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Abstract. It is proved that the characteristic initial value problem for
the second order hyperbolic equation

uxy = f(x, y, u),

where f : [0, a] × [0, b] × R → R is a continuous function, has at least one
global, or local blow-up solution. Unimprovable in a sense conditions of
existence and nonexistence of global and local blow-up solutions are estab-
lished.
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îâäæñéâ. áŽéðçæùâĲñèæŽ, îëé éŽýŽïæŽåâĲâè ïŽûõæï ŽéëùŽêŽï éâëîâ îæ-
àæï ßæìâîĲëèñîæ àŽêðëèâĲæïŽåãæï

uxy = f(x, y, u),

ïŽáŽù f : [0, a]×[0, b]×R→ R ñûõãâðæ òñêóùæŽŽ, Žóãï âîåæ éŽæêù àèëĲŽèñ-
îæ Žê òâåóâĲŽáæ èëçŽèñîæ ŽéëêŽýïêæ. êŽìëãêæŽ àŽîçãâñèæ Žäîæå ŽîŽàŽñé-
þëĲâïâĲŽáæ ìæîëĲâĲæ, îëéèâĲæù, ïŽåŽêŽáëá, ñäîñêãâèõëòâê àèëĲŽèñîæ
áŽ òâåóâĲŽáæ èëçŽèñîæ ŽéëêŽýïêâĲæï ŽîïâĲëĲŽïŽ áŽ Žî ŽîïâĲëĲŽï.
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1. Formulation of the Main Results

Global solvability of initial and initial–boundary value problems for dif-
ferential equations and blow-up phenomena of such problems have been
attracting the attention of many mathematicians and are subjects of nu-
merous studies (See [1–24] and the references cited therein). In the present
paper we consider the characteristic initial value problem

uxy = f(x, y, u), (1.1)

u(x, 0) = c1(x) for 0 ≤ x ≤ a, u(0, y) = c2(y) for 0 ≤ y ≤ b (1.2)

from that viewpoint. More precisely, we have proved a theorem on exis-
tence of either of global and local blow-up solutions of problem (1.1),(1.2),
and obtained unimprovable in a sense conditions guaranteeing that problem
(1.1),(1.2) : (i) has at least one global solution and no local blow-up solu-
tion; (ii) has at least one local blow-up solution and has no global solution.

Let
Ω(a, b) = (0, a)× (0, b), Ω(a, b) = [0, a]× [0, b].

For arbitrary a0 ∈ (0, a] and b0 ∈ (0, b] set

Ω0(a, b0; a0, b) = Ω(a, b0) ∪ Ω(a0, b), Ω0(a, b0; a0, b) = Ω(a, b0) ∪ Ω(a0, b).

If either a0 = a or b0 = b, then it is clear that Ω0(a, b0; a0, b) = Ω(a, b).
Throughout the paper it is assumed that the function f : Ω(a, b)×R→ R

is continuous, and c1 : [0, a] → R and c2 : [0, b] → R are continuously
differentiable functions satisfying the matching condition

c1(0) = c2(0). (1.3)

We will use the following definitions:

Definition 1.1. Let D be a domain contained in Ω(a, b). A function
u : D → R will be called a solution of equation (1.1) in D, if it is continuous
together with its partial derivatives ux, uy, uxy and satisfies (1.1) at every
point of D.

Definition 1.2. A function u : Ω(a, b) → R will be called a global solu-
tion of problem (1.1),(1.2), if it is a solution of equation (1.1) in the domain
Ω(a, b), is uniformly continuous in Ω(a− ε, b− ε) for any sufficiently small
ε > 0, and satisfies the initial conditions (1.2), where

u(x, 0) = lim
y→0

u(x, y), u(0, y) = lim
x→0

u(x, y).

Definition 1.3. Let a0 ∈ (0, a) and b0 ∈ (0, b). A function

u : Ω0(a, b0; a0, b) → R

will be called a local solution of problem (1.1),(1.2), if it is a solution of
equation (1.1), is uniformly continuous in the domain Ω0(a, b0− ε; a0− ε, b)
for any sufficiently small ε > 0, and satisfies the initial conditions (1.2).
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Definition 1.4. A local solution u of problem (1.1),(1.2) defined in the
domain Ω0(a, b0; a0, b) will be called a blow-up solution, if

sup{|u(x, y)| : 0 < x < a} → +∞ as y → b0, (1.4)

sup{|u(x, y)| : 0 < y < b} → +∞ as x → a0. (1.5)

Theorem 1.1. If a1 ∈ (0, a) and b1 ∈ (0, b) are sufficiently small,
then problem (1.1), (1.2) has at least one uniformly continuous solution
u in Ω(a, b1; a1, b). Moreover, for any such solution there exists either
global, or a local blow-up solution of problem (1.1), (1.2) coinciding with
u in Ω(a, b1; a1, b).

