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Abstract. In this paper the unique solvability of a semi-linear wave
equation associated with a full nonlinear damping-source term and a linear
integral equation at the boundary is proved by a contraction procedure.
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îâäæñéâ. êŽöîëéöæ çñéöãæåæ ìîëùâáñîæï àŽéëõâêâĲæå áŽéðçæùâĲñèæŽ
ŽîŽûîòæãæ éŽáâéìòæîâĲâèæ ûâãîæï éóëêâ êŽýâãîŽáûîòæãæ ðŽèôæï àŽêðë-
èâĲæï ùŽèïŽýŽá ŽéëýïêŽáëĲŽ ïŽäôãŽîäâ ûîòæãæ æêðâàîŽèñîæ àŽêðëèâĲæï
öâéùãâè ïŽûõæï-ïŽïŽäôãîë ìæîëĲâĲöæ.
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1. Introduction

We study the solution u(x, t) of the following semi-linear equation:

utt − µ(t)uxx + F (x, t, u, ut) = 0, 0 < x < 1, 0 < t < T, (1.1)

associated with initial-boundary values given by

u(0, t) = 0, (1.2)

−µ(t)ux(1, t) = Q(t), (1.3)

u(x, 0) = u0(x), ut(x, 0) = u1(x), (1.4)

where F, u0, u1, and µ are given real functions satisfying conditions specified
later, and Q(t) satisfies the following integral equation:

Q(t) = K1(t)u(1, t) + λ1(t)ut(1, t)− g(t)−
t∫

0

k(t− s)u(1, s) ds, (1.5)

where g, k, K1, and λ1 are given functions. This problem is a mathematical
model describing the shock of a rigid body and a viscoelastic bar (see [3],
[7]–[13]) considered by several authors.

In [3], with F (x, t, u, ut) = Ku + λut and µ(t) ≡ a2, A. Nguyen and
T. Nguyen studied the equation (1.1) in the domain [0, l] × [0, T ] when
the initial data are homogeneous, namely u(x, 0) = ut(x, 0) = 0, and the
boundary conditions are given by{

Eux(0, t) = −f(t),
u(l, t) = 0,

(1.6)

where E is a constant.
In [7], Nguyen and Alain considered the problem (1.1)–(1.4) with λ1(t) ≡

0, K1(t) = h ≥ 0 and µ(t) = 1, wherein the unknown function u(x, t) and
the unknown boundary value Q(t) satisfy the integral equation

Q(t) = hu(1, t)− g(t)−
t∫

0

k(t− s)u(1, s) ds. (1.7)

We note that the equation (1.7) is deduced from a Cauchy problem for an
ordinary differential equation at the boundary x = 1.

In [12] Santos studied the asymptotic behavior of the solution of the
problem {(1.1), (1.2), (1.4)} in the case where F (x, t, u, ut) = 0, associated
with the boundary condition of memory type at x = 1 as follows

u(1, t) +

t∫

0

g(t− s)µ(s)ux(1, s) ds = 0, t > 0. (1.8)

Note that the boundary conditions (1.7) and (1.8) are similar since the
formal differences between them can be crossed out after solving the Volterra
equation with respect to the variable u(1, t) given by (1.8).
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In [8], [9], [10], Nguyen, Lê and Truc Nguyen proved the unique existence,
stability, regularity in time variable and an asymptotic expansion for the
solution of the problem (1.1)–(1.5) when F (x, t, u, ut) = Ku+λut− f(x, t).

For a specific nonlinear case of F (x, t, u, ut), namely

K|u|p−2u + λ|ut|q−2ut − f(x, t)

with p ≥ 2 and q ≥ 2, Lê [11] proved the unique solvability of the problem
under consideration. Furthermore the author also studied the stability of
the weak solution with respect to some given parameters.

In [13], Sengul investigated the solvability of the equation (1.1) in the
case where F (x, t, u, ut) = g(u)+αut−f(x, t), associated with homogeneous
boundary conditions, where the initial conditions are similar to (1.4).

Although there have been many publications related to the problem un-
der consideration, the contraction procedure has not been much applied
for proving the solvability, to our knowledge. Specifically, in [3], [7]–[12] et
cetera, the authors only applied Galerkin approximation associated with a
priori estimates, weak-convergence and compactness arguments (see [4], [6],
[15]). Although this method is effective, it is occasionally quite difficult to
understand.

