Memoirs on Differential Equations and Mathematical Physics

 Volume 49, 2010, 95-108Mikheil Basheleishvili

SOLUTION OF THE BASIC CONTACT PROBLEM OF STATICS OF ELASTIC MIXTURES

Abstract. A finite domain D_{1} and an infinite domain D_{0} are considered with the common boundary S having Hölder continuous curvature. D_{1} and D_{0} are filled with isotropic elastic mixtures. In D_{1} and $D_{0} u^{(1)}$ and $u^{(0)}$ are displacement vectors while $T^{(1)} u^{(1)}$ and $T^{(2)} u^{(2)}$ are stress vectors. The main contact problem considered in the paper may be formulated as follows: in the domains D_{1} and D_{0}, find regular vectors $u^{(1)}$ and $u^{(0)}$ satisfying on the boundary S the conditions

$$
\begin{array}{r}
\left(u^{(1)}\right)^{+}-\left(u^{(0)}\right)^{-}=f, \\
\left(T^{(1)} u^{(1)}\right)^{+}-\left(T^{(2)} u^{(2)}\right)^{-}=F,
\end{array}
$$

where f and F are given vectors. A uniqueness theorem is proved for this problem. A Fredholm system of integral equations is derived for the problem. An existence theorem is proved for the main contact problem via investigation of the latter system.

2010 Mathematics Subject Classification. 74B05.
Key words and phrases. Simple and double layer potentials, Fredholm system of integral equations of second kind.

$$
\begin{array}{r}
\left(u^{(1)}\right)^{+}-\left(u^{(0)}\right)^{-}=f, \\
\left(T^{(1)} u^{(1)}\right)^{+}-\left(T^{(2)} u^{(2)}\right)^{-}=F,
\end{array}
$$

1. Main Equations. Basic Contact Problem. The Uniqueness of A Solution

The main homogeneous equations of statics of an elastic mixture are of the form [1]:

$$
\begin{equation*}
C u=0, \tag{1.1}
\end{equation*}
$$

where

$$
\begin{gather*}
C=\left[\begin{array}{ll}
C^{(1)} & C^{(2)} \\
C^{(3)} & C^{(4)}
\end{array}\right], \quad C^{(1)}=\left[c_{k j}^{(1)}\right], \quad j=1,4 \\
c_{k j}^{(1)}=a_{1} \Delta \delta_{k j}+b_{1} \frac{\partial^{2}}{\partial x_{k} \partial x_{j}}, \quad c_{k j}^{(2)}=c_{k j}^{(3)}=c \Delta \delta_{k j}+d \frac{\partial^{2}}{\partial x_{k} \partial x_{j}} \tag{1.2}\\
c_{k j}^{(4)}=a_{2} \Delta \delta_{k j}+b_{2} \frac{\partial^{2}}{\partial x_{k} \partial x_{j}}
\end{gather*}
$$

The constants appearing in (2.1) have the following values:

$$
\begin{gather*}
a_{1}=\mu_{1}-\lambda_{5}, \quad a_{2}=\mu_{2}-\lambda_{5}, \quad c=\mu_{3}+\lambda_{5} \\
b_{1}=\mu_{1}+\lambda_{1}+\lambda_{5}-\rho^{-1} \alpha_{2} \rho_{2}, \quad b_{2}=\mu_{2}+\lambda_{2}+\lambda_{5}+\rho^{-1} \alpha_{2} \rho_{1} \tag{1.3}\\
d=\mu_{3}+\lambda_{3}-\lambda_{5}-\rho^{-1} \alpha_{2} \rho_{1} \equiv \mu_{3}+\lambda_{4}-\lambda_{5}+\rho^{-1} \alpha_{2} \rho_{2} \\
\rho=\rho_{1}+\rho_{2}, \quad \alpha_{2}=\lambda_{3}-\lambda_{4}
\end{gather*}
$$

where $\mu_{1}, \mu_{2}, \mu_{3}, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}$ are constants characterizing physical properties of the elastic mixture and satisfying certain inequalities. The vector u is four-dimensional: $u=\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$. The stress vector is defined as follows [1]:

$$
\begin{array}{ll}
(T u)_{1}=\tau_{11}^{\prime} n_{1}+\tau_{21}^{\prime} n_{2}, & (T u)_{2}=\tau_{12}^{\prime} n_{1}+\tau_{22}^{\prime} n_{2} \\
(T u)_{3}=\tau_{11}^{\prime \prime} n_{1}+\tau_{21}^{\prime \prime} n_{2}, & (T u)_{4}=\tau_{12}^{\prime \prime} n_{1}+\tau_{22}^{\prime \prime} n_{2} \tag{1.4}
\end{array}
$$

