M. Ashordia

ON THE STABILITY OF SOLUTIONS OF NONLINEAR BOUNDARY VALUE PROBLEMS FOR SYSTEMS OF GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS

(Reported on April 10 and 17, 1995)

Let $A = (a_{ij})_{i,j=1}^n \in BV_{n \times n}(a, b), f = (f_i)_{i=1}^n \in K_n(a, b; A)$, and let $h : BV_n(a, b) \to \mathbb{R}^n$ be a continuous operator such that the nonlinear boundary value problem

$$dx(t) = dA(t) \cdot f(t, x(t)), \quad h(x) = 0$$
 (1)

has a solution x° .

Consider sequences $A_k \in BV_{n \times n}(a, b)$ (k = 1, 2, ...) and $f_k \in K_n(a, b; A_k)$ (k = 1, 2, ...) and a sequence of continuous operators $h_k : BV_n(a, b) \to \mathbb{R}^n$ (k = 1, 2, ...).

In this paper, sufficient conditions are given guaranteeing both the solvability of the problem

$$dx(t) = dA_k(t) \cdot f_k(t, x(t)), \quad h_k(x) = 0$$
(1_k)

for any sufficiently large k and the convergence of its solutions as $k \to \infty$ to the solution x° of the problem (1).

We use the following notation and definitions: $R =] - \infty, \infty[, R_+ = [0, \infty[; R^{n \times m} \text{ is the space of all real } n \times m\text{-matrices } X = (x_{ij})_{i,j=1}^{n,m} \text{ with the norm } ||X|| = \max\{\sum_{i=1}^{n} |x_{ij}|: j = 1, \ldots, m\}; |X| = (|x_{ij}|)_{i,j=1}^{n,m}, [X]_+ = (|X| + X)/2; I \text{ is the identity } n \times n\text{-matrix; } R^n = R^{n \times 1} \text{ is the space of all matrix-functions } X = (x_{ij})_{i,j=1}^{n,m} : [a,b] \rightarrow R^{n \times m} \text{ such that } \operatorname{var}_a^b x_{ij} < +\infty \text{ with the norm } ||X||_s = \sup\{||X(t)|| : t \in [a,b]\}; V(X)(t) \equiv (\operatorname{var}_a^t x_{ij})_{i,j=1}^{n,m}, d_1X(t) = X(t) - X(t-0), d_2X(t) = X(t+0) - X(t). U(y,r) = \{x \in BV_n(a,b) : ||x-y||_s < r\}; D(y,r) \text{ is the set of all } x \in R^n \text{ such that inf}\{||x-y(\tau)|| : \tau \in [a,b]\} < r.$

If
$$g \in BV_1(a, b), x : [a, b] \to R$$
 and $a \leq s < t \leq b$, then $\int\limits_s^{\circ} x(\tau) dg(\tau) = \int\limits_{]s,t[} x(\tau) dg(\tau) + \int\limits_{]s,t[}^{\circ} x(\tau) dg(\tau) dg$

 $x(t)d_1g(t) + x(s)d_2g(s)$, where $\int_{]s,t[} x(\tau)dg(\tau)$ is the Lebesque–Stieltjes integral over the

open interval]s, t[. If $G(t) = (g_{ij}(t))_{i,j=1}^{l,n}$ and $X(t) = (x_{jk}(t))_{j,k=1}^{n,m}$, then

$$\int_{s}^{t} dG(\tau) \cdot X(\tau) = \left(\sum_{j=1}^{n} \int_{s}^{t} x_{jk}(\tau) dg_{ij}(\tau)\right)_{i,k=1}^{l,m}.$$

 $L_{n \times m}(a, b; G)$ is the set of all matrix-functions $(x_{jk}(t))_{j,k=1}^{n,m}$ such that x_{jk} is integrable with respect to g_{ij} (i = 1, ..., l). $K_{n \times m}(a, b; G)$ is the Carathéodory class, i.e., the set of all mappings $F = (f_{jk})_{j,k=1}^{n,m} : [a, b] \times \mathbb{R}^n \to \mathbb{R}^{n \times m}$ such that (a) $f_{ik}(\cdot, x)$ is measurable

¹⁹⁹¹ Mathematics Subject Classification. 34B15.

Key words and phrases. System of generalized ordinary differential equations, nonlinear boundary value problem, stability.

with respect to the measures $V(g_{ij})$ and $V(g_{ij}) - g_{ij}$ for $x \in \mathbb{R}^n$ (i = 1, ..., l); (b) $F(t, \cdot)$ is continuous for $t \in [a, b]$ and $\sup\{|F(\cdot, x)| : x \in D\} \in L_{n \times m}(a, b; G)$ for every compact $D \subset \mathbb{R}^n$.

Inequalities between the matrices are understood to be componentwise. If B_1 and B_2 are normed spaces, then an operator $g: B_1 \to B_2$ is called positively homogeneous if $g(\lambda x) = \lambda g(x)$ for every $\lambda \in R_+$ and $x \in B_1$.

