, h2) € Sfb’k(a).

5.1.1. The case hyi,ho € P,. We first consider the case where both opera-
tors hy and ho are positive. In this case, we have

(h1,hs) € 85 (a) <= (hn,ha) € S2y(a)

(see Remark 5.2(b)). We have studied properties of the set 82 (a) in Sec-
tion 4. For the sake of completeness, we formulate here a general result (see
Theorem 5.7) and two of its corollaries. Then we derive two new corollar-
ies of this general theorem (namely, Corollary 5.14 and Proposition 5.15),
which cannot be found above.

153ee Definition 1.1.
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Theorem 5.7 (Theorem 4.8). Let k € {1,2} and hi,hy € Pu. Then
(h1,he) € éAfb’k(a) if and only if there exist functions 1,72 € AC([a,b];R)
such that
71(t) >0, (t) >0 for t € [a,b (5.6)
and
V() = h(2)(t), 73(t) = ha(n)(t) for a.e. t€[ab].  (5.7)

Corollary 5.8 (Corollary 4.16). Let hy, ho € Pay, and there exist operators
hi,he € Py, such that the inequalities

hi (9 (hs—i(2))) (£) = hi(D)(£)8 (hs—i(2)) (1) < () (1)
for a.e. t €la,b] and all z € C([a,b;Ry), i=1,2 (5.8)
hold, where

wUW%=/ﬂ$®JWtehﬂ,f€MMMR) (5.9)

Let, moreover,
b

b
"w(g)d¢
/g(s) ei ds < 1, (5.10)

a
where

w(t) = max {h1(1)(t), ha(1)(t)} for a.e. t € [a,b], (5.11)
g(t) = max {hy (1)(t), h2(1)(t)} for a.e. t € [a,b].
Then, (hy,hy) € 85 (a) N8 %% (a).
Remark 5.9. The strict inequality (5.10) in the previous corollary cannot be
replaced by the nonstrict one (see Example 4.50 with p;; = 0 and pes = 0).
Corollary 5.10 (Corollary 4.18). Let hi, ho € Pay and let there exist oper-

ators hl,ﬁg € Pap such that the inequalities (5.8) hold, where the operator
Y is defined by the relation (5.9). Let, moreover,

max { A\, A2} <1, (5.12)
where
Mjmm(jMQ%yMM$®+
—I—/bsinh(/bw(§) dg)%g_i(l)(s) ds for i=1,2

and the function w is defined by the relation (5.11). Then the pair (hi, ho)
belongs both to Sfb’l(a) and Sfb’z(a).
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Remark 5.11. The strict inequality (5.12) in the previous corollary can-
not be replaced by the nonstrict one (see Example 4.50 with p;; = 0 and

p22=0).
Now we introduce a simple notation.
Notation 5.12. For any ¢ € L,;, we put
b, = inf A(Y),
where A(¢) denotes the set of all ¢ € [a, b] for which the implication

z € C([a,b; R),

2(€) =0 for & € [a,t] } = £(2)(§) =0 fora.e. £€ la,b]

holds.

Remark 5.13. 1t is easy to verify that b} € A(Y), i.e.,

z € C([a,b; R), , o .
2(€) = 0 for € € [a,b]] (2)(§) =0 for a.e. € €a,0]

The following statements can also be derived from Theorem 5.7.

Corollary 5.14. Let hq, ho € Pap, and there exist i € {1,2} such that

b
h3_;

/ B (W (hs—o(1))) (s)ds < 1, (5.13)

a

where the operator 1 is given by the relation (5.9) and the number bh,_, 1S
defined in Notation 5.12. Then (h1,hz2) € §a2b’1(a) N gff(a).

The next proposition can be regarded as a complement of the previous
corollary.

Proposition 5.15. Let k € {1,2}, h1,he € Py, and there exist i € {1,2}
such that

bhg_s
[ mota@))sas =1, an

where the operator v is given by the relation (5.9) and the number by,

is defined in Notation 5.12. Then (h1,hs) € gfb’k(a) if and only if the
homogeneous problem (5.4) has only the trivial solution.
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Example 5.16. On the interval [0, 7w/4], we consider the integro-differential
system

t/2
ul(t) = dy sint / sup(s/2) ds + q(t),
0 . (5.15)
Wl (t) = dy cos(2t) / cos(2s)us (7(s)) ds + ga(t),
0

where 7: [0,7/4] — [0,7/4] is a measurable function, ¢1, g2 € L[0,7/4]; R),
and dy,dy € Ry are such that
212

Ar(1+2v2) —m2(1+v2) — 24~

It is clear that the system (5.15) is a particular case of the system (5.3) in
which a =0, b =7/4, and hy, hy are given by the formulas

dids <

t/2
hi(z)(t) = dysint / s5z(s/2) ds,
0 (5.16)

t

ha(z)(t) = da cos(2t) /cos(?s)z(T(s)) ds
0

for a.e. ¢t € [0,7/4] and all z € C([0,n/4];R). It is not difficult to verify
that by = ess sup {r(t) : t € [0,7/4]} (see Notation 5.12) and

t t s

Y(he(1))(t) = /hg(l)(S) ds = /d2 cos(25)/cos(2§) d¢ds =
0 0 0

= % (1 — cos(4t)) for ¢ € [0,7/4].

Consequently, we have

b;KIQ /4

/hl(w(h2<1)))(s)dss /hl(w(m(l)))(s)ds:

/4 s/2
= / dy sin s / £ (1% (1 — 008(25)) déds =
0 0
_ didy

(4m(1+2v2) - 72(1+v2) —24) < 1.

Therefore, according to Corollary 5.14 with ¢ = 1 and Remark 5.5, the
Cauchy problem

912

ul(O) = (1, UQ(O) = C2 (517)
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subjected to the system (5.15) has a unique solution for arbitrary q1,¢s €
L([0,7/4];R) and ¢1,c2 € R. Moreover, if ¢1,¢2 and ¢, o fulfil the addi-
tional condition

qr(t) >0 for a.e. t€[0,7/4], cx >0 (k=1,2), (5.18)
then the unique solution (uy,us)” to this problem satisfies the relation
ui(t) >0, wa(t) >0 for ¢ € [0,m/4].

Example 5.17. On the interval [0, 1], we consider the Cauchy problem

t

W (t) = (1_dt)k/(“1(i(5;)A ds+q(t); u(0)=cr, W(0)=csr (5.19)

where A < 1,0 < d < (3 —=2\)(2—=X), 7: [0,1] — [0,1] is a measurable
function, ¢ € L([0,1];R), and ¢1, ¢ € R.

It is clear that the problem (5.19) can be regarded as a particular case
of the problem (5.3), (5.5) in which a =0,b=1, ¢ =0, ¢2 = q, and hy, ho
are given by the formulas

z

h(2)(t) = 2(t),  hal2)(®) 17“ / = ) 4 (5.20)

for a.e. t € [0,1] and all z € C([0,1];R). It is not difficult to verify that
by, =ess sup {7(t) : t €[0,1]} (see Notation 5.12) and

b, bi,
/h1 (1 (ha(1))) (s) ds = /(bzz _ $)ha(1)(s)ds <
0 0
(1 —s)ho(1 =d [(1-5s)
< oo
d 1
BCEPPES

Therefore, according to Corollary 5.14 with ¢ = 1 and Remark 5.5, the
problem (5.19) has a unique solution for arbitrary ¢ € L([0,1];R) and
c1,c9 € R. Moreover, if ¢ and ¢y, ¢ fulfil the additional condition

q(t) >0 fora.e. t€[0,1], ¢; >0, c2 >0, (5.21)
then the unique solution u to this problem satisfies the relation

u(t) >0, ' (t)>0 for t€0,1].
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5.1.2. The case hy € Py, and —hs_ € Pu. Now we consider the case
where the operators h, and hz_j are positive and negative, respectively.
Here we have a sufficient and necessary condition for the validity of the
inclusion (hy,hs) € gfb’k(a) provided that both operators h; and ho are
a-Volterra ones.

Theorem 5.18. Let k € {1,2}, —h3_j, hy € Pop and let the operators hy,

ha be a-Volterra ones. Then (h1,hs) € gfék(a) if and only if there exist
functions 1,72 € ACjc([a,b];R) such that v, € C([a,b];R),

V() < hi(v3—)(t) for a.e. t € [a,b],'0 (5.22)
Yo (t) < hs_k(yk)(t) for a.e. t € [a,b], (5.23)
Y(t) >0 for t € [a,b], (5.24)
Yk(a) >0, 73-k(a) <0, (5.25)
and
B+ 12(B)] #0 for t €]a,b]. (5.26)
Remark 5.19. Since possibly y3_x(t) — —oo as t — b—, the condition (5.22)
}

of the previous theorem is understood in the sense that for any by € ]a, b|
the relation
V() < BEP (y3_1)(t) for a.e. t € [a, bo]

holds, where hzbﬂ denotes the restriction of the operator hjy to the space
C([a, bo); R).""
Remark 5.20. Observe that the function v3_j in Theorem 5.18 necessarily
satisfies the condition
Y3—k(t) <0 for t € [a,b]. (5.27)
Theorem 5.18 yields the following corollary.

Corollary 5.21. Let k € {1,2}, —hs_k, hy € Pap and let the operators hq,
ho be a-Volterra ones. If, moreover, the inequality
b

/’hk(w(h&k(l)))(tﬁ)\ ds <1 (5.28)

holds, where the operator ¢ is defined by (5.9), then (hy,hs) € §fb’k(a).

Remark 5.22. The inequality (5.28) of the previous corollary cannot be
replaced by the inequality
b

/]hk (¥ (R (1)) (s)| ds < 1+, (5.29)

a

165¢e Remark 5.19.
17See Definition 1.8.
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no matter how small € > 0 is (see Example 5.40).

Example 5.23. On the interval [0, 7/4], we consider the integro-differential
system (5.15), where 7: [0, 7/4] — [0, 7/4] is a measurable function, 7(t) <t
for a.e. t € [0,7/4], q1,q2 € L([0,7/4];R), and dy > 0, d2 < 0 are such that

212

Ar(1+2v2) —m2(1+V2) — 24~

It is clear that the system (5.15) is a particular case of the system (5.3)
in which @ = 0, b = /4, and hq, he are given by the formulas (5.16).
Analogously to Example 5.16, we get the relation

/4
/ |h1 (¢ (h2(1))) (s)] ds = d;'fi?' (4w(1 +2V2) — (14 V2) - 24) <L

di|ds| <

Therefore, according to Corollary 5.21 with £ = 1 and Remark 5.5, the
problem (5.15), (5.17) has a unique solution for every ¢1, g2 € L([0, 7/4]; R)
and ci,co € R. Moreover, if q1,q2 and cq,co fulfil the additional condi-
tion (5.18), then the unique solution (u1,u2)? to this problem satisfies the
relation

ui(t) >0 for t € [0,7/4].

Example 5.24. On the interval [0, 1], we consider the problem (5.19),
where A <1, d <0, |d] < (3—=2A)(2—=A), 7: [0,1] — [0, 1] is a measurable
function, 7(t) <t for a.e. t € [0,1], ¢ € L(]0,1];R), and ¢1,¢2 € R.

It is clear that the problem (5.19) can be regarded as a particular case
of the problem (5.3),(5.5) in which a =0,b=1, ¢ =0, ¢2 = q, and hy, hy
are given by the formulas (5.20). Analogously to Example 5.17, we get the
relation

1 d
/!hl (@(rMN ) ds = gy =&
0

Therefore, according to Corollary 5.21 with & = 1 and Remark 5.5,
the problem (5.19) has a unique solution for arbitrary ¢ € L([0,1]; R) and
c1,c9 € R. Moreover, if ¢ and ¢y, ¢ fulfil the additional condition (5.21),
then the unique solution u to the this problem satisfies the relation

u(t) >0 for t €[0,1].
5.2. Systems with argument deviations. In this part, we establish some
corollaries of the results stated in the previous section for the differential
system with argument deviations (3.1') in which p;; = 0 and pos = 0.
More precisely, efficient conditions are found for the validity of the inclusion
(h1,he) € gfék(a) whenever the operators hy, hy are defined by the formula

hi(2)(8) = fu(t)z(7i(t))
for a.e. t € [a,b] and all z € C([a,b;R), k=1,2, (5.30)
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where f1, fo € L([a,b];R) and 71, 72: [a, b] — [a, b] are measurable functions.
Throughout this section, the following notation is used:
7 = ess sup {7y (t) : t € [a,b]} for k=1,2.

As was mentiAoned above, if the operators hy and hy are both positive,
then (hy,hs) € 8% (a) if and only if (h1,hs) € S, (a) (see Remarks 5.2(b)
and 5.3). Therefore, having the operators h; and hy given by the relation
(5.30), the efficient conditions guaranteeing the validity of the inclusion
(h1,h2) € Sjb’k(a) can be immediately derived from those stated in Sec-
tion 4.2 provided that

fi(t) >0, fa(t) >0 for a.e. t € [a,bl. (5.31)

For the sake of completeness, we reformulate here three main results stated
in Section 4.2 and then we establish two new statements which can be
derived from Corollary 5.14 and Proposition 5.15 (namely, Theorems 5.30
and 5.31).

Theorem 5.25 (Theorem 4.30). Let hq, ho be the operators defined by the
relation (5.30) and let the condition (5.31) hold. Put
w(t) =max {f1(t), f2(t)} for a.e. t € [a,b] (5.32)
and assume that w £ 0 on [a,7*] and
7i(t)

esssup{ /w(s)ds:te[a,b]}<n* for i=1,2,

where T* = max{7y, 75} and

romfin(r ) )

Then the pair (h1, ha) belongs both to gfb’l(a) and §a2b’2(a).

Theorem 5.26 (Corollary 4.33). Let hy, ho be the operators defined by the
relation (5.30) and let the condition (5.31) hold. Assume that the inequality
(5.10) holds, where the function w is defined by the relation (5.32) and

9(t) = max {g1(t), g2(t) } for a.e. t € [a,b]

in which
Ti (t)

gi(t) = fi(t)oi(t) / fa—i(s)ds fora.e. t €a,b], i=1,2,
and
o;(t) = %(1 + sgn (7 (t) — t)) fora.e. t€la,b], i=1,2. (5.33)

Then (hi, he) € gfél(a) N 35152(6‘)'
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Remark 5.27. The strict inequality (5.10) in the last theorem cannot be
replaced by the nonstrict one (see Example 4.50 with p;; = 0 and pos = 0).

Theorem 5.28 (Corollary 4.35). Let hy, ho be the operators defined by the
relation (5.30) and let the condition (5.31) hold. Assume that the inequality
(5.12) holds, where

A= / cost / S(€)d€) ie)en(s) 7S)fsi<a> ac) as+

T3—i(8)

 fa( faae) e[ g

a

for i = 1,2 in which the functions w and o1, o9 are defined, respectively,
by the relations (5.32) and (5.33). Then the pair (hi,hs) belongs both to
Syl (a) and 837 (a).

Remark 5.29. The strict inequality (5.12) in the previous theorem cannot be
replaced by the nonstrict one (see Example 4.50 with p;; = 0 and pos = 0).

For the operator hj given by the relation (5.30), according to Nota-
tion 5.12, we have by < 7;/. It is however easy to see that the equality
b, = Tx does not hold in general. On the other hand, it is clear that the
number 7 is easier to compute than bj . Therefore, the results obtained
below by using Corollary 5.14 and Proposition 5.15 are formulated in terms
of the number 7 instead of by, .