and the generalized stress vector has the form [1]

$$
\begin{array}{ll}
(\stackrel{\varkappa}{T} u)_{1}=\sigma_{11}^{\prime} n_{1}+\sigma_{21}^{\prime} n_{2}, & (\stackrel{\varkappa}{T} u)_{2}=\sigma_{12}^{\prime} n_{1}+\sigma_{22}^{\prime} n_{2} \tag{1.5}\\
(\stackrel{\varkappa}{T} u)_{3}=\sigma_{11}^{\prime \prime} n_{1}+\sigma_{21}^{\prime \prime} n_{2}, & (\stackrel{\varkappa}{T} u)_{4}=\sigma_{12}^{\prime \prime} n_{1}+\sigma_{22}^{\prime \prime} n_{2}
\end{array}
$$

where

$$
\begin{gather*}
\sigma_{11}^{\prime}=L_{1}+\frac{\partial M_{2}}{\partial x_{2}}, \quad \sigma_{21}^{\prime}=-L_{1}-\frac{\partial M_{2}}{\partial x_{1}} \\
\sigma_{12}^{\prime}=L_{2}-\frac{\partial M_{1}}{\partial x_{2}}, \quad \sigma_{22}^{\prime}=L_{1}+\frac{\partial M_{1}}{\partial x_{1}} \\
\sigma_{11}^{\prime \prime}=L_{3}+\frac{\partial M_{4}}{\partial x_{2}}, \quad \sigma_{21}^{\prime \prime}=-L_{4}-\frac{\partial M_{4}}{\partial x_{1}} \tag{1.6}\\
\sigma_{12}^{\prime \prime}=L_{4}-\frac{\partial M_{3}}{\partial x_{2}}, \quad \sigma_{22}^{\prime \prime}=L_{3}+\frac{\partial M_{3}}{\partial x_{1}} \\
L_{1}=\left(a_{1}+b_{1}\right) \theta^{\prime}+(c+d) \theta^{\prime \prime}, \quad L_{2}=a_{1} \omega^{\prime}+c \omega^{\prime \prime} \\
L_{3}=(c+d) \theta^{\prime}+\left(a_{2}+b_{2}\right) \theta^{\prime \prime}, \quad L_{4}=c \omega^{\prime}+a_{2} \omega^{\prime \prime}
\end{gather*}
$$

$$
\begin{align*}
& M_{1}=\left(\varkappa_{1}-2 \mu_{1}\right) u_{1}+\left(\varkappa_{3}-2 \mu_{3}\right) u_{3} \\
& M_{2}=\left(\varkappa_{1}-2 \mu_{1}\right) u_{2}+\left(\varkappa_{3}-2 \mu_{3}\right) u_{4} \\
& M_{3}=\left(\varkappa_{3}-2 \mu_{3}\right) u_{1}+\left(\varkappa_{2}-2 \mu_{2}\right) u_{3} \tag{1.7}\\
& M_{4}=\left(\varkappa_{3}-2 \mu_{3}\right) u_{2}+\left(\varkappa_{2}-2 \mu_{2}\right) u_{4} \\
& \theta^{\prime}=\frac{\partial u_{1}}{\partial x_{1}}+\frac{\partial u_{2}}{\partial x_{2}}, \quad \theta^{\prime \prime}=\frac{\partial u_{3}}{\partial x_{1}}+\frac{\partial u_{4}}{\partial x_{2}} \tag{1.8}\\
& \omega^{\prime}=\frac{\partial u_{2}}{\partial x_{1}}-\frac{\partial u_{1}}{\partial x_{2}}, \quad \omega^{\prime \prime}=\frac{\partial u_{4}}{\partial x_{1}}-\frac{\partial u_{3}}{\partial x_{2}}
\end{align*}
$$

\varkappa is a real constant matrix

$$
\varkappa=\left[\begin{array}{cccc}
0 & \varkappa_{1} & 0 & \varkappa_{3} \tag{1.9}\\
-\varkappa_{1} & 0 & -\varkappa_{3} & 0 \\
0 & \varkappa_{3} & 0 & \varkappa_{2} \\
-\varkappa_{3} & 0 & -\varkappa_{2} & 0
\end{array}\right]
$$

where $\varkappa_{1}, \varkappa_{2}, \varkappa_{3}$ can take arbitrary real values. We point out some of them. If $\varkappa_{1}=2 \mu_{1}, \varkappa_{2}=2 \mu_{2}, \varkappa_{3}=2 \mu_{3}$, then $\varkappa=\varkappa_{L}$. Taking into account (1.5) and (1.4), we have

$$
\begin{equation*}
\stackrel{\varkappa}{T} u=T u+\varkappa \frac{\partial u}{\partial s(x)}, \tag{1.10}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{\partial}{\partial s(x)}=n_{1} \frac{\partial}{\partial x_{2}}-n_{2} \frac{\partial}{\partial x_{1}} . \tag{1.11}
\end{equation*}
$$

