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0;r is the Kronecker symbol, i.e., dxx = 1 and d;; = 0
for i # k. B
N is the set of natural numbers, N,, = {1,....n}, N, ={0,1,...,n}.
R is the set of real numbers, Ry = [0, +00[.
R™ is the m-dimensional real Euclidean space of points x = ()%, with

the norm
m
llmm = |zkl-
k=1

RT = {(zx)jL; ER™ 21 >0,...,2m > 0}.

E™ is the space of vector functions z : NV,, - R™ with the norm
|lz||gm = max {||2(i)||gm : i € Ny}
E™ is the space of vector functions z : N,, = R™ with the norm
l#ll55,, = max {[l2(@)l|zn =i € Na}.
E,=E. E,=E.
Ef ={x € E,:2(i) >0 for i € N,},
Ef ={z € E, :z(i) >0 for i € N,}.
A is the first order difference operator, i.e.,

Az(i—1)=z(i)—z(i—1) for x € E,, i€ Ny.

Iy = [a, b], where a € R and b €]a, +0oo[ are assumed to be fixed through-
out the paper.

tin = a+ - 1.

C(Io; R™) is the space of continuous vector functions u : Iy — R™ with
the norm

lulle(ro;rm) = max {[lu(t)||r= : t € T}

C(Io;RT) = {z € C(Io; R™) : x(t) € R} for t€Iy}.
pn : C(Io; R) — E,, and Gn : E, — C(Io; R) are the operators given by
pa(u)(i) = u(tin) for i€ N,

and

4n(@)(t) = 77— [(tin =)l = 1)+ (t = ti1 )a(0)]

for tii1n <t<tim, i€ N.



L*(Iy; R) is the space of the functions u : [y — R with summable a-th

power, a > 1,
b 1/«
T ( / |u<t>|adt) .

L(Io;Ry) = {u € L((Io; R) :u(t) > 0 for t€ Ip}.
C(A4; B) is the set of continuous mappings v : A — B.
K(C(Ip; R™); L(Ip; R)) is the class of the operators f : C(Ip; R™) —
L(Iy; R) satisfying the Carathéodory conditions, i.e.,
f € K(C(Io; R™); L(Io; R))

means that f is continuous and for any r € R, it admits the estimate

m
[f(ug, ..., um)(@®)] < fr(t) for t e Iy, Z lurllc(ro;r) <)
k=1
where f € L(Io; Ry).

K(Iy x R™; R) is the set of the functions g : Iy x R™ — R satisfying the
Caratéodory conditions, i.e., g € K (Iyx R™; R) means that g(:,z1,...,%m) :
In — R is measurable for all (zy)f~, € R™, g(t,-,...,-) : R™ — R is
continuous for almost all ¢ € Iy, and for any r € R,

max{laar, ool 3 el < ) € L Ra).

k=1
Con-

sider the system of functional differential equations

duy(t

%:fk(ul,...,um)(t) (k=1,...,m) (0.1)
with the boundary conditions

ug(ty) = (U1, - um) (K=1,...,m), (0.2)
where t, € Iy, fr € K(C(Ip; R™);L(Ip; R)) (k = 1,...,m), and ¢ :
C(Ip;R™) — R (k = 1,...,m) are continuous functionals. By solution

of the problem (0.1), (0.2) we mean an absolutely continuous vector func-
tion (ug)jr, : o = R™ satisfying both the system (0.1) (almost everywhere
on Ip) and the boundary conditions (0.2).

In the form of (0.1) can be written, for example, system of ordinary
differential equations

duy, ()

pn = gr(t,ur(t),...,un(t)) (k=1,...,m), (0.14)

1t is clear that g, may be assumed to be given on En/ for any n’ > n.



system of differential equations with deviating arguments

duy(t)
dt

= g (t,ul(t), s um(t), s, (i) (t), .-, s, (um)(t)) (0.15)
(k=1,...,m),

where

¢, (0)(8) = {S(Ck(t” for G (8) € I,

for Cx(t) ¢ Io,
and system of integro-differential equations

b

duy (1) =gk <t uy (t /u1 ds a1 (s,t),.

dt

/bum dy i (5 t)> (k=1,...,m). (0.15)

Particular cases of (0.2) are Cauchy—Nicoletti boundary conditions

up(ty) =cp (k=1,...,m), (0.21)

periodic boundary conditions
up(a) = we(®) +ex (k=1,...,m), (0.22)

and so on.

Boundary value problems of the type (0.11), (0.2) and (0.11), (0.2%)
(k = 1,2) arise in different fields of natural science and engineering and
for a long time have been attracting attention of many specialists. Mono-
graphs by M. A. Krasnosel’skii [38], I. T. Kiguradze [31], N. I. Vasil’ev
and Yu. A. Klokov [10], Yu. V. Trubnikov and A. I. Perov [48], and the
works [28, 32, 33, 35, 36, 39 and 43] contain nonimprovable in a certain
sense conditions for the existence and uniqueness of their solutions. As
for the question of numerical solution of such problems, it has so far been
studied insufficiently. Only the Cauchy problem for differential equations
and systems with continuous right sides [5, 6, 11, 26, 50, 51] and two-point
boundary value problems for second order ordinary differential equations,
[5-8, 12, 13, 26, 30, 34, 44] are an exception. Of the works devoted to the
numerical solution of problems of periodic type for differential systems and
higher order differential equations, we may note [9, 45]. Rather interesting
are also the works of S. Gupta and R. Tewarson [27, 46] in which difference
schemes of high accuracy have been constructed for numerical solution of a
two-point boundary value problem arising in modelling kidney’s function-
ing, although these papers do not deal with the question of convergence and
stability of the proposed schemes.



In the recent years, the interest for boundary value problems for systems
of functional differential equations (0.1) has increased considerably. Here,
first of all, we should note the works of N. V. Azbelev and his collaborators
(see [1-4] and references therein) in which the fundamentals of a general
theory of such problems have been constructed. However, the problem
(0.1), (0.2) has not been studied separately, with the exception of the cases
where fi,..., f, are the Nemytsky operators or t; =t; = -+ = t,,, and

1 m m
sup{;];hpk(ul,...,umﬂ : ;”’U,HCUO;R) < r} —0 as r — +oo.

The aim of the present work is: (i) to find sufficient conditions for sol-
vability and unique solvability of the problem (0.1), (0.2) and of analogous
problems for systems of functional difference equations, and (ii) to construct
converging, stable difference schemes for numerical solutions of problems of
the type (0.1), (0.2).

Chapter I of the present paper is devoted
to the investigation of the question of existence and uniqueness of solution
of the problem (0.1), (0.2). The use is made here of a method developed
in [32, 35, 36] which is based on a priori estimates of functions satisfying
systems of one-sided differential inequalities

[u (t) — hi(t)ur(t)] sign [(t — tr)ur(t)] <

Sho(t)+f0k(|u1|,...,|um|)(t) fOI‘ tEI() (k:l,...,m) (03)
and boundary conditions
up(tr) <r+ ok ([utl,-- -, Juml) (k=1,...,m). (0.4)

The results of the chapter are formulated in terms of the set W (1, ..., tm).
The latter is defined in §1 (see Definition 1.1), while in §2 sufficient condi-
tions are given under which

(h17 s '7hm;f017 s -7f0m§§0017 - '79007)1) € W(t17 - 7tm) (05)

(Lemmas 2.3-2.6). It is established that if (0.5) is fulfilled, then any solution
(ug)r, of (0.3), (0.4) admits the estimate

m b
Z|uk(t)| < p[r+/h0(s) ds] for te Iy,
k=1 P

where p > 0 is a number independent of (ug)jr,, ho and r (Lemma 2.1).
By means of the formulated lemma, the following theorems are proved.

Let in C(Io; R™) the inequalities

[fr(uas oy um) (8) = hi(H)ur(t)] sign [(£ — tr)ur(t)] <
ShO(t)+f0k(|u1|a7|um|)(t) fOT‘ tGI[) (k:]-aam) (06)



and

|<pk(u1,...,um)| < r+<p0k(|u1|,...,|um|) (k=1,...,m) (0.7)

be fulfilled, where hg € L(Ip;Ry), r € Ry, and hg, for and por (k =
1,...,m) satisfy (0.5). Then the problem (0.1), (0.2) has at least one solu-
tion.

Let in C(Io; R™) the inequalities

[fk(ul, cens ) () = fe(vr, . vm) (8) —
—hy(t) (ur(t) — vk ()] sign [(t — i) (ur(t) — vi(t))] <

SfOk(|u1_U1|7"'7|um_vm|)(t) fOT teIO (k:]-aam) (08)
and
|g0k(u1,...,um)—go(vl,...,vm)|S
§<,00k(|u1—U1|,...,|um—vm|) (k=1,...,m) (0.9)

be fulfilled, where hy, for and por (k = 1,...,m) satisfy (0.5). Then the
problem (0.1), (0.2) has a unique solution.

From these theorems, by virtue of lemmas 2.3-2.6 we get efficient suffi-
cient conditions for the existence and uniqueness of solutions of the prob-
lems (0.1), (0.2), (0.1;), (0.2), (0.1), (0.2;) and (0.1;), (0.2;) (Corollaries
1.1-1.10", 1.1"-1.10").

In Chapter II, we study the difference problem

Axk(z_l):gk(xlaaxm)(z) (k:]-aam)a (010)
xk(ik):¢k(xla"'axm) (k:]-a"'am)a (011)
where iy € Ny, gr € C(E™; E,,) and ¢, € C(E™;R).

Given k € N,,,, we denote by 73 the function

(@) i for i > iy,
Te(t) = § . . .
i—1 for i <iy.

By analogy with W (t1, ..., ty), we introduce the set W, (i1, ..., i) (De-
finition 4.1) and prove the following propositions.

Let in E;” the inequalities
[gk(ul, ey U) (7)) — h (D) g (T8 (z))] sign [(Tk (1) — i)z (Tx (z))] <
< ho(i) + gor (|21],- - - |zm|) () for i€ N, (k=1,...,m)
and

|¢k(a:17"'7xm)| Sr+¢0k(|xl|aa|xm|) (k: 17"'7m)



be fulfilled, where r € Ry, ho € E, and
(hl, co s Gots - - Goms Yot - - .,’(/JOm) € Wility...yim). (0.12)
Then the problem (0.10), (0.11) has at least one solution.
Let in E™ the inequalities
[gr(@ 15y 2m) (1) = Ge (Y- - Ym) () — D (8) (za (1 (4)) — yr(72:(3)))] x
x sign [(75, (1) — ix) (k (7 () — yr (e (9)))] <
1,...

ngc(|331—y1|,---,|$m—ym|)(i) for i€ N, (k ceeym)

and

|¢k($1:---7$m)_¢(y17--- Ym )|<
S ¢0k(|$1 — y1|, cey |$m — ym|) (k‘ = m) (013)
)-

be fulfilled, where hy, gor, and Yo satisfy (0.12). Then the problem (0.10),
(0.11) has a unique solution.

Let the conditions of Theorem 4.2 be fulfilled and (xo)}"- L €

Em Then there exists a unique sequence of vector functwns (o) € Em
(I/ =1,2,...) such that for any natural v and k € {1,...,m}, the functwn
Thy 08 the solution of the Cauchy problem

Aa:ku(z_]-) :gk(xl v—1y++ 3y Thk—1v—1LTkys Th+lv—1y-++,Tm 1/71)(7:);
xku(ik) :¢k($1 U—la---axmu—l)a (014)
and
lim 4, (i) = 24(i) for i€ N, (k=1,...,m), (0.15)
V—r—+00

where (z1)7, is the solution of the problem (0.10), (0.11).

Let in E™ the inequalities (0.13) and

gk (@1, om) () = gk(yr, - - ym) (6) = B (8) (@ (2(2)) — yi (70(4))) | <
<gok(lzr —yil,- - |om —ym|) (@) for i€N, (k=1,...,m)

be fulfilled, where hi, gor and oy satisfy (0.12). Let moreover, (xp,)}- L €
Em Then there exists a unique sequence of vector functwns (Tgo)jy € Em

(V =1,2,...) such that for any natural v and k € {1,...,m}, the function
Thy 08 the solution of the difference equation
Aa:k,,(i — ].) = hk(l) [:L‘k,,(’l'k(i)) — T ,,,1(’1']c (Z))] +
+ gk(xl v—L1y+-- 7xm1/71)(i)

under the initial condition (0.14), and (0.15) holds, where (xy){, is the
solution of the problem (0.10), (0.11).



These theorems allow us to determine simple sufficient conditions which
guarantee both the unique solvability of the problem (0.10), (0.11) and the
convergence of the above-mentioned iteration processes.

In Chapter IIT which is devoted to the convergence and stability of diffe-
rence schemes, we start from the notion of the class Dy (Definition 7.1) and
from Lemmas 7.1-7.3 characterizing the latter. Proofs of the main results
of the chapter are based on a priori estimates of solutions of boundary value
problems for difference inequalities given in §8 (Lemmas 8.1-8.3).

In §9, we investigate difference schemes of the type

Az (i — 1) = fin(z1,...,zm)(E) (E=1,...,m), (0.16)
Tk (ikn) = @rn(T1, .-, xm)@) (K=1,...,m), (0.17)
where
(fin) 2 €Dy (k=1,...,m),
the numbers ix, € N, (k € Ny, n € N) are chosen such that

Lignn < Tk < tiy,+1n,

and the functionals g, € C(E™;R) (k € N, n € N) for any (ug)p, €
C(Ip; R™) satisfy

lim (pkn(xln:- - -axmn) = <p(u1,. .. ,um) (k‘ =1,... ,m)
n—+00

whenever

Jm flzkn = p(ur)llg, = 0.

Theorem 9.1 and its corollary contain conditions under which to any
r >0 there exists ng € N such that for every n.>ng, the set X, (u?,...,u%;r)
of solutions of the problem (0.16), (0.17) satisfying

m
Z I = pa(up)ll, <

is non-empty and
0.
sup { Z |2k —pn uk)|| H(zp) i, € Xp(ul, . .. ,um,r)} —0 as n—+o0.

By Tkn, 0ikn and g, we denote the following functions and operators

) i for i > ign,

Trn(2) =

k i—1 for i <igm,

rion(2)(§) = x(1pn (7)) for j = 7pn (i) + sign(ip, — i+ 1),
e z(j) for j # in(i) + sign(ipn — i + 1),

Gikn (%) (1) = qn (Tikn (2)) (1)
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Let for every natural n the inequalities

[frn(@1s s 2m) (1) = Frn(@1s - Ym) (1) = hkn () (25 (Thn () = Yrn (71(9))) ] ¥
x sign [(Tkn (1) — ikn) (@k (Tkn (1) = yr(1ra (2)))] <
ngkn(knl—y1|,...,|xm—ym|)(i) for ie€N, (k=1,...,m)

and

|80kn(x17---axm) _Sokn(yla---aym” <
< ok (@71 = 11l)s - s u(|Zm —yml)) (kK =1,...,m)

be fulfilled in E™, where forn : (E)™ — EF (k=1,...,m) are positively

n
homogeneous continuous non-decreasing operators,

(hkn) E th, (fokn) E Dfok (k =1,..., m),

and hi, for and por, (k=1,...,m) satisfy (0.5). Then:

(a) the problem (0.1), (0.2) has a unique solution (ug){™,;

(b) the difference scheme (0.16), (0.17) is stable?;

(c) there exist ng € N and p such that for any n > ng, the problem (0.16),
(0.17) has a unique solution ()7,

m
Zka — pa(uj, ||~ < Z |pn up) (ikn) = Pra(Pn (W), - -, po(up,))| +

+ Z |Apn(ur) (i = 1) = fra(Pa(ul), -, pa(up,)) @],

i=1
and
Let the conditions (0.5), (0.8), (0.9) and the equalities
tin
fren(@r, - xm) () = (1= 6i—14,,) / fie(gin(@1), - -, Gimn(zm)) (s) ds +
ti—in
tin
+5i71ikn / hk(s) ds a:k(z) (n €N; 1€ N,; ke Nm)
ticin
and

gokn(xl,...,:nm):(pk(qn(xl),...,qn(a:m)) (k=1,...,m) (0.18)

2See Definition 9.1.
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be fulfilled. Then the conclusion of Theorem 9.2 is valid. Moreover, if for
every (ug)P, and (vi)ir, € C(Ip; R™) we have

hi € L¥(Io; R), fr(u1,...,um) € LY(Io;R) (k=1,...,m)

and

S et un)(®) = filvr, o vm) O] < RO S e = villom
k=1

k=1

with 1 < a < +00 and h € L(Ip; Ry), then
m
Y Mz —palu)llz, = O,
k=1

Let in C(Io; R™) the inequalities (0.9) and

|fk(u1,...,um)(t)—fk(vl,...,vm)(t) S
< for(Jur —vil, - Jum —vm|) () for t€ly (k=1,...,m) (0.19)

be fulfilled, where

(for,---s foms o1, - pom) € Wolt1, ..., tm). (0.20)
Nezxt, let
tin
fen(z1, - xm) (i) = / I (qn(xl), e, qn(xm))(s) ds
ti—1n

(n€ N; i € Ny; k€ Np)

and oy (k=1,...,m) be given by (0.18). Then the conclusion of Theorem
9.2 is valid. Moreover, if u)' (k=1,...,m) are absolutely continuous and
ud" € Le(Ip;R) (k=1,...,m) with 1 < a < 400, then

Z lZkn — P “k ||~ =0(n 1/a72)-

Let the conditions (0.5), (0.8), (0.9), hx, € C(Io; R), fr €
C(C(Io; R™); C(Io; R)), for € C(C(lo; RY);C(Io; Ry)) (k=1,...,m) and

fen(z1, - xm) (i) = b :L a4 fr (qn(xl), e, qn(xm)) (t‘rkn(i)n)

(neN; i € N,; k€ Ny)
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be fulfilled, and let prn (k=1,...,m) be given by (0.18). Then the conclu-
sion of Theorem 9.2 is valid. Moreover, if every function u' has bounded
variation, then

m
Z |Zkn — Pn Uk HE = (nil)-

Let the conditions (0.9), (0.19), (0.20) and

b—a

fkn(xlyya:m)(z): m [fk(qn(ajl)a7qn(a:m))(tzfln)+

+fk[(qn(zl),...,qn(zm)((tm)] (n€N; i€ Np; k€ Np)

be fulfilled, and let prn, (k=1,...,m) be given by (0.18). Then the conclu-
sion of Theorem 9.2 is valid. Moreover, if (ul))i*, are thrice continuously
differentiable, then

Y Nz = pa(uf)llz, = Om?).
k=1

If (hkn)zg € tha (fOkn)Zg € DfOk and
(p[)kn(xla . ,xm) = (p[)k(qn(xl)a e ,qn(xm)) (k = ]., e ,m)7

then there exists ng € N such that

(hlna T hmn; fOln: LR men; Poin, - - - SOOmn) € Wn(ilna . -aimn)

for n > ng. Thus, if the conditions of Theorem 9.2 (or one of its corollaries)
are fulfilled, then the solution of the problem (0,16), (0.17) for any n > ng
can be constructed by one of the iterative methods mentioned in Chapter
II.

Corollaries 9.9-9.12 concretize Corollaries 9.5-9.8 for the problem (0.1;),
(0.2). The system (0.11) with the boundary conditions

m

ug(ty) = Z [cikjuj(a) + CijUj(b)] +e, (k=1,...,m) (0.21)

j=1

is considered separately. Problems of this type arise in the theory of che-
mical reactors [37, 41] and in modelling kidney’s functioning [27, 46]. We
investigate the problem (0.1), (0.21) under the assumption that t;, € {a,b},
gr € C(Io x R™R) (k=1,...,m),

m

|gk(t,a:1,...,a:m)—gk(t,fl,..., Z hijle; =% (k=1,...,m),
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and either the spectral radius of the matrix

m 2b — m
(Kkj + (b — a) Z[]“h” + ( a) hkj>
i=1

T koj=1
is less than 1 or

m
tr =a and thj A
k=1

where (g = |eipj|+|cors| (k5 = 1,...,m) and £* = 7= min{ln(} lp;) ' :
i=1

k =1,...,m}. These conditions along with the unique solvability of the

problem turn out to guarantee the convergence and stability of Tewarson’s

[46] and Runge—Kutta’s difference schemes (see Corollaries 9.13-9.15).

In §10, we consider the differential system

duk (t)
dt

= fr(uy,. o up 1, Upy U1, -y um) () (B=1,...,m) (0.22)

with the boundary conditions (0.2), and for the numerical solution of the
problem (0.22), (0.2), we propose the difference scheme of the type

A2y (i = 1) =Frn(Trn 1oy Thn1s Thrs Thtln-1y--->Tmn_1)(@) (0.23)
(k=1,...,m),
Zhn (i1n) =0k (@1 (T1n-1)s ooy Gt (Tmn1)) (E=1,...,m), (0.24)
where
i € K(CUIo; R™); L(I; B), (Fin) 2y €D5, (k=1,....m)
and the functionals ¢y : C(lp; R™) = R (k=1,...,m) satisfy (0.9).

Let in E;” the inequality

frn@1, o mp, @ @t @) (D) = Frn Wt - Uks Us Ykt 1o - -5 Ym) (6) —
~hien (8) (2(Thn (7)) = y(Thn (0)))] sign [(Thn () — ikn) (2(7n (1)) —
_y(Tkn(Z)))] S fOkn(|x1 - y1|7 ey |xm - ym|)(7f) fOT‘ 1€ Nn

be fulfilled for any n > ng and k € N,,, where forn : (E,f)m = Ef (k=
1,...,m) are positively homogeneous continuous non-decreasing operators,
1Bkl < 1, (hkn)yZy € Dhes (fokn)nl € P (B =1,...,m), and hy,
for and por (k=1,...,m) satisfy (0.5). Then:

(a) the problem (0.22), (0.2) has a unique solution (uQ)7 ,;

(b) the difference scheme (0.23), (0.24) is stable;®

3See Definition 10.1.
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(c) given (Tiny)j,y € E{L’g, there exists a unique sequence (Tpn)ir, (n =
no + 1,...) of the solutions of the problems (0.23), (0.24), and

nkrfoo ||pn(“2) - ﬁUlm”gﬂ =0.