Theorem 5.30. Let hy, hy be the operators defined by the relation (5.30)
and let the condition (5.31) hold. If the inequality

7i(s)

/fz (/fgi(g)dg) ds <1

holds for some i € {1,2}, then the pair (h1,h2) belongs both to S\fél(a) and
i’ (a).

The next theorem can be regarded as a complement of the previous one.

Theorem 5.31. Let i,k € {1,2}, hy, ha be the operators defined by the
relation (5.30), the condition (5.31) hold and let the equality

7]‘} ( / fo Z(g)dg) ds =1 (5.34)
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. 82,k . .
be satisfied. Then (hy,h) € 8" (a) if and only if

TS Ti(s)

/ ﬂ(s)( / fgios)xi(fgi(f))dg) ds < 1, (5.35)

where
zi(t) = /tfi(5)< 7S)f3—i(f) d§> ds for t € [a,b]. (5.36)

In what follows, we give two statements dealing with the validity of the
inclusion (hy, hs) € gazék(a) in the case where one of the operators h; and
hs given by the relation (5.30) is positive and the second one is negative.

The next result follows from Corollary 5.21.

Theorem 5.32. Let k € {1,2}, hy and hy be the operators defined by the
relation (5.30),

fu(t) >0, fa_x(t) <0 fora.e t€]la,bl], (5.37)
and
|fi©)](r:(t) —t) <0 fora.e t€lab], i=1,2. (5.38)
If, moreover, the inequality

Tk (9)

/b fk<s>( / f3k<£)|ds) ds<1 (5.39)

a
is satisfied, then the pair (h1,hs2) belongs to the set gfb’k(a).

Remark 5.33. The inequality (5.39) in the previous theorem cannot be re-
placed by the inequality

T (8)

/bfk<s)( / | fa—k(&)] d€) ds <1+e, (5.40)

no matter how small € > 0 is (see Example 5.40).
The next statement contains the so-called Vallée-Poussin type conditions.

Theorem 5.34. Let k € {1,2}, hy and hy be the operators defined by the
relation (5.30), and let the conditions (5.37) and (5.38) be satisfied. Assume
that there exist numbers ai, a2 € Ry, ag >0, A € [0,1], and v € [0, ] such
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that
+oo
N1
/ ds > (b—a) 7 (5.41)
o1 + a8 + aigs? 1-—X
0

(b=t fi(t) <

§a3[1—|—5k(t) / (bis—&—(l)fz))\)ds] fora.e. t€la,b], (5.42)

(b= )M fs_r(t)] < a1 fora.e tela,b] (5.43)
and

az(b—t)" | fs—r ()] (t—T3-x(t)) < a2+ s fora.e t€a,b], (5.44)

v
(b—-t)t=
where

=5 (1 + sgn (t — 7i(t ))) for a.e. t € a,b).
Then the pair (hy, ha) belongs to the set S ( ).

Remark 5.35. The inequality (5.41) in the previous theorem cannot be re-
placed by the inequality

—+o0

/ . ds > (1— g)w, (5.45)

o1 + o9s + o382

no matter how small € > 0 is (see Example 5.41).

Remark 5.36. Using Theorem 5.6 and combining the results stated above,
we can immediately derive several conditions sufficient for the validity of
the inclusion (hq,hs) € Sfb’k(a) if the operators hy and hy are defined by
the formulas

hi(2)(t) = fu(t)z(mi(t)) for a.e. t € [a,b] and all z € C([a,b];R)

and

hs—k(2)(t) = f3—r,0(t)2(T3-k,0(t)) = fa—r,1(£)2(T3-k1 (1))
for a.e. t € [a,b] and all z € C([a,b];R),

where fi, fs—r0, f3—k,1 € L([a,b];Ry) and 7y, 73-k0, T3-k,1: [a,0] — [a,b]
are measurable functions. However, we do not formulate them here in detail.

5.3. Auxiliary lemmas. In this part we give several lemmas that we will
need in the proofs of the results stated in Sections 5.1 and 5.2.

Lemma 5.37. Let k € {1,2}, —hs_k,h € Pap and let the operators hy
and hy be a-Volterra ones. Assume that there exist functions vy1,72 €
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ACc([a, b[;R) such that v, € C([a,b];R) and the relations (5.22)—(5.25)

hold. Then, for any ui,us € AC([a,b];R) fulfilling the inequalities
uy(t) > hi(ug)(t), uh(t) > ha(ur)(t) for a.e. t € [a,b] (5.46)
and
ui(a) >0, wa(a) >0, (5.47)
the condition
up(t) >0 for t € [a,by] (5.48)
holds, where
br, = sup {z €]a,b] : () >0 fort € [a, ]} (5.49)

Proof. Let functions ui, us € AC([a, b]; R) satisfy the inequalities (5.46) and
(5.47). Define the number by, by the relation (5.49). It is clear that by > a
and

7 (t) > 0 for t € [a,by]. (5.50)
Assume that, on the contrary, the relation (5.48) does not hold. Then there
exists to €]a, by such that

uk(to) < 0. (551)
Put 0
Uk t
A= tE€la,tol]y. 5.52
max { e [a 0]} ( )
It is clear that
0< A< +x. (5.53)
Define the functions w; and wy by setting
w;(t) = My (t) — ui(t) for ¢ € [a,to], i=1,2. (5.54)

Since the operators hy, hs are a-Volterra ones, using the conditions (5.46),
(5.22), (5.23), (5.53) and Remark 5.19, we get
wi(t) = Myi(t) — wit) < A" (Nyz—i — uz—4)(t) =
= h§*(ws_;)(t) for a.e. t € [a,to], i=1,2, (5.55)
where h{* and h§" are the restrictions of the operators h; and hs to the

space C([a,to]; R).'®
On the other hand, by virtue of the relation (5.52), it is clear that

wi(t) > 0 for t € [a,to] (5.56)
and there exists ¢; € [a,to[ such that
wi(t1) = 0. (5.57)

Since we suppose that —hs_p € Pup, we get from (5.25), (5.47) and (5.53)—
(5.56) that

wh_p(t) < h3Y, (wy)(t) <0 for a.e. t € [a,to]

18366 Definition 1.8.
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and
ws—_g(a) = Mys—x(a) —us—x(a) < 0.
Hence we obtain
ws—_(t) <0 for t € [a,to]. (5.58)

However, we suppose that hy € Py, and thus we get from (5.55) and (5.58)
that

wi(t) < hifo(ws_y)(t) <0 for a.e. t € [a, o). (5.59)
Finally, by virtue of (5.24), (5.53) and (5.57), the relation (5.59) yields

0 = wi(t1) > wi(to) = Mk (to) — ur(to) > —ux(to),

which contradicts the inequality (5.51).
The contradiction obtained proves the validity of the desired relation
(5.48). |

Lemma 5.38. Let i € {1,2}, fi,fo € L([a,b];R}), and 71,72: [a,b] —
[a,b] be measurable functions such that the equality (5.34) holds. Then the
homogeneous problem
u& (t) = fl (t)UQ (Tl (t)), ’U,Ig(t) = fg(t)ul (Tg(t)), (560)
ui(a) =0, ug(a)=0 (5.61)
has only the trivial solution if and only if the inequality (5.35) is satisfied,
where the function x; is defined by the formula (5.36).

Proof. Let (ur,uz)” be a solution to the problem (5.60), (5.61). We first
show that the function w; does not change its sign on the interval [a, 75_,].
Assume that, on the contrary, u; changes its sign on [a, 75_,]. Put

M =max {u;(t) : t€la,73_;]}, m=—min{u;(t): t€la,75_;]}, (5.62)
and choose tyr,ty, € [a, 75_;] such that
ui(tayr) =M, ui(tym) = —m. (5.63)

Clearly,
M >0, m>0, (5.64)

and we can assume without loss of generality that ¢, < tj;. By virtue of
the relations (5.62), it follows from the (3 —4)th condition in (5.61) and the
(3 —4)th equation in (5.60) that

ws_5(1) = / Fra(s)ui(m3i(s)) ds < M / Fo_i(s)ds for ¢ € [a,B]. (5.65)

Therefore, the integration of the ith equation in (5.60) from ¢, to tps, in
view of the conditions (5.34), (5.63) and (5.65), yields

tar Ti(s)

M+m= 7fi(8)u3—i(7i(3)) ds < M/fz(s)( / f3-i(§) d§> ds < M,

a
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which contradicts the second inequality in (5.64).

The contradiction obtained proves that the function u; does not change
its sign on the interval [a,75_,]. Therefore, we can assume without loss of
generality that

u;(t) >0 for ¢t € [a,75_;]-
It follows from (5.60) and (5.61) that

7i(s)

/fZ ( / fa—i(&)ui(t3-:()) df) ds for t € [a,b]. (5.66)

Since 13_;(t) < 75_, for a.e. t € [a,b] and the function u; is non-negative
on [a,7i_,], the last relation yields

u;(t3-4(t)) <wu(ri_;) fora.e. t € [a,bl.

Therefore, in view of the notation (5.36), the representation (5.66) implies
that

t

wlt) <u(ri) | fi<s>( 7S)fs_i(€) d&) ds =

a

=u;(15_;)x;i(t) for t € [a,b] (5.67)

and

ui(73_;) /fz (/fs—z‘(f)uz‘(T3—i(§))d§) ds <

7i(s)

< ui(T5_;) / fi(s ( / f3—i(§) d{) ds for t € [a,75_;]. (5.68)

Using the equality (5.34) and the notation (5.36) in the relation (5.68), we
get

w(r3-an(0) = w5 (1 - / o / fsi(ﬁ)d§> ) < il

for t € [a,75_;], which together with the above-proved relation (5.67) yields
wi(t) = wi(15_;)x:(t) for t € [a,75_;]. (5.69)
Finally, (5.66) and (5.69) result in

7i(8)

—us(r) / Fi(s ( / fo Zg)mi(mi(g))dg> ds for telab], (5.70)
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whence we obtain

i(T3 [ / fils (ﬂ/(S)fa-i(f)xi(rs_i(g))dg) ds} =0. (5.71)

We have proved that every solution (u1,uz)” to the problem (5.60), (5.61)
satisfies the relation (5.70), where u;(75_,) fulfils the equality (5.71). Conse-
quently, if the inequality (5.35) holds, then u; = 0 on the interval [a, b], and
thus the homogeneous problem (5.60), (5.61) has only the trivial solution.

It remains to show that if the inequality (5.35) is not satisfied, i.e.,

TS 7i(s)

[ 36 [ a@minae)ac)as -1 (5.72)

a a

then the homogeneous problem (5.60), (5.61) has a nontrivial solution. In-
deed, in view of the equality (5.34), the relation (5.36) yields

2i(13-5(t)) < wi(r5_;) =1 for a.e. t € [a,b].
Therefore, using the equality (5.72), it is easy to verify that

7i(8)

0< / o / A1~ ilra-i(9)] a ) as <

< /fz(5)< / f3—i(€)[1—5€¢(73—i(§))]d§> ds =

—1- / s (7)f31<§>xi(m<s>) dg) ds =0

for t € [a,75_,]. Hence we get
t 7i(s)
zi(t) = /fz(s)( / fa—i(§)wi(T3-:()) d«f) ds for t € la,75_;]. (5.73)
Put

u37, /f3z xZTBZ() S, /fz ungZ ))d

for t € [a,b]. By virtue of the equality (5.73), it is clear that u;(t) = z;(¢)
for ¢t € [a,75_,], and thus

ug—;(t) = /fg,i(s)ui (t3-i(s)) ds for t € [a,b].
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Consequently, (ui,us)” is a nontrivial solution to the problem (5.60),
(5.61). 0

Lemma 5.39. Let the numbers ay,as € Ry, ag >0 and A € [0,1] be such

that
+oo

/ ds Gl (5.74)

o1 + ags + azs? 1-A

0
Then for an arbitrary v € [0, \] there exist functions v € C([a,b];R) and
Y3—k S Cloc([a> b[ ; R) such that ’Y]lc’ '7;;7 ’7:/’,7]9 S Cloc([av b[ 5 R);

Yi(t) >0 for t € [a,b], (5.75)
va—k(a) =0, 3_x(t) <O for t €la,bl, (5.76)
(O = Gy Tek(t) for L€ fab], (5.77)
Vii(t) = —(biaﬁ Ve(t)+
+ (ﬁ + (biizt))\)%,k(t) for t € la,b[, (5.78)
and

Ye(t) <0 for t € [a,b]. (5.79)

Proof. Define the function g: [a,b[— Ry by setting
—+oo

ds (b—t)=A
= for t bl.
/041-1—04234—04332 1—\ or t € [a,b]
o(t)
In view of the equality (5.74), we get
o(a) =0, o) >0 for t€la,b[, (5.80)
e (1) + a5 (1)
a1 + az0(t) + ago(t
o(t) = b—1p for ¢ € [a,b[.
Put
t
a30(s) o(t)vk(t)
= — _ =—=—27 f .
Yi(t) = exp ( / b5 ds), Y3—k(t) b1 or t € la,b|

a

It is not difficult to verify that vi,v3—x € Cioc([a, b]; R) and the conditions
(5.77) and (5.78) are satisfied. Therefore, v;,v,_, € Cioc([a,b[;R), as well.
Moreover, in view of the relations (5.80), it is clear that the conditions
(5.75) and (5.76) are fulfilled. Consequently, by direct calculation we can
verify that 7}/ € Cioe([a,b[;R) and that the inequality (5.79) is satisfied.
Since the function 74 is positive and non-increasing on [a, b, there exists
a finite limit lim;_,,_ % (t). Therefore, v, € C([a, b]; R) when we put v (b) =
limt_,b_ Yk (t) (Il
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5.4. Proofs. First recall (see Remark 5.3) that we write (hy, hg) € gSA’;b’k(a)
instead of ¢ € Sfb’k(a) with £ given by the formula

_ (Pa(v2)(®)
@ = (o)
for a.e. t € [a,b] and all v = (vy,v2)T € C([a,b];R?).

Therefore, the inequalities (4.3) and (4.4) appearing in Definition 5.1, ex-
pressed in terms of its components, have the form

ui (t) > hy(ug)(t), uh(t) > ha(ui)(t) for a.e. t € [a,b] (5.81)

and
ui(a) >0, ws(a)>0 (5.82)

in the case indicated.

Proof of Theorem 5.6. In view of Remark 5.4(c), we can assume without
loss of generality that k = 1. Let (uj,u2)” € AC([a,b];R?) be a vector
function satisfying the inequalities (5.81) and (5.82). We will show that the
function wu; is non-negative.

According to the inclusion (hq,—ho1) € gfgl(a) and Remark 5.5, the
problem

i (t) = ha(az)(t), ah(t) = —ha () (t) + hao(fui]-) (1), (5.83)
a1(a) =0, ag(a)=0 (5.84)
has a unique solution (ay, a)” and

ay(t) >0 for t € [a,b]. (5.85)
In view the conditions (5.81), (5.82), (5.83), (5.84) and the assumption
hz)o € Pup, we get

oy (t) +ui(t) > hi(ag +ug)(t) for a.e. t € [a,b],
ah(t) +uy(t) = —haa(ar +ur)(t) + hoo(ua + [m]-)(t) =
> —ho1(ar +u1)(t) for a.e. t € [a,b],
and
ag(a) +ui(a) >0, az(a)+uz(a) > 0.