If \varkappa assumes the above mentioned value, then $\stackrel{\varkappa}{T} \equiv L$, and from (1.10) we have

$$
\begin{equation*}
L u=T u+\varkappa_{L} \frac{\partial u}{\partial s(x)} . \tag{1.12}
\end{equation*}
$$

If $\varkappa_{N}=\varkappa_{L}-m^{-1} E_{1}$, where

$$
\begin{gather*}
m^{-1}=\frac{1}{\Delta_{0}}\left[\begin{array}{cccc}
m_{3} & 0 & -m_{2} & 0 \\
0 & m_{3} & 0 & -m_{2} \\
-m_{2} & 0 & m_{1} & 0 \\
0 & -m_{2} & 0 & m_{1}
\end{array}\right] \\
E_{1}=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right], \Delta_{0}=m_{1} m_{3}-m_{2}^{2}>0, \tag{1.13}
\end{gather*}
$$

then we obtain

$$
\begin{equation*}
N u=T u+\varkappa_{N} \frac{\partial u}{\partial s(x)} . \tag{1.14}
\end{equation*}
$$

Let D_{1}^{+}be a finite domain in the plane E_{2}. Then $\bar{D}_{1}^{+}=D_{1} \cup S$, where S is a closed curve of continuous Hölder curvature. Denote $D_{0}=E_{2}-\bar{D}_{1}^{+}$. Obviously, D_{0}^{-}is an infinite domain bounded by the curve S. Find now a regular solution of the equation (1.1) [2].

Definition. The vector u is a regular solution of the equation (1.1) in the domain D_{1}^{+}if it and its partial first order derivatives are continuous vectors up to the boundary S, and the second derivatives exist in D_{1}^{+}and satisfy the equation (1.1).

In the domain D_{0}^{-}, to the above-mentioned conditions we add one which is fulfilled at infinity:

$$
\begin{equation*}
U=O(1), \quad \frac{\partial U}{\partial x_{k}}=O\left(\rho^{-2}\right), \quad \rho^{2}=x_{1}^{2}+x_{2}^{2}, \quad k=1,2 . \tag{1.15}
\end{equation*}
$$

The basic contact problem can be formulated as follows: find regular solutions in D_{1}^{+}and D_{0}^{-}of the equation (1.1) under the conditions

$$
\begin{gather*}
\left(U^{(1)}(t)\right)^{+}-\left(U^{(0)}(t)\right)=f(t), \\
\left(T^{(1)} U^{(1)}(t)\right)^{+}-\left(T^{(0)} U^{(0)}(t)\right)^{-}=F(t) \tag{1.16}
\end{gather*} \quad t \in S ;
$$

here f and F are with a definite smoothness vectors given on the boundary. The signs + and - refer, respectively, to interior and exterior boundary values. Obviously, the constants take in D_{1}^{+}and D_{0}^{-}different values. Therefore in the domain $D_{j}^{+}, j=0,1$, we supply the constants with an appropriate index $j, j=0,1$. The same refers to the vectors $u^{(1)}$ and $u^{(0)}$.

Let us prove a theorem of uniqueness of solution of the basic contact problem. Towards this end, we will need the following Green's formulas [1]:

$$
\begin{align*}
& \int_{D_{1}^{+}} E^{(1)}\left(u^{(1)}, u^{(1)}\right) d \sigma=\int_{S} u^{(1)} T^{(1)} u^{(1)} d s \\
& \int_{D_{0}^{+}} E^{(0)}\left(u^{(0)}, u^{(0)}\right) d \sigma=-\int_{S} u^{(0)} T^{(0)} u^{(0)} d s \tag{1.17}
\end{align*}
$$

where $E(u, u)$ is the doubled potential energy:

$$
\begin{aligned}
& E^{(k)}\left(u^{(k)}, u^{(k)}\right)=\left(b_{1}^{(k)}-\lambda_{5}^{(k)}\right)\left(\frac{\partial u_{1}^{(k)}}{\partial x_{1}}+\frac{\partial u_{2}^{(k)}}{\partial x_{2}}\right)^{2}+ \\
&+ 2\left(d^{(k)}+\lambda_{5}^{(k)}\right)\left(\frac{\partial u_{1}^{(k)}}{\partial x_{1}}+\frac{\partial u_{2}^{(k)}}{\partial x_{2}}\right)\left(\frac{\partial u_{3}^{(k)}}{\partial x_{1}}+\frac{\partial u_{4}^{(k)}}{\partial x_{2}}\right)+ \\
&+\left(b_{2}^{(k)}-\lambda_{5}^{(k)}\right)\left(\frac{\partial u_{2}^{(k)}}{\partial x_{1}}+\frac{\partial u_{4}^{(k)}}{\partial x_{2}}\right)^{2}+ \\
&+2 \mu_{3}^{(k)}\left[\left(\frac{\partial u_{1}^{(k)}}{\partial x_{1}}-\frac{\partial u_{2}^{(k)}}{\partial x_{2}}\right)\left(\frac{\partial u_{3}^{(k)}}{\partial x_{1}}-\frac{\partial u_{4}^{(k)}}{\partial x_{2}}\right)+\left(\frac{\partial u_{2}^{(k)}}{\partial x_{1}}+\frac{\partial u_{2}^{(k)}}{\partial x_{2}}\right)\left(\frac{\partial u_{4}^{(k)}}{\partial x_{1}}+\frac{\partial u_{3}^{(k)}}{\partial x_{2}}\right)\right]+ \\
&+ \mu_{2}^{(k)}\left[\left(\frac{\partial u_{3}^{(k)}}{\partial x_{1}}-\frac{\partial u_{4}^{(k)}}{\partial x_{2}}\right)^{2}+\left(\frac{\partial u_{4}^{(k)}}{\partial x_{1}}+\frac{\partial u_{3}^{(k)}}{\partial x_{2}}\right)^{2}\right]-
\end{aligned}
$$

$$
\begin{equation*}
-\lambda_{5}^{(k)}\left[\left(\frac{\partial u_{3}^{(k)}}{\partial x_{1}}-\frac{\partial u_{1}^{(k)}}{\partial x_{2}}\right)^{2}-\left(\frac{\partial u_{4}^{(k)}}{\partial x_{1}}-\frac{\partial u_{3}^{(k)}}{\partial x_{2}}\right)^{2}\right] \tag{1.18}
\end{equation*}
$$

Theorem. A regular solution of the basic contact problem of the equation (1.1) satisfying the boundary conditions on the boundary S is zero.

Proof. In (1.16), since $f=F=0$, we have $\left(u^{(1)}\right)^{+}=\left(u^{(0)}\right)^{-},\left(T^{(1)} u^{(1)}\right)^{+}=$ $\left(T^{(0)} u^{(0)}\right)^{-}$, and taking into account (1.17), we find that

$$
\int_{D_{1}^{+}} E^{(1)}\left(u^{(1)}, u^{(1)}\right) d \sigma+\int_{D_{0}^{-}} E^{(0)}\left(u^{(0)}, u^{(0)}\right) d \sigma=0
$$

whence

$$
U^{(k)}=C^{(k)}+\mathcal{E}^{(k)}\binom{-x_{2}}{x_{1}}, \quad k=0,1
$$

where $C^{(k)}=\binom{c_{1}^{(k)}}{c_{2}^{(k)}}$, and $c_{1}^{(k)}, c_{2}^{(k)}$ and $\mathcal{E}^{(k)}$ are arbitrary real constants.
In our case, $\omega^{(1)}=\omega^{(0)}$, and therefore $\mathcal{E}^{(k)}=\mathcal{E}^{(0)}$. Moreover, $u^{(1)}(t)=$ $u^{(0)}(t)$. It is required that $u^{(1)}(0)=0$. (Note that the origin is in the domain $\left.D_{1}^{+}\right)$. Taking into account the fact that $u^{(1)}(x)$ and $u^{(0)}(x)$ are vectors continuous up to the boundary S, we obtain $c_{1}^{(1)}=0, c_{0}^{(0)}=0$, $\mathcal{E}^{(1)}=\mathcal{E}^{(0)}=0$. Thus we have found that

$$
\begin{equation*}
u^{(1)}(x)=0, \quad x \in D_{1}^{+}, \quad u^{(0)}(x)=0, \quad x \in D_{0}^{+} \tag{1.19}
\end{equation*}
$$

Hence the proof of the theorem is complete.

2. Integral Equations of the Basic Contact Problem

In this section, for the basic contact problem we will write the integral Fredholm equations of the second kind.