Remark 1.1. In particular, Theorem 1.1 implies that if problem (1.1),(1.2)
has no local blow-up solution (global solution), then it has a global (local
blow-up) solution.

Theorem 1.2. Let the inequality

|f(x, y, z)| ≤ ϕ(|z|) (1.6)

hold on Ω(a, b) × R, where ϕ : [0, +∞) → [0, +∞) is a nondecreasing con-
tinuous function. If, moreover,

+∞∫

0

dz

Φ(z)
= +∞, (1.7)

where

Φ(z) = 1 +
[ z∫

0

ϕ(s) ds

] 1
2

for z ≥ 0, (1.8)

then problem (1.1), (1.2) has at least one global solution and has no local
blow-up solution. Moreover, its every global solution is uniformly continuous
in Ω(a, b).

Theorem 1.3. Let the inequality

f(x, y, z) ≥ ϕ(z) (1.9)

hold on Ω(a, b)× [0, +∞), where ϕ : [0,+∞) → [0, +∞) is a nondecreasing
continuous function such that the function Φ, given by (1.8), satisfies the
condition

+∞∫

0

dz

Φ(z)
< +∞. (1.10)

Then there exists a positive number r such that if

c1(x) + c2(y)− c1(0) > r for (x, y) ∈ Ω(a, b), (1.11)

then problem (1.1), (1.2) has no global solution and has at least one local
blow-up solution.
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As an example consider the differential equation

uxy = g(x, y)f0(u), (1.12)

where g : Ω(a, b) → (0, +∞) and f0 : R→ R are continuous functions, and
f0 is nonnegative and nondecreasing on [0,+∞).

Set

F0(z) = 1 +
[ z∫

0

f0(s) ds

] 1
2

for z ≥ 0.

Theorems 1.2 and 1.3 imply

Corollary 1.1. Problem (1.12), (1.2) is globally solvable for arbitrary
continuously differentiable functions c1 : [0, a] → R and c2 : [0, b] → R
satisfying the matching condition (1.3) if and only if

+∞∫

0

dz

F0(z)
= +∞.

2. Auxiliary Statements

2.1. Lemma on existence of locally uniformly continuous solution
of a characteristic initial value problem. For equation (1.1) consider
the characteristic initial value problem

u(x, y0) = v1(x) for x0 ≤ x ≤ a, u(x0, y) = v2(y) for y0 ≤ y ≤ b,
(2.1)

where x0 ∈ [0, a), y0 ∈ [0, b), and v1 : [x0, a] → R and v2 : [y0, b] → are
continuously differentiable functions such that

v1(x0) = v2(y0). (2.2)

The function f : [x0, a]× [y0, b] → R, as above, is assumed to be continuous.
Let x1 ∈ (x0, a] and y1 ∈ (y0, b]. Set

Ω11 = (x0, a)× (y0, y1), Ω12 = (x0, x1)× (y0, b), Ω1 = Ω11 ∪ Ω12,

M0i = sup{|v1(x) + v2(y)− v1(x0)| : (x, y) ∈ Ω1i} (i = 1, 2), (2.3)

Mi = sup{|f(x, y, z)| : (x, y) ∈ Ω1i, |z| ≤ 1 + M0i} (i = 1, 2). (2.4)

By Ω1 denote the closure of Ω1, and by C(Ω1) denote the Banach space
of continuous functions u : Ω1 → R.

Lemma 2.1. If

(a− x0)(y1 − y0)M1 ≤ 1, (2.5)

(x1 − x0)(b− y0)M2 ≤ 1, (2.6)
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then problem (1.1), (2.1) has at least one solution in Ω1. Moreover, every
such solution is uniformly continuous in Ω1 and admits the estimates

|u(x, y)| ≤ 1 + M01 for (x, y) ∈ Ω11, (2.7)

|u(x, y)| ≤ 1 + M02 for (x, y) ∈ Ω12. (2.8)