Consequently, the inclusion (hy, —hg 1) € g‘jgl(a) yields

ay(t) +ui(t) >0 for t € [a,b]. (5.86)
Now, the inequalities (5.85) and (5.86) imply that
[u1(t)]- < ay(t) for t € [a,b)]. (5.87)

On the other hand, by virtue of the conditions (5.83), (5.85), (5.87) and
the assumptions ho o, ha1 € Pap, we obtain

ai(t) = hi(aa)(t), ah(t) < hao(ar)(t) for a.e. t € [a,b].
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Hence, on account of the equalities (5.84), the inclusion (hq, heg) € 3’51)’1(@)
yields that

a1(t) <0 for t € [a,b)].
The latter relation, together with the inequality (5.86), guarantees that the
function wu; is non-negative and thus (hy, hs) € ga?l;l(a). O

Proof of Corollary 5.14. According to the inequality (5.13) and the assump-
tion hy € Pyyp, there exists € > 0 such that

bhg_s bhg_s
5(1 + / hi(1)(s) ds) + / hi (¥ (hs—i(1)))(s)ds < 1. (5.88)
Put
v3—i(t) =€ —|—/h3,i(1)(s) ds for t € [a,b], (5.89)
vi(t) = E—i-/hi(’yg,i)(s) ds for t € [a,]. (5.90)

a

It is clear that v1,72 € AC([a,b];R) satisfy the inequalities (5.6) because
the operators h; and ho are positive. Put

. vi(t for t € [a,b;. |,
Yilt) = ( )* [ X ol (5.91)
i (bhsﬂv) for t € [thﬂ_,b].

Then the relations (5.88)—(5.90) yield

b
h3_;

b

h3_;

- .
= g(l—i—/hi(l)(s) ds) +/hi(w(h3_i(1)))(s) ds<1 for t€la,b]. (5.92)

a

h3_q

On the other hand, in view of the relations (5.91), (5.92), the assumption
hs—; € Py, and Remark 5.13, it follows from the equalities (5.89) and (5.90)
that

~i(t) = hi(vs_i)(t) for a.e. t € [a,b]
and
V5_i(t) = h3—i(1)(t) = ha—; (%) (t) = ha—i(7:)(t) for a.e. t € [a,b],

i.e., the inequalities (5.7) are fulfilled. Consequently, using Theorem 5.7,
we get that (hy, he) € S5 (a) NS5 (a). O
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Proof of Proposition 5.15. Suppose that the equality (5.14) holds and the
problem (5.4) has only the trivial solution. We will show that the pair
(h1, he) belongs both to S;b’l(a) and S;b’Q(a). According to Proposition 3.1,
the problem

M) =hi(2)®), 72(t) = ha(1)(®), (5.93)
7(a) =1, 7(a)=1 (5.94)

has a unique solution (vy1,72)%. Put
m =min {v;(t) : t € [a,b}, ]} (5.95)

and choose t,, € [a, b;s_i] such that v;(t;,) = m.
Assume that
m<0 (5.96)

By virtue of the notation (5.95) and the assumption hs_; € Py, the rela-
tions (5.93) and (5.94) yield

Y3-i(t) =1+ /h?,—i(%‘)(s) ds > m/h?,—i(l)(s) ds = m(hs—i(1))(t)

for t € [a,b]. Consequently, in view of the inequality (5.96) and the assump-
tion h; € Py, the relations (5.93) and (5.94) imply that

m=1+ /hi('yg_i)(s)ds >14 m/hi(w(hg_i(l)))(s) ds >

>1+m/ ¥(hs—i(1)))(s) ds.

Using the equality (5.14) in the last relation, we get the contradiction m >
m 4+ 1.
The contradiction obtained proves that m > 0, i.e.,
7i(t) > 0 for t € [a, by, ]. (5.97)

Now we define the function 7; by the formula (5.91). Obviously, 7;(¢t) > 0
holds for ¢ € [a,b] and therefore, by virtue of the assumption hs_; € Py
and Remark 5.13, the (3 — 4)th equation in (5.93) yields that

Y5_i(t) = ha—i(%:)(t) = h3—; (%) (t) = 0 for a.e. t € [a,b].
Since y3_;(a) > 0, the last relation guarantees that v3—;(¢) > 0 holds for
t € [a,b]. Now, the ith equation in (5.93) implies
Yi(t) = hi(y3-4)(t) > 0 for a.e. t € [a,b],
which, together with the inequality (5.97), results in ~; ( ) > 0 for ¢ € [a, b].
Consequently, Theorem 5.7 guarantees that (hy, hy) € 85" (a) N Sbe( )-
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Now suppose that (hy,hs) € LSA‘fI;k(a) for some k € {1,2}. Then, ac-
cording to Remark 5.5, the homogeneous problem (5.4) has only the trivial
solution. (]

Proof of Theorem 5.18. First suppose that (hy,h2) € gfb’k(a). According
to Remark 5.5, the system (5.93) has a unique solution (y;,72)7 satisfying
the initial conditions

(a) =1, v3-x(a) =0, (5.98)
and, moreover, the relation
Y(t) > 0 for ¢ € [a, b (5.99)

holds. It is clear that v1,7v2 € AC([a,b];R) satisfy the relations (5.22)-
(5.25). We will show that the condition (5.26) also holds. Assume that, on
the contrary, the relation (5.26) is not satisfied. Then there exists ¢y € ]a, ]
such that vy5_x(tg) = 0 and

(to) = 0. (5.100)
By virtue of the inequality (5.99) and the assumption —hs_p € Pgp, the
conditions (5.23), (5.98) and ~y3_(tg) = 0 imply that v3_x(¢t) = 0 holds for
t € [a,tp]. Since hy is an a-Volterra operator, the kth equation in (5.93)
implies that

Y. (t) =0 for a.e. t € [a,to].

This relation, together with the condition 7x(a) = 1, yields that vx(tg) = 1,
which contradicts the equality (5.100). The contradiction obtained proves
the validity of the desired relation (5.26).

Now suppose that there exist functions v1,v2 € AC,c([a, b[; R) such that
v € C([a,b];R) and the relations (5.22)—(5.25) hold. We will show that
(hi,he) € 8%F(a). Let a vector function (uy,us)” € AC([a, b);R?) satisfy
the inequalities (5.81) and (5.82). By virtue of Lemma 5.37, the relation
(5.48) holds, where the number by, is defined by the formula (5.49).

If by = b, then the proof is complete. Assume that by < b and let
by € |bg, b be arbitrary but fixed. We will show that

ug(t) >0 for t € [a, byl (5.101)

It follows from the relations (5.24) and (5.49) that the inequality (5.50)

holds and
v (t) =0 for t € [by,b].
Consequently, by virtue of the assumptions (5.26) and (5.27), there exist
ag €la,bi[ and A\; € Ry such that

Ug_k(t) > /\173_k(t) for t € [ao,bo]. (5102)

On the other hand, in view of the inequality (5.50), there exist Ay € Ry
such that

up(t) < Aoy (t) for t € [a,agl. (5.103)
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Since the negative operator hs_j is an a-Volterra one, using the conditions
(5.23), (5.81) and (5.103), we get

us_ g, () — Xovs_pp () > R (uk — Aoyi) () > 0 for a.e. t € [a,aq],
where h§%, is the restriction of the operator hs_j, to the space C([a, ao]; R) "
However, the functions us_j and 73— satisfy the inequalities (5.82) and
(5.25), and thus the previous relation yields

U3,k(t) > >\2'737k(t) for t € [CL(J,()]. (5104)

Therefore, if we put A = max{\1, A2}, then, in view of the inequality (5.27),
we get from the relations (5.102) and (5.104) that

uz—k(t) > Ays—x(t) for t € [a,by]. (5.105)

Since the positive operator hy is an a-Volterra one, the inequalities (5.22)
and (5.27) imply
Vi (t) < BEP(y3_)(t) <0 for a.e. t € [a, by,
where h{" is the restriction of the operator hy, to the space C(la, bo]; R).2°
The function v; vanishes on the interval [bg, b], and thus we have

R (y3_1)(t) = 0 for a.e. t € [bg, bo). (5.106)
Now the relations (5.105) and (5.106) imply
REY (uz k) (t) > MRS (y3_)(t) = 0 for a.e. t € [by, bol,

which, together with the inequalities (5.81) and (5.48), results in the desired
relation (5.101). Since the point by was chosen arbitrarily, we have proved
that the function wy is non-negative on [a,b]. Consequently, the inclusion

(h1,hs) € 8%F(a) holds. O
Proof of Corollary 5.21. Put

Y(t) =1-— / |hie (¥ (hs—k(1))) (s)| ds for t € [a,b] (5.107)
and ’ .
~an(t) =/h3_k(1)(s) ds for t € [a,b]. (5.108)

Obviously, we have 71,72 € AC([a,b];R). In view of the inequality (5.28),
it is clear that the conditions (5.24) and (5.25) are satisfied and

Y(t) <1 for t € [a,b]. (5.109)
Since —hg_g, hi € Pap, we get from the relations (5.107)—(5.109) that
Vi (t) = by (¥ (hs—1(1))) (¢) = hy(y3—1)(t) for a.e. t € [a,b]

19See Definition 1.8.
203ee Definition 1.8.
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and
(8 = ha_k(D)(t) < hs_(u) () for ae. ¢ € [a,b],
i.e., the functions ~1, v satisfy the inequalities (5.22) and (5.23).

We will show that the condition (5.26) is satisfied. Assume that, on the
contrary, the relation (5.26) does not hold. Then there exists ty € |a, b[ such
that v3_x(tp) = 0 and

Vi (to) = 0. (5.110)
Therefore, the equality (5.108) yields

hs—x(1)(t) =0 for a.e. t € [a,to].
Since the operator hy is an a—Volterra one, the last relation results in

Ry (¢ (hs—1(1)))(t) = 0 for a.e. t € [a,tg].

Hence, the equality (5.107) implies that v (to) = 1, which contradicts the
relation (5.110). The contradiction obtained proves the validity of the de-
sired condition (5.26).

Consequently, using Theorem 5.18, we obtain (hy, he) € gfgk(a). O

Proof of Theorem 5.30. It is clear that hi,hs € Pg. According to No-
tation 5.12, we get b .~ < 73_,. Therefore, the validity of the theorem
follows immediately from Corollary 5.14. O

Proof of Theorem 5.31. 1t is clear that hy, ho € Pgp.

First suppose that (hy,hs) € éA‘GQZ;k(a). In view of Remark 5.5, the ho-
mogeneous problem (5.60), (5.61) has only the trivial solution and thus
Lemma 5.38 guarantees that the inequality (5.35) is satisfied.

Now suppose that the inequality (5.35) is fulfilled. According to Nota-
tion 5.12, we have b’,‘13_i <7y, If

b23*’i bisﬂ' 7i(8)

/ hi(¥(hs—i(1)))(s)ds = / fi(s)( / fa_i(€) dg) ds <1,
then Corollary 5.14 yields that (hy,ho) € 85F(a). If

b;3*i b23—z‘ 7i(8)

/ hi (¥ (hs—i(1)))(s)ds = / fi(S)( / f3-i(§) d£> ds =1,

then, by virtue of Proposition 5.15, the inclusion (hq, hs) € gfék(a) holds
provided that the the homogeneous problem (5.60), (5.61) has only the triv-
ial solution. But the absence of nontrivial solutions of this problem is guar-
anteed by the inequality (5.35) (see Lemma 5.38). Consequently, we have
(h1,h) € 82F(a), as well. 0
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Proof of Theorem 5.32. 1t is clear that hy € Py and —hs_j € Pgp. More-
over, the inequalities (5.38) guarantee that the operators k1 and hs are both
a-Volterra ones. Therefore, the validity of the theorem follows immediately
from Corollary 5.21. O

Proof of Theorem 5.34. 1t is clear that hy € Py and —hsg_j € Pgp. More-
over, the inequalities (5.38) guarantee that the operators hy and hy are
both a-Volterra ones. According to the inequalities (5.41) and (5.43), the
number «; can be increased so that the equality (5.74) is satisfied instead
of the inequality (5.41), and the condition (5.43) is still true. Then, by
virtue of Lemma 5.39, there exist functions v, € C([a,b];R) and y3_x €
Cloc(la,b[;R) such that v;,7/,7_; € Cioc([a,b[;R), and the conditions
(5.75)—(5.79) are satisfied. Obviously, 1,72 € ACiec([a,b[;R). Using the
inequalities (5.75)—(5.78), we get

Ye(t) <0, 5, (t) <0 for t € [a,b]. (5.111)
Put
A:{tE[CL,b]I fk(t)>0}, B:{tE[a,b}: fgfk(t)<0}.

If we take the conditions (5.38) into account, by direct calculation we obtain

Va—k (T (1)) = v3-k(t) — / Y5_x(s)ds =

Tk (t)
t t
v

aq a2
= 7t — : >
Y3k () +/ T Yi(s)ds / [b— S + = S)A]%,k(s) ds >
7k (1) 7k (t)
t

14 (6%)

Z’YB—k(t)*’Ys—k(Tk(t)) / [b—s + (b—s)A] ds fora.e. t€ A

Tk (t)

T3—k (t)
a3

(b—t)Av
By virtue of the inequalities (5.42), (5.43), (5.44) and (5.75)—(5.78), we get
from the last relations that

(b + (t=73-4(0)75-4(t) for a.c. teB.

fr(t)

Se®)v3—k (e (t)) > : Ya_k(t) >
L+ [ |+ i ds
Tk(t)
Qs ,
> ————— 73 k(t) = (1) forae tecA

—(b—1)
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and
= fa—i(t) |k (T3-1 (1)) =
2 —|fs kO + =5 Ua-r(®(t = 75kl ) n(0) 2

(e} v a2
>l )+ [t ) () =
> g w0 + (55 + g ) sl
=5_,(t) for a.e. t € B,
which, together with the inequalities (5.37) and (5.111), guarantees that

Ye(®) < fr®vs—n(mr(t)), 13-k (t) < faor )k (T3-1(1))
for a.e. t € [a,b], i.e., 71 and ~o satisfies the inequalities (5.22) and (5.23).
Consequently, using Theorem 5.18, we get (hy, ha) € Sazb’k(a). O

5.5. Counterexamples.

Example 5.40. Let k € {1,2}, the operators hy and ho be defined by the
relations (5.30), where the inequalities (5.37) hold and 75_j = a. Then the
condition (5.28) (i.e., (5.39)) is not only sufficient but also necessary for the
validity of the inclusion (hy, ha) € §a2b’k(a).

Indeed, let (hy,hso) € ‘SA‘an;k(a)_ Then, according to Remark 5.5, the prob-
lem

up(t) = fe(Ous—k (Te(1)),  uz_(t) = fo—r(t)ur(a), (5.112)
ug(a) =1, wuz_g(a) =0 (5.113)
has a unique solution (uy,us)? and, moreover, the inequality (5.2) is satis-
fied. It follows from (5.112) and (5.113) that
t t Tk (8)
up(t) =1 +/fk(3)u37k(7—k(3)) ds=1 +/fk(8)( / J3=k(§) df) ds
a a a

for t € [a,b]. Hence, we get

u(b) =1 /b ms)( 78)|f3_k<f> dg) s,

which, in view of the relation (5.2), guarantees the validity of the inequality
(5.39).

This example shows that the inequalities (5.28) and (5.39) in Corol-
lary 5.21 and Theorem 5.32 cannot be replaced by the inequalities (5.29)
and (5.40), respectively, no matter how small € > 0 is.

Example 5.41. Let k € {1,2}, ¢ > 0, a = m, and the operators
hi and hy be defined by the relations (5.30), where fr = a, fs—r = —q,
and 7;(¢) =t for ¢ € [a,b], i = 1,2. It is clear that the conditions (5.37),
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(5.38), (5.42)—(5.44), and (5.45) are fulfilled with a; = a3 = a, as = 0, and
A =v = 0. On the other hand, the functions

ug(t) = cosa(t —a), wusz—i(t) = —sina(t —a) for t € [a,b]

fulfils the inequalities (5.81) and (5.82). However, the function wy is not
non-negative on the entire interval [a,b], and thus (h1, h2) & S\jgk(a).

