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In the present paper we consider the system of functional di�erential equations

dx(t)

dt

= f(x)(t) (1)

with the weighted initial condition

lim

t!a

kx(t) � c

0

k

h(t)

= 0; (2)

where f : C([a; b];R

n

)! L

loc

(]a; b];R

n

) is a Volterra operator c

0

2 R

n

, and h : [a; b]!

[0;+1[ is a continuous function such that h(t) > 0 for a < t � b.

A particular case of (1) is the di�erential system with the delay

dx(t)

dt

= f

0

�

t; x(t); x(�

1

(t)); : : : ; x(�

m

(t))

�

; (1

0

)

where f

0

:]a; b] � R

n

! R

n

is a vector function satisfying the local Carath�eodory con-

ditions and �

k

: [a; b] ! [a; b] (k = 1; : : : ;m) are measurable functions satisfying the

inequalities �

k

(t) � t for a � t � b (k = 1; : : : ;m).

The initial value problem for regular systems of the type (1) and (1

0

) has been stud-

ied fully enough (see, e.g., [1, 6]). We are interested in the singular systems, i.e., the

systems where f(x)(�) and f

0

(�; x

0

; x

1

; : : : ; x

m

) are not summable on [a; b] for some

x 2 C([a; b];R

n

) and x

k

2 R

n

(k = 0; : : : ;m). So far little is known about the ini-

tial value problem for such systems. The exception is the system

dx(t)

dt

= f

0

(t; x(t))

(see [2{5]).

Below we shall give new results on the existence and continuability of solutions of the

problems (1), (2) and (1

0

), (2). To formulate them we shall need the following notation

and de�nitions.

R is the set of real numbers; R

+

= [0;+1[;

R

n

is the space of n-dimensional vectors x = (x

i

)

n

i=1

with elements x

i

2 R (i =

1; : : : ; n) and the norm kxk =

P

n

i=1

jx

i

j; x � y is the scalar product of the vectors x and

y 2 R

n

;

if � 2]0;+1[, then R

n

�

=

�

x 2 R

n

: kxk � �

	

;

if x = (x

i

)

n

i=1

, then sgn(x) = (sgnx

i

)

n

i=1

;

C([a; b];R

n

) is the space of continuous vector functions x : [a; b]! R

n

with the norm

kxk

C

= maxfkx(t)k : a � t � bk;
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if � 2]0;+1[, then C

�

([a; b];R

n

) =

�

x 2 C([a; b];R

n

) : kxk

C

� �

	

;

if a � s � t � b and x 2 C([a; b];R

n

), then �(x)(s; t) = maxfkx(�)k : s � � � tg;

L

loc

(]a; b];R

n

) is the space of locally summable vector functions x :]a; b] ! R

n

with

the topology of uniform mean convergence on every segment contained in ]a; b].

De�nition 1. An operator f : C([a; b];R

n

)! L

loc

(]a; b];R

n

) is said to be Volterra if

for every t

0

2]a; b] and any vector functions x and y 2 C([a; b];R

n

) satisfying x(t) = y(t)

for a � t � t

0

, the equality f(x)(t) = f(y)(t) is ful�lled a.e. on ]a; t

0

.

De�nition 2. If f : C([a; b];R

n

)! L

loc

(]a; b];R

n

) is a Volterra operator, then:

(i) for every x 2 C([a; b];R

n

) under f(x) is understood the vector function given by

f(x)(t) = f(x)(t) for a � t � b

0

;

where x(t) = x(t) for a � t � b

0

and x = x(b

0

) for b

0

< t � b;

(ii) a continuous vector function x : [a; b

0

] ! R

n

is said to be the solution of the

system (1) on [a; b

0

] if it is absolutely continuous on every segment contained in ]a; b

0

]

and satis�es (1) a.e. on ]a; b

0

];

(iii) x : [a; b

0

[! R

n

is said to be the solution of the system (1) in a half-open interval

[a; b

0

[ if for every b

1

2]a; b

0

[ the restriction of x on [a; b

1

] is the solution of the same

system on [a; b

1

].

De�nition 3. We shall say that an operator f : C([a; b];R

n

)! L

loc

(]a; b];R

n

) satis-

�es the local Carath�eodory conditions if it is continuous and there exists a nondecreasing

in the second argument function 
 :]a; b] � R

+

) ! R

+

such that 
(�; �) 2 L

loc

(]a; b];R)

for � 2 R

+

, and for any x 2 C([a; b];R

n

) the inequality kf(x)(t)k � 
(t; kxk

C

) is ful�lled

a.e. on ]a; b[.

In the sequel we shall assume that f : C([a; b];R

n

) ! L

loc

(]a; b];R

n

) is a Volterra

operator satisfying the local Carath�eodory conditions.