Proof. First assume that problem (1.1),(2.1) has a solution u in the domain
Ω1. Then the representation

u(x, y) = v1(x) + v2(y)− v1(x0) +

x∫

x0

y∫

y0

f(s, t, u(s, t)) ds dt (2.9)

is valid. On the other hand, in view of (2.1)–(2.3) it is clear that either u
admits the estimate (2.7), or the inequality

|u(x∗, y∗)| > 1 + M01

holds for some x∗ ∈ (x0, a) and y∗ ∈ (y0, y1). In the latter case, according
to (2.1)–(2.3), there exist x∗ ∈ (x0, x

∗) and y∗ ∈ (y0, y
∗) such that

|u(x, y)| ≤ 1 + M01 for x0 ≤ x ≤ x∗, y0 ≤ y ≤ y∗

and
|u(x∗, y∗)| = 1 + M01.

If along with this we take into account notations (2.3), (2.4) and inequality
(2.5), then from (2.9) we get

1 + M01 ≤ M01 +

x∗∫

x0

y∗∫

y0

|f(s, t, u(s, t))| ds dt

≤ M01 + M1(x∗ − x0)(y∗ − y0) < M01 + 1.

The obtained contradiction proves the validity of estimate (2.7). The valid-
ity of estimate (2.8) can be proved similarly.

In view of (2.4),(2.7) and (2.8), from (2.9) we have

|u(x, y)− u(s, t)| ≤ M(|x− s|+ |y − t|) for (x, y), (s, t) ∈ Ω1, (2.10)

where

M = max{|v′1(x)|+ |v′2(y)| : x0 ≤ x ≤ a, y0 ≤ y ≤ b}
+ (M1 + M2)(a + b− x0 − y0). (2.11)

Hence it follows that u is uniformly continuous in Ω1 and, consequently,
admits a continuous extension onto Ω1.

Thus we have proved that the solvability of problem (1.1),(2.1) yields the
solvability of the integral equation (2.9) in the space C(Ω1). On the other
hand it is clear that if u ∈ C(Ω1) is a solution of (2.9), then its restriction
on Ω1 is a solution of problem (1.1),(1.2). Therefore, to complete the proof
we need to show that the integral equation (2.9) has at least one solution
in C(Ω1).
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Introduce the operator

W(u)(x, y) = v1(x) + v2(y)− v1(x0) +

x∫

x0

y∫

y0

f(s, t, u(s, t)) ds dt.

The continuity of the functions v1 : [x0, a] → R, v2 : [y0, b] → R and
f : Ω1 ×R→ R implies that W : C(Ω1) → C(Ω1) is a continuous operator.

Let B be the set of all functions u ∈ C(Ω) satisfying conditions (2.7),(2.8)
and (2.10), where M is the number given by (2.11). It is clear that B is a
convex and closed set. Moreover, by Arzella–Ascolli lemma, B is a compact.

By virtue of (2.3)–(2.8) for an arbitrary u ∈ B we have

|W(u)(x, y)| ≤ M01 + (a− x0)(y1 − y0)M1 ≤ M01 + 1 for (x, y) ∈ Ω11,

|W(u)(x, y)| ≤ M02 + (x1 − x0)(b− y0)M2 ≤ M02 + 1 for (x, y) ∈ Ω12,

|W(u)(x, y)−W(u)(s, t)| ≤ M(|x− s|+ |y − t|) for (x, y), (s, t) ∈ Ω1.

Consequently, W is a continuous operator mapping the compact B into
itself. By Schauder’s theorem, W has a fixed point u ∈ B, i.e. the integral
equation (2.9) has a solution u ∈ B. ¤

Remark 2.1. As it was noted above, if a solution u of problem (1.1),(1.2)
is uniformly continuous in Ω1, then it admits a continuous extension onto
Ω1. Moreover, the representation (2.9) implies that the extension of u has
continuous partial derivatives ux, uy and uxy on Ω1 and satisfies equation
(1.1) everywhere on Ω1. Therefore the extension of u will be called a solution
of problem (1.1),(1.2) in Ω1.

2.2. Some remarks on global and blow-up solutions of nonlinear
autonomous ordinary differential equations of second order. Con-
sider the ordinary differential equation

w′′ = ϕ(w) (2.12)

with the initial and the boundary conditions

w(0) = γ0, w′(0) = γ (2.13)

and
w(0) = 0, lim

t→t0
w′(t) = +∞, (2.14)

where ϕ : [0, +∞) → [0,+∞) is a continuous function,

γ0 ≥ 0, γ > 0 (2.15)

and t0 > 0.