Let the conditions

[fk(ul, e Uy Uy Ukt 1y - ey U ) (8) — fro (U1, Uk U Vg1, - ooy U ) (E) —
) (u®) - v(®))] sign (¢ — ) (ult) — 0(®)] <
< for(Jur = vilyo oy Jum —vm]) (1) i€y (k=1,...,m), (0.25)
Fin (@1, o Tl Ty Tt -+ -5 T ) (1) =
tin
= 6i_1ikn / hk(s) ds - .’17(1) + (1—61'_11',”) X
ti—in
tin
x / Fie(@n 1 (1), s o1 (@8, Gk (2)s G 1 (@41)s - G 1 () () s
ti—in
(neN; i€N,; k€N (0.26)

be fulfilled along with (0.5) and (0.9), and let ng € N be so large that

| tf hi(s)ds| <1 fori € Ny andn > ng. Then the conclusion of Theorem
ltO711 T%s valid.
Let the operators f,, € C(C(Io; R™');C(Io;R)) (k =
1,...,m) be bounded on every bounded set of C(Iy; R™TY), the conditions
hi € C(Io;R), for € C(C(Lo; R});C(Io; Ry)) (k=1,...,m),
— . b—a

Fen(@1,e o @, T, Tpg1, ey T) (3) = - X

X?k (Qnﬂ(l“l), s 7Qn71(xk)a qn(x)a qn—1 (xk+1)a sy an1(a¢m)) (trkn(i)n)

be fulfilled along with (0.5), (0.9) and (0.25), and let ng € N be so large that

h—

—a |hi(t)] < 1 for n > ng and t € Iy. Then the conclusion of Theorem
n

10.1 is valid.
Corollaries 10.3 and 10.4 concretize Corollaries 10.1 and 10.2 for the

differential system
duy(t)

pn =Gr(tur(t), .. up—1 (1), ur(t), ups1(t), ..., um(t))(t)

(k=1,...,m).
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CHAPTER I

§ 1. FORMULATION OF THE EXISTENCE AND UNIQUENESS THEOREMS

Let
tg EIO; fk GK(C(IU)Rm))L(IOaR)) (k:]-a"'am)a

and let ¢ : C(Ip;R™) — R (k = 1,...,m) be continuous functionals.
Consider the problem of finding an absolutely continuous vector function
(ug)jry @ Io = R satisfying almost everywhere the system of functional
differential equations

duk (t)
dt

and the boundary conditions

= filur,oun)(t) (k=1,...,m) (L1)

up(tr) = (U1, ..., um) (K=1,...,m). (1.2)
Particular cases of (1.1) are: system of ordinary differential equations

duy(t)
dt

system of differential equations with deviating arguments

=gk(tur(®),...,um®) (k=1,...,m), (1.14)

duc,;t(t) =g (t,ur(t), .- um(t), s, (wi)(t),...,s., (um)(t)) (L12)

(k=1,...,m),

where
_ Ju(Ce(t) for (x(t) € o,
Sck (U)(t) - {0 fOI‘ Ck(t) ¢ I(),

and system of integro-differential equations

b
du(]lct(t) = gk <t,U1(t),...,Um(t),/ul(s) ds Oél(S,t),_,_

...,/bum(s)dsam(s,t)> (k=1,...,m). (1.13)

a

Everywhere in the sequel we will assume that the right-hand sides of the
system (1.11) belong to K(Iy x R™; R), while those of the systems (1.15)
and (1.13) belong to K(Ip x R>™; R). As for the functions (; : Ip — R
(k=1,...,m), they will be assumed to be measurable, while the functions
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ap : Ipx Iy — R (k=1,...,m) will always be measurable in the second
argument, will have bounded variation in the first one and will satisfy

b
aZ:vraimax{/|dsak(s,t)| :tEIO} <+ (k=1,...,m).
a

An operator fy : C(Io; RY}') — L(Io; R) is said to be positively homoge-
neous if for any nonnegative p and any (z3);L, € C(Ip; RY') we have
folpzi, ..., pxm) = pfo(z1, ..., Tm).
If for any (xy)}, and (yx)L, € C(lo; RY') satisfying
zp(t) <yp(t) for tely (k=1,...,m)
we have

fO(wla"'axm)(t) S fO(yla"'aym)(t)a

then fo is called a non-decreasing operator.
For the sake of convenience, we introduce the following

Let hy € L(Ip; R) (k=1,...,m), and let fo, : C(Io; RT)
— L(Ip;Ry) and @or : C(lo;RY) — Ry (k = 1,...,m) be positively
homogeneous continuous nondecreasing operators and functionals such that
the system of differential inequalities

|uj, () = hi(®)ur ()] < for (Jual, - Juml) (#)  (k=1,...,m) (1.3)
with the boundary conditions
|uk(tk)| S@Ok(|u1|,...,|um|) (k: 1,...,m)4 (1.4)

has only the zero solution. Then we say that

(hiy- vy hums fory -+ foms @01y Pom) € W(t1, ... tm).

The writing

(fot,---s fom;®o1,--->Pom) € Wolt,... tm)

means that
(0;---aOQfOIa---adOm;SOOIa---;(POm) € W(tl,...,tm).
" The writing

(hla---ahm§h117---ahlm:---7hm17---7hmm;§001:---74p0m)EW’(tla---atm)

4The solution of the problem (1.3), (1.4) is likewise sought in the class of absolutely
continuous vector functions (uy)j, : Iop — R™.
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means that hy € L(Ip;R), hx; € L(Ip;Ry) (k,j = 1,...,m), and
wor : C(Io;R}) — Ry (k = 1,...,m) are positively homogeneous con-
tinuous nondecreasing functionals such that the system of differential in-
equalities

Jui, (1) = hi(@ur(®)] <Y hagOlug B (k=1,...,m) (1.3
j=1
under the boundary conditions (1.4) has only the zero solution.
The writing
(hlla---ahlma---7hm17---7hmm;9001’---7(p0m) S Wé(tl,,tm)
means that
(07"'70;h117-"7h1m7'"7hm17-"7hmm;50017"'7900m) € Wl(tla"'atm)-
Let in C(Ip; R™) the inequalities
[fr(uas oy um) (8) = hi(H)ur(t)] sign [(£ = tr)ur(t)] <
< ho(t) + for ([url, -5 Jum|) () for tely (k=1,...,m) (1.5)
and
lok (U1, .. um)| < r+<p0k(|u1|,...,|um|) (k=1,...,m) (1.6)
be fulfilled, where r € Ry, hg € L(Ip; Ry), and
(hl, ey hm, f()l, ey me; @ot,y - - - ,(p()m) € W(tl, [ ,tm) (17)
Then the problem (1.1), (1.2) is solvable.
Let in C(Ip; R™) the inequalities
Fr(ut, - um) (t) sign [(t — te)ur(t)] <
< ho(8) + Y e Ollujllom  for t€l (k=1,...,m) (L8)
j=1
and
m
Jon(ury - um)| < o+ D e )llujllegry (k=1,...,m) (19)
j=1

be fulfilled, where by € Ry, ly; € Ry, hyj € L(Io;Ry) (k,j = 1,...,m),
ho € L(Io; Ry), and the spectral radius of the matriz

(154 o) 10

a

is less than 1. Then the problem (1.1), (1.2) is solvable.
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" Let in Iy x R™ the inequalities
gr(t, @1, ... @) sign [(t — ty)ze] <

<ho(t) + Y i)z (k=1,...,m), (1.11)

and in C(Ip; R™) the inequalities (1.9) be fulfilled, where the numbers £y and
the functions ly;, hij (k,j = 1,...,m) satisfy the conditions of Corollary
1.1. Then the problem (1.11), (1.2) is solvable.

" Let in Iy x R*™ the inequalities
gk(taxla oy Tmy Y1,y - ,ym) Sigl’l [(t - tk)xk] S

m
<ho(t) + 3 (g (Bl | + o (Olysl) (k= 1,..0om),  (112)
j=1
and in C(Ip; R™) the inequalities (1.9) be fulfilled, where {y € R4, ly; € R,
hikj € L(Io; Ry), hogj € L(Io; Ry) (k,5 = 1,...,m) and ho € L(Ip; Ry).
Let, furthermore, the spectral radius of the matriz (1.10), where hy;(t) =
haki(t) + s, (1)()har;(t) (where hij(t) = hig;(t) + ajhor;(t)), be less
than 1. Then the problem (1.1s), (1.2) (the problem (1.13), (1.2)) is solv-
able.

Let in C(Ip; R™) the inequalities

fe(ur, ..o um)(t) sign [(t — te)ur(t)] < ho(t) + hylur(t)] +

m
+thj||uj||C(IO;R) for tely (k=1,...,m) (1.13)
j=1
and
loe (Ui, um)| < lo+ ok (lur]) (k=1,...,m) (1.14)

be fulfilled, where hy, < 0, hy; € Ry (k
ho € L(Ip;Ry), and @or, : C(Ip;Ry) — R
continuous functionals such that

1,...,m), by € Ry,

J =
+ (k= 1,...,m) are linear

900]6(1) S 17 SOOk(ﬁk) < 17 ﬁ:exp (hk|t_tk|) (k:177m) (115)

Moreover, let the real parts of the eigen-values of the matriz

m

(hkdkj + hig) o iy (1.16)

be negative. Then the problem (1.1), (1.2) is solvable.
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" Let in Iy x R™ the inequalities
gr(t,x1,. .., Tm)sign [(t — tk)a:k] <

< ho(t) + helae| + ) hijlz| (k=1,...,m), (1.17)

=1

and in C(Ip; R™) the inequalities (1.14) be fulfilled, where the numbers £y,
hi, hi; (k,5 = 1,...,m), the function ho and the functionals por, (k =
1,...,m) satisfy the conditions of Corollary 1.2. Then the problem (1.1),
(1.2) is solvable.

" Let in Iy € R®™ the inequalities

gk(taxla e Tmy Y1y - ,ym) Sign [(t - tk)xk] S hO(t) + hk|xk| +
m
+ > (kg )laj| + haw (Dlysl)  (k=1,...,m), (1.18)

Jj=1

and in C(Io; R™) the inequalities (1.14) be fulfilled, where o
C(Ip;Ry) — Ry (kK = 1,...,m) are linear continuous functionals satis-
fying (1.15), hyy <0 (k=1,...,m), €y € Ry, ho € L(Io; R+), and hiy; and
hagj : Io = R4 are measurable functions, such that
hij = hig;j (t) + ¢, (1)(t)h2kj (t) = const
(hkj = hlkj(t) + a;hgkj(t) = COTLSt).

Moreover, let the real parts of the eigen-values of the matriz (1.16) be nega-
tive. Then the problem (1.15), (1.2) (the problem (1.13), (1.2)) is solvable.

Let in C(Ip; R™) the inequalities

fr(uny . um) (t) sign [(t — te)ug(t)] < ho(t) +

m

+ 3 (g lui(®)| +hargs, (uiD(@®) for te T (k=1,...,m) (1.19)

j=1
and
m
|(,0]€(U,1,...,U,m) §£0+Z€kj||uj||L2(Io;R) (k: 1,...,’!TL) (120)
j=1

be fulfilled, where £y, Lxj, hikj, horj € Ry (k,j =1,...,m), ho € L(Ip; R),
and (i : Io — R (k=1,...,m) are absolutely continuous monotone func-
tions. Moreover, let

Y = vraimin {|(;(¢)| : t € L} >0 (k=1,...,m), (1.21)
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and let the spectral radius of the matriz

<(b —a)' 2t + Q(b; 9) hk]-)m , (1.22)

k,j=1

where hyj = higj + hakj/\/7j, be less than 1. Then the problem (1.1), (1.2)
is solvable.

" Let in In x R™ the inequalities (1.11), and in C(Ip; R™)
the inequalities (1.20) be fulfilled, where ly, lr; € Ry, hij = hyj(t) =
const >0 (k,j=1,...,m), ho € L(Ip; Ry), and the spectral radius of the
matriz (1.22) is less than 1. Then the problem (1.11), (1.2) is solvable.

" Let the functions (i, (k= 1,...,m) be absolutely conti-
nuous, monotone and satisfy (1.21). Moreover, let in Iy x R*™ the inequal-
ities (1.12), and in C(Iy; R™) the inequalities (1.20) be fulfilled, where £y,
lij € Ry, higj = hakj(t) = const > 0, hagj = s, (1)(t)har;(t) = const >0
(k,j =1,...,m), and the spectral radius of the matriz (1.22) with hy; =
higj + harj/\/7 is less than 1. Then the problem (1.12), (1.2) is solvable.

Let in C(Ip; R™) the inequalities

[fk(ul, P ,’U,m)(t) — fk('Ul, .. .,’Um)(t) —
—hu () (un (t) — v (£))] sign [(t — tx) (ur(t) — vk (2))]
< for(Jur —vi1], .-, [um —vm|)(t) for t €Ly (k=1,...,m) (1.23)

IN

and

|Q0k(U,1,...,’U/m) _QDk('Ul,...,’Um)| S
<gor(Jur =i,y |um —vm]) (k=1,...,m) (1.24)

be fulfilled, where (hi,..., hm; fo1,---s fom;Po1s---,0om) € W(t1, ..., tm).
Then the problem (1.1), (1.2) has a unique solution.

Let in C(Ip; R™) the inequalities
[fr(ur, .- um)(t) = fe(vr, .., om)(8)] sign [(t — ) (ue(t) — vk (2)] <

< thj(t)Huj — vj”C(Io;R) for tely (k=1,...,m) (1.25)

Jj=1

and
|<pk(u17"'7um) _QDk('Ula---,'Um)| S

< Z&aj”ug‘ = vjllewgr) (k=1,...,m) (1.26)

j=1
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be fulfilled, where £; € Ry, hy; € L(Io; Ry) (k =1,...,m), and the spectral
radius of the matriz (1.10) is less than 1. Then the problem (1.1), (1.2) has
a unique solution.

" Let in Iy x R™ the inequalities

[gk(t,arl, . e (t, T, ... ,Em)] sign [(t —tr) (g — Ek)] <

7xm) -9
<> hi®)le -7 (k=1,...,m), (1.27)
j=1

and in C(Ip;R™) the inequalities (1.26) be fulfilled, where {y; € R,
hij € L(Io;Ry) (k,j = 1,...,m), and the spectral radius of the matriz
(1.10) is less than 1. Then the problem (1.11), (1.2) has a unique solution.

" Let in Iy x R*™ the inequalities

I:gk(taxla"'7$may17"'7y7n) _gk(tafla"'7Em7y17"'7ym)] X
x sign [(t — ty)(zx —Tp)] <

< [haki )l =] + hars (B)y; — ;1] (k=1,...,m), (1.28)
j=1
and in C(Ip;R™) the inequalities (1.26) be fulfilled, where {y; € R,
hikj € L(lo; Ry) and hogy € L(lo; Ry) (k,j =1,...,m). Moreover, let the
spectral radius of the matriz (1.10), where hy;(t) = hig; (t)—l—s(j (1)(t)ha; ()
(hij(t) = hag;(t) +afho;(t)), be less than 1. Then the problem (1.12), (1.2)
(the problem (1.13), (1.2)) has a unique solution.

Remark 1.1. In Corollaries 1.1, 1.1, 1.4', 1.4", the restrictions imposed
on the spectral radius of the matrix (1.10) may be replaced by the require-
ment

m b
th=a, Y lyjexp </h(t) dt) <1 (k=1,...,m), (1.29)
j=1 a

where
h(t):max{thj(t):k:l,...,m}. (1.30)
j=1
Let or(u1,...,um) = pr(ur) and in C(Io; R™) the in-
equalities

[fk(ul, ey U () — fr (v, ... ,Um)(t)] X
 sign [(t — 1) (e () — 0x (8))] < helua(t) — on(8)] +
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+thj||uj —Villeyr)y for tely (k=1,...,m) (1.31)

j=1

and

|k (uw) — o (v)] S@Ok(|u—v|) (k=1,...,m) (1.32)

be fulfilled, where hy < 0, hy; € Ry (k,j = 1,...,m), and o
C(Ip;Ry) — Ry (kK = 1,...,m) are linear continuous functionals satis-
fying (1.15). Moreover, let the real parts of the eigen-values of the matriz
(1.16) be negative. Then the problem (1.1), (1.2) has a unique solution.

" Let pp(ur,...,um) = pr(ur), in Iy x R™ the inequalities

[gk(t,xl, cesTm) — gk, T, ,fm)] sign [(t — ) (zg —fk)] <

< hglrg — Tkl + Y hgle; — T (k=1,...,m) (1.33)

Jj=1

and in C(Io; R™) the inequalities (1.32) be fulfilled, where hy, < 0, hy; € R4
(k,j = 1,...,m), and por, : C(Ip;Ry) = Ry (k = 1,...,m) are linear
continuous functionals satisfying (1.15). Moreover, let the real parts of the
eigen-values of the matriz (1.16) be negative. Then the problem (1.11), (1.2)
has a unique solution.

" Let ok (U1, ..., um) = ok (ur), in Iy x R*™ the inequalities

[gk(taxla"'7$may17"'7ym) _gk(taf ’
X sign [(t —tg) (xg —fk)] < hk|$k —fk| +

+3° kg Ol =750+ hos s — 5,0 (e =1,...,m), (1.34)
j=1
and in C(Io; R™) the inequalities (1.32) be fulfilled, where o
C(Ip;Ry) — Ry (kK = 1,...,m) are linear continuous functionals satis-
fying (1.15), hy < 0 (k = 1,...,m), and hiy; and haj : Iy - Ry are
measurable functions such that

hij = hig;j (t) + ¢, (1)(t)h2kj (t) = const
(hkj = hlkj(t) + a;hgkj(t) = COTLSt).
Moreover, let the real parts of the eigen-values of the matriz (1.16) be nega-

tive. Then the problem (1.13), (1.2) (the problem (1.13), (1.2)) has a unique
solution.
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Let in C(Ip; R™) the inequalities

[fr(ut, .. um)(t) = fr(vr,. .., om) ()] sign [(¢ — t) (ur(t) — ve(t))] <
Z haggluj (t) — v; ()] + hargs., (luj —v;|)(t)) (1.35)
for tely (k=1,...,m)

and

|(pk(U1,...,’U,m) _QDk('Ula---;'Um” S

<> lgllug = villzer) (k=1,...,m) (1.36)
j=1

be fulfilled, where lyj, higj, hor; € Ry (k,j=1,...,m), and {; : Iy = R
(k=1,...,m) are absolutely continuous functions satisfying (1.21). More-
over, let the spectral radius of the matriz (1.22), where hy; = hig; +
harj/\/7;, be less than 1. Then the problem (1.1), (1.2) has a unique solu-
tion.

" Let in Io x R™ the inequalities (1.27), and in C(Iy; R™)
the inequalities (1.36) be fulfilled, where £y; € Ry, hyj = hyj(t) = const > 0
(k,j = 1,...,m), and let the spectral radius of the matriz (1.22) be less
than 1. Then the problem (1.11), (1.2) has a unique solution.

""" Let the functions (, (k= 1,...,m) be absolutely continu-
ous, monotone and satisfy (1.21). Moreover, let in I x R>™ the inequalities
(1.28), and in C(Ilo; R™) the inequalities (1.36) be fulfilled, where {y; €
Ry, higj = hokj(t) = const > 0, hor; = s, (1)(t)hak;(t) = const > 0
(k = 1,...,m), and the spectral radius of the matriz (1.22) with hy; =
hikj + harj/\/7; is less than 1. Then the problem (1.12), (1.2) has a unique
solution.

Remark 1.2. Corollaries 1.3, 1.3/, 1.3”, 1.6, 1.6’ and 1.6” remain valid if
we require that the conditions (1.9) and (1.26) be fulfilled instead of (1.20)
and (1.36) and if we consider the spectral radius of the matrix

L 2(b—a "
([kj + (b—a) Zékihik + ( - ) hkj) (1.37)
i=1 k,j=1

instead of that of the matrix (1.22).
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In this subsection, we study the case
where the boundary conditions (1.2) have the form

up(ty) =c (k=1,...,m) (1.38)
withcp € R (k=1,...,m).

Let one of the following three conditions be fulfilled:
1) in C(Ip; R™) the inequalities (1.8) hold, where ho € L(Ip;Ry),
hij € L(Iop; Ry) (k,j =1,...,m), and the spectral radius of the matric

b

( / hij (£) dt) :jl (1.39)

a

is less than 1;

2) in C(Ip; R™) the inequalities (1.13) hold, where hy € L(Iy;Ry),
hip <0, hg; € Ry (k,j = 1,...,m), and the real parts of the eigen-values
of the matriz (1.16) are negative;

3) in C(lo; R™) the inequalities (1.19) hold, where (; : In - R (k =

1,...,m) are absolutely continuous monotone functions satisfying (1.21),
ho € L(Ip;Ry), higj € Ry, hopj € Ry (k,j =1,...,m), and the spectral
radius of the matriz
horj \ ™
hikj + —]> (1.40)
< L VAT ke

is less than 7/2(b — a).
Then the problem (1.1), (1.39) is solvable.

" Let one of the following three conditions be fulfilled:

1) in I x R™ the inequalities (1.11) hold, where ho € L(Ip;R4),
hij € L(Io;Ry) (k,j = 1,...,m), and the spectral radius of the matriz
(1.39) is less than 1;

2) in Ip X R™ the inequalities (1.17) hold, where hy, <0, ho € L(Io; Ry),
hij € Ry (k,j = 1,...,m), and the real parts of the eigen-values of the
matriz (1.16) are negative;

3) in Iy x R™ the inequalities (1.11) hold, where ho € L(Io; R4), hij =
hij(t) = const > 0 (k,j = 1,...,m), and the spectral radius of the matriz
(hiej)i =1 is less than 7/2(b — a).

Then the problem (1.11), (1.38) is solvable.

" Let one of the following three conditions be fulfilled:

1) in Ip x R®™ the inequalities (1.12) hold, where ho € L(Ip;R.),
hirj € L(Ip;Ry), horj € L(Ip;Ry) (k,j = 1,...,m), and the spectral ra-
dius of the matriz (1.39), where hy;(t) = hiy;(t)+s,, (1)(#)har;(t) (hi;(t) =
hikj(t) + ajhagj(t)), is less than 1;
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2) in Iy x R*™ the inequalities (1.18) hold, where hg € L(Io; Ry), hy, < 0
(k=1,...,m), the functions hix; and hoy; : Iy — Ry are measurable,

hij = hir;(t) + s, (1)(¢)har;(t) = const
(P = Dk (t) + o hor; (t) = const),

and the real parts of the eigen-values of the matriz (1.16) are negative;

3) the functions (. (k =1,...,m) are absolutely continuous, monotone
and satisfy (1.21); moreover, in Iy x R*™ the inequalities (1.18) hold, where
ho € L(Ip;Ry), higj = hagj(t) = const > 0, hopj = ¢, (1) (t)harj(t) =
const > 0, and the spectral radius of the matriz (1.40) is less than w/2(b—a).

Then the problem (1.13), (1.38) is solvable.

Let one of the following three conditions be fulfilled:

1) in C(Ip; R™) the inequalities (1.25) hold, where hy; € L(Ip; Ry) (k,j =
1,...,m), and the spectral radius of the matriz (1.39) is less than 1;

2) in C(Ip; R™) the inequalities (1.31) hold, where hy < 0, hy; € Ry
(k,j=1,...,m), and the real parts of the eigen-values of the matriz (1.16)
are negative;

3) in C(Ip; R™) the inequalities (1.35) hold, where ( : Iy — R (k =
1,...,m) are absolutely continuous monotone functions satisfying (1.21),
hikj € Ry, hoxj € Ry (k,j = 1,...,m), and the spectral radius of the
matriz (1.40) is less than 7/2(b — a).

Then the problem (1.1), (1.38) has a unique solution.

