Z. Sokhadze

ON A THEOREM OF MYSHKIS-TSALYUK

(Reported on June 19 and 26, 1995)

Consider the system of differential equations with delay

$$\frac{dx(t)}{dt} = f\left(t, x(t), x(\tau_1(t)), \dots, x(\tau_m(t))\right),\tag{1}$$

where $f : [a,b] \times \mathbb{R}^{(m+1)n} \to \mathbb{R}^n$ is a vector function from the Caratheodory class and $\tau_i : [a,b] \to [a,b]$ (i = 1, ..., n) are measurable functions satisfying the inequalities

$$\tau_i(t) < t$$
 for $a < t < b$ $(i = 1, \dots, m)$.

Let $b_0 \in]a, b]$. A vector function $x : [a, b_0] \to \mathbb{R}^n$ (a vector function $x : [a, b_0[\to \mathbb{R}^n)$) is said to be a solution of the system (1) on $[a, b_0]$ (on $[a, b_0[)$ if it is absolutely continuous on $[a, b_0]$ (on every segment contained in $[a, b_0]$) and satisfies (1) a.e. on $[a, b_0]$.

The solution x of the system (1) is said to be noncontinuable if one of the following conditions is fulfilled:

i) x is defined on the segment [a, b];

ii) x is defined on the segment $[a, b_0]$, where $b_0 \in [a, b]$, and

$$\lim_{t \to b_0} \sup \|x(t)\| = +\infty.$$

A. D. Myshkis and Z. B. Tsalyuk [2] have proved a theorem on nonlocal continuability of solutions of the system (1), concerning the case where growth order of the vector function f with respect to the last mn arguments exceeds 1. Below we shall give a more general theorem of the same type.

The use will be made of the following notation:

R is the set of real numbers; $R_{+} = [0, +\infty[;$

 R^l is the space of vectors $x=(x_i)_{\equiv 1}^l$ with the components $x_i\in R$ $(i=1,\ldots,l)$ and the norm $||x|| = \sum_{i=1}^{l} |x_i|;$ $R_+^l = \{(x_i)_{i=1}^l \in R^l : x_i \in R_+ (i = 1, \dots, l)\};$ $x \cdot y$ is the scalar product of the vectors x and $y \in R^n;$

if $x = (x_i)_{i=1}^n$, then $sgn(x) = (sgn(x_i))_{i=1}^n$.

Theorem. Let for every $s \in]a, b]$ there exist a number $\delta_s \in]0, s-a[$, a vector $c_s \in \mathbb{R}^n$ and functions $\tau_{is}: [s - \delta_s, s] \rightarrow [s - \delta_s, s]$ and $\varphi_s: [s - \delta_s, s] \times R^{m+1}_+ \rightarrow R_+$ such that

$$\tau_i(t) < \tau_{is}(t)$$
 for $s - \delta_s < t < \delta_s$ $(i = 1, \dots, m)$

and the inequality

 $f(t, c_s + y_0, c_s + y_1, \dots, c_s + y_m) \cdot \operatorname{sgn}(y_0) \le \rho_s(t, ||y_0||, \dots, ||y_m||)$

¹⁹⁹¹ Mathematics Subject Classification. 34K10.

Key words and phrases: System of differential equations with delay, noncontinuable solution, nonlocal continuability.

is fulfilled on $[s - \delta_s, s] \times R^{(m+1)n}$. Moreover, let τ_{is} $(i = 1, \ldots, m)$ be measurable, φ be summable in the first argument, continuous and nondecreasing in the last m + 1 arguments and let for every $\rho \in R_+$ the initial problem

$$\frac{du(t)}{dt} = \varphi_s\left(t, u(t), u(\tau_{1s}(t)), \dots, u(\tau_{ms}(t))\right); \quad u(s - \delta(s)) = \rho$$

have upper solution defined on $[s - \delta(s), s]$. Then every noncontinuable solution of the system (1) is defined on [a, b].

Corollary 1. Let for every $s \in [a,b]$ there exist numbers $m_s \in \{0,\ldots,m-1\}$, $\delta_s \in]0, s-a[$, a vector $c_s \in \mathbb{R}^n$ and functions $\alpha_s : [s-\delta(s),s] \times \mathbb{R}_+ \to \mathbb{R}_+$ and $\varphi_s : \mathbb{R}_+ \to]0, +\infty[$ such that

$$\tau_k(t) \le s - \delta(s)$$
 for $a \le t \le b$ $(k = m_s + 1, \dots, m)$

and the inequality

$$f(t, c_s + y_0, \dots, c(s) + y_m) \cdot \operatorname{sgn}(y_0) \le \alpha_s \left(t, \sum_{k=m_s+1}^m \|y_k\|\right) \varphi_s \left(\sum_{k=0}^{m_s} \|y_k\|\right).$$

is fulfilled on the set $[s - \delta(s), s] \times R^{(m+1)n}$. Moreover, let α_s be summable in the first argument, continuous and nondecreasing in the second argument, φ_s be continuous, nondecreasing and

$$\int_{0}^{+\infty} \frac{du}{\varphi_s(u)} = +\infty$$

Then every noncontinuable solution of the system (1) is defined on [a, b].

Corollary 2. Let for every $s \in [a,b]$ there exist numbers $m_s \in \{1,\ldots,m-1\}$, $\delta_s \in]0, s-a[\cap]0, 1[, \lambda_{ks} \in [1,+\infty[, \beta_s \in]-1, 0[$ and a continuous function $\alpha_s : R_+ \to R_+$ such that the inequalities

$$\tau_k(t) \le s - (s-t)^{\overline{\lambda_{ks}}} \quad (k = 1, \dots, m_s), \ \tau_k(t) \le s - \delta(s) \quad (k = m_s + 1, \dots, m)$$

and

$$f(t, c_s + y_0, \dots, c_s + y_m) \cdot \operatorname{sgn}(y_0) \le \le \alpha_s \Big(\sum_{k=m_s+1}^m ||y_k|| \Big) (s-t)^{\beta_s} \Big(1 + \sum_{k=1}^{m_s} ||y_k||^{\lambda_{k_s}} \Big) \ln \Big(2 + \sum_{k=1}^{m_s} ||y_k|| \Big).$$

are fulfilled on $[s - \delta(s), s]$ and on $[s - \delta(s), s] \times R^{(m+1)n}$, respectively. Then every noncontinuable solution of the system (1) is defined on [a, b].

Corollary 1 is an analogue of the wellknown A. Wintner's theorem ([1], Ch. III, $\S3.5$) for the system (1), while Corollary 2 is a generalization of the above-mentioned Myshkis-Tsalyuk theorem.

References

1. P. Hartman, Ordinary differential equations. John Wiley & Sons, New York-London-Sydney, 1964.

2. A. D. Myshkis, Z. B. Tsalyuk, On nonlocal continuability of solutions of differential systems with deviating argument. (Russian) *Differentsial'nye Uravneniya* 5(1969), No. 6, 1128–1130.

Author's address:

Kutaisi A. Tsereteli State University 55, Queen Tamar St., Kutaisi 384000, Georgia