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Abstract. A finite domain D1 and an infinite domain D0 are considered
with the common boundary S having Hölder continuous curvature. D1 and
D0 are filled with isotropic elastic mixtures. In D1 and D0 u(1) and u(0)

are displacement vectors while T (1)u(1) and T (2)u(2) are stress vectors. The
main contact problem considered in the paper may be formulated as follows:
in the domains D1 and D0, find regular vectors u(1) and u(0) satisfying on
the boundary S the conditions

(u(1))+ − (u(0))− = f,

(T (1)u(1))+ − (T (2)u(2))− = F,

where f and F are given vectors. A uniqueness theorem is proved for
this problem. A Fredholm system of integral equations is derived for the
problem. An existence theorem is proved for the main contact problem via
investigation of the latter system.
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îâäæñéâ. àŽêæýæèâĲŽ ïŽïîñèæ D1 áŽ ñïŽïîñèë D0 ŽîââĲæ, îëéâèåŽ
ïŽâîåë ïŽäôãŽîï, S ûæîï, Žóãï ßâèáâîæï Žäîæå ñûõãâðæ ïæéîñáâ. D1 áŽ
D0 öâãïâĲñèæ ŽîæŽê æäëðîëìñèæ áîâçŽáæ êŽîâãâĲæå. D1 áŽ D0 ŽîââĲöæ
àŽáŽŽáàæèâĲæï ãâóðëîâĲæ ŽîæŽê u(1) áŽ u(0), ýëèë úŽĲãæï ãâóðëîâĲæ {
T (1)u(1) áŽ T (2)u(2). úæîæåŽáæ ïŽçëêðŽóðë ŽéëùŽêŽ, îëéâèïŽù Žé êŽöîëé-
öæ ãæýæèŽãå öâæúèâĲŽ øŽéëõŽèæĲáâï öâéáâàêŽæîŽá: éëæúâĲêëï D1 áŽ D0

ŽîââĲöæ îâàñèŽîñèæ ãâóðëîâĲæ u(1) áŽ u(0) æïâ, îëé éŽå S ïŽäôãŽîäâ
áŽŽçéŽõëòæèëï ìæîëĲâĲæ

(u(1))+ − (u(0))− = f,

(T (1)u(1))+ − (T (2)u(2))− = F,

ïŽáŽù f áŽ F éëùâéñèæ ãâóðëîâĲæŽ. éðçæùáâĲŽ Žé ŽéëùŽêæï ŽéëêŽýïêæï
âîåŽáâîåëĲæï åâëîâéŽ. Žé ŽéëùŽêæïŽåãæï öâáàâêæèæŽ òîâáßëèéæï æêðâà-
îŽèñî àŽêðëèâĲŽåŽ ïæïðâéŽ. ñçŽêŽïçêâèæ ïæïðâéæï àŽéëçãèâãæå áŽéðçæùâ-
ĲñèæŽ úæîæåŽáæ ïŽçëêðŽóðë ŽéëùŽêæï ŽéëêŽýïêæï ŽîïâĲëĲæï åâëîâéŽ.
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1. Main Equations. Basic Contact Problem. The Uniqueness of
a Solution

The main homogeneous equations of statics of an elastic mixture are of
the form [1]:

Cu = 0, (1.1)
where

C =
[
C(1) C(2)

C(3) C(4)

]
, C(1) = [c(1)

kj ], j = 1, 4,

c
(1)
kj = a1∆δkj + b1

∂2

∂xk∂xj
, c

(2)
kj = c

(3)
kj = c∆δkj + d

∂2

∂xk∂xj
,

c
(4)
kj = a2∆δkj + b2

∂2

∂xk∂xj
,

(1.2)