" Let one of the following three conditions be fulfilled:

1) in Iy x R™ the inequalities (1.27) hold, where hy; € L(Io; Ry) (k,j =
1,...,m), and the spectral radius of the matriz (1.39) is less than 1;

2) in Iy x R™ the inequalities (1.33) hold, where hy < 0, hy; € Ry
(k,j=1,...,m), and the real parts of the eigen-values of the matriz (1.16)
are negative;

3) in Ip x R™ the inequalities (1.27) hold, where hy; = hy;(t) = const > 0
(k,j =1,...,m), and the spectral radius of the matriz (hx;)}";—, is less than
w/2(b— a).

Then the problem (1.11), (1.38) has a unique solution.

" Let one of the following three conditions be fulfilled:

1) in Iy x R®™ the inequalities (1.28) hold, where hix; € L(Io;R:),
harj € L(Io;Ry) (k,j = 1,...,m), and the spectral radius of the matriz
(139) with hkj(t) == hlkj(t) + Sck (1)(t)h2kj(t) (with hkj(t) = hlkj(t) +
G hak;(t)) is less than 1;

2) in Iy x R*™ the inequalities (1.34) hold, where hy, <0 (k=1,...,m),
the functions hix; and hagj © Iy = Ry are measurable, hy;(t) = hig;(t) +
s¢, (1) ()harj(t) = const (hy;j(t) = hik;(t) + afhay;(t) = const), and the
real parts of the eigen-values of the matriz (1.16) are negative;

3) the functions ( (k =1,...,m) are absolutely continuous, monotone
and satisfy (1.21); moreover, in Iy x R*™ the inequalities (1.34) hold, where
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hikj = hirj(t) = const > 0, hogj = s, (1)(t)har;(t) = const > 0, and the
spectral radius of the matriz (1.40) is less than 7/2(b— a).

Then the problem (1.15), (1.38) (the problem (1.13), (1.38)) has a unique
solution.

In conclusion, let us consider the case where
boundary conditions (1.2) are periodic, i.e.,

up(a) =up(®d) +e, (k=1,...,m) (1.41)
withep € R (k=1,...,m).
Let in C(Ip; R™) the inequalities
Fr(wr, .o um)(t) sign [opug(t)] < ho(t) + hylug ()] +
+ 3 hjlluglloyr) for t€ln (k=1,...,m) (1.42)

j=1

be fulfilled, where ho € L(Ip;Ry), o € {-1,1}, hy < 0, hx; € R4
(k,j=1,...,m), and the real parts of the eigen-values of the matriz (1.16)
are negative. Then the problem (1.1), (1.41) has at least one solution.

" Let in Iy X R™ the inequalities

gk (t, T1, ... ) sign(ogzr) < ho(t) + hi|zk| +
+3 gl (k=1,...,m)
j=1

be fulfilled, where ho € L(lo;Ry), o € {-1,1}, hy < 0, hy; € R4
(k,j=1,...,m), and the real parts of the eigen-values of the matriz (1.16)
are negative. Then the problem (1.11), (1.41) has at least one solution.

" Let in In x R*™ the inequalities

gk(tawla ey Tmy Yty e - 7ym) Sign(akxk) S hO(t) + hk|$k| +

m

+ 3 (i@l + haiOlysl)  (k=1,...,m)

j=1
be fulfilled, where hy € L(Ip; Ry), 0 € {—1,1}, h, <0, (k=1,...,m), the
functions hiy; and hayj @ Io = Ry are measurable,
hij = higj(t) + Se, (1)(t)hawj (t) = const
(hkj = haig;(t) + a;hgkj(t) = const),

and the real parts of the eigen-values of the matriz (1.16) are negative.
Then the problem (1.13), (1.41), (the problem (1.13), (1.41), has at least
one solution.
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Let in C(Io; R™) the inequalities

[fk(ul, e U) () — fr (v, - ,vm)(t)] X
x sign oy (ug (1) — vk (t))] < hilug(t) — v ()] +

m
+thj||u]' _'Uj”C’(Ig;R) for tely (k=1,...,m)
j=1

be fulfilled, where oy, € {—1,1}, hy; <0, hg; € Ry (k,j =1,...,m), and
the real parts of the eigen-values of the matriz (1.16) are negative. Then the
problem (1.1), (1.41) has a unique solution.

" Let in Iy x R™ the inequalities

[gk(t,xl, cesTm) — gk(6, T, ,Em)] sign [ak(a:k — fk)] <

< hg|zk — Tkl +thj|a:j -7 (k=1,...,m)
j=1

be fulfilled, where o, € {—1,1}, hy; <0, hy; € Ry (k,j =1,...,m), and
the real parts of the eigen-values of the matriz (1.16) are negative. Then the
problem (1.11), (1.41) has a unique solution.

" Let in Iy x R*™ the inequalities

[gk(taxla e Tmy Y1y e 7ym) _gk(tafla v 7fmay17- .. 7ym)] X
X sign [ak(a:k — Tk)] < hk|£l',‘k —fk| +
+ > [hakg Olzj = 7] + horj(B)ly; 7] (k=1,...,m)
j=1
be fulfilled, where o, € {—1,1}, hy <0 (k =1,...,m), the functions hiy;
and hapj : Iy — Ry are measurable,
hkj = h1kj (t) + ¢, (1)(t)h2kj (t) = const
(hkj = hlkj (t) + a;h%j (t) = COTLSt),

and the real parts of the eigen-values of the matriz (1.16) are negative. Then
the problem (1.15), (1.41) (the problem (1.13), (1.41)) has a unique solution.
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§ 2. AUXILIARY PROPOSITIONS

Let the conditions (1.7) be fulfilled. Then there exists a po-
sitive p such that for arbitrary ho € L(Ip; Ry) and r € Ry, any solution of
the system of differential inequalities

[u (t) — hi(t)ur(t)] sign [(t — tr)ur(t)] <
=1,...

< ho(t) + for([wtl,-- ., Jum|)(t) for tely (k ,m)  (2.1)
under the boundary conditions
lur (te)] <7+ ook (Jul, .. Juml)  (k=1,...,m) (2.2)
admits the estimate
m b
Z lue (t)] < p[r + /ho(s) ds] for telp. (2.3)
k=1 o

Proof. First of all, let us prove the existence of a positive number p such
that for any r > 0 and hg € L(Iy; R;), an arbitrary solution (yx)j>, of

lyi(t) = ha(t)yr(t)] <
< ho(t) + for(ly1ls - s lyml) () for te Iy (k=1,...,m), (2.1)
lye(ti)] <7+ ok (s - lyml) (B=1,...,m) (2.2))

admits the estimate

m b
Z lye (8)] < p{r +/h0(t) dt} for te Ip. (2.3")
k=1 o

Suppose on the contrary that p does not exist. Then for any natural n,
there exist r, > 0, hon, € L(Ip; R+) and an absolutely continuous vector
function (yin)jy : Io = R such that

[Yien () = () yrn (t)] <

< hon(t) + for([Yinl - - - [ymnl) (t) for t € Iy (k=1,...,m), (2.4)
yien (tk)| < 7o+ ok (|Y1inl, - - -5 [Ymal) (B =1,...,m),
and
m b
pn = max{ > lyen(t)] 1t € Io} > n[rn +/h0n(t) dt]. (2.6)
k=1 "
Let
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Then
max{2|zkn(t)|:t€ﬂ)}:1 (n=1,2,...). (2.7)
k=1

On the other hand, since for, and por (kK = 1,...,m) are positively ho-
mogeneous, from (2.4) and (2.7) we get

|zt ()] < hon(t) + gr(t) for tely (k=1,...,m), (2.8)
|Z1n (8) — i () 21 (£)| < hon(t) +
+for(|21nl,- - - |2mn]) () for tely (k=1,...,m), (2.9)
20 < -+ ok (21als - lomal) (B =Tom), (210)
where
ron() = 22200 0) = for(1, 1)) + (0.

n

Moreover, as it follows from (2.6),

b
/Tmn(t)dtg% (n=1,2,...). (2.11)

a

According to (2.7), the sequences (z,); > (k= 1,...,m) are uniformly
bounded. On the other hand, by (2.8) and (2.11) we have

for SEI(), tEI() (k:l,,m)

okn )= 200(5) < 14 /tgkm dr

This implies that (zx,):> (k = 1,...,m) are uniformly continuous. By
the Arzella—Ascoli lemma, without loss of generality we can assume that
(zkn)2 (kK =1,...,m) uniformly converge on Iy. Setting

lim zp,(t) =21(t) (k=1,...,m)

n—+00

and taking into consideration that @or (k= 1,...,m) are continuous, from
(2.7), (2.10) we obtain

max{ > la(t)] it € IO} =1 (2.12)
k=1
and

2k (t)] < por(21]se oo [2ml) (R =1,...,m). (2.13)
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By virtue of (2.9) and (2.11), we have

|2k (D)] < |2kn ()| exp </thk(8) dS) + %GXP (/b|hk(5)|d5> +

a

tr
t t
+‘ exp( hk(s)ds>f0k(|zln|,...,|Zmn|)(7')d7'
[~

for tely (k=1,...,m).

Passing in these inequalities to limit as n — 400 and taking into account
the fact that for (kK =1,...,m) are continuous, we obtain

|2k (t)] < ug(t) fort € Iy and |z(tr)| = ue(ty) (B =1,...,m), (2.14)

where

ug(t) = |2k (tk)| exp (/thk(s) dS) +

t t
+‘ /exp </hk(s) ds> fOk(|zl|, ey |Zm|)(7')d7' (k=1,...,m).
tk T
Obviously
|u () — hi(B)ur(t)| =
= for(|21],-- -, |zml) (t) for tely (k=1,...,m). (2.15)
Owing to the monotonicity of o and for, (kK =1,...,m), it follows from

(2.13)—(2.15) that (ux)}, is a solution of (1.3), (1.4). On the other hand,
from (2.12) and (2.14) we have

max{ Zuk(t) te IO} > 1.
k=1

But this contradicts to (1.7). The obtained contradiction proves the exis-
tence of a positive p possessing the above-mentioned property.

Assume now that r > 0 is an arbitrary number, h € L(Ip; R;) is and a
function, (ux)}", is a solution of (2.1), (2.2). By (2.1),

lug(t)] <yr(t) for t € Iy and |ug(ty)| =yr(te) (E=1,...,m), (2.16)
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where
t

yMﬂzmMmep</hM$%>+

tr

+‘/t</thk(s)d8> [ho(T) + for (Jusl, - -, Jum|) (D)]dr| (k=1,...,m).

Due to (2.16), it follows from (2.2) and

Y5 (t) = R (B)yr (8)] = ho(t) + for (Jual, - .- [um]) (1)
for tely (k=1,...,m)

that (yx)jv, is a solution of (2.1), (2.2). Therefore, according to the above-
said, (2.3') is valid. W

Wt stm)  Wolts, .. tm)

Let (1.7) be fulfilled. Then there exists v €]0,1] such that

1 1 1 1
(hh---,hm;—f01,---,—f0m;—8001,---,—800m) € W(ty,... tm). (2.17)
Y Y Y Y

Proof. Let p be the positive number appearing in Lemma 2.1. Choose
v €10, 1] such that

b
1-— - 1
17, [%mpww+/muunﬂww4<< (2.18)
v k=1 . 2
Consider an arbitrary solution (ux)j~, of
|u, () = hae(Bu (t)] <

1
S;fOk(|u1|,...,|um|)(t) for tely (k=1,...,m), (2.19)

1
lug ()| < ~ wor (Ju], -, Jum|)  (k=1,...,m). (2.20)

It is evident that this solution satisfies (2.1) and (2.2), where

ho(®) = =23 fou .-l )
k=1

and
1—7v T
r=—"— goOk(|u1|,...,|um|).
Rt
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Therefore, due to our choice of p, the estimate (2.3) is valid, that is,

m

ITUIEEE=YDS [¢0k(|u1|,...,|um|) N
k=1 k=1
b
+/fOk(|u1|,...,|um|)(s)ds].

Putting
u* = max { Z lug(t)] = t € Io},
k=1

by (2.18) from the last inequality we find

* < 1 *
u* < Su
and hence u* = 0. Thus we have proved that the problem (2.19), (2.20) has
only the trivial solution, i.e., (2.17) is fulfilled. W

Let
hk(t)an fOk(ula"'aum)(t):
=3 hiiOlusllcagr (=1,...,m), (2.21)
j=1

ok (1, um) = > Lijllujllomr (B=1,...,m),  (2.22)
j=1

where {; € Ry, hy;j € L(Ip; Ry) (k,j = 1,...,m), and the moduli of the
eigen-values of the matriz (1.10) are less than 1. Then

(fors-- -5 foms; o1, ---sPom) € Wolts, ... tm).

Proof. By (2.21) and (2.22), the problem (1.3), (1.4) takes the form
g, ()] <Y hij@)llujlloqgry for tely (k=1,...,m),
j=1

() <D lejlluslloqyry (k=1,...,m).

=1
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Let (ux)}", be an arbitrary solution of this problem. Then

(8] <D lisllwillcaym +

j=1
t
/ hkj (8) ds
tr

lujllo(rg;ry for te€ly (k=1,...,m).

m
2
j=1

Putting

b
pPo = (HukHC(Io;R))le and A= <€kj+/hkj(s) ds> K
o k,j=1
from the last inequalities we find

po < Apo, thatis, (E—A)py <O0.

Since the spectral radius of A is less than 1, we have pg < 0. Hence
ug(t)=0(k=1,...,m). N

Let gi,(t) = hy sign(t — tg), hpy <0 (k=1,...,m),
fOk(’u’lﬂ s ,’U,m)(t) = thj||uj||0(lo;R) (k = 17' .- 7m)7
j=1

hij € Ry, and let oo : C(Io;Ry) = Ry (k = 1,...,m) be linear con-
tinuous functionals satisfying (1.15). Moreover, let the real parts of the
eigen-values of the matriz (1.16) be negative. Then

(gla"'agm;foh"'7f0m;¢017"'7900m) € W(tl,,tm)

Proof. To prove the lemma, it suffices to show that the problem

ug (1) sign [(t — t)ur(t)] < hfur(t)] +
+3 hjlluglloqyry for tely (k=1,...,m), (2.23)
j=1

ug(ty) < go()k(|uk|) (k=1,...,m) (2.24)

has only the zero solution.
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Let (ux)}", be an arbitrary solution of (2.23), (2.24). Then

lug (8)] < fug ()] exp (hilt — ti]) +

m
+exp (gt — ti]) Z hijllwjlle(ro;ry
j=1 tr

= Jug (tr)| exp (hilt — ti]) +
+3° ﬁ il s [1 = exp (halt — ti]) ]
j=1

for tely (k=1,...,m).

Owing to (1.15) and (2.24), this implies that

t
/exp (— hils — te]) ds| =

(2.25)

g (£5)| < alur (B)] + (1= ax) Y |h—k]| lujllcrry (B=1,...,m),
j=1

where ay, = o (hi) < 1 (k = m). Therefore

3

hy,
|k (te)] Zh—nujnc(,o,) (k=1,...,m).

With regard for these estimates, from (2.25) we obtain
m hkj
lukllorom <D ] lujllc(rory (B =1,...,m),
j=1

and hence
(B —A)po <0,

where
h A m
pPo = (||Uk||C(Io;R))ZL:1’ A= (|h—k,:|)kj:1'

(2.26)

From the fact that hy <0, hx; > 0 (k,j = 1,...,m) and the real parts of
the eigen-values of the matrix (1.16) are negative, it follows that the moduli
of the eigen-values of A are less than 1.° Therefore from (2.26) we find

po =0, that is, ux(¢) =0 (k=1,...,m). N
Let

For(rs s um)(8) = > (hawjui(t) + hawgs, (u))(®)  (k=1,...
j=1

5See [14], pp. 369-371.
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and
m
(pOk(ul: s 7um) = ZeijUjHL%Io;R) (k =1,... 7m)7
j=1
where higj, hokj, le; € Ry (kyj = 1,...,m), and ( : [y - R (k =
1,...,m) are absolutely continuous functions satisfying (1.21). Moreover,

let the moduli of the eigen-values of the matriz (1.22) be less than 1. Then

(for,- -, foms o1, - - -, om) € Wolt1,- .., tm).

Proof. We have to prove that the problem

lu, (t)] < Z (Pakjlu; ()] + hak;s., (Ju|)(t)) for tely (k=1,...,m),

=1

|uk (k)] < Z@j”“j”ﬂ([mm (k=1,...,m)

j=1

has only the trivial solution. Let (ux)}’.,; be an arbitrary solution of this
t
[ s uibrdr

problem. Then
t
[ uitlar } <
tr tr

/tIUj(T)I dr

} for tely (k=1,...,m).

+ hoj

a0 < et + 3 [

+

m m
< ZZICJ'HU'J'HLQ(IO;R) + Z |:h1kj
Jj=1 j=1

+ hoj

j s, (lu ) (r) dr

tr

From this, by virtue of Minkowski’s inequality we find

m
lurllL2(ro;m) < (b— a)'/? Z&j”“j”m(m;m +

j=1
m bt 2\ 1/2
+ ) /‘/|uj(7)|dT dt> +
a tr
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According to Wirtinger’s inequality [49],

/b ‘/ o] ar < (2= / R
/b‘/tsgj(|u3‘|)(T) dr 2dt < [2(b7r— a)]2/b|8¢j(|uj|)(t)|2dt (b=1,....m)

On the other hand, by (1.21) we have

b
2 1
[ s QDO Pt < s agrmy (b= 1...om).
J
a

On the basis of these estimates, we obtain from (2.27) the inequality (2.26),
where

po = (”uk“LZ(Io;R));n:U

2(b - a) hgk j "
A:((b—a)l/QKk'—l- higj + —2= > .
J m ( J A /’)/J) k,j=1

Since the moduli of the eigen-values of A are less than 1, it follows from
(2.26) that pgp = 0, that is, ux(t) =0 (k=1,...,m). R

" Let

Jor(ui, ... um)(t) = Z (hlk]’|’u]'(t)| + thjSCj (|U,]|)(t)) (k=1,...,m)

and

QOOk(Ul, S ’uWL) = szjHUjHC(Io;R) (k = 17 s 7m)7
j=1

where higj, horj, le; € Ry (kyj = 1,...,m), and ( : [y - R (k =
1,...,m) are absolutely continuous functions satisfying (1.21). Moreover,
let the moduli of the eigen-values of the matriz (1.37), where hy; = higj +
h2kj/\/’)/_j, be less than 1. Then

(fors-- -5 foms; o1, ---sPom) € Wolts, ... tm).
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Ju ()] <Y [harglug )] + hargs, (I ) (D] for t€lo (k=1,...,m),
j=1

() <D lejlluslloqyry  (k=1,...,m).
j=1
Then
b
Nurllorry < (0—a) 2 Jurll2(ry;r) + / |ui, (1)] dt <
a

m b

< (b—a) 7 urllrz(r;m) + Z [hlkj / |u;(t)| dt +

j=1
b
oy [ o, ()0 dt] < 0= )l +

a

+(b—a) > hglluglizarry (k=1,...,m),

j=1
and hence
||uk(tk)| < GOk(ul, C. ,um) (k‘ =1,... ,m),
where
m ~
Bok (s tm) = > Lijllujllro(roim)
j=1
and
ij = (b — a)71/2€kj + (b — 0)1/2 ngzhz]
i=1
By Lemma 2.5,

(fo,-- -, foms o1, -+, Pom) € Wolt1,- .- tm).
Therefore ui(t) =0 (k=1,...,m). A

Let

fok(ula s ,Um)(t) = thj||uj||0([a,t];R)a

j=1

m
ok (Ui, um) = > Lijllujllon:r),
j=1
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hij € L(Io;Ry), lrj € Ry (k,j = 1,...,m), and let (1.29) be fulfilled,
where h is the function given by (1.30). Then

(for,-- -, foms o1, - -, om) € Wolt1,- .., tm).

Proof. Let (ug)i, be a solution of

|’U,;€(t)| < Z hkj(t)||uj||0([a,t];R) (k = ]-7 v 7m)7
j=1
ue(@)] <Y by Ollujllomr  (k=1,...,m).
j=1
Putting
u(t) = max {|up(t)] 1k =1,...,m},
szax{Zij k= 1,...,m}
j=1

and taking into account (1.30), we find
¢
u(t) < lulleim + /h(s)u(s) ds for a<t<b.

From this, owing to the Gronwall-Bellman lemma, we have
lulle(rory < dllullerory,
where § = Kexp(f: h(t)dt) < 1. Therefore u(t) =0. W

§ 3. PROOF OF THE EXISTENCE AND UNIQUENESS THEOREMS

Proof of Theorem 1.1. Let p be the constant appearing in Lemma 2.1,

w=ors [ e,

@

for |s| < po,

1
X(s) =<2 =Ll for py <s| < 2p,
0

for |s| > 2po,

and let (fk)znzl, (9x)i, and (Pr)}, be the operators and functionals given
by
Fr(wr, - um) () = x([ulle i) x
X[ fr(ury .-y um)(t) = b (Qug(®)]  (k=1,...,m), (3.1)
Gr(Uy .oy Upy) =
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=X (lullo(rerm))er(ui, - um)  (k=1,...,m), (3.2)
gk (U1, ... U (t) = exp </hk(s) ds)cﬁk(ul, cey Uy)

ty
t t

+/exp (/hk(s)ds>fk(u1,...,um)(T)dT (k=1,...,m), (3.3)

where u = (ug),.
According to (3.1) and (3.2), there exist a positive r; and fo € L(lo; Ry)
such that in C'(Ip; R™) the inequalities

|Pk (U1, .. yum)| <r (E=1,...,m) (3.4)

and
> Fe(ur, o um) ()] < fo(t) for te I (3.5)
k=1

are fulfilled.
Assume

e (s a/bfo@ oo (3 / piolar)

Proceeding from (3.4) and (3.5) as well as from the continuity of (fz)7" :
C(Ip; R™) — L(Ip; R™) and (¢x){, : C(Ip; R™) — R™, we can easily show
that (gx)i, : C(Io; R™) — C(Ip; R™) is a completely continuous operator
mapping the ball

{u = (ur)iy € CIo; R™) : lullorypmy < 72}

into itself.
Therefore, by Schauder’s principle [29], there exists (ux)j*, € C(Io; R™)
such that
up(t) = ge(u1, ..., up)(t) for tely (k=1,...,m).
From this, owing to (3.3) we have that u = (ux)}’, is a solution of the
boundary value problem

i (t) = hi(Bur(t) + felur, - um)(t) (k=1,...,m),  (3.6)
wlte) = Belun, .o tim) (E=1,...,m). (3.7)
According to the conditions (1.5), (1.6), (3.1) and (3.2), it follows from

(3.6) and (3.7) that v = (u)j~, satisfies (2.1) and (2.2). Therefore (2.3),
that is,

lullc(ro:rm) < po
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is valid owing to Lemma 2.1. Taking along with this estimate (3.1) and (3.2)

into account, we can see that v = (ug)i~; is a solution of (1.1), (1.2). H
Corollaries 1.1-1.3, 1.1-1.3', 1.1"-1.3", 1.7, 1.7, 1.7", 1.9, 1.9', 1.9"

follow from this theorem by Lemmas 2.3-2.5.