Lemma 2.2. If condition (1.7) holds, then problem (2.12), (2.13) has a
unique solution w defined in the interval [0, +∞) and satisfying the inequal-
ities

w(t) > γ0, w′(t) > 0 for t > 0. (2.16)
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Proof. First assume that problem (2.12),(2.13) has a solution w defined in
the interval [0,+∞). Then, in view of nonnegativity of ϕ and condition
(2.15), inequalities (2.16) hold. Multiplying (2.12) by w′, integrating from
0 to t, and taking into account (2.13), we get

w′2(t) = Φ2
γ0,γ(w(t)) for t ≥ 0,

where

Φγ0,γ(z) =
[
γ2 + 2

z∫

γ0

ϕ(s) ds
] 1

2
for z ≥ γ0. (2.17)

Hence according to (2.16) we have

w′(t)
Φγ0,γ(w(t))

= 1 for t ≥ 0.

Therefore
Ψγ0,γ(w(t)) = t for t ≥ 0, (2.18)

where

Ψγ0,γ(z) =

z∫

γ0

ds

Φγ0,γ(s)
.

In view of (1.8) and (2.17) it is clear that

Φγ0,γ(z) < (γ + 2)Φ(z) for z ≥ γ0.

Hence, in view of (1.7), if follows that

lim
z→+∞

Ψγ0,γ(z) ≥ 1
γ + 2

lim
z→+∞

z∫

γ0

ds

Φ(s)
= +∞.

Consequently, the function Ψγ0,γ : [γ0,+∞) → [0,+∞) has the inverse
Ψ−1

γ0,γ : [0,+∞) → [γ0,+∞). Therefore (2.18) implies that

w(t) = Ψ−1
γ0,γ(t) for t ≥ 0. (2.19)

Thus we have proved that if problem (2.12),(2.13) has a solution defined
on [0,+∞), then it is unique and admits the representation (2.19). On the
other hand, from the definition of Ψ−1

γ0,γ it follows that the function given
by (2.19) is indeed a solution of problem (2.12),(2.13) satisfying inequalities
(2.16). ¤

Lemma 2.3. If condition (1.10) holds and

lim sup
z→0

ϕ(z)
z

< +∞, (2.20)

then problem (2.12), (2.14) has a unique solution w and

w(t) > 0, w′(t) > 0 for 0 < t < t0. (2.21)
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Proof. For an arbitrary γ > 0 set

Φγ(z) =
[
γ2 + 2

z∫

0

ϕ(s) ds
] 1

2
, Ψγ(z) =

z∫

0

ds

Φγ(s)
for z ≥ 0.

Then according to (1.8) and (1.10) we have

lim
z→+∞

z∫

0

ϕ(s) ds = +∞, lim
z→+∞

Φγ(z)
Φ(z)

=
√

2

and

T (γ) =

+∞∫

0

dz

Φγ(z)
< +∞. (2.22)

Hence it follows that for an arbitrary γ > 0 in the interval [0, T (γ)) the
differential equation (2.12) has a unique solution wγ(t) satisfying the initial
conditions

wγ(0) = 0, w′γ(0) = γ.

Besides,

wγ(t) > 0, w′γ(t) > 0 for 0 < t < T (γ), lim
t→T (γ)

wγ(t) = +∞.

On the other hand, (1.10),(2.20) and (2.22) imply that T : (0,+∞) →
(0, +∞) is a continuous decreasing function such that

lim
γ→0

T (γ) = +∞, lim
γ→+∞

T (γ) = 0.

Consequently, the inverse function T−1 maps (0,+∞) onto (0,+∞).
From the above said it is clear that if γ0 = T−1(t0), then the function

w(t) = wγ0(t) is the unique solution of problem (2.12),(2.14) satisfying the
inequalities (2.21). ¤

2.3. Lemmas on differential inequalities. Along with the differential
equation (1.1) consider the differential inequalities

|uxy| ≤ ϕ(|u|) (2.23)

and
uxy ≥ ϕ(|u|) (2.24)

with the initial conditions (1.2), where ϕ : [0, +∞)× [0, +∞) is a continuous
nondecreasing function. As before, the functions c1 : [0, a] → R and c2 :
[0, b] → R are assumed to be continuously differentiable and satisfying the
matching condition (1.3).

Global, local and blow-up solutions of problem (2.23),(1.2) (problem
(2.24),(1.2)) are defined similarly to the definitions for problem (1.1),(1.2).
More precisely, in Definitions 1.1–1.4 equation (1.1) should be replaced by
inequality (2.23) (inequality (2.24)).
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Lemma 2.4. If condition (1.7) holds, then problem (2.23), (1.2) has no
local blow-up solution and its arbitrary global solution is uniformly continu-
ous on Ω(a, b).