The constants appearing in (2.1) have the following values:

a1 = µ1 − λ5, a2 = µ2 − λ5, c = µ3 + λ5,

b1 = µ1 + λ1 + λ5 − ρ−1α2ρ2, b2 = µ2 + λ2 + λ5 + ρ−1α2ρ1,

d = µ3 + λ3 − λ5 − ρ−1α2ρ1 ≡ µ3 + λ4 − λ5 + ρ−1α2ρ2,

ρ = ρ1 + ρ2, α2 = λ3 − λ4,

(1.3)

where µ1, µ2, µ3, λ1, λ2, λ3, λ4, λ5 are constants characterizing physical
properties of the elastic mixture and satisfying certain inequalities. The vec-
tor u is four-dimensional: u = (u1, u2, u3, u4). The stress vector is defined
as follows [1]:

(Tu)1 = τ ′11n1 + τ ′21n2, (Tu)2 = τ ′12n1 + τ ′22n2,

(Tu)3 = τ ′′11n1 + τ ′′21n2, (Tu)4 = τ ′′12n1 + τ ′′22n2,
(1.4)

and the generalized stress vector has the form [1]

(
κ
Tu)1 = σ′11n1 + σ′21n2, (

κ
Tu)2 = σ′12n1 + σ′22n2,

(
κ
Tu)3 = σ′′11n1 + σ′′21n2, (

κ
Tu)4 = σ′′12n1 + σ′′22n2,

(1.5)

where

σ′11 = L1 +
∂M2

∂x2
, σ′21 = −L1 − ∂M2

∂x1
,

σ′12 = L2 − ∂M1

∂x2
, σ′22 = L1 +

∂M1

∂x1
,

σ′′11 = L3 +
∂M4

∂x2
, σ′′21 = −L4 − ∂M4

∂x1
,

σ′′12 = L4 − ∂M3

∂x2
, σ′′22 = L3 +

∂M3

∂x1
,

(1.6)

L1 = (a1 + b1)θ′ + (c + d)θ′′, L2 = a1ω
′ + cω′′,

L3 = (c + d)θ′ + (a2 + b2)θ′′, L4 = cω′ + a2ω
′′,
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M1 = (κ1 − 2µ1)u1 + (κ3 − 2µ3)u3,

M2 = (κ1 − 2µ1)u2 + (κ3 − 2µ3)u4,

M3 = (κ3 − 2µ3)u1 + (κ2 − 2µ2)u3,

M4 = (κ3 − 2µ3)u2 + (κ2 − 2µ2)u4,

(1.7)

θ′ =
∂u1

∂x1
+

∂u2

∂x2
, θ′′ =

∂u3

∂x1
+

∂u4

∂x2
,

ω′ =
∂u2

∂x1
− ∂u1

∂x2
, ω′′ =

∂u4

∂x1
− ∂u3

∂x2
,

(1.8)

κ is a real constant matrix

κ =




0 κ1 0 κ3

−κ1 0 −κ3 0
0 κ3 0 κ2

−κ3 0 −κ2 0


 (1.9)

where κ1, κ2, κ3 can take arbitrary real values. We point out some of them.
If κ1 = 2µ1, κ2 = 2µ2, κ3 = 2µ3, then κ = κL. Taking into account (1.5)
and (1.4), we have

κ
Tu = Tu + κ

∂u

∂s(x)
, (1.10)

where
∂

∂s(x)
= n1

∂

∂x2
− n2

∂

∂x1
. (1.11)

If κ assumes the above mentioned value, then
κ
T ≡ L, and from (1.10) we

have

Lu = Tu + κL
∂u

∂s(x)
. (1.12)

If κN = κL −m−1E1, where

m−1 =
1

∆0




m3 0 −m2 0
0 m3 0 −m2

−m2 0 m1 0
0 −m2 0 m1


 ,

E1 =




0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


 , ∆0 = m1m3 −m2

2 > 0,

(1.13)

then we obtain

Nu = Tu + κN
∂u

∂s(x)
. (1.14)

Let D+
1 be a finite domain in the plane E2. Then D

+

1 = D1 ∪ S, where
S is a closed curve of continuous Hölder curvature. Denote D0 = E2−D

+

1 .
Obviously, D−

0 is an infinite domain bounded by the curve S. Find now a
regular solution of the equation (1.1) [2].
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Definition. The vector u is a regular solution of the equation (1.1) in
the domain D+

1 if it and its partial first order derivatives are continuous
vectors up to the boundary S, and the second derivatives exist in D+

1 and
satisfy the equation (1.1).