In this paper, we apply a contraction procedure (see [5], [14]) to obtain
the unique solvability of the problem (1.1)–(1.5), and the essential proofs
are shorter and easier. The obtained result may be considered as a gener-
alization of those in Nguyen and Alain [7], in Lê [11], in Santos [12], and in
Sengul [13].

2. Preliminary Results and Notation

First we introduce some preliminary results and notation used in this
paper. Let Ω := (0, 1) and QT := Ω × (0, T ) for T > 0. We omit the
definitions of usual function spaces: Cm(Ω), Lp = Lp(Ω), Wm,p(Ω). We
denote Wm,p = Wm,p(Ω), Lp = W 0,p(Ω), and Hm = Wm,2(Ω) for 1 ≤ p ≤
∞ and m = 0, 1, . . . .

The norm in L2 is denoted by ‖ · ‖. We also denote by 〈·, ·〉 the scalar
product in L2 or the dual scalar product of a continuous linear functional
with an element of a function space. We denote by ‖ · ‖X the norm of a
Banach space X and by X ′ the dual space of X. We denote by Lp(0, T ; X),
1 ≤ p ≤ ∞, the Banach space of the real measurable functions u : (0, T ) →
X such that

‖u‖Lp(0,T ;X) =
( T∫

0

‖u(·, t)‖p
Xdt

)1/p

< ∞ for 1 ≤ p < ∞

and

‖u‖L∞(0,T ;X) = ess sup
0≤t≤T

‖u(·, t)‖X for p = ∞.
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In addition, we denote by C ([0, T ];X) the space of all continuous func-
tions

u : [0, T ] → X

with

‖u‖C([0,T ];X) := max
0≤t≤T

‖u(·, t)‖X < ∞,

and by C1 ([0, T ]; X) the space of all differentiable functions u : [0, T ] → X
with

‖u‖C1([0,T ];X) := max
0≤t≤T

(‖u(·, t)‖X + ‖u′(·, t)‖X

)
< ∞.

Let u(t), u′(t) = ut(t), u′′(t) = utt(t), ux(t), and uxx(t) denote u(x, t),
∂u
∂t (x, t), ∂2u

∂t2 (x, t), ∂u
∂x (x, t), and ∂2u

∂x2 (x, t), respectively.
We put

V = {v ∈ H1 : v(0) = 0}, (2.1)

a(u, v) =
〈∂u

∂x
,
∂v

∂x

〉
=

1∫

0

∂u

∂x

∂v

∂x
dx. (2.2)

Here V is a closed subspace of H1 and a is a scalar product on V . Addi-
tionally, ‖v‖H1 and ‖v‖V =

√
a(v, v) are two equivalent norms. Then we

have the following lemma.

Lemma 1. The imbedding V ↪→ C0([0, 1]) is compact and

‖v‖C0([0,1]) ≤ ‖v‖V (2.3)

for all v ∈ V.

We omit the detailed proof because of its obviousness. Moreover, there
are the following results whose proofs are also omitted.

Lemma 2. Suppose u ∈ L2 (0, T ;V ) with u′ ∈ L2
(
0, T ; H−1(Ω)

)
. Then

u ∈ C
(
[0, T ];L2(Ω)

)

(after possibly being redefined on a set of measure zero).

Lemma 3. Let m be a nonnegative integer. Suppose

u ∈ L2
(
0, T ;Hm+2(Ω)

)

with u′ ∈ L2 (0, T ; Hm(Ω)) . Then

u ∈ C
(
[0, T ];Hm+1(Ω)

)

(after possibly being redefined on a set of measure zero).
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3. Unique Solvability

First and foremost we formulate the following assumptions:

(Aµ) µ ∈ H2(0, T ), µ(t) ≥ µ0 > 0;

(A(1)
F ) F (·, ·, v, w), Ft(·, ·, v, w) ∈ L2(QT ) for arbitrarily (v, w) ∈ R2;

(A(2)
F ) There exists K > 0 such that

∣∣F (x, t, v, w)− F (x, t, ṽ, w̃)
∣∣ ≤ K

(|v − ṽ|+ |w − w̃|)

for arbitrary (x, t) ∈ QT and (v, ṽ, w, w̃) ∈ R4;

(AK1) K1 ∈ H1(0, T ), K1(t) ≥ 0;

(Aλ1) λ1 ∈ H1(0, T ), λ1(t) ≥ λ0 > 0;

(Ag) g ∈ H1(0, T );

(Ak) k ∈ H1(0, T );

(A0,1) u0 ∈ V ∩ H2, u1 ∈ H1, and u0, u1, K1, λ1, g and k satisfy the
compatibility condition

−µ(0)u′0(1) = K1(0)u0(1) + λ1(0)u1(1)− g(0).