Proof. Let

γ0 = 1 + max{|c1(x) + c2(y)− c1(0)| : 0 ≤ x ≤ a, 0 ≤ y ≤ b}, (2.25)

γ be an arbitrarily fixed positive number, and w be a solution of problem
(2.12),(2.13). By Lemma 2.2, w is defined on [0, +∞) and satisfies inequal-
ities (2.16).

The function (x, y) → w(x + y) is a solution of the differential equation

wxy = ϕ(w).

Therefore the representation

w(x + y) = w(x) + w(y)− w(0) +

x∫

0

y∫

0

ϕ(w(s + t)) ds dt (2.26)

is valid. On the other hand, (2.16) and (2.25) imply that

|c1(x) + c2(y)− c1(0)| < γ0 < w(x) + w(y)− w(0)

for (x, y) ∈ Ω(a, b). (2.27)

First prove that if u is a local solution of problem (2.23),(1.2) in some
domain Ω0(a, b0; a0, b), then

|u(x, y)| < w(x + y) ≤ w(a + b) for (x, y) ∈ Ω0(a, b0; a0, b). (2.28)

Assume the contrary that (2.28) is violated, i.e. the inequality

|u(x0, y0)| ≥ w(x0 + y0) (2.29)

holds for some (x0, y0) ∈ Ω0(a, b0; a0, b). Without loss of generality one can
assume that (x0, y0) ∈ Ω(a, b0), since the case (x0, y0) ∈ Ω(a0, b) can be
considered similarly.

Setting

u(x, 0) = lim
y→0

u(x, y) for 0 ≤ x ≤ x0,

u(0, y) = lim
x→0

u(x, y) for 0 ≤ y ≤ y0,

the function u becomes continuous in Ω(x0, y0). Let

v(x, y) = w(x + y)− |u(x, y)| for 0 ≤ x ≤ x0, 0 ≤ y ≤ y0.

Then in view of (1.2),(2.27) and (2.29) we have

v(x, 0) > 0 for 0 ≤ x ≤ x0, v(0, y) > 0 for 0 ≤ y ≤ y0

and
v(x0, y0) ≤ 0.
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Hence, by continuity of v on Ω(x0, y0), there exist x1 ∈ (0, x0] and y1 ∈
(0, y0] such that

v(x, y) > 0 for 0 ≤ x < x1, 0 ≤ y ≤ y1 (2.30)

and
v(x1, y1) = 0. (2.31)

In view of (2.23),(2.27) and (2.30), the representation

u(x, y) = c1(x) + c2(y)− c1(0) +

x∫

0

y∫

0

ust(s, t) ds dt (2.32)

implies that

|u(x1, y1)| ≤ |c1(x1) + c2(y1)− c1(0)|+
x1∫

0

y1∫

0

ϕ(u(s, t)) ds dt

< w(x1) + w(y1)− w(0) +

x1∫

0

y1∫

0

ϕ(w(s + t)) ds dt.

Hence, by virtue of (2.26), we find

v(x1, y1) = w(x1 + y1)− |u(x1, y1)| > 0,

which contradicts to the equality (2.31). The obtained contradiction proves
the validity of the estimate (2.28).

Similarly we can prove that if u is a global solution of problem (2.23),(1.2),
then

|u(x, y)| < w(x + y) ≤ w(a + b) for (x, y) ∈ Ω(a, b). (2.33)

In view of the estimate (2.28) (the estimate (2.33)), (2.23) implies that

|uxy(x, y)| ≤ r for (x, y) ∈ Ω0(a, b0; a0, b) ((x, y) ∈ Ω(a, b)),

where r = max{ϕ(z) : 0 ≤ z ≤ w(a + b)}. By virtue of the represen-
tation (2.32), the latter inequality ensures the uniform continuity of u in
the domain Ω0(a, b0; a0, b) (in the domain Ω(a, b)). Consequently, problem
(2.23),(1.2) has no local blow-up solution and its arbitrary local and global
solutions are uniformly continuous. ¤

Lemma 2.5. Let
max{a, b} < t0 < a + b, (2.34)

and problem (2.12), (2.14) have a solution w satisfying inequalities (2.21).
If, moreover, condition (1.11) holds, where

r = w(a) + w(b), (2.35)

then problem (2.24), (1.2) has no global solution.
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Proof. Assume the contrary that problem (2.24),(1.2) has a global solution
u. Then in view of inequalities (1.11) and (2.24), the representation (2.32)
yields

u(x, y) > r > 0 for (x, y) ∈ Ω(a, b). (2.36)

According to (2.34) there exist a0 ∈ (0, a) and b0 ∈ (0, b0) such that
a0 +b0 = t0. If along with this we take into account conditions (2.14),(2.36)
and continuity of u at point (a0, b0), then it becomes clear that

lim
(x,y)→(a0,b0)

w(x + y)
u(x, y)

= +∞.