This example shows that the inequality (5.41) cannot be replaced by the
inequality (5.45), no matter how small € > 0 is.

6. EXISTENCE AND UNIQUENESS THEOREMS

In this section, the question on the existence and uniqueness to a solu-
tion of the linear problem (3.1), (3.2) is investigated. Unlike the case of an
ordinary differential system, where the Cauchy problem (4.1) is uniquely
solvable, the unique solvability of the initial value problem for functional
differential systems is not guaranteed in general even for the rather sim-
ple system (3.1'). The reason lays in a non-local character of functional
differential systems, i.e., in the presence of argument deviations 7;; in the
system (3.1"). That is why the notions of local solution and extendability
of solutions have no sense for the problem (3.1), (3.2).

The question on the solvability of various boundary value problems for
systems of linear functional differential equations was studied by many au-
thors (see, e.g., [3-5,7,13,19,22,23,25-27,34,43-45,53,54,56,57,59-62, 64,
69,70,76-78,83,85] and references therein). As for the initial value problem
(3.1),(3.2), we mention the monograph [44], where the system (3.1) with
a strongly bounded operator ¢ is considered. Among the rest, in [44], the
authors prove the unique solvability of the initial value problem for linear
delay differential systems, i. e., for the system (3.1") in which deviations 7
satisfy the inequality 7, () < ¢ for almost every t € [a, b]. Efficient solvabil-
ity conditions for the problem (3.1’), (3.2) with arbitrary deviations 7;; can
also be found in [49,69].

The results presented in this section complement the previously known
results. To prove them, we apply theorems on functional differential inequal-
ities stated in Sections 4 and 5. In the first part, we consider the general
two-dimensional systems. In the second part, the so-called anti-diagonal
systems are studied, the special case of which is also the second-order func-
tional differential equation, and the last part deals with the two-dimensional
differential systems with monotone operators. All the results are applied to
differential systems with argument deviations (3.1'), in which case further
results are established. The counterexamples constructed in Section 6.3
show that some of the results obtained are unimprovable in a certain sense.

6.1. General two-dimensional systems. In this part, we consider the
general two-dimensional differential system (3.1) in which the operator
¢: C([a,b]; R?) — L([a, b]; R?) is linear and bounded (not strongly bounded
in general).
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6.1.1. Main results. We first give a rather simple statement (namely, Theo-
rem 6.1), which implies, in particular, the unique solvability of the Cauchy
problem for linear delay differential systems (see Corollary 6.12 below).

Theorem 6.1. Let there exist an operator
vo € S%,(a) (6.1)
such that the inequality
Sgn (v(t))€(v)(t) < @o(|v])(t) for a.e. t € [a,b] (6.2)

holds on the set C,([a,b];R?). Then the problem (3.1),(3.2) has a unique
solution.

Remark 6.2. The assumption (6.1) of the last theorem cannot be replaced
by the assumption

(1—¢)po € Sy(a), (6.3)
no matter how small € > 0 is (see Example 6.36).

Theorem 6.3. Let there exist an operator

o € Sap(a) (6.4)

such that the inequality
(o)1) -sgn ((0)) < Go(llel)(®) for ae. tefat]  (6.5)
holds on the set Cy([a,b];R?). Then the problem (3.1),(3.2) has a unique

solution.

Remark 6.4. Sufficient conditions for the validity of the inclusion (6.4) are
established in the paper [24].
The assumption (6.4) of Theorem 6.3 cannot be replaced by the assump-
tion
(1 —¢) %o € Sap(a), (6.6)
no matter how small € > 0 is (see Example 6.36).

Example 6.5. Consider the two-dimensional system
ui (t) = p1(t)ur (7(1)) + g(t)ua(t) + a1 (1),
uy(t) = pa()ur (7(1)) — g(t)ua(t) + q2(t),

where p1,p2,q1,92 € L([a,b;R), g € L([a,b];R;), and 7: [a,b] — [a,b] is
a measurable function. It is clear that the system (6.7) is a particular case
of the system (3.1) in which the operator ¢ is defined by the formula

i (PO (D) + a(Deat)
f)) = <p2<t>v1 (r(#)) - g(tm(t))

for a.e. t € [a,b] and all v = (vy,v2)T € C([a,b];R?).

(6.7)

Then:
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(a) The inequality (6.2) is fulfilled on the set C([a, b]; R?), where
t)|v1(7(¢)) + g(t)va(t
©o(v)(t) = (|p1( )||p12((t)(|31)(7(§)()) 2( ))
for a.e. t € [a,b] and all v = (vy,v2)T € C([a,b]; R?).
Using Corollary 4.31, we obtain ¢ € 8% (a) if the condition
7(t)
/ﬁ(s) ds < % for a.e. t € [a, b (6.8)
i
holds, where p(t) = max {|p1(¢)| + g(t), [p2(t)|} for a.e. t € [a,b].
Therefore, Theorem 6.1 guarantees the unique solvability of the
problem (6.7), (3.2) provided that the condition (6.8) is satisfied.
(b) The inequality (6.5) is satisfied on the set C([a, b]; R?), where
Yo(2)(t) = p(t)z(7(t)) for a.e. t € [a,b] and all z € C([a,b];R)
in which p( ) |p1(t)|+ |p2(t)] for a.e. t € [a,b]. Using Lemma 6.18
below (with m = 1), we get 1o € Sap(a) provided that
7(t)
p(s)ds < % for a.e. t € [a,]. (6.9)
t

Therefore, by virtue of Theorem 6.3, the problem (6.7),(3.2) has
a unique solution under the condition (6.9).

Consequently, if we apply Theorem 6.1 to obtain the unique solvability of
the considered problem in the case where

g(t) > |p2(t)] for a.e. t € [a,b],
then a stronger condition is required in comparison with Theorem 6.3.

The next theorem contains a certain both-sided restriction imposed on
the right-hand side of the system (3.1).

Theorem 6.6. Let there exist operators po € P2, and ¢1 € 8% (a) such
that the inequality

[£(v)(t) = e1(0)(t)| < wo(lv])(t) for a.e. t € [a,b] (6.10)
holds on the set Cy([a,b]; R?). If, moreover,
o + 1 € Shy(a),
then the problem (3.1),(3.2) has a unique solution.
Remark 6.7. The assumption
g1 € Sh(a), wo+p1 €Sy(a) (6.11)

in the last theorem can be replaced neither by the assumption

(1—¢)p1 € SHla), wo+¢1 € Sea) (6.12)
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nor by the assumption

p1€8u(a), (1—e)(po+¢1) € Sya), (6.13)
no matter how small € > 0 is (see Examples 6.36 and 6.37).

Theorem 6.6 yields Corollary 6.9 below in which we assume that the linear
operator £ on the right-hand side of the system (3.1) is not only bounded
but it is strongly bounded (see Definition 1.1). It is well-known (see, e.g.,
[40, Ch. VII, § 1.2]) that a linear operator £: C([a, b]; R?) — L([a, b]; R?) is
strongly bounded if and only if it is regular, i. e., it admits the representation
0 =00 —0" with €9, ¢* € P2,. Therefore, we assume in the corollary indicated
that ¢ can be expressed in such a form. Before formulation of the corollary
we introduce the following notation.

Notation 6.8. Let £ = (0 — ¢!, where (°, ¢! € P2,. Having the components
9, and £}, (see the item 27 in Section 1) of the operators ¢° and ¢', for any
0 € R, we put

0300 - ((ﬁ‘h 1= 28060 (0)(®) + (89, + em(vz)(t))

(691 +031) (v1)(t) + (635 + [1 — 20]¢35) (v2)(2)
for a.e. t € [a,b] and all v = (vy,v2)" € C([a,d]; R?)

and

1 (v1)(t)
o)) =46
W (@2(@2)@))

for a.e. t € [a,b] and all v = (vy,v2)T € C([a,b]; R?).
Corollary 6.9. Let £ = (0 — (' where (°,¢' € P2, and the components (},
and (3, of the operator £* are a-Volterra operators. If there exists a number
v € [0,1/2] such that
(07 € Shy(a), —L17 € Shy(a),
then the problem (3.1), (3.2) has a unique solution.
Remark 6.10. The assumption on the operators ¢1; and £1, to be a-Volterra

ones cannot be omitted in the previous corollary, because it is necessary for
the validity of the inclusion —¢*7 € 8% (a) (see Remark 4.23).

6.1.2. Systems with argument deviations. In the sequel, general results of
the previous section are applied to one of special types of the system (3.1),
namely, the differential system with argument deviations (3.1'), i.e., the
system

uf (t) 1()ur (111(1)) + prz(B)uz (r12(t)) + @ (1),
usy(t) tul(Tm )) + p22(t)uz (22(t)) + qa(t)
in which p;x, g € L([ b;R) and 741 : [a, b] — [a, b] are measurable functions

(i,k=1,2).
The next statement can be derived from Theorem 6.1.
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Theorem 6.11. Let
Tik (t)

1
p(s)ds < R fora.e. t€la,b], i,k=1,2, (6.14)

o~

where
p(t) = max { [p1a(6)] + iz ()]s 21 (O] + [paa(8)| | for a.e. ¢ € [ab].
Then the problem (3.1),(3.2) has a unique solution.
Theorem 6.11 yields
Corollary 6.12. Let
Tik(t) <t fora.e. t€lab], i,k=1,2. (6.15)
Then the problem (3.1'),(3.2) has a unique solution.

If the deviations 711 and 7o are delays, then the following statement can
be derived from Corollary 6.9.

Theorem 6.13. Let, for each i € {1,2} the functions [p;|— and 7 satisfy
the inequality

Ti(t) <t for a.e. t € [a,b]
and at least one of the conditions:

(a)
/ 2
/ [pii(s)]=ds < S fora.e. t € la,b];
733 (1)
(b)
b s s
St [ - (5 [ al-an) acas <
@ Tii(s) 7ii(€)
()

/b[?%i(s)] ds < 2.

On the other hand, assume that for the functions [pi]+, Pis—i, and Tiz—;
(1 =1,2) at least one of the following conditions is fulfilled:

(A) the inequality
Tiz—i(t)
p(s)ds < % fora.e. t€la,b], i=1,2
t
holds, where

p(t) = max {[p1a(®))+ + [pr2(®)], 21 ()] + [p22(t)]+ |
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for a.e. t € la,bl];
(B) the inequality

{ Flous o)1+ ds. [ ipaa(o)]s s} | F o(e) de
e o PSS e /h(s)e%p' ds <1

1s satisfied, where

p(t) = max{p12(t), p21(t)} for a.e. t € [a,b],

h(t) = max{qi(t),q2(t)}  for a.e. t € [a,b]
in which
t
_ J(pa—iz—i(s)]4+—[pii(s)]4) ds
Pis—i(t) = [pis—i(t)] e®
fora.e. t€la,b], i=1,2 (6.16)
and
~ - f [pii(m]+ dn
4i(t) = |pis—i(t)|wis—i(t)zi(t) e =
fora.e. t€lab], i=1,2 (6.17)
with
Tiz—i(t)
zi(t) = /(\pg,ii(s)|—|—[p3,i3,i(s)]+) ds for a.e. t€(a,b], i=1,2 (6.18)
t
and
1 .
wiz—i(t) = 3 (1 + sgn (Tiz—i(t) — t)) fora.e. t€la,b], i=1,2; (6.19)
(C) the inequality
b

b
s ds s ds
maX{)\l e.![Pu( )+ ,)\26"{[1)22( N+ } o

holds, where
b

A= /b cosh ( /b p(€) ds)m s+ [ siut ( /b p(€) ds) Bi(s) ds

fori=1,2 and
p(t) = max {ﬁlg(t)7§21(t)} for a.e. t € a,b)

in which the functions p12, P21 and g1, g2 are defined, respectively,
by the relations (6.16) and (6.17) with z1, 2o and wi2, wey given by
the formulas (6.18) and (6.19).

Then the problem (3.1),(3.2) has a unique solution.
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6.1.3. Modified pantograph equation. In this section, we consider the linear
two-dimensional system
u'(t) = P(t)u(t) + G(t)u(r(t)) + q(t), (6.20)

where P,G: [0,T] — R?*? are integrable matrix functions, 7: [0,7] — [0, T]
is a measurable function, ¢ € L([0,T];R?), and T > 0. The system of the
type (6.20) arises in applications and has been studied by many authors.
We mention the problem of the motion of a pantograph head on an electric
locomotive, where the system of the type (6.20) arises in the dimension 4,
on the unbounded interval [0, +oo[, and when

T(t) =Mt for t >0
with 0 < A < 1, and it is referred to as a pantograph equation (see, e.g.,
[41,51,58,67,68] and references therein). Recently, the pantograph equation
has been generalized in a number of ways (see, e.g., [11-13,38,49,50,52]).
It is well-known (see, e. g., [44, § 1.3.2]) that if the deviation 7 in the sys-

tem (6.20) is a delay, then, without any additional assumption, the system
(6.20) has a unique solution u satisfying the initial condition

u(0) = ¢, (6.21)

where ¢ € R2. In any case, we can derive from Theorem 6.3 the following
statements.

Theorem 6.14. Let the deviation T and the matriz functions P = (Pik)?,k:1
and G = (gik)?,kzl satisfy the condition
7(t) )
/ ([p(s)]4+ + g(s)) ds < o for a.e. t€]0,T7, (6.22)
¢

where
p(t) = max {pu1 (t) + [p21 (O], Ipr12(8) | + paa(t) } Jor a.e. t€[0,T] (6.23)
and
9(t) = max {911 ()| +l921 (1), |912(D)] +1g22(0)| } for a. . € [0,T]. (6.24)
Then the problem (6.20), (6.21) has a unique solution.
Theorem 6.14 yields

Corollary 6.15. The problem (6.20), (6.21) is uniquely solvable provided
that the condition

7(t)
J PO+ 16 ds < = for a.e. te 0.1

holds.
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Theorem 6.16. Let the deviation T and the matriz functions P = (Pz‘k)?,kﬂ
and G = (!]ik)?,k:l satisfy the condition

(s

/T s [ )f(ﬁ) ac) e frman gy ey (6.25)

0

where
o(t) = %(1 + sgn (7(t) — t)) for a.e. t€[0,T)

and f = [p|+ + g with p and g given by the relations (6.23) and (6.24),
respectively. Then the problem (6.20), (6.21) has a unique solution.

6.1.4. Auziliary lemmas. Let us first formulate the following obvious lemma.

Lemma 6.17. Let z € AC([a,b;R). Then |z| € AC([a,b];R) and the
relation

|2(t)|" = 2'(t)sgn z(t) for a.e. t € [a,b]
is satisfied.
Now we give two lemmas established in the paper [20].
Lemma 6.18 ([20, Cor. 1.1(ii)]). Let fx € L([a,b];Ry), 7% [a,b] — [a,b]
be measurable functions (k=1,...,m), and let

mi(t) o,

1

E Je(s)ds < = fora.e. t€a,b], i=1,...,m.
e

s k=1

Then the operator £ defined by the formula
£(2)(t) :ka(t)z(Tk(t)) for a.e. te(a,b] and all z€C([a,b];R) (6.26)
k=1

belongs to the set Sup(a).