In the domain D−
0 , to the above-mentioned conditions we add one which

is fulfilled at infinity:

U = O(1),
∂U

∂xk
= O(ρ−2), ρ2 = x2

1 + x2
2, k = 1, 2. (1.15)

The basic contact problem can be formulated as follows: find regular
solutions in D+

1 and D−
0 of the equation (1.1) under the conditions

(U (1)(t))+ − (U (0)(t)) = f(t),

(T (1)U (1)(t))+ − (T (0)U (0)(t))− = F (t)
t ∈ S; (1.16)

here f and F are with a definite smoothness vectors given on the boundary.
The signs + and − refer, respectively, to interior and exterior boundary val-
ues. Obviously, the constants take in D+

1 and D−
0 different values. Therefore

in the domain D+
j , j = 0, 1, we supply the constants with an appropriate

index j, j = 0, 1. The same refers to the vectors u(1) and u(0).
Let us prove a theorem of uniqueness of solution of the basic contact

problem. Towards this end, we will need the following Green’s formulas [1]:∫

D+
1

E(1)(u(1), u(1)) dσ =
∫

S

u(1)T (1)u(1) ds,

∫

D+
0

E(0)(u(0), u(0)) dσ = −
∫

S

u(0)T (0)u(0) ds,

(1.17)

where E(u, u) is the doubled potential energy:

E(k)(u(k), u(k)) = (b(k)
1 − λ

(k)
5 )

(∂u
(k)
1

∂x1
+

∂u
(k)
2

∂x2

)2

+

+ 2(d(k) + λ
(k)
5 )

(∂u
(k)
1

∂x1
+

∂u
(k)
2

∂x2

)(∂u
(k)
3

∂x1
+

∂u
(k)
4

∂x2

)
+

+ (b(k)
2 − λ

(k)
5 )

(∂u
(k)
2

∂x1
+

∂u
(k)
4

∂x2

)2

+

+ µ
(k)
1

[(∂u
(k)
1

∂x1
− ∂u

(k)
2

∂x2

)2

+
(∂u

(k)
2

∂x1
+

∂u
(k)
1

∂x2

)2
]
+

+2µ
(k)
3

[(∂u
(k)
1

∂x1
−∂u

(k)
2

∂x2

)(∂u
(k)
3

∂x1
−∂u

(k)
4

∂x2

)
+

(∂u
(k)
2

∂x1
+

∂u
(k)
2

∂x2

)(∂u
(k)
4

∂x1
+

∂u
(k)
3

∂x2

)]
+

+ µ
(k)
2

[(∂u
(k)
3

∂x1
− ∂u

(k)
4

∂x2

)2

+
(∂u

(k)
4

∂x1
+

∂u
(k)
3

∂x2

)2
]
−
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− λ
(k)
5

[(∂u
(k)
3

∂x1
− ∂u

(k)
1

∂x2

)2

−
(∂u

(k)
4

∂x1
− ∂u

(k)
3

∂x2

)2
]
. (1.18)

Theorem. A regular solution of the basic contact problem of the equation
(1.1) satisfying the boundary conditions on the boundary S is zero.

Proof. In (1.16), since f = F = 0, we have (u(1))+ = (u(0))−, (T (1)u(1))+ =
(T (0)u(0))−, and taking into account (1.17), we find that

∫

D+
1

E(1)(u(1), u(1)) dσ +
∫

D−0

E(0)(u(0), u(0)) dσ = 0,

whence

U (k) = C(k) + E(k)

(−x2

x1

)
, k = 0, 1,

where C(k) =

(
c
(k)
1

c
(k)
2

)
, and c

(k)
1 , c

(k)
2 and E(k) are arbitrary real constants.