Proof of Theorem 1.2. From (1.23) and (1.24), we have the inequalities (1.5)

and (1.6), where

ho(t) = 1f&(0,...,0)(®)] and r=">|p(0,...,0)].
k=1 k=1

Consequently, all the conditions of Theorem 1.1 are fulfilled, which guaran-
tees the solvability of the problem (1.1), (1.2). It remains to show that the
problem has at most one solution.

Let (ug)jr, and (vg)jr, be arbitrary solutions of (1.1), (1.2), and put

wor(t) = ug(t) —ve(t) (k=1,...,m).
Because of (1.23) and (1.24),

[uhy, () — b (t)uor (t)] sign [(t — te)uor(t)] <
S fOk(|u01|,...,|u0m|)(t) for te€ I() (k} = 1,...,m)

and
ok (t1)] < wor ([uor, - - [uom|) (K =1,...,m).
Since (1.7) is fulfilled, from these inequalities by Lemma 2.1 we have ug (t) =
0(k=1,...,m). ™
Corollaries 1.4-1.6, 1.4'-1.6/, 1.4"-1.6", 1.8, 1.8', 1.8", 1.10, 1.10', 1.10"
follow directly from this theorem and lemmas 2.3-2.5.
Validity of Remarks 1.1 and 1.2 follows from Lemmas 2.6 and 2.5'.
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CHAPTER II

§ 4. FORMULATION OF MAIN RESULTS

B Let m and n be natural num-
bers, i, € N, (k =1,...,m), and let g : E™ — E, and ¢ : E* - R
(k=1,...,m) be continuous operators and functionals. Consider the prob-
lem of finding a vector function ()i, € E;” satisfying on N,, the system
of functional difference equations

Az(i 1) = g1, o)) (k=1,...,m) (4.1)
and the boundary conditions
2x(i) = B, om) (k=1,...,m). (4.2)
Assume
. i for i > iy
= k=1,....,m). 4.3
() {i—l for i<iy | m (4.3)

Let h, € E,, hk('L) sign(Tk(i) - ik) < 1, and let
Jor, (Erj)m — E} and oy, : (Ef{)m — R, (k =1,...,m) be positively
homogeneous continuous nondecreasing operators and functionals such that
the system of difference inequalities

| Az (i = 1) + hi(Dzr (e (D) | < gor(jz1] - .-, [2m])(0) (4.4)
(k=1,...,m)
under the boundary conditions
7k ()] < Yor(|z1] .- om]) (K=1,...,m) (4.5)
has only the zero solution. Then we say that the vector (hi, ..., Am; go1,-- -,

9gom; Yo1, - -+, Yom )belongs to Wi, (i1, ..., im)-
The writing

(go1y--+»Gom; Vo1 - -, Yom) € Won(i1,- .-, im)
means that
(0,...,0;901, s Gom; %01 - - -y Yom) € Wi(i1, ..., im)-
Let in E™ the inequalities
[gr(@1, .y 2m) (D) — hi (D) (e (i) ] sign [(7e(7) — ix)zx (14(9))] <
< holi) + gok (1], -, |zm|) (@) for i €N, (k=1,....,m) (4.6)

and

|1/Jk(23'1,...,23’m)| S T+"/}0k(|x1|7"'7|xm|) (k = 17"'7m) (47)
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be fulfilled, where r € Ry, ho € E, and
(h1y. s hm; 9oty s Gom; Yo1 -+ -y Yom) € Wil(it, .-y im).
Then the problem (4.1), (4.2) is solvable.
Let in E’,’L’L the inequalities
Gk (T1, -2 () sign [(74 (i) — ix) 2k (7 ())] <

< ho(i) + D hui(lllly, for i€ N, (k=1,...,m)
j=1

and

k@1, mm)| ST+ Ly@laglly (k=1,...,m)
j=1

be fulfilled, where hg € Ef, hyj € EX, r € Ry, ly; € Ry (k,j=1,...

and the spectral radius of the matriz

m

(zkj + ]2: h,cj(z'))k’j:1

is less than 1. Then the problem (4.1), (4.2) is solvable.
Let in E’Z{L the inequalities

gk(x1, ..., 2y )(i)sign [(Tk (1) — i)z (Tx (z))] <

Sh0i+h0k|$k(7k(i))|+thj||$j||gn for ieN, (k=1,...,

i=1
and

(4.8)

,m),

(4.9)

m)

be fulfilled, where hg € Ejf, hop < 0, hg; € Ey, r € Ry, Iy € E,

(k',]: 1,...,’!TL),

n

Soh(i) <1, D> (1 =ho) TR <1 (k=1,...,m), (4.10)
=0

i=0
and the real parts of the eigen-values of the matriz

m

(hokékj + hkj)kJ:l

are negative. Then the problem (4.1), (4.2) is solvable.

(4.11)
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Let in E’Z{L the inequalities
(@1, ., m) (i) sign [(74 (i) — i)z (16 (1))] <
< ho(i) + Y hajse(Jz;) (i) for i€ Ny (k=1,...,m)
j=1
and

(@1, .., zm))| gr+szj[Zx§(i)]§ (k=1,...,m)
j=1 0

=l

be fulfilled, where hg € E;7, hy; € Ry, r € Ry, ly; € Ry, and si;j : Ef -

Erf (k,j = 1,...,m) are positively homogeneous nondecreasing operators
such that
n n
sk (2)0)]” < S"2%@) (k=1,...,m). (4.12)
i=0 i=0

Moreover, let the moduli of the eigen-values of the matriz
h ) m
<\/n T 1l + %) (4.13)
2sin nt3/ k=1
be less than 1. Then the problem (4.1), (4.2) is solvable.
Let in E’,’L’L the inequalities
[k (@1, -y 2m) (0) = gr(Y1s -+ Ym) (6) — oo (0) (ke (0 (0)) —
—yi(7x(2)))] sign [(7a () — ix) (2e (e (0)) — ya(a(i)))] <

< gok(lzr = vils - |2m — Yml) (9) (4.14)
for ieN, (k=1,...,m)

and

|'(,bk(.’171,...,.’17m) _¢k(y15---aym)| <
§¢0k(|x1—y1|,...,|zm—ym|) (k=1,...,m) (4.15)

be fulfilled, where hy, gor and Yor (kK = 1,...,m) satisfy (4.8). Then the
problem (4.1), (4.2) has a unique solution.

Let in E’,’L’L the inequalities

[gk(xla v 7xm)(z) - gk(yla v 7ym)(7’)] X

m

x sign [(75,(i) — ix) (w1 (7 (i) — yr(12(0)))] < thj(i)ﬂﬂ«"j - yillz,

for ieN, (k=1,...,m)
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and
|

R(@1s @) — YY1, ym) | <
<Y lgllr —yilly, (k=1,...,m) (4.16)
j=1

be fulfilled, where hy; € E’;‘, lkj € Ry (k,j =1,...,m), and the spectral
radius of the matriz (4.9) is less than 1. Then the problem (4.1), (4.2) has
a unique solution.

Let in E’,’L’L the inequalities
[k (@15 2m) (D) = gk (Y1, - - ym) ()] X
x sign [(7 (i) — ix) (2x (7% () — y (7:(0)))] < hor|ze (T (i) — yr(7:(0))| +

+Y h(@lley —ysllz for i€ Ny (k=1,...,m)
j=1
be fulfilled, where hor, < 0, hi; € R+ (k,j = 1,...,m), and the real parts

of the eigen-values of the matriz (4.11) are negative. Then for any numbers
e, (k=1,...,m) and any functions A\, € E, (k=1,...,m) such that

> el <1

and
n (4.17)
D> (= hop) TN <1 (k=1,...,m),
=0
the system (4.1) under the boundary conditions
:Ek(lk) = Z/\k(i)xk(i)—i—ck (k: 1,...,m). (4.18)
=0

has a unique solution.
Let in E{L" the inequalities
[gk(xla v 7xm)(7’) - gk(yla v 7ym)(7’)] X
x sign [(74 (i) = ix) (@ (7 (1)) = ya(m2(0)))] <D hajsni (|25 — ;1) (3)
j=1

for ieN, (k=1,...,m)

and

|1/Jk(£ll'1,...,£ll'm) _¢k(y1,---,ym)| S
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1

<>t | Sl - 5P| k=1 @)
j=1 i=0

be fulfilled, where hy; € Ry, ly; € Ry, and sg; : E;{‘ -~ E,
(k,j=1,...,m) are positively homogeneous nondecreasing functionals sat-
isfying (4.12). Moreover, let the spectral radius of the matriz (4.13) be less
than 1. Then the problem (4.1), (4.2) has a unique solution.

Let in E™ the inequalities (4.14) and (4.15) be fulfilled,
where the functions hg, gor and Yo (k = 1,...,m) satisfy (4.8). Then,
giwen arbitrary (zro)j, € E)', there exists a unique sequence of vector

functions (zr, )i, € E{L" (v = 1,2,...) such that for any natural v and
ke {l,...,m}, the function xy, is the solution of the Cauchy problem

Az (i — 1) =
= gk(wl v—1y--:-> :I/.k—l v—1, :I/.klla :I/.k—‘rl v—1y---> :I/.m V—l)(i)a (420)
xkl/(ik) :1/}16(371 Vfla"'axmufl)a (421)
and
lim x4,(i) =zx(i) for i€ N, (k=1,...,m), (4.22)

v—+400

where (z1)7, is the solution of the problem (4.1), (4.2).

Remark. Under the conditions of Theorem 4.3, for any (z40)}., € Em
there exist ro > 0 and «y €10, 1] such that

> ek (i) — 2 (i) < moy” for i€ N, (v=1,2,...). (4.23)
k=1
If the conditions of Corollary 4.4 or Corollary 4.6 are ful-

filled, then the conclusion of Theorem 4.3 is valid.

Let the conditions of Corollary 4.5 be fulfilled. Then, given
arbitrary (zro)}, € E, there exists a unique sequence of vector func-

n o’

tions (g, )i, € E;” (v = 1,2,...) such that for any natural v and k €
{1,...,m}, the function xy, is the solution of (4.20) under the initial con-
dition
Try (ik) = Z)\ku(i)wk v—1(i) +ep (k=1,...,m). (4.24)
i=0

Moreover, (4.22) holds, where (xy)jr, is the solution of the problem (4.1),
(4.18).
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Let in E’Z{L the inequalities

|9k (@1, 2m) (D) = g1 Ym) () = P (@) (2 (e (2)) =

—yk(Tk(i))H < gok(|l°1 =yl |Tm — ym|)(i) (4.25)
for ieN, (k=1,...,m)

and (4.15) be fulfilled, where the functions hy, gor and Yor (k=1,...,m)
satisfy (4.8). Then, given arbitrary (zro)i, € E’,’L’L, there exists a unique
sequence of vector functions (Tp, )i, € EZL” such that for any natural v and
k € Ny, the function xy, is the solution of the difference equation

Aa:k,,(i — ].) =
= hy,(8) [2p0 (75 () — T w1 (T6(8)) ] + ge(@1v-1s -, Tmp—1) (i) (4.26)

under the initial condition (4.21). Moreover, (4.22) holds, where (zy)}, is
the solution of the problem (4.1), (4.2).

Let in E{L" the inequalities
|9 (@15 @) (D) = g1, - -5 ym) () — P (0) (20 (70 (3)) — e (7(0)) | <

m
gthjHa;j—yjHEn for ieN, (k=1,...,m)

j=1
be fulfilled, where
hi(2) sign(r (1) — ix) < hor, <0 for i € N, (k=1,...,m),

hiyj € Ry (k,j = 1,...,m), and the real parts of the eigen-values of the
matriz (4.11) are negative. Moreover, let ¢, € R, and let the functions
Mo € By (k=1,...,m) satisfy (4.17). Then, given arbitrary (Tro)y €
E{L", there exists a unique sequence of vector functions (xp,)jJ, € E;” (v=
1,2,...) such that for any natural v and k € {1,...,m}, the function xy,
is the solution of (4.26) under the initial condition (4.24). Moreover, the
equalities (4.22) holds, where (zy){", is the solution of the problem (4.1),
(4.18).

Let in E™ the inequalities (4.16) and

|gk(@1, - 2m) (6) = gk W, - - ym) ()] <D byl - yillz,
j=1
for i€N, (k=1,...,m)

be fulfilled, where hy; € EY, ly; € Ry (k,j = 1,...,m), and the spectral
radius of the matriz (4.9) is less than 1. Then, given arbitrary (zro)j, €
E, there exists a unique sequence of vector functions (x,)j, € E" (v =
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1,2,...) such that for any natural v and k € {1,...,m}, the function g,
is the solution of the difference equation

Axkl/(i - ]-) = gk(xl v—Lly--- 7xm1/71)(7:)

under the initial condition (4.21). Moreover, (4.22) holds, where (zy)", is
the solution of the problem (4.1), (4.2).

Let in E™ the inequalities (4.19) and

901 7 )0) = 96, 3) O] < D by (g ;D)

for ieN, (k=1,...,m)

be fulfilled, where hyj € Ry, ly; € Ry, and s (k,j = 1,...,m) are pos-
itively homogeneous nondecreasing functionals satisfying (4.12). Moreover,
let the spectral radius of the matriz (4.13) be less than 1. Then the conclu-
sion of Corollary 4.10 is valid.

§ 5. AUXILIARY PROPOSITIONS

Letig € Ny, 7o € Ry, h€ By, g € B,

) i for i >y,
(i) = 1 . .
i—1 for i<ip,
h(i) sign(ro(2) — i0) < 1, (5.1)
and let z € E, satisfy

[Aa:(i -1) - h(z)a:(ro(z))] sign [(Tg(i) — io)a:(To(i))] <

< g(i) for i€ N, (5.2)
and
|z(i0)| < ro. (5.3)
Then
(i) < y(i) for i€ Ny, (5.4)

where y € E, is the solution of

Ay(i — 1) = h(i)y(0(i)) + g(i) sign[ro (i) — io],
y(ig) = 1o.
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Proof. Since
Alz(i = D] = |z(@)] = e(i = D[ < Az(i — 1) sign[z(i)]
and
Alz(i — 1) > Az (i — 1) sign[z(i — 1)],
from (5.2) we find
Alz(i —1)| — h(i)|z(

) (i) for i>ip,
—Alz(i — 1)| + h(i)|z(i — 1)
5

|<g
| <g(i) for i<ip,

whence, taking into account (5.1) and (5.3), we obtain (5.4), where

1=l 2 [

} (k) for i > i,

Jj=to+1 k=ip+1
y(i) = o for i =iy,
10 1
P L.
[ H 1+h }ro—l-z H 71+h(j)]g(k) or 1 < 1p

\ ~Jj=i+1l =i “j=i+1

is the solution of (5.5). W

Let
ikE]\an,
; iS 5.6
=4t i g (5:6)
1—1 for @ <iyg

and

(hiy. s P gory - -y Goms o1 -+ -y Yom) € Walin, ... im). (5.7)

Then there exists a positive p such that, for arbitrary ho € E;7 andr € Ry,
any solution of the system of difference inequalities

[Azy (i — 1) — hg(i)zx (72 (2))] sign [(7(0) — ix) (2 (1% (0))] <
S hO(Z) +gOk(|x1|7' ) |£Il'm|)(l) fOT‘ i€ Nn (k = 17' . '7m) (58)

under the boundary conditions

|zr(ip)| < 7+ Yor(|z1],- .- |zm]) for (k=1,...,m) (5.9)

admits the estimate

> llanll, < pfr+ 3 hali)- (5.10)
=1 =1
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Proof. First of all, let us prove the existence of a positive p such that for
any 7 € Ry and hg € E;', an arbitrary solution of

| Ays (i = 1) = by, (D) yr (7 ()| < ho(6) + gor([y1ls - -, lym ) (0) (5.11)
for i€ N, (k=1,...,m),
lyk(ie)| <7 4+ Por(lvals- -5 lyml) (B=1,...,m) (5.12)

admits the estimate

> lllz, < o[+ 3 tali)] (513)
=1 =1

Assume on the contrary that p does not exist. Then for any natural v,
there exist a r, €]0,+00[, hoy € E} and yx, € E, (k = 1,...,m) such
that

| Ay (i = 1) = hi(D)yn (1(0)) | < how (i) +

+gor(|y1vls -« - lymp|) (@) for i€ N, (k=1,...,m), (5.14)
[k (i) < 70 + Yok ([Yivls -5 [Ymo]) (B =1,...,m) (5.15)
and
b= ez, > v|re+ Y- haul)] (5.16)
k=1 i=1
Assume
1 .
Zkl’( ) - _ykl/(l) (k = 17 7m)
Then

m
Yllzwlly =1 w=1,2,...). (5.17)
k=1

On the other hand, as gor and or (kK = 1,...,m) are positively homoge-
neous, we find from (5.14)—(5.16) that

|Azk,,(i— ].) hk( )Zk,, Tk | +g0k(|21,,|, ,|2m,,|)(7,) (518)
for ieN, (k=1,...,m),
. 1
|z (i) < -+ Yor(|z1vly - - -5 [2me]) (B=1,...,m). (5.19)

Without restriction of generality, we may assume the sequences (zj, )25

(k=1,...,m) to be convergent. Putting

lm  2zg, (1) = 2,(0) (k=1,...,m),

v——+oo
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from (5.18) and (5.19) we get

|A2k Z—].) 2k Tk | |21|77|Zm|)(z)
for N (k= 1 ..,m)
and
2k ()| < Yok (l21]s- -5 lzml) (B =1,...,m).
This, according to (5.7), implies

2,(i) =0 for ieN, (k=1,...,m).

But this is impossible, for because of (5.17),

m
S lally =
k=1

The obtained contradiction proves the existence of a number p which pos-
sesses the above-mentioned property.

Assume now that r > 0 is an arbitrary number, hy € E; is a func-
tion, and (z)fx, is a solution of (5.8), (5.9). By Lemma 5.1, for any
ke {1,...,m} the inequality

|z (i)| < yi(i) for i€ N, (5.20)
is fulfilled, where yy, is the solution of

Ay (i — 1) — hi(D)yr (i) =
= [ho() + gor (|11, - |2 ) ()] signlra (i) — in],
yr(in) =7+ Yok (zal, . o, [2m]).
From this it is clear that (yx)j, is a solution of (5.11), (5.12). Therefore,

due to our choice of p, (5.13) holds from which, taking into account (5.20),
we obtain (5.10). W

Let (5.6) and (5.7) be fulfilled. Then there exists v €]0,1]
such that

1 1 1 .
(h1,---,hm; —go1,---, —gom; —¢01,---,¢0m) (lla---,lm)- (5-21)
Y Y Y

Proof. Let p be the positive number whose existence has been established
in Lemma 5.2. We choose v €10, 1] such that

1-—

—vp [%k )+ Z gor(1 ]

v k=1

(5.22)

l\’)l»—A

Consider an arbitrary solution (zx);>, of

| Ay (i = 1) = hp(D)ar(r(0))] < %gok(lal,---alzml)(i) (5.23)
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for ieN, (k=1,...,m),
. 1
|k (in)] < ;¢ok(|931|,---,|93m|) (k=1,...,m). (5.24)

It is evident that (zx)}’, is at the same time a solution of (5.8), (5.9), where

ho()) = =23 goefel, - - [em]) ),
v k=1

1—7v -
r=—=Y torllz1],. .., |zml)-
7=
By Lemma 5.2, (5.10) is valid, i.e.,
D ollaklly < —p) [%k(lhla---alwml) +> gor(al,- o |lzm]) ()] -
k=1 " T = j=1

Assuming

¥ =

NE

el

kol

=1

from the last inequality and (5.22) we find that z* < %x* and z* = 0.
Consequently, the problem (5.23), (5.24) has only the zero solution. Thus
we have proved that (5.21) is fulfilled. W

Let (5.6) and
(hl, .. -7hm;§01 - ,gom;’(’;()l,. . -7';[;07)1) € Wn(il,. . ,’Lm) (525)

be fulfilled. Then there erists a positive_number p* such that an arbitrary
sequence of vector functions (yr, )y € E7' (v =1,2,...) satisfying for any
v € N and k € Ny, the inequalities

| Ay (i = 1) = by (re(0)] < 1+

+§0k (|y1 u—1|: B |yk—1 v—1 |7 |yku|7 |yk+1 u—1|: B |ym u—1|) (7/) (526)
for i € N,,
ko (ir)| < 1+ ok (lyrv—1ls - [Ymv—l) (5.27)

with yjo(i) =1 (j =1,...,m), admits the estimate

sup { 3 el = v € N} < (5.28)
k=1

Proof. Let yi,(i) =0 (j =1,...,m), k € Ny, and let Yy be the set of all

functions y € E,, satisfying

|Ay(i — 1) — he()y (7% (Z))| < 1+ gok(YTos- > Y105 |Z/|ay2+1 05> Ymo) (8)
for i€ N,,
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()] < 1+ Gok(Uios- - Uino)-
It easily follows from (5.25) that®
yia () = sup {|y(0)| : y € Via} < 400 for i€ Ny
On the other hand, according to Lemma 5.1,
yiaG) < 2() for i€ Ny,
where z is the solution of the Cauchy problem
Az(i = 1) = hi(i)z (7 (1)) =
= [1+ Gok Ylos - -+ Yi—10: Yk Y100 - -+ » Ymo) ()] sign(me (i) — i),
2(ik) = 1+ Por(Yior - - - Yimo)-

However, z € Y. Therefore it is clear that z(i) = yj;, (¢). Continuing this

process, we can construct a sequence of vector functions (y;, )7, € (E;LL )"
(v =1,2,...) such that for any k € N,,, and v € N, the function yj, is the
solution of the Cauchy problem

Ay, (i = 1) = hi(D)yg, (1(1)) =
= []- + §0k(yf1/717 te 7yI:71 uflawayZ+1 v—1s-" -7y:ny71)(i)] X
x sign[ry (i) — ix], (5.26%)

Vi (i6) = 1+ ok (U5 vt Uw—1)s (5.277)
and any y € E, satisfying
|Ay(i — 1) = hi(i)y(ri(i))] <
<1+ 9okl v—ts- > Ykm1w—1> YL Yhs1 v—15 - s Ymw—1)(8) for i € Np,
() <1+ Por(¥yise Y1)
admits the estimate
()| < i, (i) for i€ N,

It is easily seen from the above-said that any sequence (yi,)j; € E;”
satisfying the conditions of Lemma 5.4 also satisfies

ke (i) < yi, () for i€ N, (k=1,...,m; v=1,2,...).

Therefore, to prove the lemma it suffices to show that
m
p* = sup { Z ||y,:,,||5n C VE N} < 400.
k=1

6See the proof of Lemma 5.2.
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Put

,00:17

m m
py = max{l,z [ ||y;;,,||§n} (v=1,2,...).
k=1 k=1

Our aim is to prove that the sequence (p,)} 25 is bounded. Assume on the

contrary that

lim p, = +o0. (5.29)

v—-+400
Let

. T, .
2o (i) = p—yku(Z),

UEToosupzk”(l) =zr(i) (k=1,...,m).