Lemma 6.19 ([20, Cor. 1.1(iii)]; see also [32, Thm. 3.1(c)]). Let fi, €
L([a,b;Ry), T: [a,b] — [a,b] be measurable functions (k =1,...,m), and
let the inequality

Tk (s

/béfk(s)dk(s)( /)ifj(ﬁ)%) eXp(/bl

S i=1

m

fi(n) d77> ds <1

be satisfied, where
1
ox(t) = 5(1 + sgn (73,(¢) — t)) fora.e. telab], k=1,...,m.

Then the operator € defined by the formula (6.26) belongs to the set Sap(a).
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6.1.5. Proofs.

Proof of Theorem 6.1. Let u be a solution to the homogeneous problem
(3.3). Then, in view of the condition (6.2) and Lemma 6.17, we get

[u(®l' = Sem (u(t))u'(t) = Sen (u(®) €(w)(t) <
< wo(Jul)(t) for a.e. t € [a,b].
Since |u(a)| = 0, the inclusion ¢y € 82, (a) yields
|u(t)] <0 for t € [a,b]
and thus u = 0. We have proved that the homogeneous problem (3.3)

has only the trivial solution. Hence, Proposition 3.1 guarantees the unique
solvability of the problem (3.1), (3.2). O

Proof of Theorem 6.3. Let u be a solution to the homogeneous problem
(3.3). Then ||u(a)||=0 and, by virtue of the condition (6.5) and Lemma 6.17,
we get

Ju(®)||" = o' (t) - sgn (u(t)) = L(u)(t) - sgn (u(t)) <
< o(|lul|)(t) for a.e. t € [a,b].
Therefore, the inclusion ¥y € Sgp(a) implies
lu(®)]| <0 for ¢ € [a,b],

and thus uw = 0. We have proved that the homogeneous problem (3.3)
has only the trivial solution. Hence, Proposition 3.1 guarantees the unique
solvability of the problem (3.1), (3.2). O

Proof of Theorem 6.6. Let u be a solution to the homogeneous problem
(3.3). By virtue of the inclusion ¢; € 8% (a) and Proposition 4.3, the
problem

v'(t) = p1(0)(t) + wo(ul)(t), v(a) =0 (6.27)
has a unique solution v. Combining the relations (3.3), (6.10) and (6.27),
we get

u'(t) = v'(t) = pr(u — ) (t) + L(u)(t) — 1 (u)(t) — po(ful)(t) <

(
p1(u—v)(t) for a.e. t € [a,b],
(

u'(t) + ' (1) = g1 (u+v) () + L) (t) = 1 (u)(t) + ollul)(t) =

<
> p1(u+v)(t) for a.e. t € a,b],
and
u(a) —v(a) =0, wu(a)+v(a)=0.
Consequently, the inclusion ¢1 € 8% (a) implies
u(t) —v(t) <0, wu(t)+ov(t) >0 for te€la,b,

that is

lu(t)] <wv(t) for t € [a,b]. (6.28)
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Taking now the assumption ¢y € P2 into account, we get from the differ-
ential equation in (6.27) that

V'(t) < (@0 + 1) (v)(t) for a.e. t € [a,b]. (6.29)

However, we also suppose that ¢y + ¢1 € Sgb(a) and thus the inequality
(6.29) results in v(t) < 0 for t € [a,b]. Therefore, the inequality (6.28) yields
u = 0, i.e., the homogeneous problem (3.3) has only the trivial solution.
Hence, Proposition 3.1 guarantees the unique solvability of the problem
(3.1),(3.2). a

Proof of Corollary 6.9. It follows from Notation 6.8 that the inequality
|1 (0) (1) = €7 ()(8)] < €2F (Jul)(8) = L(o])(t) for a.e. ¢ € [a,b]
holds on the set C([a, b]; R?). Furthermore, it is clear that

007 — 0.3 _ gLy,

Consequently, the assumptions of Theorem 6.6 with pq = (%2 and ¢ =
—17 are satisfied. |

Proof of Theorem 6.11. Tt is clear that the system (3.1’) is a particular case
of the system (3.1) in which the operator £ is defined by the formula

ow)(t) = <p11(t)v1 (T11(t)) + pra(t)va (7'12(t))>
pa1(t)v1 (Tzl(t)) + paa(t)v2 (7'22(t))
for a.e. t € [a,b] and all v = (vy,v2)" € C([a,b];R?). (6.30)

Obviously, the condition (6.2) is fulfilled on the set C([a, b]; R?), where the
operator g is given by the relation

1 ()v1 (111 (1)) + [pa2(t)|v2 (T12(1))
po(v)(t) =
P21 (#) 01 (721 (2)) + [p22(t)]v2 (22 (1))
for a.e. t € [a,b] and all v = (vy,v2)" € C([a,b]; R?).
Moreover, by virtue of the condition (6.14), Corollary 4.31 yields the validity

of the inclusion ¢y € 8% (a). Consequently, the assumptions of Theorem 6.1
are satisfied. O

Proof of Corollary 6.12. The assertion of the corollary follows immediately
from Theorem 6.11, because the assumption (6.15) implies the validity of
the condition (6.14). O

Proof of Theorem 6.13. Tt is clear that the system (3.1’) is a particular case
of the system (3.1) in which the operator ¢ is given by the formula (6.30).
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Let the operators /0 and ¢! be defined by the relations

P\ H) = ([pn(t)]+vl (T11(1)) + [pra(t)] 4 v2 (712(t)))
[p21 ()] 401 (721 () + [P22(8)] 4 v2 (T22(1))
for a.e. t € [a,b] and all v = (vy,v2)" € C([a,b]; R?)

and

11(t)]—v1 (1 (2t 12(t)]—v2(m12(t
El(u)(t)<[p (O)]-v1(11(t)) + [pr2(t)]—v2 ( ()))

[p21(t)] ~v1 (121 (t)) + [p2a (t)] v (T22(t))
for a.e. t € [a,b] and all v = (vy,v2)T € C([a,b];R?),
respectively. Obviously, we have (0, /1 € P2, and £ = (0 — (1.

By virtue of the conditions (a)—(c) of the theorem, Theorem 4.38 yields
that

—083 € 8%(a).

On the other hand, it follows from Corollaries 4.31, 4.33, and 4.35 that
each of the conditions (A)—(C) of the theorem guarantees the validity of the
inclusion

3 € 82 (a).
Consequently, the assumptions of Corollary 6.9 with v = % are satisfied. [
Proof of Theorem 6.14. Tt is clear that the system (6.20) is a particular case
of the system (3.1) in which a =0, b =T, and the operator £ is defined by
the formula
L(v)(t) = P(t)o(t) + G(t)v(T(t))
for a.e. t€[0,T] and all v € C([0,T];R?). (6.31)

Obviously, the condition (6.5) is fulfilled on the set C([0, T]; R?), where the
operator g is given by the relation

Yo(2)(t) = [p(t)]+2(t) + 9(t)2(7 (1))
for a.e. t€[0,7] and all z € C([0,T];R) (6.32)

and the functions p and g are given by the formulas (6.23) and (6.24), re-
spectively. Moreover, by virtue of Lemma 6.18 (with m = 2), the condition
(6.22) yields the validity of the inclusion 1y € Sor(0). Consequently, the
assumptions of Theorem 6.3 are satisfied. O

Proof of Corollary 6.15. In view of the inequality
[p(®)]+ +9(t) < [|PO] + G| for a.e. t€[0,T]

in which the functions p and g are given by the formulas (6.23) and (6.24),
the assertion of the corollary follows immediately from Theorem 6.14. [
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Proof of Theorem 6.16. It is clear that the system (6.20) is a particular case
of the system (3.1) in which a = 0, b = T, and the operator ¢ is defined
by the formula (6.31). Moreover, the condition (6.5) is fulfilled on the set
C([0, T); R?), where the operator 1) is given by the relation (6.32) and the
functions p and g are given by the formulas (6.23) and (6.24), respectively.
Therefore, the assumptions of Theorem 6.3 are satisfied, because the in-
equality (6.25) guarantees the validity of the inclusion ¥y € Sor(0) (see
Lemma 6.19 with m = 2). O

6.2. Anti-diagonal systems. In this part, we consider the two-dimensio-
nal linear system with the so-called anti-diagonal right-hand side, i.e., the
system (3.1) in which £1; = 0 and £ = 0.2! More precisely, in what follows
we consider the system

uy (t) = hi(uz)(t) + qi(t),
us(t) = ha(u1)(t) + g2(1),

where hy, ho € Lo, and g1, g2 € L([a, b]; R). Obviously, the initial condition
(3.2) expressed in terms of its components has the form

ui(a) =c1, wus(a) = co, (6.34)

(6.33)

where ¢y, c5 € R.

It should be noted here that the second-order functional differential equa-
tion

u”(t) = h(u)(t) + q(t), (6.35)

where h € Ly and g € L([a,b];R), can be also regarded as a particular
case of (6.33). Therefore, the results stated below can be immediately
reformulated in order to guarantee the unique solvability of the Cauchy
problem subjected to the second-order equation (6.35).

6.2.1. Main results. We first give two existence results for the problem
(6.33), (6.34) the proofs of which are based on the technique of differen-
tial inequalities.

Theorem 6.20. Let k € {1,2}, m € {0,1}, and h; = h;0 — h;1 with

hij € Pap (i = 1,2, j =0,1). Assume that there exist functions 1,32 €
AC([a,b];R) such that

ﬂl(t) >0, ﬂg(t) >0 fO’f‘ t e [a,bL (636)

B1(t) > hio(B2)(t) + hi1(B2)(t) for a.e. t € [a,b], (6.37)

,Bé(t) < —h3,k70(51)(t) — hgfk’l(ﬂl)(t) fO’f‘ a.e. te [a,b]7 (638)
b

[ ran(B2)s)ds < Br(a), (6.39)

21The symbol 0 stands here for the zero operator.
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and
b b
/ B (B1)(s) ds + / Byt (x (ot - (52))) () ds < fa(B),  (6.40)

whereas the inequality (6.40) is supposed to be strict if hs_gm = 0.22 Here,
the operator x is defined by the formula

quﬂz/ﬂ@wfwteMM,feuwmm»

Then the problem (6.33), (6.34) has a unique solution.

If the operators h1 and ho are monotone and one of them is an a-Volterra
operator, then the assumption 3; € AC([a,b];R) in the previous theorem
can be weakened (see Theorem 6.21). On the other hand, if the operators hy
and hgy are both a-Volterra ones, then the problem (6.33), (6.34) is uniquely
solvable without any additional assumptions (see, e.g., [44, § 1.3.2]).

Theorem 6.21. Let k € {1,2}, m € {0,1}, (—=1)"hy, (=1)}"™hz_;, €
Pub, and the operator hs_j be an a-Volterra one. Assume that there exist
functions y1 € ACjoc([a,b];R) and v2 € AC([a,b];R) such that

7 (t) >0 for t € [a,b], ~(t)>0 for te€la,bl, (6.41)
Y1 (#) > (=1)"hi(y2)(t) for a.e. t € [a,b], (6.42)

and
Y () < (=1)"h3_k(71)(t) for a.e. t € [a,b].? (6.43)

Then the problem (6.33), (6.34) has a unique solution.

Remark 6.22. Since possibly 71 (t) — +oo as t — b—, the condition (6.43)
of the previous theorem is understood in the sense that for any by €]a, b|
the relation

(1) < (~1)™h§, (3)(2) for a.e. t € [a,bo] (6.44)
holds, where hglfk is the restriction of the operator hs_j to the space

C(la, bo]; R).>

The next statement is proved by using weak theorems on differential
inequalities discussed in Section 5.

Theorem 6.23. Let k € {1,2}, m € {0,1}, (—=1)™hy, € Py, and let there
exist operators gy € Lap and g1 € Py such that

(=1)™hs, g0) € 851 a@),  ((=1)™hy, g0 + 91) € S5 (a), (6.45)

22The symbol 0 stands here for the zero operator.
233ee Remark 6.22.
24Gee Definition 1.8.



On the Initial Value Problem for Two-Dimensional Linear FDS 97

and the inequality
|ha—i(2)(t) + (=1)" " go(2)(t)| < g1(|2[)(¢) for a.e. t € [a,b]  (6.46)

holds on the set Cy(la,b];R). Then the problem (6.33),(6.34) has a unique
solution.

Remark 6.24. The assumption (6.45) in the previous theorem can be re-
placed neither by the assumption

((=1)™hs, go) € S5 (a),

N (6.47)
(=1)™(1 = e)hi, (1 —e2)(g0 + 91)) € Sy (a),
nor by the assumption
(D)™ (1 = e1)hi, (1 = £2)90) € 85 (a), 69

(=1)™hi, 90 + g1) € gfb’l(a%

no matter how small e1,e5 € [0,1] with 1 + &2 > 0 are (see Examples 6.38
and 6.39).

Theorem 6.23 yields

Corollary 6.25. Let k € {1,2}, m € {0,1}, (=1)"hy € P, and let
hs_r = h3_g,0 — ha_p,1 with h3_r 0, h3_x,1 € Pap. If
(=1)™hg, ha—k.m) € S5 (a),
1 .
((_1)mhk¢7 3 h37k,17m) € ngl(a)a

then the problem (6.33), (6.34) has a unique solution.

(6.49)

Remark 6.26. In Section 5, there is proved the following assertion (see The-
orem 5.6): If hy € Pap and hy = hag — hay with ho o, he1 € Pay are such
that

(h1,ha) € 85 a), (i, —h21) € 85 (a),

then (hy,hs) € §fb’1(a), as well. It is easy to find operators hi, ho o, ho1 €
Pap such that under the assumption

N 1 N
(h1, h2’0> c 8351(a), (hl, —5 hg’l) c Sfb’l(a), (650)

the weak theorem on differential inequalities does not hold for the system
(6.33) with ho = hoo—ha1,1.¢e., (h1, he) & gfb’l(a). However, Corollary 6.25
guarantees that the problem (6.33), (6.34) remains to be uniquely solvable,
if the inclusions (6.50) are satisfied.

As it was said above, the Cauchy problem for the second order functional
differential equations can be regarded as a particular case of (6.33), (6.34).
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As an example, we consider on the interval [0, 1] the problem

t

" _ 1 dlx(T(S)) - dg:c(/\s)
z (t) - (1 _ t)" 0/ (1 — S)" ds + q(t), (6.51)
2(0) =c1, 2'(0) = e, (6.52)

where dj,d2 € Ry, v < 1, A € [0,1], 7: [0,1] — [0,1] is a measurable
function, g € L(]0,1];R), and ¢1,¢2 € R.

Corollary 6.27. Let at least one of the following conditions be fulfilled:
(a) The deviation T is a delay, i. e.,
7(t) <t fora.e te0,1];
(b) The numbers di and do satisfy the inequalities
di < (3-2v)(2—-v), d2<2(3—2v)(2-v). (6.53)
Then the problem (6.51), (6.52) has a unique solution.

6.2.2. Systems with argument deviations. Now we give some corollaries of
Theorems 6.20 and 6.21 for two-dimensional differential systems with argu-
ment deviations. Consider the system

ui(t) = fr(t)us (7'1(75)) + q1(t),
uh(t) = fo(t)ur (12(t)) + q2(t),

where f1, fo,q1,92 € L([a,b;R) and 71, 72: [a,b] — [a,b] are measurable
functions.
In order to simplify formulation of the next statement, we put

fi,O = [fz]+ s fi,l = [fz], for i = 172 (655)
Theorem 6.20 implies the following Vallée-Poussin type result.