In this paper we say that a function

u ∈ C1
(
[0, T ];L2

) ∩ C ([0, T ]; V )

is a weak solution of the problem (1.1)–(1.5) if




d

dt
〈u′(t), v〉+ µ(t) 〈ux(t), v′〉+ Q(t)v(1) +

〈
F (x, t, u(t), u′(t)), v

〉
= 0,

u(x, 0) = u0(x), u′(x, 0) = u1(x),

Q(t) = K1(t)u(1, t) + λ1(t)u′(1, t)− g(t)−
t∫

0

k(t− s)u(1, s) ds

for each v ∈ V and almost all 0 ≤ t ≤ T , and d
dt 〈u′(t), v〉 is the derivative

in the sense of distributions on (−∞, T ) of the function
{
〈u′(t), v〉 , t > 0,

0, t < 0

(see also [1], [2]). In addition, we can say that the problem (1.1)–(1.5) is
solvable in C1

(
[0, T ]; L2

) ∩ C ([0, T ];V ) in the above weak sense.
We have the following theorem.

Theorem 1. Let (Aµ), (A(1)
F ), (A(2)

F ), (AK1), (Aλ1), (Ag), (Ak), and
(A0,1) hold. Then, for T > 0, the problem (1.1)–(1.5) has a unique weak
solution u(x, t) satisfying

u ∈ C1
(
[0, T ];L2

) ∩ C ([0, T ];V ) . (3.1)
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Proof. In this proof, to deal with the nonlinear damping-source F easily,
we use a contraction procedure (see [5, p. 500, Theorem 2]) which consists
of several steps as follows.

Step 1. The solvability in C1
(
[0, T ];L2

)
.

We will define the operator s as follows. Given a function u ∈
C1

(
[0, T ];L2

)
, let f(x, t) := F (x, t, u(t), ut(t)) for (x, t) ∈ QT . From (A(1)

F ),
we deduce that

f, ft ∈ L2(QT ). (3.2)
Then the following lemma is valid whose proof is similar to that in [11].

Lemma 4. Under the condition (3.2) and the assumptions (Aµ), (AK1),
(Aλ1), (Ag), (Ak) and (A0,1), the linear initial-boundary value problem





wtt − µ(t)wxx = −f in QT ,

w(0, t) = 0,

−µ(t)wx(1, t) = P (t),
w(x, 0) = u0(x), wt(x, 0) = u1(x),

P (t) = K1(t)w(1, t) + λ1(t)wt(1, t)− g(t)−
t∫

0

k(t− s)w(1, s) ds

(3.3)
has a unique weak solution w(x, t) such that

w ∈ L∞
(
0, T ;V ∩H2

)
, w′ ∈ L∞ (0, T ; V ) , w′′ ∈ L∞ (QT ) . (3.4)

In addition, w(x, t) satisfies the following estimate:

Ew(t) ≤ M0 (3.5)

for t ∈ [0, T ], where

Ew(t)=‖w′(t)‖2+µ0‖wx(t)‖2+K1(t)w2(1, t)+2

t∫

0

λ1(s)|w′(1, s)|2 ds (3.6)

and M0 is a non-negative constant independent of t.

Remark 1. The unique solvability of the problem (3.3) is independent of
(A(2)

F ).

Using the embedding H2(0, T ) ↪→ C1 ([0, T ]) and applying Lemma 2 and
Lemma 3, we deduce from (3.4) that

w ∈ C1
(
[0, T ];L2

) ∩ C ([0, T ];V ) . (3.7)

In addition, w satisfies



〈w′′(t), v〉+ µ(t) 〈wx(t), v′〉+ P (t)v(1) + 〈f(t), v〉 = 0,

w(x, 0) = u0(x), w′(x, 0) = u1(x),

P (t)=K1(t)w(1, t)+λ1(t)w′(1, t)−g(t)−
t∫

0

k(t−s)w(1, s) ds

(3.8)



146 Út V. Lê and Eduardo Pascali

for each v ∈ V and almost all 0 ≤ t ≤ T.
Define s : C1

(
[0, T ]; L2

) → C1
(
[0, T ]; L2

)
by setting

su = w. (3.9)

It is claimed that if T > 0 is small enough, then s is a strict contrac-
tion. To prove this, take u, ũ ∈ C1