From (5.26*) and (5.27*) we find

| Az (i = 1) = hie (i) 280 (72 (i) | <
S §0k(21 v—1y-+3%k—1v—1,%kvyZk+lv—1)-+ -, Zmufl)(i)

for ie N, (k=1,...,m),

. 1
|Zku(7fk)| S ,0_ +1/}0k(211/717-"72m1/71) (k = ]-7"'7m)'

v

On the other hand, it is clear that

> llzllz, =1 (5.30)
k=1

By Lemma 5.1, for any k € {1,...,m} and v € N the inequality
0 < 2k (i) < Zp (i) for i€ N, (5.31)
is fulfilled, where z, is the solution of

AZy (i — 1) — by (i) 2o (11 (3)) =

1 - .
= [— + 9ok (21 v—1s - - -3 Zhm1 =1, Zkvs Zht1 v—1s - - - s Zmu—1)(0)] X
v

x sign[7y, (i) — ix],

- . 1
Zrw (i) = p_ + Yok (21 =1, Zmuv—1)-

It is easily seen that

lim supZp, (i) < %(i) for i€ N, (k=1,...,m), (5.32)

v—+0o0
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where 7z, is the solution of
Agk(l — ].) — hk(l)gk(’l'k(l)) =
= §0k (21, . ,Zm)(l) Sign[Tk (Z) — ik], (533)
Z(ik) = Yok (21, - -, 2m)- (5.34)
Owing to (5.30)—(5.32),
0 < 2x(i) < %(i) for i€ N, (k=1,...,m) (5.35)

and

> Els, > 1. (5.36)
k=1

It follows from (5.33)—(5.35) that

|AZ (i = 1) = 7 ()23 (71.()) | < Gor (1211, - -5 [Zm]) (0)
for ieN, (k=1,...,m),
Ze(in)| < Yok (|Zi],- -, 1Zml) (k=1,...,m)

whence, because of (5.25), the identities 2 (i) = 0 (k = 1, ..., m) follow. But
this contradicts to (5.36). The obtained contradiction proves the lemma. W

Let the conditions (5.6) and (5.7) be fulfilled. Then there
exist v €]0,1[ and p* > 0 such that for any sequences r, €]0,+oo[ (v =
1,2,...), @y € En (k = 1,...,m; v = 1,2,...) and hg, € Ef (v =
1,2,...) satisfying for any natural v

[Aa:k,, (Z — ].) — hk (i)a)‘ky(Tk (Z))] sign [(Tk (Z) — ik)xk,,(Tk (Z))] S

S hOl/(Z) + gOk(|x1 1/71|7 ey |xk71 1/71|7 |xk1/|a |xk+1 1/71|7 e
o |Tmy 1)) €N, (B=1,...,m) (5.37)
and
|xku(7fk)| S ry + 1/}0k(|a:1 1/71|7 AR |xm l/71|) (k = ]-7 . '7m)7 (538)

the estimates

m 14 n m
S lewllz < o™ [Zw(zh%m IEDS ||xko||gn] (5.39)
k=1 p=1 i=1 k=1

v=12,...)

are valid.
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Proof. By Lemma 5.3, there exists and v €]0, 1] such that (5.25) is fulfilled,
where

~ 1 ~ 1
gor = ;gok, and 1/’01@ = ;1/]0]c (k = ]., ces ,m). (540)

Let p* be the number appearing in Lemma 5.4,

m
ao =Y llzrollz, »
k=1

Qv = 27_1)(2}‘01)@) +7"p) +ayp (v=1,2,...),
p=1 i=1

and
.Tkl,(i)
fi v # 0,
(i) =  yra, T w7 (5.41)
0 for a, =0.

Taking into account the fact that
ay, > a1 (v=1,2,...)

as well as (5.40), from (5.37) and (5.38) we find
[A%}W ('L - 1) - hk (i)%ku(Tk ('L))] sign [(Tk (’L) - ik)ka(Tk (’L))] <

<1+ gok(|Z1v=1ls- s |Temt vt ], |Zhw |, | Tgr vt - - - [Tmv—1]) (8)
ieEN, (k=1,...,m)

and B
|5ku(zk)| S 1+ 1/}0k(|51 1/71|7 e |§mufl|) (k = ]-7 s 7m)'
By Lemma 5.1, for any v € N and k € N,;, we have

T (i)| < yro (i) for i€ Ny,
where yy,, is the solution of the Cauchy problem
Ayky (i = 1) = hi(§)yrw (11 () =
= [14 gok (121 v—1 ] - - 5 1Tk 1wt |y [Tk s | Zrgr vt | - [T v ) (2)] X
x sign[7y, (1) — ix],
Yk (i) = 1+ Gor([Fr vl |Fmvi ).

Obviously the sequences (yi,)j; (¥ = 1,2,...) satisfy the conditions of
Lemma 5.4. Therefore (5.28) is valid. Hence

m
YolEwllz, <ot (v=1,2,...)
k=1

whence, owing to (5.41), it follows (5.39). W
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The lemma below is proved analogously.

" Let (5.6) and (5.7) be fulfilled. Then there exist v €]0,1]
and p* > 0 such that for any sequencesr, €]0,+oco[ (v =1,2,...), T, € E,
(k=1,...,m;v=0,1,...) and ho, € E} (v =1,2,...) satisfying for any
natural v (5.38) and

|Azgy (i = 1) = hy (i) (1(2))| <
< how (i) + gok (|71 =1 - - s [Tmv=1]) (i) for i€ N, (k=1,...,m),
the estimates (5.39) are valid.

Wn(llaalm) WOn(ila---aim)
Let

gok (1, - -, 2m) (i) = ihkj(i)llellgn (k=1,...,m)  (542)

and
Yor(T1,. .y Tm) = ilkj(i)”a’juﬁn (k=1,...,m), (5.43)
where hyj € Ef Iy; € Ry (k,j =1,...,m), and the spectral radius of the

malric
(l’“ + th] )k =1

is less than 1. Then for any iy, € N, (k=1,...,m), we have

(go1s--+sGomi %o, -, Yom) € Won(in, -, im). (5.70)

Proof. Let hy(i) =0 (k =1,...,m), and let (z;)}, be an arbitrary solution
of the problem (4.4), (4.5), the latter according to (5 42) and (5.43), having
the form

m

|Azy (i — 1) Z ||33g|| for ie N, (k=1,...,m),
m
|4 (i) Z jllzilly,  (k=1,...,m).
Then
nmr<§X%+ZmJ)mw (k=1,...,m),

that is,

(=8 (lleliz, ), <0



Since the spectral radius of A is less than 1, we have zy(i) =

1,...,m). N

Let hi(i) = hogsign(mi (i) — ix), hox = const
1,...,m),

gok(T1, .., xm) (@) = ihkjnxjnﬁn (k=1,...,m),
and

Yo (T1, ... Tm) = Zn:lk(z)|a:k(z)| (k=1,...,m),
where hy; € Ry and I}, € E;{‘ (k,j=1,...,m). Moreover, let

Zlk ]. — hOk — i < ].,

Zlk(i) <1 (k=1,...,m),
i=0

and the real parts of the eigen-values of the matriz
(Rokdrj + hig) oy
be negative. Then (5.7) is fulfilled.
Proof. To prove the lemma, it suffices to show that the problem

Az (i — 1) sign [(7 (i) — i) 2w (4(i))] <

<h0k|$k Tk |+th] |.T]|| for i€ N, (k:l,...,m

|z ()] < Zlk(i)lﬂfk(i)l (k=1,...,m)
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(5.45)

(5.46)

(5.47)

has only the zero solution. Let (z);*, be an arbitrary solution of this

problem. By Lemma 5.1,
|2e(i)| < ye(i) for i€ Ny,
where ¥, is the solution of

Ay (i — 1) = horye (T (7)) +

+ > hugllzill, sign(r (i) — ix),
=1

(5.48)
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yi(in) = D 1) (0)] (5.49)
However,
y(i) = (1 — o) ™1 lyy (k) +

ii b
+ [1= (1 = hoy)~li7*] Z| f|| zjll5 - (5.50)

Taking along with this equality the inequalities (5.46), (5.48) into account,
from (5.49) we find

. h
Yi(ix) < okyr(ix) + Z 7o L || yillz
and hence
Z (k=1,...,m).
Therefore, by virtue of (5.50), it holds
th
el Z o || yillz, (k=1,...,m). (5.51)

Since the real parts of the eigen-values of the matrix (4.47) are nega-

hi: \m
tive, the spectral radius of the matrix (|hk]|)k is less than 1. There-
0k Jj=1
fore, by (5.51), we have yi(i) = 0 (k = 1,...,m). Hence zy(i) = 0
(k=1,...,m). &

Let iy € Nn, T E En, and

Then
- 2/ 1 ~ . 2
Zz () < —5— [Az(i —1)]". (5.52)
i—0 4sin” i

y(i) = {a:(z) for i <mn,

z(2n—i+1) for n<i<2n+1.

Then y € EQn+1 and
y(0) =y(2n+1) = 0.
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Therefore, by virtue of Theorem 1.1 from [40],

2n+1 1 2n+1 )
Zy _FZ[AZ/(@'—I)].
An+2 =1
However,
2n+1 n
Sy =2> 2°(3)
and
2n+1 n
3 Ay -1 =Y [Aci - 1) +
2n+1
+yn+ 1) —ym)]*+ S [Ayi-1)]° =
i=n-+2

Z Az(i—-1)] + [z (n)—a:(n)]2+

2n+1 n
+ 3 [Az@n+1-0]" =23 [Az(i - 1)]

i=n+2

Consequently, (5.52) is valid. The case where iy # 0 can easily be reduced
to that considered above. W

Let
g()k(.’L”l, A ,.’L”m)(l) = th]Sk](.’E])(’L) (k = 1,. . .,’ITL)

and .
wok(xla7xm):Zlk]|:Zx?(7’):|2 (k:]-a"'am)a
j=1 =0

where hy; € Ry, ly; € Ry, and s : Ef - Ef (k,j =1,...,m) are
positively homogeneous nondecreasing operators such that for any x € E,

> [swsa <Zw =1,...,m). (5.53)
=0

Moreover, let the spectral radius of the matriz
h . m
28in 55/ g j=1

be less than 1. Then for any iy, € Ny, (k = 1,...,m), the condition (5.7,)
is fulfilled.



60

Proof. We have to show that the problem

Az (i = 1) <Y hagsij(;) (i) for i€ N, (k=1,...,m),
j=1

1
2

EAAIES SUYD SEL0] BECES e
j=1 0

1=

has only the zero solution. Let (zj)7:; be an arbitrary solution of this
problem. Then

m m
|xk(z)| < Zlkjpj + thjzkj(i) (5.55)
Jj=1 j=1
for ieN, (k=1,...,m),
where
n :
pj = [Zz?(z)]
i=0
and
¢
S sz for i> g,
p=irp+1
2kj (1) = 0 for i =iy,
ik
> seilzi(p)  for i <.
\ p=i+1

By Minkowski’s inequality,

m m n 3
PkS\/n‘i'lZlkjpj+zhkj|:zzlgj(i):| (k=1,...,m).
j=1 j=1

-

i=0

On the other hand, by Lemma 5.8 and (5.53), we have

[g’“”] : “%@ |skj<|xj|>(i>|2f <

4n+2
! (kg =1,...,m)
_2Sin4n7:'_2p] 7.]_ 7"'7m'
Therefore
- h
kj _
Pk<2<\/n+llk]+28m — >p]~ (k=1,...,m)
j=1 An+2
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for the spectral radius of the matrix (5.54) is less than 1. Hence (i) = 0
(k=1,...,m). 1

§ 6. PROOF OF THE MAIN RESULTS

Proof of Theorem 4.1. Let p be the number appearing in Lemma 5.2. As-
sume

n

po = P[T+ Zho(i)],

i=1
1 for |s| < po
x(s) =< 2— Lﬂ for po < |s| < 2po , (6.1)
0
0 Is| > 2p0
(e, zn)(@) = X (X Nzl ) 96 mm) ) -
k=1
=l (e (re ()] (k=1,...,m), (62)
Dir, ) = x (D el )1/Jk(a:1,...,a:m) (6.3)
k=1
(k=1,...,m),

and consider the boundary value problem

A:Ek('L — 1) hk( )xk(Tk( )) +§k(zl,. .. ,wm(z) (6.4)
(k=1,...,m),
o (i) = (a1, ... om) (k=1,...,m). (6.5)

It is easily seen that this problem is equivalent to the system of equations
Gr(x1,...,xm)(i) = z4(i) for i€ N, (k=1,....,m), (6.6
where

Gr(z1,...,zm)(E) =
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( i

1 }~
H I 7 /A ,(/}k(zl:"':xm)_‘_
Likﬂl—ﬁk(]) ’
(3 (3 1
—17 R fi i > i,
+ Z [Hl_hk(j)}gk(xl, ;om)(p)  for i >
" p=ir+1 -j=p
= ¢k(wl,...,zm) for i =1,
s
———— | Yr(z1, .. ) —
Pl s ﬁk(])
S [T o ®) for i<
- — | 9k(T1,.. ., ) (D or 1< .
{ poin Lz, T e (9)

Owing to (6.1)—(6.3), the operator (Gi)j™; : E™ — E™ is continuous
and

sup{||gk(a:1,...,a:m)||]§n D (wg)it, € E,'Ln} <+ (k=1,...,m).

Therefore, according to the Bohl-Brouwer theorem [29], the system of equa-
tions (6.6), and consequently the problem (6.4), (6.5) have at least one
solution.

Let (zx)},; be a solution of (6.4), (6.5). Because of (4.6), (4.7) and
(6.1)-(6.3), it is clear that (x);~, satisfies the (5.8) and (5.9). Therefore,
by virtue of Lemma 5.2, (5.10) holds. Hence

m
S lell, < so.
k=1

Due to this estimate, it follows from (6.1)-(6.3) that (zx)}, is a solution
of (4.1), (4.2).

Proof of Theorem 4.2. From the inequalities (4.14) and (4.15), the inequal-
ities (4.6) and (4.7) follow, where

hO(l) = Z |gk(0750)(l)|7 r= Z|¢k(0770)|
k=1 k=1

Consequently, all the conditions of Theorem 4.1 are fulfilled which in fact
ensures the solvability of the problem (4.1), (4.2).
Let (x)5r, and (yx)j, be arbitrary solutions of (4.1), (4.2). Putting
because of (4.14) and (4.15) we obtain
[Azk(z — ].) — hk(z)zk(rk(z))] sign [(Tk(l) — ik)Zk(Tk (Z))] S
<gor(zils-- -, |lzm)(@) for ie N, (k=1,...,m),
2k (i )| < ok (|21l -5 lzm]) (B =1,...,m),
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whence, according to (4.8) and Lemma 5.2, it follows that zx(i) = 0 (k =
1,...,m). &

Proof of Theorem 4.3. For any k € N, and z € E;:, we assume
9or (2) (1) = gok (6112, - . -, Omi2) (7).
Because of (4.8),
(hi, 90k, 0) € Wi(ix) (E=1,...,m). (6.7)

Let us arbitrarily take (y;)72; € E‘:{L, k € N,,, and consider the Cauchy
problem

Az(i —1) = gi(2)(i), =2(ix) = cx, (6.8)
where

gk(x)(z) = gk(yla e Yk—1,T, Yk+1, - - ,ym)(z),
ek = Vi1, Ym)-

According to (4.14), in E, the inequality

9k (2)(0) = gk (y)(0) — hae(0) (2(7 () — y(7(0)))] x

x sign [(7i (i) — i) (2(7 (1) — y (7 (0)))] < gor(lz — y)(3)
for ieN, (k=1,...,m).

is fulfilled. Since hy, and g, satisfy (6.7), the unique solvability of (6.8)
follows from Theorem 4.2. N

It is clear from the above-said that given (zx0)f, € E}, there exists
a unique sequence of vector functions (zx,)}, € EM (v =1,2,...) such
that for any natural v and k € N,,, the function zy, is the solution of the
Cauchy problem (4.20), (4.21).

Let (x)j>, be the solution of the problem (4.1), (4.2), and let

Yk (1) = 2 (1) — 2z (1) (k=1,...,m).
Then, because of (4.14) and (4.15), for any v € N we will have

[Ayio (i = 1) = hie(D)yno (7(3))] sign [(74 (1) — ik )yno (7(0))] <

< gok (w1l s k-1 v—1ls Wkols Wks1v—1ls -5 [Ymv—1]) (2)
for i€ N, (k=1,...,m),
|ykl/(7’k)| < ¢0k(|ylufl|a very |ymufl|) (k =1,... 7m)'

From these inequalities and (4.8), with regard for Lemma 5.5 we obtain

Z”ykl/HEn < TU/YV (V = 1727"')7
k=1
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where v €]0,1[ and 7o > 0 do not depend on v. Consequently, (4.23) and
(4.22) are fulfilled. W

Theorem 4.4 is proved in a similar way. The only difference is that instead
of Lemma 5.5 we use Lemma 5.5'.

Corollaries 4.1-4.11 follow directly from Theorems 4.1-4.4 using Lemmas
5.6, 5.7 and 5.9.
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CHAPTER III

§ 7. ON THE CLASS Dy
Let f: C(Ily; R™) — L(Ip; R). Then

(fn)a2i € Dy (7.1)

means that: (a) f, : E™ — E, is a continuous operator given n € N
(b) for any (ux)j~, € C(Ip; R™), the condition

n tin

ngrfmz; Fa@im s 2mn) (i) — / Flun, - um)(dt] =0 (7.2)

i=
ti—in

is fulfilled whenever (z¢,)j, € E™ (n=1,2,...) and

lim ||Zgn — pn(ug) =0 (k=1,...,m). (7.3)

n—+4o00 ||En

Remark 7.1. Tt is evident from Definition 7.1 that if (7.1) is fulfilled and
(9n),2 € Dy, then for any a and 3 € R,

(afn + ﬁgn)ﬁﬁ € Daysipyg-
In particular, if (g,)}> € Dy, then from (7.1) it follows
(fn+ gn)zg € Dy.

Remark 7.2. Let f € L(Ip; R) and f, € E,, (n =1,2,...). Then, accor-
ding to Definition 7.1, (7.1) means that

by
nliTOOizn; £a(i) —ti_/ln Floyde| =0.

Let

f € K(C(Ip; R™); L(Io; R)) (7.4)
and
Ful@ty s am) (i) =

_ t/ Flitn(@, e estm)se s limn (@, o)) (7.5)

b

for ieN, (n=1,2,...),
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where Ly, : E’Z{L — C(Io;R) (i € Np; k € Np; n € N) are continuous
operators such that

max { ||l“m(a:1n, ey Tn) — ukHO(IO;R) 11 € Nn} -0 (7.6)
as n— 4oo (k=1,...,m)
whenever (u)f, € C(Ip; R™) and the sequence (zin)j, (n = 1,2,...)
satisfies (7.3). Then (7.1) is fulfilled.

Proof. Continuity of f, (n = 1,2,...) is obvious. Let us prove that the
condition (b) of Definition 7.1 is fulfilled. Let (ug)j~, € C(Ip;R™) be
arbitrarily fixed. For any v € R, we assume

W(t:n) = sup{|f(u1,...,um)(t) — fr,- o)D) (or) €

m
€ C(Ip; R™), Z lluk — villoyr) < 7}-
h—1

By (7.4), we have w(+;y) € L(Ip; R) for any v € Ry, and

b
lim [ w(t;7y)dt = 0. (7.7)

v—0
a

Consider an arbitrary sequence (zpy)j", € E™ (n =1,2,...) satisfying
(7.3). Then, because of (7.5), we have

n ti"
S fal@ins o Zmn) (@) — / Flug,... up)(t)dt] <
i=1 tiin
n tin
<> / |F(litn(@1ns o Tin) s+ o limn(T1ns - -, Ton)) (£) —
izltifm
b
—f(ul,...,um)(t)|dtg/w(t;'yn)dt (n=1,2,..), (7.8)

where

Yn = max{ Z ||llkn(£ll‘1n, .. ,a:mn) — uk”C’(Io;R) 11 € Nn}
k=1

However, because of (7.6) and (7.7),

b
lim /w(t;vn)dt =0.

n—-+o0o
a
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Therefore (7.2) follows from (7.8). W

Let
f € C(C(Iy; R™); C(Io; R)), (7.9)
o
Fa@s ) (i) = n“ N i f (lijin (@t )y i (@1, - -
j=1
) (tn—%) for i€ Ny (n=1,2,...), (7.10)

where jo € N, a; € [0,1] and §; € [0,b — a] not depend on n,

> a;=1, (7.11)

and lijrn : E™ — C(Ip;R) (i € Np; j € Njo; k € Np; n € N) are
continuous operators such that
max{”lijkn(a:ln, ey Tmn) — uk”O(IO;R) (1 E Nn} -0 (7.12)
as n—+oo(k=1,....m;5=1,2,...)

whenever (ug), € C(Io; R™) and the sequence (zin)); (n = 1,2,...)
satisfies (7.3). Then (7.1) is fulfilled.

Proof. Since lijkn (i € Np; j € Njy, k € Ny, n € N) are continuous, it
directly follows from (7.9) and (7.10) that f, : E{L" — E,, is continuous for
any n € N. B

Let (ur)iy € C(lo; R™) and (24n )iy € BT (n =1,2,...) be asequence
satisfying (7.3). Assume

U(t) = f(ula e 7um)(t)
and
Uz]n(t) = f(lijln(xlna N 7xmn)a R lijmn(xlna N 7xmn)(t)
Then, by (7.9) and (7.12),
En = max{”vijn —lc(r;r) 11 € Nnyj € Njo} -0 (7.13)
as n — 4o00.

For any n € N and i € N, let us choose t;, € [ti—1n,tin] such that
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Because of continuity of v, it is evident that
En = max{‘v(?m) — v(tin — &)‘ :i € Ny, j € Njo} -0 (7.14)
n

as n — +00.

According to (7.10) and (7.11),

n tin
S falm - ) 0) — / Fluns - um)(O)dt] =
=t ti—in
— b;ai‘ Jo aj [Uijn(tin_%) _v(thn)H <
=1 j=1
_ n  Jjo . .
< b naizljzlaj“vijn(tin_ %) —U(tm— %)‘ +

ol )

|<O-aE+8) =12,

whence, due to of (7.13) and (7.14), it follows (7.2). W

Let
Uly-- -y Um)(t) = g(t,ur(t), ..., um(t)),
flua )(@t) = g( ;() (t) (7.15)
g€ K(Iy x R™; R),
and
fo(z1, .. xm) (1) =
tin
= /g(t,yiln(arl,...,a:m),...,yimn(arl,...,a:m))dt (7.16)
ti—1in
for ieN, (n=1,2,...),
where

Vi
Yikn(T1, . Tm) = Z Tk (i = Brov) + Zikn (T1, .-+, Tm), (7.17)

v=1

the numbers vy € N, ay, €]0,1] and By, € {0,1} do not depend on n,

dap =1 (k=1,...,m), (7.18)
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and Zikn EZL” — R (i € Np;k € Npysn € N) are continuous functionals
such that for any r > 0,

max{|zikn(a:1, )| Y llaslls <rie Ny ke Nm} 0 (7.19)
j=1
as n — +oo.
Then (7.1) is fulfilled.