(6.54)

Theorem 6.28. Let k € {1,2}, m € {0,1} and the functions f; ; (1 =1,2,
j =0,1) be defined by the relations (6.55). Assume that there exist numbers
a; €ERy (i =1,...,4), at least one of which is positive, and A € [0,1] such
that

w2

ds (b—a)=*
/ a1 + (a2 + ag)s + ays? Z 1o (6.56)
T3—k(t) d
ar(b - t)/\( / (b-i;)A) |faon(B)] <
¢ o
<oy (1 + / b= ds) for a.e. t € [a,b], (6.57)

T3—k (1)
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t

(b= 1) fo—i(t)] < aa (1 + / s ds) for a.e. t €la,b], (6.58)

(b—s)*
Tg_k(t)
Tk (t)
(b=t fe(t)| < g <1 + / 0 i@s)’\ ds) for a.e. t €[a,b], (6.59)
and
/ d
A S
— <
a0 ([ G )10l <
Tk(t)
Tk(t)
Q2
< 1 —_— . €e. .
<agl 1+ / (b—s))‘d$> for a.e. t €la,b], (6.60)
t
where w1 = || fx,1—m||z and the number wy has the following properties:

(1) If fu1—m =0 and fs_gm =0 then wy = 400;
(ii) If fr1—m =0 and fs_pm # 0 then wy = || fs_pmlp'

(iit) If foimm Z 0 and fa_gm Z 0 then || fra—mllr < w2 < || fsmpmllz!
and

73_k(s)

/bfsk,lm(8)< / Jra-m(§) d€> ds <

a

b
ag + oW
< (1 —w2||f3_;€,m|\L> exp (—/st); (6.61)

(iv) If fea—m #Z0 and fs_gm =0 then ||fri—mlr < we < +00 and

o

Then the problem (6.54), (6.34) has a unique solution.

Ts_k(s

/ ;k,lm@) d&) ds <exp (— /baf;‘);‘;’? ds>. (6.62)

a

If neither of the functions f; and fs changes its sign and at least one
of the deviations 71 and 7o is a delay, then we can derive the following
statement from Theorem 6.21.

Theorem 6.29. Let k € {1,2}, m € {0,1},
()" fr(t) >0, (=)™ f3_4(t) >0 for a.e. t<la,b], (6.63)

and
| f3—k(O)|(T3—i(t) = t) <0 for a.e. t € [a,b]. (6.64)
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Assume that there exist numbers o, s, a3 € Ry, at least one of which is
positive, X € [0,1], and v € [0, \] such that
+oo

[ e T 69
(b=t M| fu(t)] <y for a.e. t€ [a,b], (6.66)
as(b— 1| ()] (t — () < 0 + W fora.e. t€la,b], (6.67)
and
.
(b— | fs—r(0)] §a3<1+03_k(t) / (=~ PR )ds)
e fora.e. t €a,b], (6.68)
where

o3k (t) = %(1 +sgn (t — T3,k(t))) for a.e. t € la,b).
Then the problem (6.54), (6.34) has a unique solution.
Theorem 6.29 implies
Corollary 6.30. Let

fit) >0, f2(t) <0 fora.e. t€Ja,b].

Assume that there exist numbers o, 3 € Ry, A € [0,1] and v € [0, \] such

that
+oo

/ ds S (b—a)l=*
o+ (52 1—-X 7

0
and let either the conditions

fi) () —t) <0, [f2(t)](r2(t) —t) >0 for a.e. t € [a,b],

b=V AM) <B, O-If)]<a forae teab],
or the inequalities

fi@) () —t) =0, [f2(t)](2(t) —t) <0 fora.e. t € [a,b],

b=t MVfi(t) <a, (b=t |fa(t)| < B fora.e t€la,b]
be satisfied. Then the problem (6.54),(6.34) has a unique solution.

In order to illustrate Theorem 6.23, we consider the differential system
uy (t) = fi(t)uz (11 (1)) + q1(t),
uy(t) = fa,0(t)ur (12,0(t)) — fa1(t)ur (m2,1(1)) + ga(t),

where fi, f2,0, f21 € L([a,b];Ry), 71,720,721 [a,b] — [a,b] are measurable
functions, and q1,q2 € L([a, b]; R).

(6.69)



On the Initial Value Problem for Two-Dimensional Linear FDS 101

Corollary 6.31. Let
T1(t) <t, T21(t) <t fora.e tE€a,b

and the functions f1, 71, fa,0, T2,0 satisfy at least one of the following con-
ditions:

(a)
T2,0(t)

1
w(s)ds < S for a.e. t € [a,b],

where
w(t) =max {f1(t), f20(t)} fora.e. t€[a,b]; (6.70)
(b)

/b cosh /b S(6)d€) Fun(s)as) 77(5)1“1(6) ) as <1

where the function w is defined by the formula (6.70) and

at) = % (1 + sgn (Tg,o(t) — t)) for a.e. t € la,bl;

(c) either
"'2*,0 71(8)
/f1(5)( / fz,o(f)d§> ds <1
or
T 72,0(8)
/f2,0(5)< / fl(f)d§> ds < 1,
where

m =esssup {71 (t) : t € [a,b]}, 750 = esssup {o0(t) : t € [a,0]}.

Furthermore, assume that the functions fi, 71, fa,1, T2,1 satisfy at least one
of the following conditions:

(A)
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(B) there exist numbers a1, 2 € Ry, ag >0, A € [0,1], and v € [0, ]
such that

+oo

/ ds S (b—a)'=>
o +ass+ass2 = 1—-X

0

t
a2

(b— ) fi(t) < o {1 + / (é + W) ds} for a.e. t € la,b],
71(t)
(b=t for(t) < 2ay for a.e. t € [a,b],

and

O@(b — t)ufgyl(t) (t — Tg’l(t)) < 2(0&2 +

14

R
Then the problem (6.69), (6.34) has a unique solution.

) for a.e. t € [a,b].

6.2.3. Auziliary lemmas. Consider the homogeneous problem

uy (t) = ha(uz)(t), u5(t) = ho(ur)(t), (6.71)
up(a) =0, wuz(a)=0 (6.72)

corresponding to the problem (6.33),(6.34). For the sake of convenience,
we formulate the following obvious lemma.

Lemma 6.32. (uy,uz)? is a solution to the problem (6.71),(6.72) if and
only if (—u1,u2)T is a solution to the problem
vi(t) = —hi(v2)(t),  v5(t) = —ha(v1)(t),
vi(a) =0, wa(a)=0.

Lemma 6.33. Let h; = hio — hi1 with hio,hi1 € Pap (i =1,2). Assume
that there exist functions aq, s, b1, B2 € AC([a,b];R) such that

a1(t) < Bi(t),  az(t) < Pa(t) for t € a,b], (6.73)
o (t) < hyo(a2)(t) — h11(B2)(t) for a.e. t € a,b], (6.74)
ay(t) > hao(B1)(t) — haa(ar)(t) for a.e. t € a,b], (6.75)
B1(t) > hio(B2)(t) — hi1(ae)(t) for a.e. t € [a,b], (6.76)
and
ﬁé(t) S hQ,O(Oél)(t) — h271(ﬂ1)(t) fO?” a.e. te [a, b} (677)

Then, for arbitrary ci € [oq(a), B1(a)] and cz € [a2(b), B2(b)], the system
(6.71) has at least one solution (uy,uz)T satisfying the conditions ui(a) =
c1, ug(b) = co and

a;(t) < ui(t) < Bi(t) for t €la,b], i=1,2. (6.78)
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Proof. For any k = 1,2 and z € C([a, b];R), we put

X (2)(0)= 5 (1200 —an(t) () ~ B (D) +an(t) +6u(r)) for tea,b]
It is clear that x1,x2: C([a,b];R) — C([a,b];R) are continuous operators
and

ag(t) < xp(2)(t) < Bi(t) for t € [a,b], z€ C(la,b;R), k=1,2. (6.79)

Put
t

Ti(z)(t) =c1 + /hl(XQ(Z))(S) ds for t € [a,b], z€ C([a,b];R),

To(2)(t) = co — hQ(Xl(Z))(S) ds for t € [a,b], z € C([a,b];R).

S— . ®

By virtue of the inequalities (6.79) and the assumptions h;o,hi1 € Pap
(1 = 1,2), for any z € C([a,b]; R) the functions T3(z) and T5(z) belong to
the set AC([a,b];R),

|Ti(2) ()] < My, for t € [a,b], k=1,2, (6.80)

and

ro(0s-1)() — hiea(B-i) (1) < 5 Tr(2)(1) <

< hk’o(ﬁgfk)(t) — hk’l(ag,k)(t) for a.e. t € [a7 b], k=1,2, (681)

where
b

My, = |ex| + / (Pio + hie1) (los—i| + |B3—k) (s) ds for k=1,2.

Now we define the operator T': C([a,b]; R?) — C([a, b]; R?) by the formula
T(v)(t) = (%Ex;g) for t € [a,b], v = (v1,v2)T € C([a,b]; R?).

In view of the conditions (6.80) and (6.81), it is clear that the operator T
maps continuously the Banach space C([a, b]; R?) into its relatively compact
subset. Therefore, using the Schauder fixed point theorem, we conclude that
the operator T has a fixed point, i.e., there exist uy,us € C([a,b];R) such
that

up(t) = Ty(u2)(t), wua(t) =To(uy)(t) for t € [a,b]. (6.82)
Obviously, u1,us € AC([a,b];R), u1(a) = c1, uz(b) = ca, and thus we have
01(0) S (@) < Bi(@), ) <w®) < BO).  (683)
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On the other hand, by virtue of the conditions (6.76), (6.81) and (6.82), we
get

d
uy (1) = B1(t) = 5 Talu2)(t) = Bi (1) <

< hi0(B2)(t) — hia(a2)(t) — B1(t) <0 for a.e. t € [a,],
which, together with the first relation in (6.83), implies that uy(t) < £1(¢)
holds for ¢ € [a,b]. The other inequalities in the condition (6.78) can be
proved analogously using the inequalities (6.74), (6.75) and (6.77). However,
this means that

t b

ui(t) =1 +/h1(uz)(s) ds, wug(t) =co— /hg(ul)(s) ds for t € [a,b],
a t
i. e., the vector function (u1,uz2)7 is a solution to the system (6.71) satisfying

the conditions wuj(a) = ¢, ua(b) = c2, and (6.78). O

Lemma 6.34. Let h; = h@o — hi71 with hi70,hi71 € Pap (Z = 1,2). As-
sume that there exist positive functions (1, B2 € AC([a,b];R) satisfying the
conditions

B1(t) > h1o(B2) + h11(B2) for a.e. t € [a,b], (6.84)
B5(t) < —hao(B1) — ha1(B1) for a.e. t € [a,b]. (6.85)
Then the problem

ui(a) =0, ws(b)=0 (6.86)
subjected to the system (6.71) has only the trivial solution.

Proof. Let the operator w: C([a,b]; R) — C([a,b];R) be defined by the for-
mula

w(z)(t)=z(a+b—1) for t€la,b], z€ C(a,d];R).
For any z € C([a,b];R) and m = 0,1, we put
Pt (2)(t) = hin (0(2))(t) for a.e. t € [a,b]
and
hom(2)(t) = hom(2)(a+b—1t) for a.c. t € [a,b].

It is clear that }L'km € Py for k=1,2 and m =0, 1.
If (u1,u2)? is a solution to the problem (6.71),(6.86), then the vector
function (u1,w(us))? is a solution to the problem

Vi (£) = huo(v2) (F) = Bua (v2)(8), v(t) = ho,1(v1)(t) = ha,0(v1)(8), (6.87)
vi(a) =0, wa(a)=0, (6.88)

and vice versa, if (v1,v2)T is a solution to the problem (6.87), (6.88), then
the vector function (vy,w(v2))? is a solution to the problem (6.71), (6.86).
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On the other hand, it follows from the inequalities (6.36), (6.84) and
(6.85) that the functions 3 = (1 and 75 = w(f2) are positive and satisfy
the inequalities

Vi(t) > B o(y2)(t) 4+ ka1 (72)(t) for a.e. t € [a,b]
and
V5 () > hoo(71)(t) + o1 (1)(t) for a.e. t € [a,b].

Consequently, using Theorem 4.8, we obtain
he S82(a), (6.89)

where the operator h is defined by the relation

h(w)(t) = ELO(U’?)(t) +El,1('w2)(t)
h(w)(t) <h2,0(w1)(t) + h2,1(w1)(t)>

for a.e. t € [a,b] and all w = (w1, ws)” € C([a,b]; R?).

It is also easy to verify that the inequality

n (w El’o(w2)(t) _El’l(MQ)(t) h(|w or a.e a
Sen (w(t)) <h2,1(w1)(t) —h270(w1)(t)> = Mty fora. e t€fa.b

holds for every w = (wy,w2)T € C([a, b]; R?). Therefore, by virtue of The-
orem 6.1, the inclusion (6.89) and the above-mentioned equivalence, we get
the assertion of the lemma. (]

Lemma 6.35. Let numbers a; € Ry (i =1,...,4), at least one of which is
positive, 04, 0p €10, +00[, and X € [0,1] be such that o, < gp and
o
d b—a)l>
il _b-a (6.90)
g + (g + az)s + ays? 1-—X
Qa
Then there exist positive functions (1, B2 € AC([a,b];R) satisfying 51, 55 €
Cloc([a,b[;R) and the conditions

B0 = = r A + e Ba(0) for L€ [arbl, (6.91)
Bot) =~ G ) = G gx Bel®) for t € ot (6.92)
Bi(a) =o0a, Pi(b)=0oP2(b), [2(a)=1 (6.93)

and

PBa(b) = exp < /b % ds>. (6.94)
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Proof. Define the function g: [a,b] — Ry by setting

7 d (b— )1
s _
= for ¢ b|.
ay + (ag + a3)s + ays? 1—\ or t & [a, 0]
o(t)

In view of the equality (6.90), we get

o(t) >0 for t € a,b], o(a)= 04, 0(b)=0b, (6.95)

and
gt = Gt (e +(Z‘3_)§§i)+°‘49 D for teab.  (6.96)

Put

&@—am(/“gij%g) Br(t) = o(t)Ba(t) for ¢ € [a, 1]

a

It is not difficult to verify that 1,02 € AC([a,b];R) and, in view of the
condition (6.96), the equalities (6.91) and (6.92) are satisfied. Therefore,
we have (31, 85 € Cioc([a,b];R). Moreover, by virtue of the relations (6.95)
and (6.96), it is clear that the conditions (6.36), (6.93) and (6.94) hold as
well. O

6.2.4. Proofs.

Proof of Theorem 6.20. According to Proposition 3.1, to prove the theorem
it is sufficient to show that the homogeneous problem (6.71), (6.72) has only
the trivial solution. In view of Lemma 6.32, we can assume without loss of
generality that k = 1 and m = 0. Let (uy, us)” be a solution to the problem
(6.71), (6.72).

It follows from the conditions (6.36)—(6.38) that

Bi(t) = Bi(a) + x(h1,0(B2))(t), B2(t) = B2(b) for t € [a,b],
and thus the inequality (6.40) yields

b
/hz)o dS + 62 /h2 0 hl 0( ))) (S) ds+

b
4 Balb /blfm 1)) (5)ds < Ba(b).

Consequently, using the condition (6.36), we get
b b
/hg’o (x(h1,0(1)))(s)ds + /hg@(X(hl’l(l)))(S) ds < 1, (6.97)
a a

because we suppose that the inequality (6.40) is strict if ho o(1) = 0.