De�nition 4. A solution x of the system (1) de�ned on a segment [a; b

0

] � [a; b[

(on a half-open interval [a; b

0

[� [a; b[) is said to be continuable if for some b

1

2]b

0

; b]

(b

1

2 [b

0

; b]) the system (1) has on the segment [a; b

1

] a solution y satisfying x(t) = y(t)

for a � t � b

0

. Otherwise x is said to be noncontinuable.

De�nition 5. The problem (1), (2) is said to be locally solvable if the system (1) has

on a segment [a; b

0

] a solution x satisfying the initial condition (2).

Theorem 1. Let there exist a positive number � and summable functions p and

q : [a; b]! R

+

such that

lim

t!a

sup

�

1

h(t)

t

Z

a

p(s)ds

�

< 1;

lim

t!a

sup

�

1

h(t)

t

Z

a

q(s)ds

�

= 0

(3)

and let for any y 2 C

�

([a; b];R

n

) the inequality

f(c

0

+ hy)(t) � sgn(y(t)) � p(t)�(y)(a; t) + q(t):

be ful�lled a.e. on ]a; b[. Then the problem (1), (2) is locally solvable.

Corollary 1. Let there exist summable functions p

k

: [a; b] ! R

+

(k = 0; : : : ;m)

and q : [a; b]! R

+

such that the conditions (3) are ful�lled, where p(t) =

m

P

k=0

p

k

(t), and
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let for some � > 0 the inequality

f

0

�

t; c

0

+ h(t)y

0

; c

0

+ h(�

1

(t))y

1

; : : : ; c

0

+ h(�

m

(t))y

m

�

� sgn(y

0

) �

�

m

X

k=0

p

k

(t)ky

k

k+ q(t):

be ful�lled on ]a; b[�R

(m+1)n

�

. Then the problem (1

0

), (2) is locally solvable.

Example 1. Let �

k

and �

k

2 R, � 2]0;+1[, �

k

2]1;+1[ (k = 1; : : : ;m), a = 0;

b = 1, n = 1 and

m

P

k=1

j�

k

j < �. Then because of Corollary 1, the problem

dx(t)

dt

= �

l

X

k=1

exp

�

k

t

�

x

2k�1

(t) +

+

m

X

k=1

h

�

k

x(t

k

)

t

(k�1)�+1

+ �

k

jx(t

k

)j

�

k

t

k��

k

��+1

i

+

t

��1

1 + j ln tj

;

lim

t!0

x(t)

t

�

= 0

is solvable. Consequently, under the conditions of Corollary 1, the right-hand side of the

system (1

0

) with respect to the �rst argument may have nonintegrable singularities of

arbitrary order.

Example 2. Let n = 1, a = 0, b = 1, �

k

2 R

+

(k = 1; : : : ;m) and

q(t) =

1

ln(2 + j ln tj)

+

1

(2 + j ln tj) ln

2

(2 + j ln tj)

;

p

k

(t) = �

k

ln(2 + j ln t

k

j)q(t); p(t) =

m

X

k=1

p

k

(t):

Then

lim

t!0

�

1

t

t

Z

0

p(s)ds

�

=

m

X

k=1

�

k

:

Therefore, owing to Corollary 1, the inequality

m

P

k=1

�

k

< 1 guarantees solvability of the

problem

dx(t)

dt

=

m

X

k=1

p

k

(t)

jx(t

k

)j

t

k

+ q(t); lim

t!0

x(t)

t

= 0: (4)

On the other hand, it is not di�cult to show that if

m

P

k=1

�

k

� 1, then the problem (4)

has no solution. Hence, the condition

lim

t!a

sup

�

1

t

t

Z

0

p(s)ds

�

< 1
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in Theorem 1 and Corollary 1 is optimal and it cannot be replaced by the condition

lim

t!a

sup

�

1

h(t)

t

Z

0

p(s)ds

�

� 1:

Theorem 2. Let there exist c 2 R

n

, a nondecreasing function � : [a; b] ! [a; b] and

a decreasing in the second argument function ' : [a; b] � R

+

! R

+

such that �(t) � t

for a � t � b, '(�; �) 2 L

loc

(]a; b];R) for � 2 R

+

and let for any y 2 C([a; b];R

n

) the

inequality

f(c+ y)(t) � sgn(y(t)) � '(t; �(y)(�(t); t))

be ful�lled a.e. on [a; b]. Moreover, let x be the solution of the system (1) on an interval

[a; b

0

[� [a; b[. Then for the x to be noncontinuable, it is necessary and su�cient that

lim

t!b

0

�(x)(�(t); t) = +1:

Corollary 2. If x is a solution of the system (1

0

) on an interval [a; b

0

[� [a; b[, then

for its noncontinuability it is necessary and su�cient that

�(t) = essminf�

i

(s) : t � s � b

0

; i = 1; : : : ;mg:

Theorem 3. If the conditions of Theorem 1 are ful�lled, then the problem (1), (2)

has at least one noncontinuable solution.

Corollary 3. If the conditions of Corollary 1 are ful�lled, then the problem (1

0

), (2)

has at least one noncontinuable solution.
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