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Let C([a; b]) be the set of continuous functions u : [a; b] ! R and let L([a; b]) be

the set of functions p :]a; b[! R which are Lebesque integrable on [a; b]. Moreover,

let F : C([a; b]) ! L([a; b]) be an operator. We say that F is monotone if for any

u; v 2 C([a; b]) with u(t) � v(t) (u(t) � v(t)) for a � t � b, we have F (u)(t) � F (v)(t)

(F (u)(t) � F (v)(t)) for a � t � b and

F (1)minfw(t) : a � t � bg � F (w)(t) � F (1)maxfw(t) : a < t < bg

�

F (1)maxfw(t) : a � t � bg � F (w)(t) � F (1)minfw(t) : a < t < bg

�

for any w 2 C([a; b]) taking both positive and negative values.

Under the solution of the equation

u

00

(t) = F (u)(t) (1)

we mean a function u : [a; b] ! R which along with its �rst derivative is absolutely

continuous almost everywhere on [a; b] and satis�es (1).

In this paper, we are especially interested in the question whether there exists a

solution of (1) satisfying

u(a) = u(b); u

0

(a) = u

0

(b): (2)

Theorem 1. Let F : C([a; b])! L([a; b]) be a monotone operator, F (0)(t) � 0 and

b

Z

a

jF (1)(s)j ds <

16

b� a

:

Then the problem (1), (2) has only the zero solution.

In the case where (1) is a linear ordinary di�erential equation, an analogous result

(slightly general) can be found in [1].

Theorem 1 covers both linear and nonlinear equations and also those with discontin-

uous right-hand side. In particular, for the linear equation with deviating argument

u

00

(t) = g(t)u(�(t)); (3)

where g 2 L([a; b]), g 6� 0, is a function of constant signs and � : [a; b] ! [a; b] is

measurable, we have
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Corollary 1. Let

b

Z

a

jg(s)j ds <

16

b� a

: (4)

Then the problem (3), (2) has only the zero solution.

Corollary 1 remains valid for nonlinear equations of the type

u

00

(t) = g(t)maxfu(s) : �(t) � s � �(t)g

and

u

00

(t) = g(t)minfu(s) : �(t) � s � �(t)g;

where �; � : [a; b]! [a; b] are measurable and �(t) � �(t) for a � t � b.

Note that the inequality (4) for an equation of the type (3) is exact and it cannot be

weakened. Indeed, let a = �4, b = 4,

v(t) =

8

<

:

t

2

(19 � 12t) for 0 � t � 1

(t� 1)(3 � t) + 7 for 1 < t < 3

(4� t)

2

(12t � 29) for 3 � t � 4

;

u(t) =

�

�v(t + 4) for � 4 � t � 0

v(t) for 0 < t � 4

;

�(t) =

�

2 for t 2 [�3;�1] [ [0; 1] [ [3; 4]

�2 for t 2 [�4;�3[[]� 1; 0[[]1; 3[

;

g(t) =

�

1

8

jv

00

(t+ 4)j for � 4 � t � 0

1

8

jv

00

(t)j for 0 < t � 4

:

We can easily see that

R

4

�4

g(s)ds = 2 and u is a periodic solution of (1).

Let us �nally consider

u

00

(t) = g(t)T (u)(t); (5)

where g 2 L([a; b]) is the function of constant signs, and T : C([a; b]) ! L([a; b]) is the

operator de�ned by the equality

T (u)(t) =

�

u(t) if u(t) < 1 for a � t � b

1 if for some t

0

2 [a; b]; u(t

0

) > 1

:

According to Theorem 1, if the inequality (4) is ful�lled, then the problem (5),(2) has

only the zero solution. It is not di�cult to construct an example from which one could

easily see that in this case inequality (4) cannot be also weakened.
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