On the Initial Value Problem for Two-Dimensional Linear FDS 107

Put
a(t) = — j h11(Ba)(s)ds for t € [a,b] (6.98)
and '
a(t) = /t ha.o(B1)(s) ds — j haa(ai)(s)ds for t€ab].  (6.99)
It is clear that )
a1 (t) <0, ay(t) >0 for t € [a,b] (6.100)

and, using the inequality (6.39), it is easy to verify that

t

—en(t) = /hll(ﬂg)(s) ds < fi(a) < u(t) for t€[ab.  (6.101)

a

By virtue of the conditions (6.100) and (6.101), from the relations (6.37),
(6.38), (6.98) and (6.99) we get

Ck/l (t) = —hl’l(ﬁg)(t) < hl’(](ag)(t) —hl’l(ﬁg)(t) for a.e. te [a, b],
O/Q(t) = hg’o(ﬁl)(t) — hg’l(al)(ﬂ for a.e. t € [(l, b], (6102)
ﬁi (t) Z hlyo(ﬁz)(t) Z hl,o(ﬂz)(t) —hLl(ag)(t) for a.e. te [a, 5]7
and
Ba(t) < —ha,0(B1)(t) — ho1(B1)(t) <
< hgvo(al)(t) — h271(ﬂl)(t) for a.e. t € [a, b}, (6103)

e., the inequalities (6.74)—(6.77) are satisfied. Moreover, in view of the
first inequality in (6.100), it is clear that

a1(t) < Bi(t) for t € [a,b]. (6.104)
On the other hand, the relations (6.40), (6.98) and (6.99) result in

b b
:/h270(ﬁ1)(5) d8+/h2,1(X(h1,1(52)))(8) ds < Ba(b).

Furthermore, the conditions (6.102)—(6.104) yield that
ay(t) = hao(B1)(t) — ha,i(cr)(t) >
> hao(a1)(t) — ha1(B1)(t) > B5(t) for a.e. t € [a,b].

Hence, the last two relations guarantee that ao(t) < 82(¢) holds for ¢ € [a, b],
and thus the condition (6.73) is satisfied.

Therefore, by virtue of Lemma 6.33, the system (6.71) has a solution
(x1,22)7 satisfying the conditions

z1(a) =0, x2(b) = Ba(b), (6.105)
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and
ag(t) < xp(t) < B(t) for ¢ € a,b], k=1,2. (6.106)
We will show that
xa(a) > 0. (6.107)

Indeed, the inequalities (6.100) and (6.106) imply that z3(t) > 0 for ¢t €
[a,b], and since (z1,22)7 is a solution to the problem (6.71),(6.105), the
first equation in (6.71) yields

x1(t) < /hlyo(xz)(s) ds, —x1(t) < /hlvl(zg)(s) ds for t € [a,b].

a a

Using these relations in the second equation of the system (6.71), we get
25 (t) < hao(x(hio(x2)))(t)+
+ ho1(x(h1,1(22)))(t) for a.e. t € [a,b]. (6.108)

Put M = max {z3(t) : t € [a,b]} and choose ¢y € [a,b] such that za(ty) =
M. The integration of the inequality (6.108) from a to tps yields

M < x5(a) + /hz’o(X(hl’o({L'Q)))(S) ds + /hz’l(X(hl’l({L'Q)))(S) ds <

b b
gxQ(a)+M</hw(x(hmu)))(s) dst [hoy (x(hra (1)) (s) ds). (6.109)

a

In view of the conditions (6.36) and (6.105), we have M > 0. Therefore, the
relations (6.97) and (6.109) arrive at M < x2(a) + M, and thus the desired
inequality (6.107) holds.

At last, we put

wi(t) = z2(b)ug(t) — xg(t)uz(b) for t € [a,b], k=1,2.

Obviously, the vector function (w1, ws)? is a solution to the problem (6.71),
(6.86). Therefore, Lemma 6.34 yields that w; = 0 and wes = 0. Conse-
quently, we have
0 = wa(a) = —z2(a)uz(b),

which, together with the inequality (6.107), implies us(b) = 0. However, this
means that the vector function (u1,u2)” is also a solution to the problem
(6.71), (6.86), and thus Lemma 6.34 yields that u; = 0 and uy = 0.

Consequently, the homogeneous problem (6.71), (6.72) has only the trivial
solution. (]

Proof of Theorem 6.21. According to Proposition 3.1, to prove the theorem
it is sufficient to show that the homogeneous problem (6.71), (6.72) has only
the trivial solution. In view of Lemma 6.32, we can assume without loss of
generality that k = 1 and m = 0. Assume that, on the contrary, (ui,uz)”
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is a nontrivial solution to the problem (6.71),(6.72). Then it is clear that
up # 0 and ug Z 0.

First suppose that us does not change its sign. Then we can assume
without loss of generality that ug(t) > 0 holds for ¢t € [a,b]. Since the
operator hy is positive, the first equation in the system (6.71) implies that
uj(t) > 0 is satisfied for a.e. t € [a,b]. Therefore, by virtue of the initial
condition (6.72), we have uy(t) > 0 for ¢t € [a,b]. On the other hand, the
operator hgy is negative, and thus the second equation in the system (6.71)
yields that u5(t) < 0 holds for a.e. ¢ € [a,b]. Consequently, using the
condition ug(a) = 0, we get the contradiction ug = 0.

Now suppose that the function uy changes its sign. Put

. us(t)
A =inf A, A max{w(t) te [a,b}}, (6.110)
where
A= {/\>0:/\71(t)—u1(t) >0 for ¢ [a,b[}. (6.111)
It is clear that
0< A\ <400, 0< Ay < o0, (6.112)
and there exists ¢y € ]a, b] such that
us(to)
—— = )Aa. 6.113
o) ~ 7 ( )

Without loss of generality, we can assume that ¢y < b and that there exists
bo € Jto,b[ such that
UQ(bo) =0. (6.114)
Indeed, if either ¢y = b or ua(t) > 0 for t € [to,b[, then there exists t* €
la, to[ with the properties
ug(t) >0 for t €]t*, b, wus(t*) =0.
Then we can redefine the numbers A1, Ag, o for the solution (—uq, _UQ)T to
the problem (6.71), (6.72), and we can take by = t*.
Now we put
wy(t) = My1(t)—ui(t) for ¢ € [a,b], wa(t) = Aavya(t)—usz(t) for ¢ € [a,b].
Obviously, we have wy € AC,:([a, b];R) and wy € AC([a,b];R). By virtue
of the conditions (6.41), (6.110) and (6.113), it is clear that
wi(t) >0 for ¢t € la,b], wa(t) >0 for t € [a,b], (6.115)
and
Moreover, either the relation A1 < Ay or Ay > Ay holds.
First suppose that A\; < Az. Then, in view of the conditions (6.41),
(6.44), (6.71), (6.112), (6.115) and the fact that ho is a negative a-Volterra
operator, we get

wh(t) < 3% (Agy1 — ur)(t) < hgP (wy)(t) <0 for a.e. t € [a, bg].
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Therefore, by virtue of the conditions (6.41), (6.112) and (6.114), the last
relation yields
wa(to) > wal(bo) = Aay2(bg) > 0,

which contradicts the equality (6.116).
Now suppose that Ay > Ag. Then the second relation in (6.112) implies

Ay > 0. (6.117)

Using the conditions (6.41), (6.42), (6.71), (6.72), (6.115), (6.117) and the
assumption hy € Pyp, we get

wi(t) > hi(Ay2 — u2)(t) > hi(we)(t) >0 for a.e. t € [a,b]

and
wi(a) = A1 (a) > 0.

Consequently, the inequality wy (¢) > 0 holds for ¢ € [a, b]. Therefore, there
exists € > 0 such that

wi (t) > euy(t) for t € [a, b,
i.e.
At
1+¢
However, in view of the definition (6.111) of the set A, the last relation
implies that 1’\—+1€ € A, which contradicts the first equality in (6.110).

The contradictions obtained prove that the homogeneous problem (6.71),
(6.72) has only the trivial solution. O

~y1(t) —ui(t) >0 for t € [a,b].

Proof of Theorem 6.23. According to Proposition 3.1, to prove the theorem
it is sufficient to show that the homogeneous problem (6.71), (6.72) has only
the trivial solution. In view of Lemma 6.32, we can assume without loss of
generality that £k =1 and m = 0.

Let (u1,u2)T be a solution to the problem (6.71), (6.72). By virtue of the

assumption (h1,go) € §a21;1(a) and Remark 5.5, the problem
2y (t) = ha(z2) (), 23(t) = go(w1)(t) + g1(|ua]) (1), (6.118)
z1(a) =0, x2(a)=0 (6.119)

has a unique solution (x1,73)?. Combining the conditions (6.46), (6.71),
(6.72), (6.118) and (6.119), we get

2y (t) + u(t) = hq(z2 + ug)(t) for a.e. t € [a,b],
2y (t) + us(t) = go(@1 + u1)(t) + ha(u1)(t) — go(ur)(t) + g1 (jua|)(t) =
> go(z1 +uq)(t) for a.e. t € [a,b],
z1(a) + ui(a) =0,
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and
2y (t) — ui(t) = hi(z2 —ug)(t) for a.e. t € [a,b],

5 (t) — uh(t) = go(@1 — u1)(t) — ha(ur)(t) + go(ur)(t) + g1 (Jua|)(t) =
> go(w1 —up)(t) for a.e. t € [a,b],
z1(a) —uy(a) = 0.
Consequently, the inclusion (hy,go) € S fb’l(a) guarantees that
x1(t) +ur(t) >0, x1(t) —ur(t) >0 for t € [a,b],

and thus

lui(t)] < 21(t) for t € [a,b]. (6.120)
Taking now the assumption g; € P, into account, we get from the equalities
(6.118) that

21 (t) = hi(x2)(t), x5(t) < (9o + g1)(x1)(t) for a.e. t € [a,b]. (6.121)

However, we also suppose that (hl ) +gl) € §a2b’1 (a), and thus the relations
(6.119) and (6.121) guarantee that z1(¢) < 0 holds for ¢ € [a,b]. Therefore,
the inequality (6.120) yields that u; = 0. Consequently, (6.71) and (6.72)
imply us = 0, i.e., the homogeneous problem (6.71),(6.72) has only the
trivial solution. (]

Proof of Corollary 6.25. It is not difficult to verify that the assumptions of
Theorem 6.23 are satisfied with gy = —% ha—k1-m and g1 = h3_km +
2 h3—p1—m. O

Proof of Corollary 6.27. 1t is clear that the problem (6.51), (6.52) is a par-
ticular case of (6.33), (6.34) witha=0,b=1,¢ =0, g2 = ¢ and hy =

ha,0 — ho.1, where hi, ho o, ho 1 are defined by the formulas hq(2)(¢) def z(t)

and
t

4 Z(T(S)) _dy p x(As)
h270(2)(t) = (1 —t)y / (1 _ s)y dS, hQ,I(Z)(t) - (1 _ t)V / (]_ _ S)V ds
0

0

for a.e. t € [0,1] and all z € C’([O, 1];R). Obviously, h1,h20,h21 € Po1
and the operators hy, ho 1 are 0-Volterra ones.

Case (a): Since 7 is a delay, the operator hg ¢ is a 0-Volterra one. There-
fore, the operator ¢ defined by the formula

ha (v2)(t)
t) =
000 = (000 © )0
for a.e. t € [a,b] and all v = (vi,v2)" € C([a,b]; R?).
is a 0-Volterra one, and thus Proposition 4.20 yields that ¢ € 83,(0). On
the other hand, for any z = (21, 22)7 € C([0, 1];R?) we have

Sgn (2(1)) <Z;EZ;E;D < p(lz)(t) for a.e. t € [a,b].
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Consequently, the validity of the corollary follows from Theorem 6.1.
Case (b): Analogously to Example 5.17, using the inequalities (6.53) we
get
1

/hl(zb(hm(l)))(s)ds <1, /hl(qp(hma)))(s) ds <2,
0 0

where the operator v is defined by the relation (5.9). Therefore, Corollar-
ies 5.14 and 5.21 guarantee that

N 1 R
(hl, h270) S 8021’1(0), (hl, 5 h271) S 8021’1(0).

Consequently, the assumptions of Corollary 6.25 with k =1 and m = 0 are
satisfied. 0O

Proof of Theorem 6.28. Tt is clear that the system (6.54) is a particular case
of the system (6.33) in which the operators hq, he are given by the formula

hi(2)(t) = fi(t)z(7i(t))
for a.e. t € [a,b] and all z € C([a,b];R), i=1,2. (6.122)

Let the operators h; ; be defined by the relations

hii(2)(t) = fij(t)z(7(t))
for a.e. t € [a,b] and all z € C([a,b];R), i=1,2, j=0,1,

where the functions f; ; are given by the formula (6.55). It is clear that
hi,j € Puwp (Z =1,2,57=0, 1) and h; = h@o — hi71 for i = 1,2. By virtue of
the inequality (6.56), there exist 04, 0o € R4 such that w; < g, < 0p < wo
and the equality (6.90) is fulfilled. According to Lemma 6.35, we can find
functions f1, B2 € AC(Ja,b];R) satisfying the relations (6.36) and (6.91)—
(6.94). Using these conditions, we get

Bi(t) >0, B4(t) <0 for t € [a,b]. (6.123)
Put
A;={tela,b]: fi(t)#0} for i=1,2. (6.124)

If we take the relations (6.36), (6.91), (6.92) and (6.123) into account, by
direct calculation we obtain

Tk(t)
t t
_ Qg Qg
= f2(t) + / (b—s)> Pr(s)ds + / (b—s)* Ba(s)ds <
7k (t) 7k (t)
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< Bo(t)+P1 (1) j (b%yd%@(m@)) /t (bf‘%yds for a.e. te[a, bl
. T (t) T (t)
= Bi(7s-k(t)) = —pu(t) + /t Bi(s)ds =
T3k (1)
= Bi(t) + /t ﬁﬁl(s)dwr /t (bfils))\ﬂg(s)dsz
T3k (t) T3k (t)
> —fi(t) + Bi(13-1(t)) j (bfiiydswz(t) /t G fls)A ds
T3k (t) T3_k(t)

for a.e. t € [a,b].

Therefore, by virtue of the conditions (6.36), (6.28)—(6.60), (6.91) and (6.92),
we get from the last two relations that

| fr(£)| B2 (Tx (1)) <

t
1@ | wgx ds

i t
- T:<(:>) Ari) + TJ(]:];( . Pa(t) <
L+ [ gy ds L+ [ g ds
Q3 a1
= b—t)> Bu(t) + (DL Ba(t) = Bi(t) for a.e. t € Ay
and
— [ f3-r(8)|B1 (T3 (t)) >
TS—fk(t)
| fa—k(t)] 0 ds
_r(t (b—s)
- |{3 . i) = - Ba(t) >
1+ f (bfii)x ds 1+ f (bgii)k ds
T3k (t) )

Q4 a2

> T Bi(t) — (N Ba(t) = By(t) for a.e. t € Az,

which, together with the inequalities (6.123), guarantees that
BL(t) > | fr(t)|B2(Tx(t)) for a.e. t € [a,b]
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and
By(t) < —|fs—k(t)|51 (Tg_k(t)) for a.e. t € [a,b].

Consequently, the functions (31, fo satisfy the conditions (6.37) and (6.38).
On the other hand, in view of the relations (6.93) and (6.123), we get

b
/ Feom ()82 (7(5)) ds < Bo(@)| fenmllz = w1 < 20 = B (a),

and thus the inequality (6.39) holds. Finally, we will show that the inequal-
ity (6.40) is satisfied in all cases (i)—(iv). Note that in view of (6.93) and
(6.123) we have

b= /fgfk’m(s)ﬁl (’7’3,]6(8)) ds+

T3—k(S

+/bf3—k,1—m(s)( /( )fk,1_m(£)ﬂg(7k(§)) dg) ds <

T3—k(8)

b
< Qbﬁ2(b)|f3—k,m||L+/f3—k,1—m(8)< / Frea—m(§) d§> ds. (6.125)

Case (1): fe1—m =0 and fs_j,» = 0. In this case, we have ® = 0 and
thus the inequality (6.40) trivially holds as the strict one.