Therefore for some a1 ∈ (0, a0) and b1 ∈ (0, b0) we have

w(a1 + b1) > u(a1, b1). (2.37)

Due to the uniform continuity in Ω(a1, b1), the function u admits a con-
tinuous extension onto Ω(a1, b1). Set

v(x, y) = u(x, y)− w(x + y).

Then in view of (1.2),(1.11),(2.21) and (2.35) we have

v(x, 0) = c1(x)− w(x) > w(a) + w(b)− w(x) > 0 for 0 ≤ x ≤ a1,

v(0, y) = c2(y)− w(y) > w(a) + w(b)− w(y) > 0 for 0 ≤ y ≤ b1.

On the other hand it follows from (2.37) that v(a1, b1) < 0. Therefore there
exist x0 ∈ (0, a1] and (0, b1] such that

v(x, y) > 0 for 0 ≤ x < x0, 0 ≤ y ≤ y0 (2.38)

and
v(x0, y0) = 0. (2.39)

Taking into account inequalities (1.11),(2.24) and (2.38), from (2.26) and
(2.32) we find

v(x0, y0) = c1(x0) + c2(y0)− c1(0)− w(x0)− w(y0)

+

x0∫

0

y0∫

0

(
ust(s, t)− ϕ(w(s + t))

)
ds dt

> r − w(x)− w(y) +

x0∫

0

y0∫

0

(
ϕ(u(s, t))− ϕ(w(s + t))

)
ds dt

≥ r − w(x0)− w(y0).

Hence, in view of conditions (2.21) and (2.35), it follows that

v(x0, y0) > r − w(a)− w(b) = 0.

But this contradicts to the equality (2.37). The obtained contradiction
proves that problem (2.24),(1.2) has no global solution. ¤
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3. Proofs of the Main Results

Proof of Theorem 1.1. Let

M0 = max{|c1(x)− c1(0)| : 0 ≤ x ≤ a}+ max{|c2(y)| : 0 ≤ y ≤ b},
M = 1 + max{|f(x, y, z)| : (x, y) ∈ Ω(a, b), |z| ≤ 1 + M0},

and a1 and b1 be arbitrary numbers satisfying the inequalities

0 < a1 ≤ min
{ 1

Mb
,

a

2

}
, 0 < b1 ≤ min

{ 1
Ma

,
b

2

}
.

Then by Lemma 2.1, problem (1.1),(1.2) has a uniformly continuous so-
lution u1 in the domain Ω1 = Ω0(a, b1; a1, b). Our goal is to prove that u1 is
a restriction on the set Ω1 of some either global, or local blow-up solution
of problem (1.1),(1.2).

By u1 we will understand its continuous extension onto Ω1. Set

M0
11(t) = max{|u1(x, b1)− u1(a1, b1)| : a1 ≤ x ≤ a}

+ max{|u1(a1, y)| : b1 ≤ y ≤ t},
M11(t) = 1 + max{|f(x, y, z)| : (x, y) ∈ Ω(a, b), |z| ≤ 1 + M0

11(t)}
for b1 ≤ t ≤ b,

M0
12(s) = max{|u1(a1, y)− u1(a1, b1)| : b1 ≤ y ≤ b}

+ max{|u1(x, b1)| : a1 ≤ x ≤ s},
M12(s) = 1 + max{|f(x, y, z)| : (x, y) ∈ Ω(a, b), |z| ≤ 1 + M0

12(s)}
for a1 ≤ s ≤ a.

It is clear that M11 : [b1, b] → (0, +∞) and M12 : [a1, a] → (0,+∞) are
continuous nondecreasing functions. If

aM11

(2b

3

)(2b

3
− b1

)
≤ 1

(
bM12

(2a

3

)(2a

3
− a1

)
≤ 1

)
,

then set

b2 =
2b

3

(
a2 =

2a

3

)
,

and if

aM11

(2b

3

)(2b

3
− b1

)
> 1

(
bM12

(2a

3

)(2a

3
− a1

)
> 1

)
,

then then there exist b2 ∈
(
b1,

2b
3

) (
a2 ∈

(
a1,

2a
3

))
such that

aM11(b2)(b2 − b1) = 1
(
bM12(a2)(a2 − a1) = 1

)
.