A vector-function $x \in BV_n(a, b)$ is said to be a solution of the problem (1) if h(x) = 0

and $x(t) = x(s) + \int_{a} dA(\tau) \cdot x(\tau)$ for $a \le s \le t \le b$.

Let $\ell: BV_n(a, b) \to \mathbb{R}^n$ be a linear continuous operator and let $\ell_0: BV_n(a, b) \to \mathbb{R}^n_+$ be a positively homogeneous continuous operator. We say that a matrix-function $P \in K_{n \times n}(a, b; A)$ satisfies the Opial condition with respect to the triplet $(\ell, \ell_0; A)$ if (a) there exists a matrix-function $\Phi \in L_{n \times n}(a, b; A)$ such that $|P(t, x)| \leq \Phi(t)$ on $[a, b] \times \mathbb{R}^n; b$ det $(I + (-1)^j d_j B(t)) \neq 0$ for $t \in [a, b]$ (j = 1, 2) and the problem $dx(t) = dB(t) \cdot x(t), |\ell(x)| \leq \ell_0(x)$ has only trivial solution for every $B \in BV_{n \times n}(a, b)$ for which there

exists a sequence $y_k \in BV_n(a,b)$ (k = 1, 2, ...) such that $\lim_{k \to \infty} \int_a^b dA(\tau) \cdot P(\tau, y_k(\tau)) = P(\tau) \cdot dt$

B(t) uniformly on [a, b].

 x° is said to be strongly isolated in the radius r if there exist $P \in K_{n \times n}(a, b; A)$, $q \in K_n(a, b; A)$, a linear continuous operator $\ell : BV_n(a, b) \to R^n$ and a positively homogeneous operator $\tilde{\ell} : BV_n(a, b) \to R^n$ such that (a) f(t, x) = P(t, x)x + q(t, x) for $t \in [a, b], ||x - x^{\circ}(t)|| < r$ and $h(x) = \ell(x) + \tilde{\ell}(x)$ is fulfilled on $U(x^{\circ}; r)$; (b) the vector-functions $\alpha(t, \rho) = \max\{|q(t, x)| : ||x|| \le \rho\}$ and $\beta(\rho) = \sup\{|\tilde{\ell}(x)| - \ell_0(x)\}_+$:

 $||x||_{s} \leq \rho$ satisfy $\lim_{\rho \to \infty} \frac{1}{\rho} \int_{a}^{b} dV(A)(t) \cdot \alpha(t,\rho) = 0$, $\lim_{\rho \to \infty} \beta(\rho)/\rho = 0$; (c) the problem $dx(t) = dA(t) \cdot [P(t,x(t))x(t) + q(t,x(t))], \ \ell(x) + \tilde{\ell}(x) = 0$ has no solution different from

 x° ; (d) P satisfies the Opial condition with respect to the triplet $(\ell, \ell_0; A)$.

The notation $((A_k, f_k, h_k))_{k=1}^{\infty} \in W_r(A, f, h; x^{\circ})$ means that (a) $\lim_{k \to \infty} \int_a^{\cdot} dA_k(\tau) \times \int_a^{\cdot} dA_k(\tau) dA_k(\tau)$

 $f_k(\tau, x) = \int_a^t dA(\tau) \cdot f(\tau, x)$ uniformly on [a, b] for every $x \in D(x^\circ; r)$; (b) $\lim_{k \to \infty} h_k(x) =$

h(x) uniformly on $U(x^{\circ};r)$; (c) $\lim_{s \to 0+} \sup\{ \| \int_{a}^{b} dV(A_{k})(t) \cdot \omega_{k}(t,s) \| : k = 1, 2, \dots \} = 0$ on

 $[a,b] \times D(x^{\circ};r), \text{ where } \omega_{k}(t,s) = \max\{|f_{k}(t,x) - f_{k}(t,y)| : ||x||, ||y|| \le ||x^{\circ}||_{s} + r; ||x-y|| \le s\}.$ The problem (1) is said to be $(x^{\circ};r)$ -correct if for every $\varepsilon \in]0, r[$ and $((A_{k},f_{k},h_{k}))_{k=1}^{\infty} \in W_{r}(A,f,h;x^{\circ})$ there exists a natural number k_{0} such that the problem (1) has at least one solution contained in $U(x^{\circ},x)$ for any

one solution contained in $U(x^{\circ}; r)$, and any such solution belongs to $U(x^{\circ}; r)$ for any $k \ge k_0$. Theorem If the problem (1) has a solution x° which is strengly isolated in the

Theorem. If the problem (1) has a solution x° which is strongly isolated in the radius r, then it is $(x^{\circ}; r)$ -correct.

Similar results for ordinary differential equations can be found in [1].

References

I. T. Kiguradze, Boundary value problems for systems of ordinary differential equations. (Russian) Current Problems in Mathematics. Newest Results, vol. 30 (Russian), 3–103, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vses. Inst. Nauchn. i Tekh. Inform., Moscow, 1987.

Author's address:

A. Razmadze Mathematical Institute, Georgian Academy of Sciences

1, M. Aleksidze St., Tbilisi 380093, Georgia