In our case, ω(1) = ω(0), and therefore E(k) = E(0). Moreover, u(1)(t) =
u(0)(t). It is required that u(1)(0) = 0. (Note that the origin is in the
domain D+

1 ). Taking into account the fact that u(1)(x) and u(0)(x) are
vectors continuous up to the boundary S, we obtain c

(1)
1 = 0, c

(0)
0 = 0,

E(1) = E(0) = 0. Thus we have found that

u(1)(x) = 0, x ∈ D+
1 , u(0)(x) = 0, x ∈ D+

0 . (1.19)

Hence the proof of the theorem is complete. ¤

2. Integral Equations of the Basic Contact Problem

In this section, for the basic contact problem we will write the integral
Fredholm equations of the second kind.

The solutions u(1)(x) and u(0)(x) are sought in the form

u(1)(x)=
1
π

∫

S

Re
{[

(N (1)Γ(1))′X(1)+
∂Γ(1)

∂s(y)
Y (1)

]
g+Γ(1)Z(1)h

}
ds,

x ∈ D+
1 ,

u(0)(x)=
1
π

∫

S

Re
{[

(N (0)Γ(0))′X(0)+
∂Γ(0)

∂s(y)
Y (0)

]
g+Γ(0)Z(0)h

}
ds,

x ∈ D−
0 ,

(2.1)

where g and h are unknown real vectors which are determined from the
boundary condition, and

Γ(y − x) = m ln σ +
n

4
σ

σ
, σ = (x1 − y1) + i(x2 − y2). (2.2)
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In this formula instead of ln σ we write ln ζ−z
ζ in the domain D+

1 , while
in the domain D−

0 we write ln z−ζ
z , where z = x1 + ix2, ζ = y1 + iy2. This

remark is made due to the fact that the vectors u(1)(x) and u(0)(x) are
continuous up to the boundary S,

m =




m1 0 m2 0
0 m1 0 m2

m2 0 m3 0
0 m2 0 m3


 , n =




l4 il4 l5 il5
il4 −l4 −il5 −l5
l5 il5 l6 il6
il5 −l5 il6 −l6


 , (2.3)

l1 + l4 =
a2 + b2

d1
, l2 + l5 = −e + d

d1
, l3 + l6 =

a1 + b1

d1
,

e2 = − c

d2
, e1 =

a2

d2
, e3 =

a1

d2

d1 = (a1 + b1)(a2 + b2)− (c + d)2 > 0, d2 = a1a2 − c2 > 0.

(2.4)

Thus we obtain

(Ny ReΓ)′ = E
∂θ

∂s(y)
, (Ny Im Γ)′ = −E

∂ ln r

∂s(y)
. (2.5)

Taking into account (2.3) and (2.5), we rewrite (2.1) in the form

u(1)(x)=
1
π

∫

S

{[ ∂θ

∂s(y)
X(1)+m(1)Y (1) ∂ ln r

∂s(y)

]
g+Γ(1)Z(1)h

}
ds,

x ∈ D+
1 ,

u(0)(x)=
1
π

∫

S

{[ ∂θ

∂s(y)
X(0)+m(0)Y (0) ∂ ln r

∂s(y)

]
g+Γ(0)Z(0)h

}
ds,

u ∈ D+
0 .

(2.6)

Passing to limit as x → t ∈ S, for finding unknown matrices X, Y , Z we
obtain the equations (which will be written below):

(u(1)(t))+ = X(1)g+

+
1
π

∫

S

{[ ∂θ

∂s(y)
X(1) + m(1)Y (1) ∂ ln r

∂s(y)

]
g + Γ(1)Z(1)h

}
ds,

(u(0)(t))− = −X(0)g+

+
1
π

∫

S

{[ ∂θ

∂s(y)
X(0) + m(0)Y (0) ∂ ln r

∂s(y)

]
g + Γ(0)Z(0)h

}
ds,

whence

(u(1)(t))+ − (u(0)(t))− = (X(1) + X(0))g+

+
1
π

∫

S

{[ ∂θ

∂s(y)
(X(1) −X(0)) +

(
m(1)Y (1) −m(0)Y (0)

) ∂ ln r

∂s(y)

]
g+
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+
(
Γ(1)Z(1) − Γ(0)Z(0)