Consequently, in all of the considered cases we have

b2 = b1 + min
{ 1

aM11(b2)
,
2b

3
− b1

}
, a2 = a1 + min

{ 1
bM12(a2)

,
2a

3
− a1

}
.
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By Lemma 2.11, in the closed domain

Ω2 =
(
[a1, a]× [b1, b2]

) ∪ (
[a1, a2]× [b1, b]

)

equation (1.1) has a solution u2 satisfying the initial conditions

u2(x, b1) = u1(x, b1) for a1 ≤ x ≤ a,

u2(a1, y) = u1(a1, y) for b1 ≤ y ≤ b.

Repeating this process on and on, we get the numerical and functional se-
quences

(
ak

)+∞
k=1

,
(
bk

)+∞
k=1

,
(
M0

k1(bk+1)
)+∞
k=1

,
(
Mk1(bk+1)

)+∞
k=1

,
(
M0

k2(ak+1)
)+∞
k=1

,(
Mk2(ak+1)

)+∞
k=1

, and
(
uk

)+∞
k=1

such that: for any k ≥ 1 the function uk+1

is a solution of equation (1.1) defined on the set

Ωk+1 =
(
[ak, a]× [bk, bk+1]

) ∪ (
[ak, ak+1]× [bk, b]

)

and satisfying the initial conditions

uk+1(x, bk) = uk(x, bk) for ak ≤ x ≤ a,

uk+1(ak, y) = uk(ak, y) for bk ≤ y ≤ b;

M0
k1(bk+1) = max{|uk(x, bk)− uk(ak, bk)| : ak ≤ x ≤ a}

+max{|uk(ak, y)| : bk ≤ y ≤ bk+1},
Mk1(bk+1) = 1 + max{|f(x, y, z)| : (x, y) ∈ Ω(a, b), (3.1)

|z| ≤ 1 + M0
k1(bk+1)}; (3.2)

M0
k2(ak+1) = max{|uk(ak, y)− u1(ak, bk)| : bk ≤ y ≤ b}

+max{|uk(x, bk)| : ak ≤ x ≤ ak+1}, (3.3)

Mk2(ak+1) = 1 + max{|f(x, y, z)| : (x, y) ∈ Ω(a, b),

|z| ≤ 1 + M0
k2(ak+1)}; (3.4)

bk+1 = bk + min
{ 1

aMk1(bk+1)
,
(k + 1)b
k + 2

− bk

}
, (3.5)

ak+1 = ak + min
{ 1

bMk2(ak+1)
,
(k + 1)a
k + 2

− ak

}
. (3.6)

It is clear that
(
ak

)+∞
k=1

and
(
bk

)+∞
k=1

are increasing sequences satisfying the
inequalities

0 < ak <
k

k + 1
a, 0 < bk <

k

k + 1
b (k = 1, 2, . . . ).

Set

lim
k→+∞

ak = a0, lim
k→+∞

bk = b0, (3.7)

u(x, y) =

{
u1(x, y) for (x, y) ∈ Ω1,

uk(x, y) for (x, y) ∈ Ωk (k = 2, 3, . . . ).
(3.8)

1See Remark 2.1.
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If either a0 = a, or b0 = b, then

Ω1 ∪
( +∞⋃

k=2

Ωk

)
= Ω(a, b),

and if
a0 < a, b0 < b, (3.9)

then

Ω1 ∪
( +∞⋃

k=2

Ωk

)
= Ω0(a, b0; a0, b).

In the first (the second) case the function u given by (3.8) is a global solution
of problem (1.1),(1.2) (local solution of problem (1.1),(1.2) in the domain
Ω0(a, b0; a0, b)) and matches with u1 in the domain Ω0(a, b1; a1; b).

To complete the proof of the theorem it remains to show that if inequali-
ties (3.9) hold, then the local solution u a is blow-up solution, i.e. it satisfies
conditions (1.4) and (1.5).

By (3.7) and (3.9), we have

lim
k→+∞

(
bk+1 − bk

)
= 0, lim

k→+∞

( (k + 1)b
k + 2

− bk

)
= b− b0,

lim
k→+∞

(
ak+1 − ak

)
= 0, lim

k→+∞

( (k + 1)a
k + 2

− ak

)
= a− a0.