The solutions $u^{(1)}(x)$ and $u^{(0)}(x)$ are sought in the form

$$
\begin{gather*}
u^{(1)}(x)=\frac{1}{\pi} \int_{S} \operatorname{Re}\left\{\left[\left(N^{(1)} \Gamma^{(1)}\right)^{\prime} X^{(1)}+\frac{\partial \Gamma^{(1)}}{\partial s(y)} Y^{(1)}\right] g+\Gamma^{(1)} Z^{(1)} h\right\} d s \\
x \in D_{1}^{+} \\
u^{(0)}(x)=\frac{1}{\pi} \int_{S} \operatorname{Re}\left\{\left[\left(N^{(0)} \Gamma^{(0)}\right)^{\prime} X^{(0)}+\frac{\partial \Gamma^{(0)}}{\partial s(y)} Y^{(0)}\right] g+\Gamma^{(0)} Z^{(0)} h\right\} d s \tag{2.1}\\
x \in D_{0}^{-}
\end{gather*}
$$

where g and h are unknown real vectors which are determined from the boundary condition, and

$$
\begin{equation*}
\Gamma(y-x)=m \ln \sigma+\frac{n}{4} \frac{\bar{\sigma}}{\sigma}, \quad \sigma=\left(x_{1}-y_{1}\right)+i\left(x_{2}-y_{2}\right) . \tag{2.2}
\end{equation*}
$$

In this formula instead of $\ln \sigma$ we write $\ln \frac{\zeta-z}{\zeta}$ in the domain D_{1}^{+}, while in the domain D_{0}^{-}we write $\ln \frac{z-\zeta}{z}$, where $z=x_{1}+i x_{2}, \zeta=y_{1}+i y_{2}$. This remark is made due to the fact that the vectors $u^{(1)}(x)$ and $u^{(0)}(x)$ are continuous up to the boundary S,

$$
\begin{gather*}
m=\left[\begin{array}{cccc}
m_{1} & 0 & m_{2} & 0 \\
0 & m_{1} & 0 & m_{2} \\
m_{2} & 0 & m_{3} & 0 \\
0 & m_{2} & 0 & m_{3}
\end{array}\right], \quad n=\left[\begin{array}{cccc}
l_{4} & i l_{4} & l_{5} & i l_{5} \\
i l_{4} & -l_{4} & -i l_{5} & -l_{5} \\
l_{5} & i l_{5} & l_{6} & i l_{6} \\
i l_{5} & -l_{5} & i l_{6} & -l_{6}
\end{array}\right], \tag{2.3}\\
l_{1}+l_{4}=\frac{a_{2}+b_{2}}{d_{1}}, \quad l_{2}+l_{5}=-\frac{e+d}{d_{1}}, \quad l_{3}+l_{6}=\frac{a_{1}+b_{1}}{d_{1}}, \\
e_{2}=-\frac{c}{d_{2}}, \quad e_{1}=\frac{a_{2}}{d_{2}}, \quad e_{3}=\frac{a_{1}}{d_{2}} \tag{2.4}\\
d_{1}=\left(a_{1}+b_{1}\right)\left(a_{2}+b_{2}\right)-(c+d)^{2}>0, \quad d_{2}=a_{1} a_{2}-c^{2}>0
\end{gather*}
$$

Thus we obtain

$$
\begin{equation*}
\left(N_{y} \operatorname{Re} \Gamma\right)^{\prime}=E \frac{\partial \theta}{\partial s(y)}, \quad\left(N_{y} \operatorname{Im} \Gamma\right)^{\prime}=-E \frac{\partial \ln r}{\partial s(y)} \tag{2.5}
\end{equation*}
$$

Taking into account (2.3) and (2.5), we rewrite (2.1) in the form

$$
\begin{array}{r}
u^{(1)}(x)=\frac{1}{\pi} \int_{S}\left\{\left[\frac{\partial \theta}{\partial s(y)} X^{(1)}+m^{(1)} Y^{(1)} \frac{\partial \ln r}{\partial s(y)}\right] g+\Gamma^{(1)} Z^{(1)} h\right\} d s \\
x \in D_{1}^{+} \\
u^{(0)}(x)=\frac{1}{\pi} \int_{S}\left\{\left[\frac{\partial \theta}{\partial s(y)} X^{(0)}+m^{(0)} Y^{(0)} \frac{\partial \ln r}{\partial s(y)}\right] g+\Gamma^{(0)} Z^{(0)} h\right\} d s \tag{2.6}\\
u \in D_{0}^{+}
\end{array}
$$