)
h

}
ds = f(t). (2.7)

From (2.7), we adopt the following restrictions:

X(1) + X(0) = E, m(1)Y (1) −m(0)Y (0) = 0. (2.8)

Under these conditions, (2.7) is a Fredholm equation of second kind of the
form

(u(1)(t))+ − (u(0)(t))− =

= g+
1
π

∫

S

[ ∂θ

∂s(y)
(X(1)−X(0))g+

(
Γ(1)Z(1)−Γ(0)Z(0)

)
h
]
ds=f(t). (2.9)

Thus we have obtained one equation for finding the unknown vectors g
and h. The second equation will be written below.

We now calculate T (1)u(1) and T (0)u(0) from (2.1). It should be noted
that

T (1)
x (NyΓ)′ = −i(E − iκNm)

∂2 ln σ

∂s(x)∂s(y)
,

T (1)
x Re

∂Γ
∂s(y)

= −E
∂2θ

∂s(x)∂s(y)
− κNm

∂2 ln r

∂s(x)∂s(y)
,

T (1)
x ReΓ = −E

∂θ

∂s(x)
+ κNm

∂ ln r

∂s(x)
.

Using the above formulas and performing partial integration with respect
to the vector g, we obtain

T (1)u(1)(x) =
1
π

∫

S

{[
E

∂θ

∂s(x)
X(1) + κ(1)

N m(1)X(1) ∂ ln r

∂s(x)
+

+ E
∂θ

∂s(x)
Y (1) + κ(1)

N m(1)Y (1)
] ∂ ln r

∂s(x)
∂g

∂s(y)
+

+
[
Z(1) ∂θ

∂s(x)
+ κ(1)

N m(1)Z(1) ∂ ln r

∂s(x)

]
h

}
ds, x ∈ D+

1 ,

T (0)u(0)(x) =
1
π

∫

S

{[
E

∂θ

∂s(x)
X(0) + κ(0)

N m(0)X(0) ∂ ln r

∂s(x)
+

+ E
∂θ

∂s(x)
Y (0) + κ(0)

N m(0)Y (0) ∂ ln r

∂s(x)

] ∂g

∂s(y)
+

+
[
Z(0) ∂θ

∂s(x)
+ κ(0)

N m(0)Z(0) ∂ ln r

∂s(x)

]
h

}
ds, x ∈ D+

0 .

Passing to limit as x → t ∈ S, we find that

(
T (1)u(1)(t)

)+ = −(X(1) + Y (1))
∂g

∂s(t)
+ Z(1)h+
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+
1
π

∫

S

{[
(X(1)+Y (1))

∂θ

∂s(x)
+

(
κ(1)

N m(1)X(1)+κ(1)
N m(1)Y (1)

) ∂ ln r

∂s(x)

] ∂g

∂s(x)
+

+
[
Z(1) ∂θ

∂s(x)
+ κ(1)

N m(1) ∂ ln r

∂s(x)
Z(1)

]
h

}
ds,

(
T (0)u(0)(t)

)− = (X(0) + Y (0))
∂g

∂s(t)
+ Z(0)h+

+
1
π

∫

S

{[
(X(0)+Y (0))

∂θ

∂s(x)
+

(
κ(0)

N m(0)X(0)+κ(0)
N m(0)Y (0)

) ∂ ln r

∂s(x)

] ∂g

∂s(x)
+

+
[
Z(0) ∂θ

∂s(x)
+ κ(0)

N m(0) ∂ ln r

∂s(x)
Z(0)

]
h

}
ds.

Thus we have
(
T (1)u(1)(t)

)+ − (
T (0)u(0)(t)

)− =

= −(
X(1) + X(0) + Y (0) + Y (1)

) ∂g

∂s(x)
+

(
Z(1) + Z(0)

)
h+

+
1
π

∫

S

[
2(X(1) + Y (1))

∂θ

∂s(x)
∂g

∂s(y)
+ (Z(1) − Z(0))

∂θ

∂s(x)
h
]
ds. (2.10)

It is assumed here that

X(1) + X(0) + Y (0) + Y (1) = O, Z(1) + Z(0) = E,

κ(1)
N m(1)X(1) − κ(0)

N m(0)X(0) + (κ(1)
N − κ(0)

N )m(0)Y (0) = 0,

κ(1)
N m(1)z(1) + κ(0)

N m(0)z(0) = 0.