Proof. For any i € N,, k € Ny, and n € N, we introduce the operators
gikn : E;Ln — En and likn : E,:Ln — C(IO,R) by

~ ) ikn (T1y oy T for je{i—1,i},
Yikn (21, s Tm) = JVik ( ' ) ] { }
i (4) for j ¢ {i—1,i},

litn (1, - -, 2m) () = @n(Tikn (1, - -, 2m))(t) for ¢ € I.

Obviously,

likn(zl,...,xm)(t) = yikn(xl,...,xm) (7.20)
for ti—1n S t S Lin-

Owing to (7.15), (7.16) and (7.20), the conditions (7.4) and (7.5) are
fulfilled. On the other hand, it follows from (7.17)—(7.19) that lix, (i €
Npik € Ny;n € N) satisfy (7.6) provided (ug)f, € C(Ip; R™), while the
sequence (zp,)}, (n=1,2,...) satisfies (7.3).

Consequently, all the conditions of Lemma 7.1 are fulfilled, which exactly
guarantees the fulfillment of (7.1). W

Basing on Lemma 7.2 and repeating the arguments as in proving Lemma
7.3, we can prove.

Let

Flur, .o yum) () = gt ur (), ..., um(t)), g€ C(ly x R™; R),
fal@i, .o zm) (@) =
b—a

Jo
ﬂ.
Za]g(tzn - g]ayijln(wla"'7xm)7"'7yijmn(a:17"'7a:m))
j=1
for ie N, (n=1,2,...),

where

Vi
Yijhn (@155 ) = Y anjui(i = Brje) + Zigen (@15, Tm),
v=1
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the numbers o; € [0,1], B; € [0,b—a], jo € N, vy € N, agj € [0,1],
Brjv € {0,1} do not depend on n and satisfy (7.11) and

Vi
gy =1 (kj=1,...,m),
v=1

while 2, - E,’L” — R (i € Ny;k € Nyjj € Njo,n € N) are continuous
functionals such that for any r > 0,

m
max{|zijkn(a:1,...,a:m)| :Z”%”En <r,i€Npke€ Nm} =0
p=1

as n— +oo (j=1,2,...,5).
Then (7.1) is fulfilled.
§ 8. LEMMAS ON A PRIORI ESTIMATES

Throughout this section, an interval Iy = [a,b] and points ¢, € [a,b]
(k=1,...,m) are assumed to be fixed. For any n € N and k € N,,, there
exists a unique i, € N, such that

tikn’ﬂ S ty < tikn-l—ln- (81)
Assume

. P .
Ten(i) =< or bt (8.2)

1—1 for i <ipp.

Let

(h17"'7hm;f017‘"7f0m;<)0017"'?<)00m)EW(tlﬂ"'ﬂtm)? (8'3)
(hkn)Zg € tha (fOkn);;.i € Dfok (k = 17 .. .,m), (8'4)

where every foxn : E;” — FE, is a positively homogeneous continuous non-
decreasing operator. Then there exist numbers ng € N and p €]0, +oo[ such
that for any n > ng, r € Ry and hy € E}, an arbitrary solution of the
system of difference inequalities

[Az (i = 1) = hgn (D)2 (Thn (0))] sign [(Thn (i) = ign)2x (T (7))] <
< ho(i) + forn(|z1], - -y |Zm])(@) for i€ N, (k=1,...,m) (8.5)

under the boundary conditions

|2k (ien)| < 7+ Qo (qn(|zl|), e, qn(|zm|)) (k=1,...,m) (8.6)

admits the estimate

> llallz, < plr+ - ko). (8.7)
k=1 i=1
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Proof. Suppose on the contrary that the lemma is invalid. Then there exist

an increasing sequence of natural numbers (n, )} and sequences r, € R,

ho, € E}f and (zp,){, € E;’fj (v = 1,2,...) such that for any natural v,
the inequalities
[A:L‘k,,(i — ].) — hkn,, (z)a:k,, (Tkn,, (Z))] sign [(Tkn,, — ikn,,) X
Xxku(Tkn,, (Z))] S hOV(Z) + f[)knl, (|x11/|7 tey |£Il'm,,|)(l)
for ie N, (k=1,...,m),

|2k (ikn, | < 70 + @0k (@0, (1210 ])s - - -, G0y (JTm, ) (K=1,...,m)

and

m Ny
Slleliz, > v]re+ 3 hou(i)]
k=1

i=1
are fulfilled.
Because of (8.4), without restriction of generality we may assume that

lPknlz >1 (B=1,....m;v=1,2,...).

By Lemma 5.1, for any & € N,;, and v € N we have
|Zkw (0)] < yio () for i€ Ny,
where yy,, is the solution of the Cauchy problem
Ayry (i = 1) = hin,, () Yrw (Tkn, (1)) =
= [hov(0) + forn, ([Z10 ], -5 |Tmw|) (0)] sign [Tkn, () = ikn, ],
Yiv (ikn, ) = Tv + Pok (Qnu (lzwl)s s qn, (|Zm, |))

Thus

|Ayk,,(i = 1) = i, (O)Ykv (Tkn, (Z))| < hoy (i) +

+ forn, Wivs -y Ymp) (@) for i € Ny, (k=1,....m;v=1,2,...), (8.8)

yku(ikny) < ry+ ok (Qnu (yll/)7 -5 0n, (ymu)) (8-9)
(k=1,...,mr=12,...),

and
m n,
pv = Z Hyk"”En., > 1/[7“,, + Zhoy(i)] (v=1,2,...). (8.10)
k=1 i=1

Assume

2o () = g (y;:)(t) (k=1,...,m),

zn(i):‘hkn(i)— / hk(T)dT‘+ / he(D)dr (k=1,...,m),

ti—1n ti—1n
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n m
gv(t) = Z———hou (i)
(b= a)py k:l
_ .
(1., 1)(4)] f No, oo <t< b
+ fokn, ( )(i)] for i€ o < o
and
[P ()] + for(L,..., ()] (8.11)
k=1
By (8.4) and (8.10),
(hen)i2y € Dy (k=1,...,m) (8.12)
and
¢ ¢
Erf gu(T)dr = /g(r)dr uniformly on [a, b]. (8.13)

Taking into account that |hg,(¢)| < hj,, (i) for i € N, from (8.8) we find
12k, (D] < gu(t) for telp;(k=1,....mr=12,...),

whence, because of (8.13), it follows the equicontinuity of the sequences
(2£,)725 (k= 1,...,m). On the other hand, by the definition of 2z, (k =
1,...,m),

Z”ZkVHC(Io;R) =1 (V: 172’) (814)

+o00

Without restriction of generality, we may assume that (zz,);25

(k=1,...,m) converge uniformly. Owing to (8.14), the functions
zi(t) = uEToo zew(t) (k=1,...,m)

satisfy

m
Z lzkllc(ro;r) = 1- (8.15)
k=1

By (8.8)—(8.10), for any natural v we have

|24, (8) = o (1) 2100 ()| < 0w (1) + foro (210s -+ 2i) () (8.16)
for tely (k=1,...,m)

and

1
|zkl,(tk)| <e,+ > + ook (z1v)s .-y 2m,) (K=1,...,m), (8.17)
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where

EV—Zmax{|ku — 2w (s )|:a§s<t§b,t—s§bgya},

Trow () = bn_ua (hOu te Zh )

for ti—1p, <t <tp,, € Nny,

7 n . .
hk,,(t) = ﬁhknu (Z) for ticin, <t<tjp,,t€ Nny,
and
~ n .
Jorw 210y oy 2mp) (t) = b _VafOknu (pnu (210) -+ s Pn,, (Zml/)) (i)
for ticin, <t <tin,, 1€ Nnu-
According to the uniform continuity of (z,)25 (k = 1,...,m) and be-

cause of (8.10) and (8.12), we have lim, 1 &, = 0 and

m n,

1
/hol, t)dt < — +5U22hkn )= 0 as v — +o0. (8.18)

k=1 i=1

From (8.16) we have

t

Zkw (1) < zgy (t1) exp (/ﬁk,,(s)ds) +

ty

+‘/eXp (/ﬁku(S)dS) [hou (1) +ﬁ)ku(zly,---,zmy)(7)]d7‘

tr T

for tely (k=1,...,m;v=12,...).

Passing in these inequalities to limit as ¥ — +o00 and taking into account
(8.4) and (8.18), we obtain

zi(te) = ui(ty), zi(t) <wug(t) for tely (k=1,...,m), (8.19)

where

t
’U,k(t) tk exp / hk
tr

t t

+‘/exp (/hk(S)dS)fOk(Z1,...,zm)(r)dr‘_

tr T
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On account of (8.19), from
’u‘;c(t) = hk(t)uk(t) + fOk(Zla tee 7Zm)(t) Sigl’l(t - tk) (k = ]-7 tee 7m)
and (8.17) we find
|, (t) = hie(E)ur ()| < for(ur,- .., um)(t) for t € I, (8.20)
Oguk(tk)gwﬂk(uh"'aum) (k:]-a"'am)a (821)

whence by virtue of (8.3) it follows that u(¢) =0 (k=1,...,m). On the
other hand, by (8.15) and (8.19) we have

Z lurlleror) > 1-
k=1

The obtained contradiction proves the lemma. W
From the lemma there immediately follows

" Let the conditions (8.3), (8.4) and
worn (@15, Tm) = ok (an (1)), - - an(|zm])) (K =1,...,m),

be fulfilled, where every forn : E;” — E, is a positively homogeneous con-
tinuous nondecreasing operator. Then there exists ng € N such that

(hlna oy Pomns foin, - -+, fomns @ot1ny - - - SOOmn) € wn(iina s 7imn)
for n.> ng.

Let (8.3) and (8.4) be fulfilled, where forn, : E™ — E,
(k= 1,...,m) are positively homogeneous nondecreasing continuous ope-
rators, and ng € N is so large that

lhenlle, <1 for n>ng (k=1,...,m). (8.22)

Then there exist r > 0 and y €]0,1] such that for any sequences oy, €
Ri (n=mno+1,...), hon € Ef (n =no+1,...) and zx, € E, (k =
1,...,m;n=mng+1,...) satisfying
[A:Ekn(l — 1) — hkn(l)wkn(ﬂm(l))] sign [(T]m ('L) — 'L]m)aflm(ﬂm(l))] S
< hon(i) + forn (|11l - s |Zran—1]) (3) (8.23)
for n>ng, i€ N, (k=1,...,m)7

and
|$kn(lkn)| < an + Yok (Qn—1(|$1n—1|)7 cee 7Qn—1(|$mn—1 |)) (8.24)

"Since fopn are defined on (Eﬁ{)m, one has to determine the functions
Tin—1,---,Tmn—1 at the point n. Here and in similar situations encountered below,
we assume that g, _1(n) = Tpp_1(n — 1) (k=1,...,m).
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the estimates

n

illwknllgn < m”[ > T”(ihw(i) +ay) +
k=1 i=1

v=ng+1

m
+Z|lwknollgn0] (n=no+1,...) (8.25)
k=1

are valid.
To prove this lemma, we will need the following
Let

(h17 s 7h7'rL7 %17 .. 7%711;&017 S 79’50711) € W(tl, S 7tWL)ﬂ (826)
(hkn)325 € Diy and (forn)i23 € Dy (k=1,...,m),  (8.27)

where fmm : (E’;‘)m — E’j{ are positively homogeneous nondecreasing con-
tinuous operators, and ng € N is so large that (8.22) is fulfilled. Then
there exists a positive constant r such that for any sequence ho, € E
(n=mo +1,...) satisfying

n
Zﬁ(m(i)gl for ie Ny (n=no+1,...), (8.28)
i=1
we have
m
D ollyrnlly, <7 (m=no+1,...), (8.29)
k=1

where Ypn, (1) = 1 (k = 1,...,m) and every yp, € E;: (k=1,...,m;
n > ng) is the solution of the difference equation

Aykn(i — 1) — hkn(l)ykn(Tkn(z)) =
= [EOn(l) +f~.0kn (yln—l PO ymn—l)(i)] Sign[ﬂm (Z) _ikn] ® (8'30)

under the initial conditions

ykn(ikn) = &0]@ (qnfl(ylnfl)a e 7Qn71(ymnfl)) + 1. (831)

8We assume that yr, 1(n) = Ypn_1(n —1) (k=1,...,m).
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Proof. Denote by H, the set of all ho, € E; satisfying (8.28).
Owing to (8.22), for any natural n > ng and any
E0n0+1 S Hn0+17 e 7};071 € Hn

there exists a unique (ygn)jp, € (E;F)™ constructed by the way indicated
in the lemma. It can be easily seen that

m
0< pp = SHP{ZHyangn :h0n0+1 € Hno+17---7h0n € Hn} < 400
k=1
mn=mno+1,n0+2,...).

Our aim is to prove that the sequence (pn);?;m 41 is bounded. Suppose on
the contrary that

Jim  pp, = +00, (8.32)
where
p:L = max{pnoa s 7,071,}
Assume .
2kn(t) = —@u(yrn)() (K=1,...,m)
Pn
and

an = {an :%0n0+1 S Hn0+1, . ,?Lon c Hn}
Because of (8.30), for any n > ng, k € (1,...,m) and zg, € Zg, we have

n(t
12k ()] < gn(t) + gop_*() for t € I, (8.33)
where
gon(t) = 7=—hon(i) for ti-1n <t <tin, i€ Ny,
—a
N )
gn(t) = gin(t) + —a Z forn(1,...,1)(2)
k=1
for t;_1pn <t <tin, it € Np,
and
m tin tin
n
g0 = =3 [ = [ o]+ [ frate)|ar]

k=1 ti—in ti—in

for t;_1n <t <tin, it € Np.
According to (8.27) and (8.32),

m
lim gm(T)dT = Z/|hk )|dT uniformly on Iy (8.34)
k=1
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and
En :max{‘/[gn(T) —g(Mldr|:a<s<t< b} +
+i* —0 as n — +oo, (8.35)
where
g(t) = 3 [[me(®)] + For (1, 1)(®)]
k=1

Due to the definition of zj, and because of (8.28), (8.32) and (8.33), we
have

0 < zpa(t) <1, |zkn(t) - zkn(s)| <In(t—s) (8.36)
for a <s<t<b,
¢
|2kn(t) — 2kn(s)] < /g(r)dr +ep, for a<s<t<b (8.37)

8§

and
|2k (t) — 2kn(s)| < +ei for a<s<t<b, t—s< b_Ta (8.38)
where o
l, =sup {gn(t) it e I()} + m
and

t
h—

sflzmax{/g(T)dT:agsgtSb,t—sg a}+
n

+e, =0 as n—0. (8.39)

By virtue of (8.36), Zi, is a set of uniformly bounded equicontinuous
functions for any k € {1,...,m} and n > ng. Therefore the functions

2 (t) = sup {zkn(t) : 2pn € Zin} (K=1,...,m) (8.40)
are continuous. On the other hand, by (8.37)
t
#i0(t) = 530(0)] < [ g(r)ir +e,

for a<s<t<b (k=1,....myn=ng+1,...),
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whence, because of (8.35), it follows the equicontinuity of the sequences

(zp)i25. 41 (k=1,...,m). Hence the functions
Zpn(t) = ngrfm sup 2, (t) (k=1,...,m) (8.41)

are continuous. It easily follows from (8.32) and (8.41) that

max{zz,’;(t) te IO} =1 (8.42)
k=1
Taking into account both monotonicity of the sequence (pj;)}2° ., and
the condition (8.38), from (8.30) and (8.31) we obtain
|leen(t) - h;;n(t)an(t” < hSn(t) + fOkn(Zln—la R Zmn—l)(t)
for tely (k=1,...,m;n=no+1,...)
and
* 1 ~
|an(tk)| < Ent+ P_* + (POk(Zln—la ceey Zmn—l)
(k=1,....m;n=mno+1,...),
where
* gon(l *
100 = 22 1 2591000,
() = . ~hin(i) for timin St <tin, i €N,
and
f;kn(zlnfla L) Zmnfl)(t) =
no .
= b_ afOkn (pn—l(zln—l)a s 7pn—1(Zmn—1)) ('L)
for t;_1, <t < tin, © € Ny.
From these inequalities, by means of (8.28) and (8.4) it follows that
0< 2, <
¢ ¢
<| [exp ([ minmr) iuninrseoes i) 0)s |+
tk S
¢
1+ 2 () exp ( / hiu (7)) (8.43)

tr
for tely (k=1,....m;n=mno+1,...)
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and
* * 1 * *
an(tk) <e,+ ,0_* + Qﬁok(zmqa sy Zmnfl) (844)
n
(k=1,....m;n=no+1,...),
where
. b
Nn = (p +er /gln( )dt)max exp /h,m dT] a<s<t<b}
n

a

By (8.4), (8.32), (8.34) and (8.39),
t
lim hy,(T)dT = /hk(T)dT uniformly on I

n—+oo

(8.45)

a

and lim n, =0.

n—+00

Let € be an arbitrarily small positive number. Because of the uniformity
of (8.41), there exists a natural n. > ng such that

2p,(t) < zp(t)+e for tely (k=1,...,m; n>n.).
Therefore, from (8.43) and (8.44) we find

0 < 25, (t) <np + (25 (tk) + ) exp /h dT)

tr
t t
+‘/exp (/h;;n(T)dT)fgkn(z; 8y 2y 2)(s)ds|
tr

for tely, (k=1,...,m;n>n.) (8.46)

and

1 ~
2 (1) Ssn-l-p—* + Qok(2] +&,...,2), +¢€) (8.47)
(k=1,...,m;n > ng).

According to (8.27), uniformly on I we have
¢
lim exp /h i d’l' fo,m(z1 +e,...,20 +e)(s)ds =

n—>+oo

t

= /exp /hk fOk (27 +¢&,...,20, +€)(s)ds (8.48)
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On account of (8.32), (8.39), (8.45) and (8.48), it follows from (8.46) and
(8.47) that

0 < 25(t) < 25(ts) exp (/hk(r)dT) +

tr
t

t
+‘/exp(/hk(7')d7')ﬁ)k(zl*+5,...,z,*n+s)(s)ds‘
tr s

for tely(k=1,...,m),
zi(te) < Gok(z] +¢€,...,20, +¢) (k=1,...,m),

whence, because of the arbitrariness of ¢, we find

0 < zp(t) ug(t) for tely (k=1,...,m) (8.49)
and
2 (te) < @ok(zr,---y20) (k=1,...,m),
where
t
wi(t) = 2 (tx) exp ( / hi(r)dr ) +
tr
t t
#] [exo ([ meiar) et @] k=1, m)
tk S
Therefore

|uj, () — hi(ur (8)] < for(ui, ..., um)(t) for teIp (k=1,...,m)
and
0 <up(te) < ok(ur,...,um) (k=1,...,m).
From these inequalities, owing to (8.3) we have
up(t) =0 (k=1,...,m).

But this is impossible because of (8.42) and (8.49). The obtained contra-
diction proves the lemma. W

Proof of Lemma 8.2. By Lemma 2.2, from (8.3) and (8.4) it follows the
existence of v €]0, 1] such that (8.26) and (8.27) are fulfilled, where

For(un, - um) (1) = %f()k(ul,...,um)(t),

- 1
Pok (U1, -y Up) = ;cp()k(ul,...,um) (k=1,...,m),
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and
~ . 1 .
forn(Z1, ... 2m)(0) = ;fokn(ill'l, e xm)(@) (BK=1,...,m).
For hy, hynp, jN'Ok, jN'Okn and @or (kK =1,...,m), let us choose the number r
in accordance with Lemma 8.3.
Assume
Cno Z ||xkn0 HE and Cn(’)/) =
Z (Zhoy —I—al,) +Z”$k”0”1§n for n > ng.
v=no+1 k=1 0
Obviously,

Cn(7) > Cu-1(v) for n > no,
and the functions

hon(2)

=, for 0
hon(i) = 4 7 (V) () # (n=ng+1,...)
0 for (.(y) =0
satisfy (8.28). On the other hand, if for some n > ng

then, because of (8.22)—(8.24),
Te(1)) =0 (k=1,...,m; v=ng,no+1,...,n).

Let
~ . for (n(v) #0,
Trn(4) = ¢ 7" (7) ™ (8.50)
0 for (u(y) =0.
According to the above-said, from (8.23) and (8.24) we find
[Afkn (Z — ].) hkn( )a:,m (Tkn( ))] sign [(Tkn(l) —
_'Lkn)ikn (Tkn(l))] S hOn(l) + fOkn(|51n—1 |7 tee |5mn—1|)(l)
for ie N, (k=1,...,m)
and
|$kn(lkn)| S 1+ &Ok (qn—1(|51n—1 |)7 SRR qn—1(|5§mn—1|))
(k=1,...,m;n > ng).
Let (Ygn), 2 o1 (B=1,...,m) be the sequences of the functions appear-

ing in Lemma 8.3. By Lemma 5.1,
|Zin (i) < Yan(i) for i € N, (k=1,...,m; n > np).
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From this, owing to (8.29) and (8.50) we get (8.25). W

§ 9. DIFFERENCE SCHEMES OF THE TYPE (0.16), (0.17)

Consider the differen-
tial boundary value problem

d“;t(t) — foltnse e um)(t) (k=1,...,m), (9.1)
ug(tr) = pre(u1, .-, um) (B=1,...,m) (9.2)

and its difference analogue
Azp(i — 1) = fen(z1, .-, zm)@) (E=1,...,m), (9.3)
T (ign) = @en(T1,-. ., 2m) (K=1,...,m), (9.4)

where

fe € K(C(Io; R™); L(Ip; R)) (k=1,...,m), (9.5)
(fin)i2 € Dy, (k=1,...,m), (9.61)
and the functionals @gy, : E;” —-R((k=1,...,m; n=1,2,...) are contin-

uous. For any (ux){, € C(Ip; R™), we have

im  @rn(Tin, - Tmn) = @e(U1, ... um) (K=1,...,m) (9.62)

n—-+o0o

whenever

Jm flzkn = p(ur)llg, = 0.

Let the problem (9.1), (9.2) have a wunique solution
(u)™ |, and let in C(Ip; R™) the inequalities

[fr(uns oy um) (8) = hi(H)ur(t)] sign [(£ = tr)ur(t)] <

< ho(t) + for(|utls - - lum|)(®) for t€ Iy (k=1,...,m), (9.7)
|g0k(u1, . ,um)| <ro+ por(|utl,. -, |um|) (k=1,...,m), (9.8)
be fulfilled, where ro € Ry, ho € L(Ip; Ry) and
(hl, .. .,hm;f01, - ,f[)m;(p(n, . -;SOOm) S W(tl, e ,tm). (99)
Moreover, let for any p > 0 the conditions
Z |30kn(x17 e 7xm)| S npa
k=1
S U fin(@r, - wm)(@)| < fr,(0) for i € Ny, (9.10)
k=1

D olleklly, <mp (n=1,2,...)
k=1
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hold, where n, € Ry and
(fon) € Dyz» [, € L(Io; Ry). (9.11)

Then, given r > 0, there exists a natural number ng = no(r) such that
for every n > ng, the set X,,(ul,...,ul;r) of the solutions of (9.3), (9.4)
satisfying

S llwk = pauf)llz, <7 (9.12)

k=1

s non-empty and

sup { S ek = pa@llz ¢ ()i € Xa(ul, .. ,u?n;r)} 0 (9.13)

as n — +00.