Passing to limit as $x \rightarrow t \in S$, for finding unknown matrices X, Y, Z we obtain the equations (which will be written below):

$$
\begin{aligned}
\left(u^{(1)}(t)\right)^{+}= & X^{(1)} g+ \\
& +\frac{1}{\pi} \int_{S}\left\{\left[\frac{\partial \theta}{\partial s(y)} X^{(1)}+m^{(1)} Y^{(1)} \frac{\partial \ln r}{\partial s(y)}\right] g+\Gamma^{(1)} Z^{(1)} h\right\} d s \\
\left(u^{(0)}(t)\right)^{-}= & -X^{(0)} g+ \\
& +\frac{1}{\pi} \int_{S}\left\{\left[\frac{\partial \theta}{\partial s(y)} X^{(0)}+m^{(0)} Y^{(0)} \frac{\partial \ln r}{\partial s(y)}\right] g+\Gamma^{(0)} Z^{(0)} h\right\} d s
\end{aligned}
$$

whence

$$
\begin{aligned}
& \left(u^{(1)}(t)\right)^{+}-\left(u^{(0)}(t)\right)^{-}=\left(X^{(1)}+X^{(0)}\right) g+ \\
& \quad+\frac{1}{\pi} \int_{S}\left\{\left[\frac{\partial \theta}{\partial s(y)}\left(X^{(1)}-X^{(0)}\right)+\left(m^{(1)} Y^{(1)}-m^{(0)} Y^{(0)}\right) \frac{\partial \ln r}{\partial s(y)}\right] g+\right.
\end{aligned}
$$

$$
\begin{equation*}
\left.+\left(\Gamma^{(1)} Z^{(1)}-\Gamma^{(0)} Z^{(0)}\right) h\right\} d s=f(t) \tag{2.7}
\end{equation*}
$$

From (2.7), we adopt the following restrictions:

$$
\begin{equation*}
X^{(1)}+X^{(0)}=E, \quad m^{(1)} Y^{(1)}-m^{(0)} Y^{(0)}=0 . \tag{2.8}
\end{equation*}
$$

Under these conditions, (2.7) is a Fredholm equation of second kind of the form

$$
\begin{gather*}
\left(u^{(1)}(t)\right)^{+}-\left(u^{(0)}(t)\right)^{-}= \\
=g+\frac{1}{\pi} \int_{S}\left[\frac{\partial \theta}{\partial s(y)}\left(X^{(1)}-X^{(0)}\right) g+\left(\Gamma^{(1)} Z^{(1)}-\Gamma^{(0)} Z^{(0)}\right) h\right] d s=f(t) \tag{2.9}
\end{gather*}
$$

Thus we have obtained one equation for finding the unknown vectors g and h. The second equation will be written below.

We now calculate $T^{(1)} u^{(1)}$ and $T^{(0)} u^{(0)}$ from (2.1). It should be noted that

$$
\begin{aligned}
T_{x}^{(1)}\left(N_{y} \Gamma\right)^{\prime} & =-i\left(E-i \varkappa_{N} m\right) \frac{\partial^{2} \ln \sigma}{\partial s(x) \partial s(y)}, \\
T_{x}^{(1)} \operatorname{Re} \frac{\partial \Gamma}{\partial s(y)} & =-E \frac{\partial^{2} \theta}{\partial s(x) \partial s(y)}-\varkappa_{N} m \frac{\partial^{2} \ln r}{\partial s(x) \partial s(y)}, \\
T_{x}^{(1)} \operatorname{Re} \Gamma & =-E \frac{\partial \theta}{\partial s(x)}+\varkappa_{N} m \frac{\partial \ln r}{\partial s(x)} .
\end{aligned}
$$

Using the above formulas and performing partial integration with respect to the vector g, we obtain

$$
\begin{aligned}
& T^{(1)} u^{(1)}(x)=\frac{1}{\pi} \int_{S}\left\{\left[E \frac{\partial \theta}{\partial s(x)} X^{(1)}+\varkappa_{N}^{(1)} m^{(1)} X^{(1)} \frac{\partial \ln r}{\partial s(x)}+\right.\right. \\
&\left.+E \frac{\partial \theta}{\partial s(x)} Y^{(1)}+\varkappa_{N}^{(1)} m^{(1)} Y^{(1)}\right] \frac{\partial \ln r}{\partial s(x)} \frac{\partial g}{\partial s(y)}+ \\
&\left.+\left[Z^{(1)} \frac{\partial \theta}{\partial s(x)}+\varkappa_{N}^{(1)} m^{(1)} Z^{(1)} \frac{\partial \ln r}{\partial s(x)}\right] h\right\} d s, x \in D_{1}^{+}, \\
& T^{(0)} u^{(0)}(x)=\frac{1}{\pi} \int_{S}\left\{\left[E \frac{\partial \theta}{\partial s(x)} X^{(0)}+\varkappa_{N}^{(0)} m^{(0)} X^{(0)} \frac{\partial \ln r}{\partial s(x)}+\right.\right. \\
&\left.+E \frac{\partial \theta}{\partial s(x)} Y^{(0)}+\varkappa_{N}^{(0)} m^{(0)} Y^{(0)} \frac{\partial \ln r}{\partial s(x)}\right] \frac{\partial g}{\partial s(y)}+ \\
&\left.+\left[Z^{(0)} \frac{\partial \theta}{\partial s(x)}+\varkappa_{N}^{(0)} m^{(0)} Z^{(0)} \frac{\partial \ln r}{\partial s(x)}\right] h\right\} d s, x \in D_{0}^{+} .
\end{aligned}
$$