(2.11)

Hence (2.10) takes the form
(
T (1)u(1)(t)

)+ − (
T (0)u(0)(t)

)− =

= −h +
1
π

∫

S

{
2(X(1)+ Y (1))

∂θ

∂s(x)
∂g

∂s(y)
+ (Z(1)− Z(0))

∂θ

∂s(x)
h

}
ds =

= F (t). (2.12)

(2.8) and (2.11) form a complete system allowing one to determine the
unknown matrices X(1), X(0), Y (1), Y (0), Z(1), Z(0). Solving this system,
we finally get

X(1) = (m(1) + m(0))−1m(0), Y (1) = −(m(1) + m(0))−1m(0),

Z(1) = (A(1) + A(0))−1A(0),

X(0) = (m(1) + m(0))−1m(1), Y (0) = −(m(1) + m(0))−1m(1),

Z(0) = (A(1) + A(0))−1A(1),

(2.13)

where
A = E1 − κLm. (2.14)
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In what follows, the unknown matrices will be meant to be defined by
formula (2.13).

Thus for g and h we have obtained integral Fredholm equations of second
kind. For ∂g

∂s(y) in (2.12) we perform partial integration and finally obtain
(
T (1)u(1)(t)

)+ − (
T (0)u(0)(t)

)− =

= −h +
1
π

∫

S

[
− 2(X(1) + Y (1))

∂2θ

∂s(x)∂s(y)
g + (Z(1) − Z(0))

∂θ

∂s(t)
h

}
ds =

= F (t). (2.15)

Recall some formulas [1]. If W = u + iv, then u and v are conjugate if
they satisfy the following conditions:

Nu = m−1 ∂v

∂s(x)
, Nv = −m−1 ∂u

∂s(x)
, (2.16)

where N is the pseudo-stress operator which is of importance when solving
the first boundary value problem.

In constructing the equations (2.9) and (2.12), we paid no attention to
the terms

π(x) =
∫

S

∂

∂s(x)
σ

σ
g ds and

∂π(x)
∂s(x)

=
∫

S

∂2

∂s(x)∂s(y)
σ

σ
g ds. (2.17)

Let us consider this question. Let σ = reiθ, σ = re−iθ. Then π(x) =
−2i

∫
S

e−2iθ ∂θ
∂s(y) g ds. This expression represents a function continuous on

the whole plane E2. This happens due to the fact that ∂θ
∂s(y) = 1

2ρ(y) , where
1

ρ(y) is the curvature of the curve S at the point y, and by our assumption,

this function is Hölder continuous. To study the properties of ∂π(x)
∂s(x) , we

note that
∂π(x)
∂s(x)

= −4
∫

S

e−2iθ ∂θ

∂s(x)
∂θ

∂s(y)
g ds− 2i

∫

S

e−2iθ ∂2θ

∂s(x)∂s(y)
g ds.

It should also be noted that the identity

∂2 ln σ

∂s(x)∂s(y)
= −∂ ln σ

∂s(x)
∂ ln σ

∂s(y)
= −

( ∂ ln r

∂s(x)
+ i

∂θ

∂s(x)

)( ∂ ln r

∂s(y)
+ i

∂θ

∂s(y)

)

holds from which, calculating the imaginary parts of the both sides, we
obtain

∂2θ

∂s(x)∂s(y)
= − ∂ ln r

∂s(x)
∂θ

∂s(y)
− ∂ ln r

∂s(y)
∂θ

∂s(x)
.