Case (ii): fr1—m =0 and f3_gm # 0. The relation (6.125) yields

O < 0B (0)| f3—kmll < wallf3—k,mllLB2(b) = Ba(b),
i.e., the inequality (6.40) holds.

Case (iil): fr,1—m #Z 0 and fs_im #Z 0. In view of the conditions (6.61)
and (6.94), the relation (6.125) implies

b

_|_
¢ < QbﬂQ(b)HfS—k,mHL-l-(1—w2||f3—k,m|\L> exp (—/06(219_6‘;‘;6/\u2 ds) <

a

IA

b
< ool + (1= allfinmle) oo ( — [ 22500 as)

a

< ooB2(0)|| f3—k,mllr + (1 - Qb||f3—k,m||L)52(b) = [2(b),

i.e., the inequality (6.40) is satisfied.
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Case (iv): fyi—m #Z 0 and fs_p,» = 0. Using (6.62) and (6.94), we get
from (6.125) the relation

b b
a2 + Qiywo Qg + iy 0p
i — [ 5 ds) < = o ds) =
<exp< / b=y ds) _exp( / b—s) ds) < B2(b),

and thus the inequality (6.40) holds as the strict one.
Consequently, the assumptions of Theorem 6.20 are satisfied in all cases

(i)-(iv). O

Proof of Theorem 6.29. It is clear that the system (6.54) is a particular case
of the system (6.33) in which the operators hq, ho are defined by the formula
(6.122). Obviously, the inclusions (—1)™hy, (—=1)1""h3_j € P, hold, and
the operator hs_j is an a-Volterra one. By virtue of the inequality (6.65),
there exist gq, 0» €10, +00[ such that o, < g, and

43

/ ds (b—a)
ar +ass+ass2 1—X

Qa

Therefore, according to Lemma 6.35, we can find wy,ws € AC(]a, b]; R) such
that w,w) € Cloe([a, b[;R) and the conditions

wi(t) = G fi)A wy (t) + i ilt)/\ wo(t) for t € [a,b], (6.126)
wh(t) = — i iSt)A w1 (1) for t € [a,b] (6.127)

and
wi(t) >0 for t € [a,b], i=1,2,
are satisfied. Put

w1 (t)
(b—1)

It is easy to see that v1 € AC.c([a,b[;R), 72 € AC([a,b]);R), and the
condition (6.41) holds. Using the equalities (6.126) and (6.127), we get

T (t) = for t € [a,b], ~2(t) =wa(t) for t € [a,b].

v (&%

0 = (2 + o) O+ g 20 for 1€ fob] (6128)

and
Qs

Y5(t) = o 7 (t) for t € [a,b]. (6.129)

Consequently, it is clear that +5 is continuous and non-increasing on the
interval [a, b] and

Yi(t) >0, ~4(t) <0 for t € [a,b[. (6.130)
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Let the set As_ be defined by the formula (6.124). If we take the conditions
(6.41), (6.64) and (6.128)—(6.130) into account, by direct calculation we
obtain

Tk (1)

(e (®) = 2(0)+ [ 25(6)ds <2(0) +25(0) (mu(0) ~ ) =
t
Q
= (t = () 7(t) +72(t) fora.e. t € [a,b]

(b—1)

and

1 (rai(®)) = = (t) + / Yi(s)ds =

T3—k(t)
t t
v (6%} aq
= — = - >
T (t)+ / (b _ s+ (b—s)/\>%(s) ds+ / (b— s) v Y2(s)ds >
T3k (t) T3k (t)

¢
14 (65)
> —m(t)+m (7—37]@@)) / (E—i—m) ds for a.e. t€ Az .
T3—k(t)
Therefore, by virtue of the conditions (6.41), (6.63), (6.64), (6.66)—(6.68),
(6.128) and (6.129), from the last relations we get

(=) fr ()2 (1r(2)) = | fr(®)]r2 (T (t)) <
as

< b—trv |Fe@)(t = 7.(8) 71 (8) + [fre () r2(t) <

1% 9 (03]

< (E+W)71(t)+m72(t):71(t) for a.e. tE[a,b]

and
(=)™ fs—x ()71 (13-4(1)) = = fa—r ()71 (13-1(t)) >
> — - |f3—k(t)| 'Yl(t) >
1+ f(t) (b% +(bf—§)A) ds
> —(bfy% y1(t) =5(t) for a.e. t € Az_y,

which, together with the second inequality in (6.130), guarantees that
Y1) = (=1)" fu(t)v2(7%(t)) for a.e. t € [a,b]
and
Y5 (t) < (=)™ fs—(t)n1 (T3-x(t)) for a.e. t € [a,b],
and thus the functions -1, v, satisfy the conditions (6.42) and (6.43).
Consequently, the assumptions of Theorem 6.21 are fulfilled. O
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Proof of Corollary 6.30. The validity of the corollary follows from Theo-
rem 6.29 with oy = o, ag =0, a3 = fand k = 2, m = 1 (resp. k = 1,
m = 0). O

Proof of Corollary 6.31. Tt is clear that the system (6.69) is a particular
case of the system (6.33) in which
h(2)(t) = fi(t)z(m1(t)) for a.e. t € [a,b] and all z € C([a,b];R)

and hg = h270 — hg,l, where

hoi(2)(t) = fa,i(t)2(72,4(1))
for a.e. ¢t € [a,b] and all z € C([a,b;R), i=0,1.
Obviously, hi,h20,h21 € Pap. By virtue of the assumption (a) (resp.,

(b), resp., (c)) of the corollary, it follows from Theorem 5.25 (resp., Theo-
rem 5.28, resp., Theorem 5.30) that

(h1,h20) € 83" (a).

On the other hand, in view of the assumption (A) (resp., (B)) of the corol-
lary, Theorem 5.32 (resp., Theorem 5.34) yields that

(hl,—% hgyl) €52 (a).

Consequently, the assumptions of Corollary 6.25 with k = 1 and m =0
are satisfied. |

6.3. Counterexamples. In this section, we construct counterexamples
verifying that some of the results stated above are unimprovable in a certain
sense.

Example 6.36. Let € €]0, 1] and the operator £ be defined by the formula
1 1 -1
= f ;R?).
L(v)(t) 30— a) (_1 1 ) v(b) for t € [a,b], ve C(a,b];R?)

It is clear that the inequalities (6.2), (6.5) and (6.10) are satisfied on the set
C([aab];Rg)a where ¢; = 0725
co) (1) = —— (1 D\ u@) for t € a8, ve C(la,b];R2)
2(b _ a) 1 1 ) ) ) )

and

z(b)

Po(2)(t) = b—a for t € [a,b], z € C([a,b];R).

Moreover, using Corollary 4.26 (with §; = d3 = 1) and Lemma 4.45, we get
the inclusions

0€Sh(a), (1—e)poeSiyla), (1—e)toe Sua).

25The symbol 0 stands here for the zero operator.
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On the other hand, the problem (3.1), (3.2) with ¢; =0 and ¢; =0 (i = 1,2)
has a nontrivial solution (u1,us2)”, where

ui(t)=t—a, wuz(t)=a—t for tea,b].

This example shows that the assumptions (6.1), (6.4) and (6.11) of The-
orems 6.1, 6.3 and 6.6 cannot be replaced by the assumptions (6.3), (6.6)
and (6.13), respectively, no matter how small € > 0 is.

Example 6.37. Let ¢ €]0,1[, o €]0,1], and a < ¢ty < ¢; < b. Choose
functions p;, € L([a, b];R) (i, k = 1,2) such that

pik(t)(t —to)(t —t1) <0 for a.e. t €[a,b], i,k=1,2,

2 to b
Z/|pik(s)|ds= %:_5, /|pii(s)|ds:2+5 for i =1,2,
k=1 i

p12 = p21 = 0 on the interval [tq, b], and
2 U

Z/p,»k(s)dSZ l—a for i=1,2.

k=1j,
Let the operator £ be defined by the formula

p11(t) p12(t)>
/ t) = t
()#) <P21(t) P22(t) o(r(®)
for a.e. t € [a,b] and all v € C([a,b]; R?),

where

(1) = b for t € [a,to],
t1 for te [to,b].

It is easy to verify that the inequality (6.10) is satisfied on the set
C([a, b]; R?), where

_( pi)  [p12(t)]
wo(v)(t) = <|p21(t)| Pa(t) ) U(T(t))

for a.e. t € [a,b] and all v € C([a,b]; R?),

for a.e. t € [a,b] and all v € C([a,b]; R?),
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in which
|p“(t)‘ for t € [a7t1[7
pi(t) = 1+¢
()| for t € [ty,b],
o pa®)] for te b,
0 for t € [a,t1],
g9i(t) = 1+¢
— " pu)| for t € [t1,b],
o pa®)] for te b,
and

() = {a for ¢ € [a,t1],

t1 for t e [tl,b].

Obviously, ¢ + ¢1 € wa —p1 € ’Pgb, and ¢ is an a-Volterra operator.
Moreover,

1— g2
2+¢

b
‘ﬂm@MFﬂ—¥<IMi:LZ
t1

b
(1-9) [ ai(s)ds =

and thus, by Theorem 4.38(a), we get the inclusion

(1—¢)p1 € S2(a).
Furthermore, since

ty

b
/ (171‘(8) + |pi3—i(5)|) ds = / (|pi1(5)| + ‘pi2(8)|) ds =

a

1 1-—
— @ +1,QZM<1
1+¢ 1+4¢

for ¢ = 1,2, using Corollary 4.26 (with ; = d2 = 1) we obtain the inclusion

o + 1 € Saya).
On the other hand, the problem (3.1), (3.2) with ¢; =0 and ¢; =0 (i = 1,2)

has a nontrivial solution (u1,us2)”, where

(1+€)/|p11(5)|d8+(1+€)/|p12(5)|d5 for t € [a,to[,
ui(t) = ¢ t “
a—i—/pﬂ(s)ds—&—/pig(s) ds for t € [to,b].

to to

This example shows that the assumption (6.11) of Theorem 6.6 cannot
be replaced by the assumption (6.12), no matter how small & > 0 is.
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Example 6.38. Let 1,62 € [0,1], £1 + €2 > 0, and the operators hq, ho
be defined by the relations

hi(z)(t) = fi(t)z(7(t)) for a.e. t € [a,b] and all z € C([a,b];R)
and
ha(2)(t) = f2(t)z(b) for a.e. t € [a,b] and all z € C(]a,b];R),

where f1, fo € L([a,b];R+) and 7: [a,b] — [a,b] is a measurable function

such that
b 7(s)
56 [ n@ae)as =1

It is clear that hy,ha € Py and, for any z € C([a,b];R), the inequality
(6.46) with k = 1 and m = 0 is satisfied, where gy = 0%¢ and g; = ho.
Moreover,

b 7(s)
(1 — 61)(1 — 62)/f1(8)( / f2(£) df) ds < 1,
and thus, using Theorem 5.30, we get
((1 — 61) hl, (1 — 82) hg) S gfél(a).
It is also clear that (hy,0) € gfb’l(a) (see, e.g., Theorem 5.30). Conse-
quently, the assumptions of Theorem 6.23 with £ = 1 and m = 0 are
satisfied, except the condition (6.45), instead of which the condition (6.47)

is fulfilled. On the other hand, the problem (6.33), (6.34) with ¢; = 0 and
¢; =0 (i = 1,2) has a nontrivial solution (uy,u2)?, where

up(t) _/tfl(s)< T/(S)fg(f) d§> ds, ua(t) —/tfg(s) ds for t € [a,].

This example shows that the assumption (6.45) of Theorem 6.23 cannot
be replaced by the assumption (6.47), no matter how small 1,5 € [0, 1]
with €1 + €9 > 0 are.

26The symbol 0 stands here for the zero operator.
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Example 6.39. Let a €]0,1[, €1,e2 € [0,1], 1 +e2 > 0, and a < t; <
to < b. Put e = max{ey, e} and choose fi, fo € L([a,b];R) such that

fl(t) > 0, (t — tl)(t — tg)fg(t) <0 fora.e. te [a,b],

]31 (/fb ac) as = 1
]zfl(s)<1+€/|f2 |d§+/f2 df) ds=1—a.

ff1 ds f|f2 )| ds .
/fl(s) ds=emin { & , . = )
t2 f\f2(8)|d8 (1+€)f|f2(8)\d8+tff2(8) ds

/h (/m>m@ 21 +2)

Furthermore, we put

and

(1+€)/\f2(5)|ds for t € [a,tq],
us(t) = t t
(1+6)/\f2(s)|ds+/f2(s)ds for t € [t1,],

and
£ = / Fu()us(s) ds for ¢ € [a,b].

It is clear that uy,us € AC([a,b];R), ui(tz) =1 and u;(b) < —(1+¢€), and
thus there exists tg € [t2,b] such that uy () = —(1 + ¢). Let the operators
hy and hy be defined by the relations

hi(2)(t) = fi(t)z(t) for a.e. t € [a,b] and all z € C([a,b];R)
and
ha(2)(t) = f2(t)z(7(t)) for a.e. t € [a,b] and all z € C([a,b];R),

where

f
T(t): tg for tE[a,tl[,
tQ for t € [tl,b].
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It is not difficult to verify that for any z € C([a, b]; R) the inequality (6.46)
with £k = 1 and m = 0 is satisfied, where

90(2)(t) = —po(t)z (To(t)) for a.e. t € [a,b] and all z € C([a,b];R),
g1(2)(t) = p1(t)z(7(t))  for a.e. t € [a,b] and all z € C([a,b];R),
0 for t € [a, 1], [fa(8)]  for t € [a,ta,
5 2O for £ €[t b, S0 for 1€ fta,0],
and

a for t € la,tsf,
To(t) = [ 2[
ty for t e [tg,b].

Obviously, we have hy € Py, and
(90 +91)(2)(t) = f(t)z(T(t)) for a.e. t € [a,b] and all z € C([a,d];R),

where

ry _ |f2(t)| for t € [ath[v
) = {0 for t € [tog,b].

Therefore, go + g1 € Py and

jfl (/f dé)ds/h (/sz(ﬁ)d€>d8+
/f1 (1+5/f2 |d§+/f2 dé‘)ds—
(/ﬁ ds/lfz Ids—/f1 ds/m ) <

_ 14+l -a)

< < 1.
—1+ 1+e¢

Hence, Theorem 5.30 yields that
(h1,90 + g1) € S5 (a).

Furthermore, —gg € Pgsp, the operators hy, gg are a-Volterra ones, and since

(1 —e1)(1 —e9) /f1 (/ )df)dsg
< lgg/bfl(s)(/sf2(5)|d5>d8=1—62<1,

ta
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using Theorem 5.32 we get
(=) b, (1= 22)g0) € 83 (@),

Consequently, the assumptions of Theorem 6.23 with £k = 1 and m = 0
are satisfied, except the condition (6.45), instead of which the condition
(6.48) is fulfilled. On the other hand, (uj,u2)T is a nontrivial solution to
the problem (6.33), (6.34) with ¢; =0 and ¢; =0 (i = 1, 2).

This example shows that the assumption (6.45) of Theorem 6.23 cannot
be replaced by the assumption (6.48), no matter how small 1,5 € [0, 1]
with €1 + €5 > 0 are.
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