Passing to limit as $x \rightarrow t \in S$, we find that

$$
\left(T^{(1)} u^{(1)}(t)\right)^{+}=-\left(X^{(1)}+Y^{(1)}\right) \frac{\partial g}{\partial s(t)}+Z^{(1)} h+
$$

$$
\begin{aligned}
&+\frac{1}{\pi} \int\left\{\left[\left(X^{(1)}+\right.\right.\right.\left.\left.Y^{(1)}\right) \frac{\partial \theta}{\partial s(x)}+\left(\varkappa_{N}^{(1)} m^{(1)} X^{(1)}+\varkappa_{N}^{(1)} m^{(1)} Y^{(1)}\right) \frac{\partial \ln r}{\partial s(x)}\right] \frac{\partial g}{\partial s(x)}+ \\
&\left.+\left[Z^{(1)} \frac{\partial \theta}{\partial s(x)}+\varkappa_{N}^{(1)} m^{(1)} \frac{\partial \ln r}{\partial s(x)} Z^{(1)}\right] h\right\} d s \\
&\left(T^{(0)} u^{(0)}(t)\right)^{-}=\left(X^{(0)}+Y^{(0)}\right) \frac{\partial g}{\partial s(t)}+Z^{(0)} h+ \\
&+\frac{1}{\pi} \int_{S}\left\{\left[\left(X^{(0)}+Y^{(0)}\right) \frac{\partial \theta}{\partial s(x)}+\left(\varkappa_{N}^{(0)} m^{(0)} X^{(0)}+\varkappa_{N}^{(0)} m^{(0)} Y^{(0)}\right) \frac{\partial \ln r}{\partial s(x)}\right] \frac{\partial g}{\partial s(x)}+\right. \\
&+ {\left.\left[Z^{(0)} \frac{\partial \theta}{\partial s(x)}+\varkappa_{N}^{(0)} m^{(0)} \frac{\partial \ln r}{\partial s(x)} Z^{(0)}\right] h\right\} d s }
\end{aligned}
$$

Thus we have

$$
\begin{align*}
& \left(T^{(1)} u^{(1)}(t)\right)^{+}-\left(T^{(0)} u^{(0)}(t)\right)^{-}= \\
& \quad=-\left(X^{(1)}+X^{(0)}+Y^{(0)}+Y^{(1)}\right) \frac{\partial g}{\partial s(x)}+\left(Z^{(1)}+Z^{(0)}\right) h+ \\
& +\frac{1}{\pi} \int_{S}\left[2\left(X^{(1)}+Y^{(1)}\right) \frac{\partial \theta}{\partial s(x)} \frac{\partial g}{\partial s(y)}+\left(Z^{(1)}-Z^{(0)}\right) \frac{\partial \theta}{\partial s(x)} h\right] d s \tag{2.10}
\end{align*}
$$

It is assumed here that

$$
\begin{gather*}
X^{(1)}+X^{(0)}+Y^{(0)}+Y^{(1)}=O, \quad Z^{(1)}+Z^{(0)}=E, \\
\varkappa_{N}^{(1)} m^{(1)} X^{(1)}-\varkappa_{N}^{(0)} m^{(0)} X^{(0)}+\left(\varkappa_{N}^{(1)}-\varkappa_{N}^{(0)}\right) m^{(0)} Y^{(0)}=0, \tag{2.11}\\
\varkappa_{N}^{(1)} m^{(1)} z^{(1)}+\varkappa_{N}^{(0)} m^{(0)} z^{(0)}=0 .
\end{gather*}
$$

Hence (2.10) takes the form

$$
\begin{gather*}
\left(T^{(1)} u^{(1)}(t)\right)^{+}-\left(T^{(0)} u^{(0)}(t)\right)^{-}= \\
=-h+\frac{1}{\pi} \int_{S}\left\{2\left(X^{(1)}+Y^{(1)}\right) \frac{\partial \theta}{\partial s(x)} \frac{\partial g}{\partial s(y)}+\left(Z^{(1)}-Z^{(0)}\right) \frac{\partial \theta}{\partial s(x)} h\right\} d s= \\
=F(t) \tag{2.12}
\end{gather*}
$$