Proof. By Lemma 2.1, (9.9) ensures the existence of a positive py such that
every solution of

[, (t) — he(t)ug (t)] sign [(¢ — te)ur(t
Sho(t)+f0k(|u1|,...,|um|)(t) for t € Iy (k ,m), (9.14)
|k (tr)] < 1o+ @or(Jurls .- Juml) (k=1,...,m) (9.15)

admits the estimate

)] <
=1

Z lur(t)] < po for te Ip. (9.16)
k=1

Let r > 0, p = pg + 7, and define x : R — R by

Assume

hinl) = [ urya,
ﬁn(wla ey ) (8) = D (1) 2k (Ten (1)) +
+en(X(@1), -+ X (@) (1) = Pren (D)X (21) (Tn (),
k(@15 -, Tm) = @ea(X(21), - - -, X(Tm)),
Fe(ur, o um) () = hi(@)ur () + fiOc(ua), -, X (um))(8) = R (B)x (ur) (1),
D (ut, - um) = @e(x(ua), . X(um))-

9Under x(z1) we mean composition of the functions zj and .
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Because of (9.10) and (9.11), for any natural n the inequalities

Z |fkn(zl, ey X)) (1) — hkn(i)zk(rkn(i))| < T‘m(i) (9.17)
k=1

for 1 € N,
and
m
Z|&kn($1,,zm)| <n, (9.18)
k=1
are fulfilled on E;”, where
_ _ m
(Fon)n2i € Dy , and f,=f7+pY |l € LUo;R).  (9.19)
k=1
It is clear from (9.9) that
(hi,. ., hm;0,...,0;0,...,0) € W(t1,...,tm). (9.20)

From this, by virtue of Lemma 8.1’ it follows the existence of a natural n’
such that

(hins -y B 0, ..., 0;0,...,0) € Wi(tin, - .., tmn) for n>n'. (9.21)

By Theorem 4.1 the conditions (9.17), (9.18) and (9.21) ensure the sol-
vability of the boundary value problem

Azp(i—1) = fen(z1, .., zm)(@) (K=1,...,m), (9.22)

2k (Tkn) = Crn(T1, .. 2m) (K=1,...,m) (9.23)

for any n > n'. Denote by X,, the set of all solutions of (9.22), (9.23), and
show that

sup { Z |E —pn(ug)HEn C(xp)ie, € )?n} —0 as n— 4o0. (9.24)
k=1

Agsume the contrary. Then there exist a positive ¢ and an increasing

sequence of natural numbers (n,)}5 such that for any n = n,, the problem

(9.22), (9.23) has a solution (zy, )}, satisfying

m
> ke = u@lleyr) > e (9.25)
k=1

where
Wi () = G, (@) (8) (k= 1,...,m).
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By (9.17)—(9.20) and Lemma 8.1, there exists a positive number p; such
that

> luk () < pr for tely (v=1,2,...).
k=1

Because of this estimate and (9.17) and (9.19), we have

|’U‘;cu(t)| S gu(t) for ¢ € Io,

where
m tin,
ny - .
w®=;" Y [ @+, 0
k=1 tiz1n,
for ticin, <t <tin,, 1€ Nnu-
Moreover,
t t m
Jin [ amar= [ [0+ o1+ 9) 3 Iha()]] ar
a a k=1
uniformly on Ij.
Consequently, the sequences (ug, )5 (k= 1,...,m) are uniformly boun-

ded and equicontinuous. Without restriction of generality, we may assume
them to be uniformly convergent. Suppose

i w ) = () (k= 1,...,m),
—~ Ny
fkl/(ullM e 7umu)(t) =

ﬁmy (Pn, (W1v), - - P, (Umw)) (7)

b—a
for ti1n, <t <tin,,
and
kv (Utyy ++ s Umy) = Pk, (Pn, (W11), -+ Pny, (Wmw)) +
+Uky (tk) — Uy (tiknyny)-
Then
t
uku(t) = @ku (ull/7 e 7umu) + fkl/(ullla e 7umu)(7-)d7-
tr
(k=1,...,m)

By (9.5) and (9.6),
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t

t
Hm [ fin Uiy, tm)(D)dr = [ Filun,. .. um)(T)dr
/ /

v—-+o00
tr
(k=1,...,m)
and
UETOO @kn(ulm s 7umu) = &k(ula i -aum) (k =1,.. .,m).
Therefore

t

uk(t) :Qk(ula"'aum)+/ﬁ(u17"'7um)(7_)d7_ (k:]-aam)

tr
Hence (ux)}’, is a solution of

ducllct(t) = fr(ur,...,um)(®) (k=1,...,m),

uk(tk) = &k(ula"'aum) (k = 17"'7m)'

By virtue of (9.7) and (9.8), (ux)j, is likewise a solution of (9.14), (9.15).
Therefore, owing to the above-said, it admits the estimate (9.16). From this
estimate it immediately follows that (u);, is a solution of (9.1), (9.2), i.e.,
u(t) = ul(t) (k=1,...,m). On the other hand, by (9.25) we have

m
Z Nlur — wllc(roim) > &
k=1

The obtained contradiction proves the validity of (9.24). This implies the
existence of a natural ng > n' such that for any n > ng, every (zx)j, € X,
satisfies (9.12). On the other hand, since

|ul ()] < po for t€ Iy,

NE

k=1

it follows from (9.12) that
m
> lzrllz < po+1=p
k=1

Thus

Xp(l, ... udsr) =X, for n>ng,

and (9.13) is fulfilled. W
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For arbitrary n € N, i € ]\an and k € N, let us introduce oy, : En —
E, and g1 : E, — C(Ip; R) by

V() = (i (1)) for j = Tn (i) + sign(igy, +1 —19),
Uzkn( )(.7) {CE(]) for Jj 72 Tkn(i) + sign(ikn +1— l) (926)
and

Gikn () (t) = qn(oikn(2))(t) for t € Io. (9.27)

From Theorem 9.1, we have

Let the problem (9.1), (9.2) have a wunique solution
(ud) |, and let (9.7)—(9.9) be fulfilled. Let, moreover,

fkn(xla e ,Qﬁm)(l) = (1 — 6i—1ikn) X

tin

X / Fe(gin(®1), - -+ Gimn(zm))(s)ds +
ti—in
+0i—1ip, hien(D)zr (i) (n € Nyi € Npjk=1,...,m), (9.28)
where
tin
e (i) = / i (5)ds (9.29)
ti—in
and

Crn(T1, -3 Tm) = @r(@n(z1), .- gn(zm)) (K=1,...,m). (9.30)

Then there exists ng € N such that for every n > ng, the set X, of all
solutions of (9.3), (9.4) is non-empty and

m
sup { > ek~ pa(llz, : (@i, € Xn} =0 (9.31)
k=1
as n — +oo.

Proof. The conditions (9.61) 2, (9.62), (9.10) and (9.11) follow from (9.28)-
(9.30). Consequently, the conclusion of Theorem 9.1 is valid.
By (9.26) and (9.27),

Qikn(xk)(t) = xk(Tkn('L)) for @ # irn +1ti—1n <t <tip.
Therefore, from (9.7) and (9.28) the inequalities

[fkn(wl, . ,:Em)('L) — hkn(z)zk (Tkn(l))] sign [(Tlm(l) — 'L]m)wk (Tkn(l))] S
< hon(3) + forn(z1], - -+, |2m|)(@) for i € N, (B=1,...,m) (9.32)

10See Lemma 7.1 and Remark 7.1.



88

follow, where

hon(i) = / ho(s)ds,
ti—in
while the functions hy, (n € N;k =1,...,m) and the operators
tin
f[)kn(|a:1|77|xm|)(7f) = / fOk(qzln(|x1|)a7qlmn(|xm|))(5)ds

ti—in

(1t € Np; k=1,...,m)
satisfy (8.4). On the other hand, because of (9.8) and (9.30) we have

|<pkn(z1, ... ,zm)| < 7o + Yok (qn(|a:1|), ... ,qn(|a:m|)) (9.33)
(k=1,...,m).

By virtue of Lemma 8.1, (9.32) and (9.33) ensure the existence of no € N
and p > 0 such that for any n > ng, an arbitrary solution of (9.3), (9.4)
admits the estimate

Slleillz, < pfro+ Y hon(i)] =11,
k=1 k=1

where
b

r o= [ro —l—/ho(s)ds] p-

a

From this we get (9.12), where

r=ry+ Zmax{|u2(t)| ctelp}.
k=1

Hence
X, ..., ud:r)y =X, for n>ng.

Taking into account the above equality, we deduce (9.31) from (9.13). W
The following propositions are proved in a similar way. '!

Let the problem (9.1), (9.2) have a wunique solution
(W), and let in C(Ip; R™) the inequalities (9.8) and

[ frur, o um) ()] < ho(t) + for(Jul, - [um ) () (9.34)
for tely (k=1,...,m)

be fulfilled, where ro € Ry, ho € L(Iop; Ry) and
(f01, ceey me; ©o1, - - - ,(pom) S W()(tl, - ,tm) (935)

11See Lemmas 7.1 and 7.2.



89

Moreover, let
Fon(@rs - zm) (@) = / Felan(@)s e an(@n))(s)ds  (9.36)

ti—in

(neN;ieN,; k=1,...,m),

and let the functionals pi, (k=1,...,m;n € N) be given by (9.30). Then
the conclusion of Corollary 9.1 is valid.

Let the operators

fe € C(C(Io; R™);C(Ip; R)) (k=1,...,m) (9.37)
be bounded on every bounded set of the space C(Iy; R™), the problem (9.1),
(9.2) have a unique solution and (9.7)-(9.9) be fulfilled, where ro € Ry,
ho € C(Ip; Ry), and

hi, € C(Io; R), for € C(C(Io; RT); C(Io; Ry)) (9.38)

(k=1,...,m).

Moreover, let

fen(x1, .o xm) (i) = b ; afk (qn(zl), .. ,qn(zm)) (trkn(i)n)

(MEN; i €Ny k=1,...,m), (9.39)

and let the functionals pi, (k=1,...,m;n € N) be given by (9.30). Then
the conclusion of Corollary 9.1 is valid.

Let the problem (9.1), (9.2) have a wunique solution
(u)r ., and let (9.8), (9.34), (9.35) and (9.37) be fulfilled with ro € R,
ho € L(Ip; Ry) and
for € C(C(I; RY); C(Io; Ry)) (k=1,...,m).
Let further
. b—a
Finl@rs oo, w) (@) = 232 [ Filan (@), 0 (@) (ti-10) +

+fk(qn(x1)a .- -aqn(xm))(tin)] (n EN; i €Ny k=1,.. '7m)7 (940)
and let the functionals iy (k=1,...,m;n € N) be given by (9.30). Then
the conclusion of Corollary 9.1 is valid.

The difference process (9.3), (9.4) is said to be stable if
there exist np € N and p > 0 such that for any natural n > ng and any
vector functions (yx)7", and (zx)}, € EJ", the estimates

S llze = wellz, <o [Benzro s 2m) = Benlyns ) +
k=1 k=1
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+Z |Fien (21, - 2m) = Fien (W1, -, ym)(0)] (9.41)

are valid, where

Fkn(.’lfl, . ,.’Em)(l) = A.’Ek(l — 1) — fkn(.’lfl, . ,.’Em)(i),

. 9.42
Spn(z1,. . 2m) = Tk (ikn) — Ckn(T1, ..., 2m) (K=1,...,m). ( )

Let for any natural n in the space EZL” the inequalities

[fen(@1, - 2m) (0) = frn (W1, Ym) (6) = hin (8) (@ (Thn (1)) —

Yk (Tkn (4)))] sign [(hn (i) = ixn) (2 (Thn (£)) = Y& (Tha(9))))] <
< forn(z1 —y1l,- -5 |Tm — ym|)(@) for i € N, (k=1,...,m) (9.43)

and
|¢kn($17"'v$m) _¢kn(y17---7ym)| <
< or(gn(|zr —y1])s- s an(|zm —ym|)) (k=1,...,m)  (9.44)

be fulfilled, where fory : (E‘,f)m = Ef (k=1,...,m) are positively homo-
geneous continuous nondecreasing operators,
(hlm)zg S th, (fOkn)Ig S Dfok: (k‘ =1,... ,m), (9.45)

and hi, for and por. (k = 1,...,m) satisfy (9.9). Then: (a) the problem
(9.1), (9.2) has a unique solution (ud)?™ ,; (b) the difference scheme (9.3),
(9.4) is stable; (c) there exist ng € N and p > 0 such that for any n > no,
the problem (9.3), (9.4) has a unique solution (Tgn)i",,

S lzn = pu(llz, < 03 [1@enn(ed), - pa(ud))] +
k=1 k=1

£ 30 Fin(pa (). pa(uf) 0], (9.46)
and
nkrfooﬂzkn —pn(ug)HEn =0 (k=1,...,m). (9.47)

Proof. Owing to (9.61), (9.62) and (9.43)—(9.45), in C(Ip; R™) the inequal-
ities
[frCur, . um)(t) = fu(vr, .o vm) () — ha(8) (ur(t) —

—vr(t))] sign [(¢ — tx) (ur(t) — vr(t))] <
< for(Jur —v1], ..oy Jum —op|)(t) for t€ly (k=1,...,m) (9.48)

and

|(pk(U1,...,’U,m) _QDk('Ula---;'Um” S
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S@Ok(|u1—v1|,...,|um—vm|) (k:l,...,m) (949)

are fulfilled. But, by virtue of Theorem 1.2, the conditions (9.9), (9.48) and

(9.49) guarantee the existence of a unique solution (u2)™, of (9.1), (9.2).
Let p and np be the numbers appearing in Lemma 8.1, let n > ng, and

(yr)jr, and (zx)j, be arbitrary vector functions from E]". Assume

m

Ql'k(l) = Zk(z) _yk(i)a T:Z |(I>kn(zla---7Zm)_(1>kn(y1;---aym)|;
k=1

ho()) = D |Fin(21, -5 2m) (1) = Fen(y1, -+, ym) (0)].
k=1

Then, because of (9.43) and (9.44), the inequalities (8.5) and (8.6) are ful-
filled. The estimate (8.7), i.e., the estimate (9.41) holds by virtue of Lemma
8.1. Thus the stability of the process (9.3), (9.4) is proved.

According to Lemma, 8.1’

(hln; ceey hmn; fOln; ceey men; 5001n; ceey SOOmn) €
€ Wi(itn, -+, imn) for n > ng. (9.50)

By Theorem 4.2, from (9.43), (9.44) and (9.50) it follows that for any natural
n > ng, the problem (9.3), (9.4) has a unique solution (zx,)};. Owing to
(9.41), it is evident that (9.46) holds. On the other hand, according to
(961) and (962),

lim Z |Fkn(pn(u[1))7 e 7pn(u(r)n))(z)| =

n—4o00 4
n tin
= 13 [ om0, P00 - / Fi, . ud) ()] = 0
and
Jim B (pn(0)), -+, Pa(d,)) = wn(tr) — @r(uf, ..., up,) =0

(k=1,...,m).
Hence (9.47) is fulfilled. Thus the theorem is proved. W
Let the conditions (9.9), (9.48) and (9.49) be fulfilled, and
let frn and iy be given by (9.26)—(9.30). Then the conclusion of Theorem
9.2 is wvalid. Besides, if for any (ug)}, and (vi)7, € C(Ip; R™) we have

he € L®(I; R), fi(ur,...,um) € L%(Io;R) (k=1,...,m) (9.51)
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and

Z|fk(u17"'7um)(t) - fk(vla"'avm)(t” <
k=1

< h(t) > Muk = ville(rir) (9.52)
k=1

with 1 < a < +00 and h € L(Iy; Ry), then

Y llekn = paudllz, =0(n="). (9.53)
k=1

Proof. To see that the first part of the above corollary is valid, it is sufficient
to note that (9.43)—(9.45) follow from (9.26)—(9.30), (9.48) and (9.49).
Assume now that (9.51) and (9.52) are fulfilled.
Because of (9.51),

tin
/ |hi(7)|dr < % (eN; k=1,...,m),
ti—in e
tin
r
i (a0~ ] < [ 10 (9)lds < 2
ti—1n

for tj_1p <t<tj, 1€ Np; k=1,...,m)

and
r2
HQikn(pn(ug)) - u2||c(lo;R) < F (k=1,...,m),

where
ri = (b—a)* = max {||hgll a1y - k € N},
ro = (b— a)l_% max{||u2’||La(IO;R) 1k e Nm}.
It is also clear that

b—
Ei for |t —s| < ¢
n'Ta

Jug (1) — ug ()] <

and
an(pn(ug)) - ’U’(I:c'”C’(Io;R) S nlj (k = 17 N 7m)'

Taking into account these estimates and (9.49) and (9.52), we find

Z | Fien (P (u3) = P () (0)] <
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<y / 11 (@10 (P (4, - G (P (120))) () —

=
tif,,+1n
’
—fre(u), .. ud)(s)|ds + / [uf) (t)|dt +
tigyn

tifn+1n
1 (10 / ()]s <

ignm

and
| Bk (P (1), -, P ()| < g (t1) — v (ti )| +
r
ok (lan (a () =l s lan(Pn(u5)) = w,) < —,
where
b
ry = mr2/h(s)ds +7 max{||u2||c(10;3) tk € N} + 12
a
and

ry =719 + romax{por(1l,...,1) : k € Ny, }.
By virtue of the above obtained inequalities, the estimate (9.53) with
po = mp(rs + ry) follows from (9.46). W

Let in C(Ip; R™) the inequalities (9.49) and

9)
|fk(u177um)(t) _fk(vla . )(t)| S
< for(Jur —v1], ..oy Jum — o) (t) for t € IO (k=1,...,m) (9.54)

be fulfilled, where for, and por (k= 1,...,m) satisfy (9.35). Moreover, let
Sen and @iy, be given by (9.36) and (9.30). Then the conclusion of Theorem
9.2 is valid. Besides, if ugl (k=1,...,m) are absolutely continuous and

W' e L*(Ip;R) (k=1,...,m) (9.55)
with 1 < a < 400, then

ankn pn()llz, =0(n="2). (9.56)

k=1

The proof is similar to that of Corollary 9.5. One should only take into
account that because of (9.55),

an(pn(uz)) - ug“C(Io;R) S n2_l (k = 17 - '7m)
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with
_1 "
= (b—a)* = max {||u} ||ro(ro;r) 1 k € N }.
Let the conditions (9.9), (9.37), (9.38), (9.48) and (9.49)

be fulfilled, and let frn and pr, be given by (9.39) and (9.30). Then the
conclusion of Theorem 9.2 is valid Besides, if (9.52) is fulfilled, where

h(t) = h = const and every ul " has bounded variation, then
Z 2k = Pa(ud)llz, = Om™").
k=1

Let the conditions (9.35), (9.49) and (9.54) be fulfilled, and
let frn and @iy be given by (9.40) and (9.30). Then the conclusion of The-
orem 9.2 is valid. Besides, if (u3)i"_, is thrice continuously differentiable,
then

m
Z |xkn DPn uk ||E - (n72)'

Let the conditions of Theorem 9.2 be fulfilled. Then, as it has been
mentioned above, starting from some ng the condition (9.50) is fulfilled.

Therefore, owing to Theorem 4.3, for any n > ng and (yro)j, € E the
solution (aslm)k:1 of (9.3), (9.4) admits the representation

m ye () = 20 (i) (€ Np; k=1,...,m), (9.57)

v—+400

where every yy, is the solution of the Cauchy problem

Ayk,,(i — ].) =
= fkn(ylu—la s Yk—1v—1Ykvs Yk+1v—1,5 - - - 7ymu—1)(i)a (958)
yku(ikn) = cpkn(ylufla RN ymufl)- (959)

If instead of (9.43)

[fon(@1, - 2m) (@) = fen(yrs - ym) () = B (8) (@ (Thn (4)) —
=Yk (Tkn (D)) < forn(z1 —y1l, -5 [T — yml) (0) (9.43")
for ie N, (k=1,...,m)
is fulfilled, then we can replace (9.58) by

Ayku(z - ]-) = hkn(z)(yku(Tkn(Z)) - ykufl(Tkn(i))) +
+fkn(y11/—1: - ,ymu—l)(i), (958’)
but if
|fkn(371, s ,a:m)(z) - fkn(yla s ,ym)(z)| <

< forn(lz1r —y1ls -5 [2m — ym|) (2) (9.43")
for ie N, (k=1,...,m),
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then it can be replaced by

Aykv(i - 1) = fkn(ylufla v 7ymu71)(7:)- (958”)

Hence if the conditions of Corollaries 9.6 and 9.8 are fulfilled, then for any
n > ng the problem (9.3), (9.4) can be solved by the method of succes-
sive approximations (9.58"), (9.59), the zero approximation (yro)j, € E;”
being prescribed arbitrarily.

Consider the differential
system

duk (t)
dt
with the boundary conditions (9.2), where

gr € K(Ip x R™;R) (k=1,...,m).

= et ur(), () (E=1,...,m), (9.60)

Corollaries 9.5-9.8 take the following form for this problem.

Let in C(Ip; R™) and in Iy x R™ the inequalities (9.49)
and

[gk(t,zl, cesTm) — gk(E T, - Tm) — B () (T —fk)] X
x sign [(t — i) (zx — Ty)] < thj(t)|xj — 7, (9.61)

(k=1,...,m),
respectively, be fulfilled, where

(hla"'7hm;h117-"7h1m7"'7hm17-"7hmn;<p01a"'7500m) S
EW'(tr, ... tm).12 (9.62)

Moreover, let

Jrn(@1, .. 2m)(0) =

tin
= (1= 8im1) [ 1 (a0 B (T +
ti1n
tin
i, / hi()dt 2x(i) (n € Ns i€ Nys k=1,...,m),
ti—1in

and let the functionals oy, (K = 1,...,m) be given by (9.30). Then: (a)
the problem (9.60), (9.2) has a unique solution (ud)7 ,; (b) the difference

128ee Definition 1.1’.
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scheme (9.3), (9.4) is stable; (c) there exist no € N and p € Ry such that
for any n > ng, the problem (9.3), (9.4) has a unique solution (zyn), and
(9.46) and (9.47) are fulfilled.