(
[0, T ];L2

)
arbitrarily, and define w :=

su and w̃ := s ũ as above. As a result, w verifies (3.8) for f(x, t) =
F (x, t, u(x, t), ut(x, t)) , and w̃ satisfies a system similar to (3.8) for





f̃(x, t) := F (x, t, ũ(x, t), ũt(x, t)) ,

P̃ (t)=K1(t)w̃(1, t)+λ1(t)w̃′(1, t)−g(t)−
t∫

0

k(t−s)w̃(1, s) ds.
(3.10)

In addition, we have

〈w′′(t)− w̃′′(t), v〉+ µ(t) 〈wx(t)− w̃x(t), vx〉+
+

(
P (t)− P̃ (t)

)
v(1) +

〈
f(t)− f̃(t), v

〉
= 0 (3.11)

for each v ∈ V and almost all 0 ≤ t ≤ T.
Now, in (3.11), replacing v by w′ − w̃′ and then integrating with respect

to t, we get

E(t) =

t∫

0

µ′(s) ‖wx(s)− w̃x(s)‖2 ds +

t∫

0

K ′
1(s) [w(1, s)− w̃(1, s)]2 ds+

+ 2

t∫

0

[w′(1, s)− w̃′(1, s)]
( s∫

0

k(s− τ) [w(1, τ)− w̃(1, τ)] dτ

)
ds−

− 2

t∫

0

〈
f(s)− f̃(s), w′(s)− w̃′(s)

〉
ds, (3.12)

where

E(t) =‖w′(t)−w̃′(t)‖2+µ(t) ‖wx(t)−w̃x(t)‖2+K1(t) [w(1, t)−w̃(1, t)]2 +

+ 2

t∫

0

λ1(s) [w′(1, s)− w̃′(1, s)]2 ds. (3.13)

From (2.3), (3.2), (3.12), (3.13) and the assumptions (Aµ), (AK1), (Aλ),
(Ak), we deduce the following estimates

t∫

0

µ′(s) ‖wx(s)− w̃x(s)‖2 ds ≤ 1
µ0

t∫

0

|µ′(s)|E(s) ds, (3.14)
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t∫

0

K ′
1(s) [w(1, s)− w̃(1, s)]2 ds ≤

t∫

0

|K ′
1(s)|
µ0

E(s) ds, (3.15)

2

t∫

0

[w′(1, s)− w̃′(1, s)]
( s∫

0

k(s− τ)
[
w(1, τ)− w̃(1, τ)

]
dτ

)
ds ≤

≤ ε
E(t)
2λ0

+
T

εµ0
‖k‖2L2(0,T )

t∫

0

E(s) ds, (3.16)

− 2

t∫

0

〈
f(s)− f̃(s), w′(s)− w̃′(s)

〉
ds ≤

≤
t∫

0

‖f(s)− f̃(s)‖2 ds +

t∫

0

E(s) ds (3.17)

for some ε > 0.
With the relevant choice of ε, namely ε = λ0, and using Gronwall’s

inequality, we conclude from (3.12)–(3.17) that

E(t) ≤
(

2

t∫

0

‖f(s)− f̃(s)‖2 ds

)
exp [D(t)] , (3.18)

where

D(t) = 2

t∫

0

[
1 +

1
µ0

(
µ′(s) + K ′

1(s) +
T

λ0
‖k‖2L2(0,T )

)]
ds. (3.19)

Using the assumptions (Aµ), (AK1), (Ak), we deduce from (3.19) that there
exists a constant M > 0 (independent of t but dependent on T ) such that

exp [D(t)] ≤ M (3.20)

for t ∈ [0, T ]. From the assumption (A(2)
F ), it is clear that (3.18) is equiva-

lent to
E(t) ≤ 2TMK2‖u− ũ‖2C1([0,T ];L2) (3.21)

for arbitrary u, ũ ∈ C1
(
[0, T ];L2

)
, and t ∈ [0, T ].