Since
∂θ

∂s(x)
=

1
2ρ(x)

,
∂θ

∂s(y)
=

1
2ρ(y)

,

we have



Solution of the Basic Contact Problem of Statics of Elastic Mixtures 105

∂θ

∂s(x)∂s(y)
= − ∂ ln r

∂s(x)
1

2ρ(y)
− ∂ ln r

∂s(y)
1

2ρ(x)
=

= − ∂ ln r

∂s(x)
1
2

( 1
ρ(y)

− 1
ρ(x)

)
−

( ∂ ln r

∂s(x)
+

∂ ln r

∂s(y)

) 1
ρ(x)

.

The above expression represents a Hölder continuous function on the whole
plane.

Thus we have proved that when we pay no attention to the terms in
(2.16), the validity of the above calculations becomes obvious.

From the equation (2.12), integrating over S, we obtain
∫

S

h ds + (Z(0) − Z(1))
∫

S

h ds =
∫

S

F ds.

that is, taking into account (2.11),

2Z(0)

∫

S

h ds =
∫

S

F ds.

If
∫
S

F ds = 0, then taking into account that det Z(0) 6= 0, we find that

∫

S

h ds = 0. (2.18)

This condition ensures that u(0)(x) is equal to zero at infinity.

3. Investigation of the Integral Equations of the Basic
Contact Problem

Let us prove that the integral Fredholm equations (2.9) and (2.12) for
f = F = 0 have only trivial solutions. Assume the contrary that (2.9) and
(2.12) have nontrivial solutions which we denote again by g and h. Using
the uniqueness theorems, we obtain

u(1)(x) = u(0)(x) = c1.

But u(1)(0) = 0 (without restriction of generality, we assume that the origin
is in the domain D+

1 ), and we find that c1 = 0 and hence

u(1)(x) = 0, x ∈ D+
1 ,

u(0)(x) = 0, x ∈ D+
0 .

(3.1)

Taking into account (3.1) and (2.15), we have

v(1)(x) = c1,

v(0)(x) = c0,
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where c1 and c0 are constants. It is already known that v(0)(∞) = 0 and
c0 = 0. Since v(1) is defined to within a constant, we can choose it such
that v(1)(x) = 0, x ∈ D+

1 . Finally, we obtain

v(1)(x)=
1
π

∫

S

Im
{[

(N (1)
y Γ(1))′X(1)+

∂Γ(1)

∂s(y)
Y (1)

]
g+Γ(1)Z(1)h

}
ds=0,

x ∈ D+
1 ,

v(0)(x)=
1
π

∫

S

Im
{[

(N (0)
y Γ(0))′X(0)+

∂Γ(0)

∂s(y)
Y (0)

]
g+Γ(0)Z(0)h

}
ds=0,

x ∈ D+
0 .

(3.2)

Taking into account the formulas

(Ny ImΓ(1))′ = − ∂ ln r

∂s(y)
,

∂ ImΓ(1)

∂s(y)
= m(1)Y (1) ∂θ

∂s(y)
,

we can rewrite (3.2) in the form

v(1)(x)=
1
π

∫

S

{[
− ∂ ln r

∂s(y)
X(1)+m(1)Y (1) ∂θ

∂s(y)

]
g−Γ(1)Z(1)h

}
ds=0,

x ∈ D+
1 ,

v(0)(x)=
1
π

∫

S

{[
− ∂ ln r

∂s(y)
X(0)+m(0)Y (0) ∂θ

∂s(y)

]
g−Γ(0)Z(0)h

}
ds=0,

x ∈ D+
0 .

(3.3)

whence, passing to limit as x → t ∈ S, we obtain

(v(1)(t))+ − (v(1)(t))− = 2m(1)Y (1)g,

(v(0)(t))+ − (v(0)(t))− = 2m(0)Y (0)g,

As is known, (v(1)(t))+ = (v(0)(t))− = 0, and thus we have

(v(1)(t))− = −2m(1)Y (1)g, (v(0)(t))+ = 2m(0)Y (0)g. (3.4)

With regard for (2.8), we find that

(v(1)(t))− = −(v(0)(t))+. (3.5)

From (3.2), we can now calculate T (1)v(1) and T (0)v(0).
Taking into account the formulas

T (1)
x (NyΓ(1))′ = (−iE − κ(1)