Therefore (3.5) and (3.6) imply

lim
k→+∞

Mk1(bk+1) = +∞, lim
k→+∞

Mk2(ak+1) = +∞.

Taking into account these equalities from (3.2) and (3.4) we conclude that

lim
k→+∞

M0
k1(bk+1) = +∞, lim

k→+∞
M0

k2(ak+1) = +∞.

However, in view of (3.1),(3.2) and (3.8) the latter equalities imply that

max{|uk(x, bk)− uk(ak, bk)| : ak ≤ x ≤ a}
+max{|uk(ak, y)| : bk ≤ y ≤ bk+1} → +∞ as k → +∞ (3.10)

and

max{|uk(ak, y)− u1(ak, bk)| : bk ≤ y ≤ b}
+max{|uk(x, bk)| : ak ≤ x ≤ ak+1} → +∞ as k → +∞. (3.11)

First show that condition (1.4) holds. Assume the contrary. Then there
exists a positive number r0 such that

lim sup
y→b0

r(y) < r0, (3.12)

where r(y) = sup{|u(x, y)| : 0 < x < a}. Set

M0 = 2r0 + max{|c2(y)| : 0 ≤ y ≤ b} (3.13)

and
M = max{|f(x, y, z)| : (x, y) ∈ Ω(a, b), |z| ≤ 1 + M0}.
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Choose a01 ∈ (0, a0) such that

a01 bM ≤ 1. (3.14)

According to (3.12) there exists b01 ∈ (0, b0) such that

(b0 − b01)aM ≤ 1 (3.15)

and
r(b01) < r0. (3.16)

The restriction of u on the domain

Ω01 =
(
(0, a)× (b01, b0)

)
∪

(
(0, a01)× (b01, b)

)

is a solution of equation (1.1) subject to the initial conditions

u(x, b01) = v1(x) for 0 ≤ x ≤ a, u(a01, y) = v2(y) for b01 ≤ y ≤ b,

where

v1(x) = u(x, b01) for 0 ≤ x ≤ a, v2(y) = c2(y) for b01 ≤ y ≤ b.

Besides, v1 and v2 are continuously differentiable and satisfy the matching
condition

v1(0) = v2(b01).

On the other hand, (3.13) and (3.16) imply that

|v1(x) + v2(y)− v1(0)| < M0 for 0 ≤ x ≤ a, b01 ≤ y ≤ b. (3.17)

By Lemma 2.1, inequalities (3.14),(3.15) and(3.17) guarantee the validity
of the estimate

|u(x, y)| < 1 + M0 for 0 < x < a, b01 < y < b0.

But this estimate contradicts to the condition (3.10). The obtained contra-
diction proves the validity of the condition (1.4).

The validity of (1.5) can be proved similarly. ¤
Proof of Theorem 1.2. According to (1.6) an arbitrary global (local) solution
of problem (1.1),(1.2) is a global (local) solution of problem (2.23),(1.2). On
the other hand, by Lemma 2.4, problem (2.23),(1.2) has no local blow-up
solution and its arbitrary global solution is uniformly continuous in Ω(a, b).
Now if we apply Theorem 1.1, then the validity of Theorem 1.2 will become
obvious. ¤
Proof of Theorem 1.3. Without loss of generality we may assume that the
function ϕ satisfies condition (2.20), since otherwise we could replace it by
the following one:

ϕ0(z) =

{
ϕ(z) for z > 1,

zϕ(z) for 0 ≤ z ≤ 1.
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Let t0 be an arbitrarily fixed number satisfying condition (2.34). By
Lemma 2.3, problem (2.12),(2.14) has a unique solution w satisfying in-
equalities (2.21). Set r = w(a) + w(b), and show that if inequality (1.11)
holds, then problem (1.1),(1.2) has no global solution.

Assume the contrary that problem (1.1),(1.2) has a global solution. Then
(1.9) and (1.11) imply that

u(x, y) > 0 for (x, y) ∈ Ω(a, b)

and u is global solution of problem (2.24),(1.2). However, in this case,
by Lemma 2.5, problem (2.24),(1.2) has no global solution. The obtained
contradiction proves that if inequality (1.11) holds, then problem (1.1),(1.2)
has no global solution. But then, by Theorem 1.1, problem (1.1),(1.2) has
at least one blow-up solution. ¤
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