Combining (3.13) and (3.21), we obtain

‖w′(t)− w̃′(t)‖2 ≤ 2TMK2‖u− ũ‖2C1([0,T ];L2) (3.22)

for arbitrary u, ũ ∈ C1
(
[0, T ]; L2

)
and t ∈ [0, T ]. Moreover, it is not difficult

to see that

‖w(t)− w̃(t)‖2 ≤ 2T 3MK2‖u− ũ‖2C1([0,T ];L2) (3.23)
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for arbitrary u, ũ ∈ C1
(
[0, T ];L2

)
and t ∈ [0, T ]. Hence, after maximizing

the left hand sides of (3.22) and (3.23) with respect to t, we find

‖w − w̃‖2C1([0,T ];L2) ≤ 2MT (T 2 + 1)K2‖u− ũ‖2C1([0,T ];L2) (3.24)

for arbitrary u, ũ ∈ C1
(
[0, T ];L2

)
. Thus

‖s u−s ũ‖C1([0,T ];L2) ≤ K
√

2MT (T 2 + 1) ‖u− ũ‖C1([0,T ];L2) (3.25)

for arbitrary u, ũ ∈ C1
(
[0, T ];L2

)
. Then s is a strict contraction, provided

T > 0 is so small that

K
√

2MT (T 2 + 1) = α < 1.

As a result, with the application of Banach’s fixed point theorem, we con-
clude that the problem (1.1)–(1.5) is solvable in C1

(
[0, T ]; L2

)
in the weak

sense.
Step 2. The solvability in C ([0, T ];V ) .
From (3.5) and (3.6), we obtain that

‖wx(t)‖2 ≤ M0 (3.26)

for t ∈ [0, T ]. However, Step 1 shows that the operator s defined by
su := w for all u ∈ C1(0, T ;L2) has at least one fixed point. Hence there
exists u ∈ C1(0, T ;L2) such that w = su ≡ u. Then we deduce from (3.26)
that

‖ux(t)‖2 ≤ M0 (3.27)

for t ∈ [0, T ]. From (2.1) and (2.2), after maximizing the left side of (3.27)
with respect to t, we get

u ∈ C(0, T ; V ). (3.28)

As a result, the problem (1.1)–(1.5) is also solvable in C(0, T ; V ).

Remark 2. In the case T > 0 is given, we select T1 > 0 so small that

K
√

2MT1(T 2
1 + 1) < 1.

Then we are able to apply Banach’s fixed point theorem to find a weak
solution u of the problem (1.1)–(1.5) existing on the time interval [0, T1];
namely, we obtain

u ∈ C1(0, T1; L2) ∩ C(0, T1;V ).

In addition, from the assumptions (Aµ), (A(1)
F ), (AK1), (Aλ1), (Ag), (Ak),

and (A0,1), we deduce that




‖u′(t)‖2 + µ(t)‖ux(t)‖2 < +∞,

‖u′′(t)‖2 + µ(t)‖u′x(t)‖2 < +∞,

uxx =
1

µ(t)
(utt + F (·, t, u, ut)) ∈ L2
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for all (x, t) ∈ QT1 (see also [11, Theorem 1]). Hence we obtain the regularity
of the weak solution u on QT1 as follows

u ∈ L∞
(
0, T1;V ∩H2

)
, u′ ∈ L∞ (0, T1; V ) , u′′ ∈ L∞ (QT1) .

Then we can continue, by redefining T1 if necessary, and assuming u′x(T1),
uxx(T1) ∈ L2 or (u(T1), u′(T1)) ∈

(
V ∩H2

) × H1. Now, by repeating the
argument above, we can extend our solution to the time interval [T1, 2T1].
Continuing, after finitely many steps we construct a weak solution existing
on the full interval [0, T ].

Step 3. The uniqueness of the weak solution.
To prove the uniqueness, suppose both u and ũ are two weak solutions

of the problem (1.1)–(1.5). Then we have w = u, w̃ = ũ in (3.12)–(3.17).
Hence we compute

E(t) ≤ 2M̃K2

( t∫

0

‖u(s)− ũ(s)‖2 ds

)
, (3.29)

where M̃ is a positive constant independent of t but dependent on T such
that

M̃ ≥ 2 exp
( t∫

0

[
3 +

1
µ0

(
µ′(s) + K ′

1(s) +
T

λ0
‖k‖2L2(0,T )

)]
ds

)
(3.30)

for t ∈ [0, T ]. From (3.13), (3.29) and (3.30), we find

‖u(t)− ũ(t)‖2V ≤ 2M̃K2

µ0

t∫

0

‖u(s)− ũ(s)‖2V ds. (3.31)

Because of Gronwall’s inequality, we deduce from (3.31) that u ≡ ũ.
The above three steps show that the theorem is proved completely. ¤

Remark 3. Note that one can study the unique solvability of the problem
under consideration by applying Galerkin approximation associated with a
priori estimates, weak-convergence and compactness arguments. Obviously,
stronger assumptions on the nonlinear damping-source term will be needed,
and many technical arguments must be modified.
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