Remark 9.1. If the conditions of Corollary 9.9 are fulfilled, hy, € L%(Iy; R),
1 < a < +00, and for any r € R we have

9" (5r) € L*(Io; R)
and
m m
Z |gk(t7$17 S ,.’Em) - gk(tafla s 75711) S h(t,’l") Z |$k _fk
k=1 k=1
with h(-;r) € L(Ip; Ry) and
g°(t,r) =max { 3 lgu(t 21, mm) |+ D fal <7},
k=1 k=1

then the estimate

m 1
—14+—
S Jain — palu)llz = O @)
k=1
is valid.
Let in C(Ip; R™) and in Iy x R™ the inequalities (9.49)
and

|gk(t,a:1,...,a:m) —gk(t,fl,...,fm)| <

<D hi®)lzg -] (k=1,...,m), (9.63)

j=1

respectively, be fulfilled, where

(hlla---7h1m7---ahmla---ahmm§(p015---a§00m) €

EWy(ti,. . tm). (9.64)
Moreover, let
tin
fen(z1, ... 2m) (i) = / 9ty @n(z1)(E), - -, qn(zm)(t))dt
ti—1in

(neN;ieN,; k=1,...,m),

and let the functionals pr, (kK = 1,...,m) be given by (9.30). Then the
conclusion of Corollary 9.9 is valid. Besides, if ugl (k =1,...,m) are
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absolutely continuous and u%” € LY(Ip;R) (k=1,....m) with 1 < a <
+o0, then

m

o4l
Y Nz = pa(up)lly, = O(n=>*=).
k=1

Let
gr € C(Io x R™;R) (k=1,...,m),
and let the conditions (9.49), (9.61) and (9.62) be fulfilled, where
hi € C(Io;R), hij € C(Ip;Ry) (k=1,...,m).
Moreover, let
fen(z1, .. zm) (@) =
b—a

= n gk(t‘rkn(i)naxl(rk’ﬂ(i)):'"7$M(Tkn(i)))
(neN;ieN,; k=1,...,m),

and let the functionals prn, (k= 1,...,m) be given by (9.30). Then the con-
clusion of Corollary 9.9 is valid. Besides, if every ugl has bounded variation,
then

> lleen — pawlz, =0 ().
k=1

Let
gr € C(Io x R™;R) (k=1,...,m),

and let the conditions (9.49), (9.63) and (9.64) be fulfilled, where hy; €
C(Ip;Ry) (k,j=1,...,m). Moreover, let

fkn(xlaaxm)(z) = b2_na [gk(tznaxl(z)aaxm(z)) +

tgr(ticimm (i = 1),z —1)] (k=1,...,m),

and let the functionals prn, (k= 1,...,m) be given by (9.30). Then the con-
clusion of Corollary 9.9 is valid. Besides, if every u) is twice continuously

differentiable and u%” has bounded variation, then

Z |Zkn — Pn uk ||~ =0(n™?).



98

In conclusion, let us consider the boundary value problem
uk(tk) = Z [clkjuj(a) + CijUj(b)] + Ck (k =1,.. .,m) (965)

<
[y

for the system (9.60), where t; € {a,b} and cixj, corj, ck € R (k,j =
1,...,m). Assume

Ikj = lewkjl + learsl (ki =1,...,m)

and .
P ﬁmin{ln(;lkj)_l k= 1,...,m}.13

Owing to Remarks 1.1 and 1.2, the following corollary is valid.

Let g1, € C(InxR™;R) (k=1,...,m), and let in Iy x R™
the inequalities

lge(t,z1, o xm) — g (6, T1, . T | <

< higlr -] (k=1,...,m) (9.66)
j=1
be fulfilled, where either the spectral radius of the matriz

2(b—a)

(1 + (0= 0) 3" tushis + hkj):j_l (9.67)
i=1 W=

is less than 1, or
m
te=a, Y h <l (k=1,...,m).
j=1

Then the problem (9.60), (9.65) has a unique solution.
Let the conditions of Corollary 9.13 be fulfilled,

Zn(®1, - ) (1) = %[mk(i) —ay(i— 1)) +

+b8_—n“ G (timrny 21 (i = 1), @i — 1)) -

gk tins 21 (D), ()] (h=1,..0m),
Fion(@1, - 2m)(0) = =2 [gutimy 21, - 2 (3)) +

6n

m
131¢ szj =0 (k=1,...,m), then I* = 400
k=1
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bh_
+4gy, (tin 2t
2n

gkt imm (i = 1), smn(i = 1)] =1,..,m),  (9.68)

21Ty e ) (D), - Zmn (T, o ) (1)) +

and

@kn(xla - ,:Em) = Z [clkja;j (0) + CopjT; (n)] + ¢ (9.69)
(kiz 1,...,m).

Then: (a) the problem (9.60), (9.65) has a unique solution (ul)7 ,; (b) the
difference scheme (9.3), (9.4) is stable; (c) there exist ng > N and p > 0
such that for any n > ng, the problem (9.3), (9.4) has a unique solution
()™, and the conditions (9.46), (9.47) are fulfilled. Besides, if u} (k =

1,...,m) have continuous derivatives up to the fifth order inclusively, then
Y lzkn = pa(u)llz, = O ") (9.70)
k=1

Proof. Because of (9.66) and (9.67)—(9.69), the inequalities (9.44) and

|fkn($17---7$m)(i) - fkn(fla---,fm)(iﬂ <
< forn(lz1 = Z1ly- s |2m —Tm|)(@) (B=1,...,m)

are fulfilled, where

Fotn (1, ) (1) = =237 (e + %)@:j(i) — (i 1)),

2n =
porCun, -~ um) = S erhu(a) + leass g 1),
j=1
and .
ho = bgamax{;hkl,hl,j kg = 1,...,m}.

Moreover, by Lemma 7.4,
(fkn)zg € Dy, and (fOkn);g € Dy, (k=1,...,m),
where

Jor (w1, ... um)(t) = thj“j(t)-

On the other hand, by Lemmas 2.5’ and 2.6, the inclusion (9.35) is fulfilled
since hgj, cix; and cap; satisfy the conditions of Corollary 9.13.

Using now Theorem 9.2, we can easily see that assertions (b)—(c) of Corol-
lary 9.14 are valid.
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Assume now that every u{ has continuous derivatives up to the fifth order
inclusively.
For arbitrarily fixed ¢ € [a,b] and k € N,,, we put

Dre(s) = ud(t + ) — ud(t) — %(ug’(t +5) + 4u?’ (t + g) +ul' ().
Then
e (0) = ¥}, (0) = - = iy (0) = 0,

and hence

a0 = [ tin) = 05-10)

b—a _
)+ )] < pon™

for i € N, k € N, n > ng,

b—a ! !
— on |:’LL2 (t,n) + 4u2 (tin —

where pg is a number independent of & and n. Similarly,

b—a .
[ (tin = 75-%) = 2enpa), -, pa () ()| =
b—a 1
= [ (1in = =5,7) = B ) + 110 -
—a; o o! _4
S [up (ti1n) — ug (tin)]‘ <pn
for i € N, k € Ny, n > ny.

Therefore

Ul [gk(tm— b_a,u‘f(tm— b_a),...,u?n(tm—b;—na)) -

7Zln(pn(u(1))7 s 7pn(u(7)n))(i)7 LR Zmn(pn(u(l))v s

o pa(5)) ()] < pon? ++¥j§hw\“? (= 250) -

~2in(Pa (1), -+ () ()| < pan (9.71)
for i € N, k € N, n > ng.

On the other hand, since t;, € {a,b}, it is clear that
Brn(pn(u?), ..., pn(ul,)) =0 for k € Ny, n > np. (9.72)
Owing to (9.71) and (9.72), the estimate (9.70) follows from (9.46). H

In a similar way, we prove
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Let the conditions of Corollary 9.13 be fulfilled, and let
the functionals pry, (k=1,...,m) be given by (9.69) and

b—a
n

. b—a b—a
fjkn(wla- .- :wm)(l) = n gk (ti—ln + Tﬁjaxl +

flk’n(wl: i 7$m)(l) = gk(ti—lnawl(i)v s 7$m(7’))7

j—1
+Z7j1/fuln(a:17' v 7xm)(z)7 ey Im +
v=1
j—1
+Z'yjyfumn($la N 7$m)(l)) (.7 = 27 R 7j0)7
v=1

Jo
fen(@1, o mm) (@) = ajfien(@, .. zm) (@) (k=1,...,m),
j=1

where o € [0,1], 8; € [0,1] and 7;, € R are independent of n, and

Jo
E Qj = 1.
j=1

Then: (a) the problem (9.60), (9.65) has a unique solution (ul)i™,; (b) the
difference scheme (9.3), (9.4) is stable; (c) there existng € N and p > 0 such
that for any n > no, the problem (9.3), (9.4) has a unique solution (Trn)j,
and the conditions (9.46), (9.47) are fulfilled. Besides, if u} (k=1,...,m)
have continuous derivatives up to the vy + 1-th order inclusively, where vy
is the error order of the Runge-Kutta method under consideration, then

> ek = o)l = O(n™).
k=1

Note that if the conditions of Corollary 9.9 or those of Corollary 9.11
are fulfilled, then starting from a sufficiently large ng, we can solve the
problem (9.3), (9.4) by the method (9.58), (9.59). On the other hand, if the
conditions of one of Corollaries 9.10, 9.12, 9.14 and 9.15 are fulfilled, then
this problem can be solved by the iterative method (9.58"), (9.59).

§ 10. DIFFERENCE SCHEMES OF THE TYPE (0.23), (0.24)

In this section, we
consider the differential boundary value problem

duy(t —
;t( ) = fk(U/1,...,Uk,Uk,ukJ,_l,---,um)(t) (k = 17"‘7m)’ (101)

up(ty) = @rp(ut, ..., um) (k=1,...,m). (10.2)
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We assume that t; € I,
fr€ K(C(o; R™'); L(Io; R)) (k=1,...,m), (10.3)
and the functionals ¢y : C(Io; RT) = Ry (k= 1,...,m) satisfy

|(pk(U1,...,’U,m) _QDk('Ula---;'Um” S

< <P0k(|u1 - ’U1|, B |U’m - ’Um|) (k =1,.. .,’ITL), (104)
where @or : C(lo; RY') — Ry (k = 1,...,m) are positively homogeneous
continuous nondecreasing functionals.

Let
Fe)iS €Dy (k=1,...,m) (10.5)

and there exist ng € N such that the difference Cauchy problem
Ay(l - 1) = ?kn(ajl: s TS Ys Tht1,y- - - 7$m)(l)7 y(lk’ﬂ) =Co (106)

has a unique solution, for any k € Ny, n > no, co € R and (z;)jL, € E{L"

Then for arbitrarily given (zgn,)m, € E,’L’g, there obviously exists a unique
sequence (z,){, € E (n =ngo + 1,n9+2,...) such that for any natural
n > no, (Trn)j; is the solution of
Azpn(i—1) =
= ?kn(xlnfla ooy Thn—15LTkns Tk+1 n—1, - - - ;xmnfl)(i) (107)
(k=1,...,m),

under the boundary conditions

wkn(lkn) = Pk (Qn—l(zln—l): S qn—l(xmn—l)) (108)
(k=1,...,m).1

It should be emphasized here that in (10.7) every function ;,—1, j € Ny,
is assumed to be extended at the point n by
$jn_1(n) = Tjn—1 (TL — 1)

The difference process (10.7), (10.8) (n = no + 1,n0 +
2,...) is said to be stable if there exist  €]0, +oo[ and y €]0, 1 such that for
any sequences (Ygn)ieq, (Zkn)i, € EM (n =ng,no + 1,...), the estimates

m n
Do lzen —yally, <7 D" Ve, (n=ng+1,...) (10.9)
k=1

v=nop

M Clearly, for any natural n (10.7), (10.8) decomposes into m independent Cauchy
problems, each one, according to the above-said, being solvable.
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are valid, where

m
Eng = Z ||an0 - ykno”ﬁn )
k=1 0

Ev = Z (|62V| + Z |5ku(7/)|) (V = ng + 1, .. .),
k=1 i=1
821/ = Zky ikl/) — Pk (qu71(21,,,1), ey ql/*l(zmllfl)) —
—Yrw (i) + Pr(@o—1(Y10-1), - - s -1 (Ymw—1)), (10.11)
€ky(i) = AZky(i - 1) — ?k,,(zl,,,l, ey Zhy—1y Pk Bk ly—1s - -

vy Zmp—1)(8) = Ay, (1 — 1) +
+7ky(y11/717 s Ykv—15Ykvs Y410 —15 - - - 7ym1/71)(i)- (1012)

Let for any n > ng and k € N, the inequality

[?kn(wla sy Ty Ly Tt 1y e - ,a:m)(z) - 7kn(y17 Uk Ys Ykt - 7ym)(7’) -
—hien (i) (2(7kn (1)) — Y(7in (8)))] sign [(Ten () — ikn) (@(7kn (8)) —

~y(Tkn(1)))] < forn(l21 = v1ls -+ |Tm — yml) (@) for i € Ny (10.13)
be fulfilled in E™, where forn : (E)™ — EF (k =1,...,m) are positively

homogeneous continuous nondecreasing operators,
el <1 (k=1,...,m), (10.14)
(hin)i2 € Diyy (forn)iSS € Dy (K=1,...,m),  (10.15)
and

(hiy.eshum; fors ooy foms P01, -+ -5 0om) € W(t1, ..., tn). (10.16)

Then: (a) the problem (10.1), (10.2) has a unique solution (ud)™  ; (b)
the difference scheme (10.7), (10.8) (n = mng + 1,...) is stable; (¢) for any
(Thno)jey € EJ, there exists a unique sequence (Tpn)ie, (K =mno+1,...)

of solutions of the problems (10.7), (10.8), and

1 — 0 ~ = =
im g = pa(allz, =0 (k=1,...,m). (10.17)

Proof. By (10.5), (10.13) and (10.15), in C(Ip; R™) the inequalities

[fk(ul,...,uk,u,uk_,_l,...,um)(t) —

—fe(U1, VRV, VR, - o) (E) —
—hu (t) (u(t) — v(t))] sign [(t — tx)(u(t) — v(t))] <
< for(Jur — 1|, - -y [um — v ])(t) (10.18)

for tely (k=1,...,m)
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are fulfilled. Hence the operators

fk(ula"'aum)(t) = fk(ula'"7uk*17ukaukauk+17'"7um)(t) (1019)
(k=1,...,m)

and the functionals ¢ (k= 1,...,m) satisfy all the conditions of Theorem
1.2, which guarantees the existence of a unique solution (u9)?, of (10.1),
(10.2).

Let us prove the stability of the schemes (10.7), (10.8) (n = no+1,...). It
should be first of all noted that hgn, fokn, Pk, for and por (K =1,...,m;n =
no+1,...) satisfy the conditions of Lemma 8.2. Let v and r be the numbers

appearing in that lemma, and let (yx,)7, and (zxn)f, € E;” (n = mno,no+
1,...) be arbitrary sequences. Assume

’Ukn(i) = Z]m('L) — ylm(z) (k‘ = 1, . ,m).
Then, because of (10.4) and (10.13), we will have

[A’Ulm(i — 1) — hkn(i)vkn(Tkn(i))] sign [(Tkn(l) —

—in) Uk (Thn ()] < Sorn ([vin=1l; - - -, [omn—1]) () + |ern(i)]
for ie N, (k=1,...,m)

and

|'Ukn(ikn) < Yok (qn—1(|vln—1|)7 S 7Qn—1(|vmn—1|)) + |52n|
(k=1,...,m),

where €9 and ey, (k= 1,...,m) are given by (10.11) and (10.12). From
this, due to our choice of r and v and because of (10.10), we obtain (10.9)
which in fact means the stability of the scheme under consideration.

By virtue of Theorem 4.2, (10.13) and (10.14) guarantee the unique solv-
ability of (10.6) for any n > ng, k € Ny, ¢co € R and (z;)ir, € E™.
Consequently, for arbitrarily given (Zino)jy € E;’g, there exists a unique
sequence (Zg,)f; (n =ng +1,...) of solutions of (10.7), (10.8).

To prove the theorem, it remains to show that (10.17) is fulfilled.

Since the scheme is stable, we have

S lpa(ud) = wknlly, <7 >0 V"2, (n=no+1,...), (10.20)
k=1 v=no
where

m
Eno = Z |Zkno — Pno (ug)“EO:
k=1

m
Ev = Z |u2(tz;w1/) — Pk (QVfl(ylufl)a BEEE) qllfl(ymufl)” +
k=1
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m v
+ Z Z ‘7161/(:[/11/—17 s Ykv—1,Ykvs Ye+1v—1,- - - 7yml/—1)(i) -
k=1 i=1
tiy
- / Fe(ud, . ul ul,ul g, ud)(s)ds (10.21)
ti—1v

v=no+1,...)

with yr, = pu(u}) (K = 1,...,m). Due to the continuity of ¢ (k =
1,...,m) and because of (10.5),

lim ¢, =0.
v—-+00

Therefore

S*ZSup{SU:I/Z g} — 0 as n = +o0. (10.22)

Let 7o €]v2,1[, and let ny > 2ng be so large that

2

(g); §7§ for n > n;.

Then from (10.20) we find
m (5]
Z ”pn(ug) - wkn”gﬂ <r Z Y Vey +
k=1

v=ngo

n
_ n = r
Y e < re, 5ot ey <
v=[3]+1

r
S T‘€;n0’)/6l + :52 (n =n; + ].,...),

whence, owing to (10.22), it follows (10.17). W

Remark 10.1. We have incidentally proved that under the conditions of
Theorem 10.1, the estimate

lokn = Pa(up)llz, < ro(e30,70 +e7) (R=mn1+1,...) (10.23)

is valid, where € (n = 2ng,2no+1,...) are defined by (10.21) and (10.22),
ro =r/(1 —7) and 7o €]0, 1] are independent of n and (zgn, )i~ -

Let along with (10.4) the conditions (10.16), (10.18) and

fkn(zla e Tl Xy Tl 1y - - - ,:Em)('L) = 51'_11',” hkn(z)x(z) +
tin
(1 =611, / Ful@oet (21)s -+ s Gt (20, Qi () Gt (s1)s - -

ti—in

vy qno1(zm))(s)ds (ne€ N;ie Ny, k=1,...,m), (10.24)
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be fulfilled, where

hm (i) = / i (5)ds, (10.25)
ti—in
while gk (K € Nypji € N) are the operators given by (9.26) and (9.27). Let

further ng € N be so large that for any n > ng, the inequalities (10.14) are
fulfilled. Then the conclusion of Theorem 10.1 is valid.

To get sure that the corollary is valid, it suffices to note that (10.18),
(10.24) and (10.25) imply (10.5), (10.13) and (10.15), where

Son (@1, 2m) (i) = / Jor(Gnar (@1)s -+ G (@) (5)ds
Z(l:nzl,...,m).

Remark 10.2. If along with the conditions of Corollary 10.1, we have
ud'" € L*(Ip; R), hi € L*(Ip; R) and

Z |7k(u17 s 7um+1)(t) - 7k(v17 s ,’Um+1)(t)| <
k=1

m+1
< h(t) Z luk = vkllo(r;m)
k=1

with 1 < a < 400 and hy € L(Ip; Ry), then
- 0 |
Z |Zkn —pn(uk)||]§n = O(na ) for n > ny. (10.26)
k=1

Indeed, because of (10.21) and (10.22), in this case
ey = O(n%_l),

n

according to which from (10.23) we obtain (10.26).

Let the operators
fk € C(C(IOa Rm+1); C(IOa R)) (k = ]-7 e 7m)

be bounded on every bounded set of C(Iy; R™TY), and let along with (10.4)
the conditions (10.16) and (10.18) be fulfilled, where

hi. € C(lo; R), for € C(C(Io; R™); C(lo; Ry)) (k=1,...,m).

Let next

fin(@1y o Zp, Ty Thog1, - o, T ) (1) =



107

—a—

= n fk(anl(xl)a sy qnfl(a:k)afhl(x)aanl(a:k+1)7 s
s Q1 (@)t (iyn) (R € N3 i€ Nps k=1,...,m),

and let ng € N be so large that

b—a

lorory <1 for n>ng (k=1,...,m).
Then the conclusion of Theorem 10.1 is valid.

Remark 10.3. Let the conditions of Corollary 10.2 be fulfilled, ud" (k =
1,...,m) have bounded variation and

m
Z e (urs e tmer) = frlor, ... :'Um+1)||C’(Ig;R) <

m—+1
< ho Z llur — villc(ro;m)
k=1
where hg € R. Then
- 1
Z |Tkn — P (uf) ||~ :O(E) for n > nyg. (10.27)

Consider the differen-
tial system

duk (t)
dt

=G, ur(t),. .., up(t), up(t), uks1(t),. .., um(t)) (10.28)
(k=1,...,m)

with the boundary conditions (10.2), where

G € K(Ip x R™;R) (k=1,...,m).

We will be interested in the case where p : C(Ip; R™) - R (k=1,...,m)
satisfy (10.4), while the functions g, (k =1,...,m) satisfy

[?k(taxla vy Ty Ty Thet 15 - - '7xm) -
0.6, T1, o T T T 1y e Tm) —
—hi(t)(z —T)] sign [(t — t)(z —T)] <

<> hig )l — 7, (k=1,...,m), (10.29)

(hla---;hm;hlla---;hlmy---;hmly---7hmm;§0017---7800m) c
€W (te, ... tm)- (10.30)
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From Theorem 10.1, we have the following propositions.

Let the conditions (10.4), (10.29), (10.30) and

fkn(xla vy Tl Ty Thed-1y - - - 7xm)(7f) =
tin
= (51',11',“ / hk(t)dt - a:(z) + (]. — (51',11',“) X
ti—in

tin
X / gt x1(i—1), ..., 2(0 — 1), 2(Tkn(3)), 2p+1 (i — 1), . ..
ti—1in

ot —1)dt (nEN; i€ Ny; k=1,...,m)

be fulfilled, and let ng € N be so large that

tin
‘ / hk(t)dt‘ <1 forn>ng (i€ Np; k=1,...,m).
ti—in
Then: (a) the problem (10.28), (10.2) has a unique solution (ul){,; (b)

the difference scheme (10.7), (10.8) (n =mng +1,...) is stable; (¢) for any

(Tkng )y € E,’L’g, there exists a unique sequence (Tpn)i, (n =no+1,...)

of solutions of the problems (10.7), (10.8), and
lim [|pn(uy) — znllz; = 0.

Let the conditions (10.4), (10.29) and (10.30) be fulfilled,
and let, moreover,

Gx € C(Iy x R™: R), hy € C(Ip; R), hi; € C(Io; Ry)
(k,j=1,...,m).

Let further

?kn(xl,...,xk,z,zk+1,...,xm)(i) =

_b-a

gk(tinaxl(i_l)a'--axk(i_1)737(Tkn(i))7xk+l(i_1)7"'
o xZm(i—1) meN;ie Ny k=1,...,m)

n

and ng € N be so large that

b—

a
- Whillcrgry <1 for n>ng (k=1,...,m).

Then the conclusion of Corollary 10.3 is valid.
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Remark 10.4. Let u®' € L*(Iop; R), hy € L*(Ip; R) (k=1,...,m),
m m+1

Z|§k(tax17"'axm+l) _gk(tafla---afmel” < h(t) Z |xk _Ek|7

k=1 k=1

and the conditions of Corollary 10.3 be fulfilled, where 1 < a < +00 and
h € L(Ip; Ry). Then

S ok =l = O ().

k=1

Remark 10.5. Let the conditions of Corollary 10.4 be fulfilled, ugl (k =

1,...,m) have bounded variation, and
m m+1
Z |§k(tax17 s 7xm+1) - yk(tafla s 7jm+1)| < ho Z |xj - fJ'|’
k=1 j=1

where hg € R1. Then

S e~ palud)llz, = 0(~).
k=1
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