N m(1))
∂2 ln σ

∂s(x)∂s(y)
,

T (1)
x

(∂Γ(1)

∂s(y)

)
= (−iE − κ(1)

N m(1))
∂2 ln σ

∂s(x)∂s(y)
,

T (1)
x Γ(1) = (−iE − κ(1)

N m(1))Z(1) ∂ ln σ

∂s(x)
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and performing partial integration with respect to the vector g, we obtain

T (1)v(1)(x) =
1
π

∫

S

{[
X(1) ∂ ln r

∂s(x)
+ κ(1)

N m(1)X(1) ∂θ

∂s(x)

] ∂g

∂s(x)
+

+
[
Y (1) ∂ ln r

∂s(x)
− κ(1)

N m(1)Y (1) ∂θ

∂s(x)

] ∂g

∂s(y)
+

+
[
κ(1)

N m(1)Z(1) ∂θ

∂s(x)
− Z(1) ∂ ln r

∂s(x)

]
h

}
ds, x ∈ D+

1 ,

T (0)v(0)(x) =
1
π

∫

S

{[
X(0) ∂ ln r

∂s(x)
+ κ(0)

N m(0)X(0) ∂θ

∂s(x)

] ∂g

∂s(x)
+

+
[
Y (0) ∂ ln r

∂s(x)
− κ(0)

N m(0)Y (0) ∂θ

∂s(x)

] ∂g

∂s(y)
+

+
[
κ(0)

N m(0)Z(0) ∂θ

∂s(x)
− Z(0) ∂ ln r

∂s(x)

]
h

}
ds, x ∈ D+

0 ,

(3.6)

whence

(T (1)v(1)(t))+ − (T (1)v(1)(t))− =

= −2
(
κ(1)

N m(1)X(1) − κ(1)
N m(1)Y (1)

) ∂g

∂s(t)
− 2(κ(1)

N m(1)Z(1))h,

(T (1)v(1)(t))+ = 0,

(T (0)v(0)(t))+ − (T (0)v(0)(t))− =

= −2
(
κ(0)

N m(0)X(0) − κ(0)
N m(0)Y (0)

) ∂g

∂s(t)
− 2(κ(0)

N m(0)Z(0))h,

(T (0)v(0)(t))− = 0.

Thus we have

(T (1)v(1)(t))− =

= 2
(
κ(1)

N m(1)X(1) − κ(1)
N m(1)Y (1)

) ∂g

∂s(t)
+ 2(κ(1)

N m(1)Z(1))h,

(T (0)v(0)(t))+ =

= 2
(
κ(0)

N m(0)X(0) − κ(0)
N m(0)Y (0)

) ∂g

∂s(t)
+ 2(κ(0)

N m(0)Z(0))h,

(3.7)

whence, bearing in mind (2.11), we find that

(T (1)v(1)(t))− + (T (0)v(0)(t))+ ≡ 0. (3.8)

Using Green’s formulas as well as (3.6) and (3.7), we obtain
∫

D−0

E(v(1), v(1)) dσ = −
∫

S

(v(1)(t))−(T (1)v(1))− ds,
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∫

D+
1

E(v(0), v(0)) dσ =
∫

S

(v(0)(t))+(T (0)v(0))+ ds,

whence ∫

D−
0

E(v(1), v(1)) dσ +
∫

D+
1

E(v(0), v(0)) dσ = 0.

Thus we obtain

v(1)(x) = C(1) + E(1)

(−x2

x1

)
, x ∈ D−

0 ,

v(0)(x) = C(0) + E(0)

(−x2

x1

)
, x ∈ D+

1 .

v(1)(∞) = 0, that is, c(1) = 0, E(1) = 0, v(0) = 0, i.e. c(0) = 0, E(0) = 0.
Taking now into account (3.4) and (3.7), we get

g = 0 and h = 0.

Thus we have proved that the homogeneous integral equations corre-
sponding to (2.9) and (2.12) have only trivial solutions if

∫
s

F ds = 0 and

the curvature of the curve S is Hölder continuous.
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