(2.8) and (2.11) form a complete system allowing one to determine the unknown matrices $X^{(1)}, X^{(0)}, Y^{(1)}, Y^{(0)}, Z^{(1)}, Z^{(0)}$. Solving this system, we finally get

$$
\begin{gather*}
X^{(1)}=\left(m^{(1)}+m^{(0)}\right)^{-1} m^{(0)}, \quad Y^{(1)}=-\left(m^{(1)}+m^{(0)}\right)^{-1} m^{(0)}, \\
Z^{(1)}=\left(A^{(1)}+A^{(0)}\right)^{-1} A^{(0)}, \\
X^{(0)}=\left(m^{(1)}+m^{(0)}\right)^{-1} m^{(1)}, \quad Y^{(0)}=-\left(m^{(1)}+m^{(0)}\right)^{-1} m^{(1)}, \tag{2.13}\\
Z^{(0)}=\left(A^{(1)}+A^{(0)}\right)^{-1} A^{(1)},
\end{gather*}
$$

where

$$
\begin{equation*}
A=E_{1}-\varkappa_{L} m \tag{2.14}
\end{equation*}
$$

In what follows, the unknown matrices will be meant to be defined by formula (2.13).

Thus for g and h we have obtained integral Fredholm equations of second kind. For $\frac{\partial g}{\partial s(y)}$ in (2.12) we perform partial integration and finally obtain

$$
\begin{gather*}
\left(T^{(1)} u^{(1)}(t)\right)^{+}-\left(T^{(0)} u^{(0)}(t)\right)^{-}= \\
=-h+\frac{1}{\pi} \int_{S}\left[-2\left(X^{(1)}+Y^{(1)}\right) \frac{\partial^{2} \theta}{\partial s(x) \partial s(y)} g+\left(Z^{(1)}-Z^{(0)}\right) \frac{\partial \theta}{\partial s(t)} h\right\} d s= \\
=F(t) \tag{2.15}
\end{gather*}
$$

Recall some formulas [1]. If $W=u+i v$, then u and v are conjugate if they satisfy the following conditions:

$$
\begin{equation*}
N u=m^{-1} \frac{\partial v}{\partial s(x)}, \quad N v=-m^{-1} \frac{\partial u}{\partial s(x)} \tag{2.16}
\end{equation*}
$$

where N is the pseudo-stress operator which is of importance when solving the first boundary value problem.

In constructing the equations (2.9) and (2.12), we paid no attention to the terms

$$
\begin{equation*}
\pi(x)=\int_{S} \frac{\partial}{\partial s(x)} \frac{\bar{\sigma}}{\sigma} g d s \text { and } \frac{\partial \pi(x)}{\partial s(x)}=\int_{S} \frac{\partial^{2}}{\partial s(x) \partial s(y)} \frac{\bar{\sigma}}{\sigma} g d s \tag{2.17}
\end{equation*}
$$

Let us consider this question. Let $\sigma=r e^{i \theta}, \bar{\sigma}=r e^{-i \theta}$. Then $\pi(x)=$ $-2 i \int_{S} e^{-2 i \theta} \frac{\partial \theta}{\partial s(y)} g d s$. This expression represents a function continuous on the whole plane E_{2}. This happens due to the fact that $\frac{\partial \theta}{\partial s(y)}=\frac{1}{2 \rho(y)}$, where $\frac{1}{\rho(y)}$ is the curvature of the curve S at the point y, and by our assumption, this function is Hölder continuous. To study the properties of $\frac{\partial \pi(x)}{\partial s(x)}$, we note that

$$
\frac{\partial \pi(x)}{\partial s(x)}=-4 \int_{S} e^{-2 i \theta} \frac{\partial \theta}{\partial s(x)} \frac{\partial \theta}{\partial s(y)} g d s-2 i \int_{S} e^{-2 i \theta} \frac{\partial^{2} \theta}{\partial s(x) \partial s(y)} g d s
$$

It should also be noted that the identity

$$
\frac{\partial^{2} \ln \sigma}{\partial s(x) \partial s(y)}=-\frac{\partial \ln \sigma}{\partial s(x)} \frac{\partial \ln \sigma}{\partial s(y)}=-\left(\frac{\partial \ln r}{\partial s(x)}+i \frac{\partial \theta}{\partial s(x)}\right)\left(\frac{\partial \ln r}{\partial s(y)}+i \frac{\partial \theta}{\partial s(y)}\right)
$$

holds from which, calculating the imaginary parts of the both sides, we obtain

$$
\frac{\partial^{2} \theta}{\partial s(x) \partial s(y)}=-\frac{\partial \ln r}{\partial s(x)} \frac{\partial \theta}{\partial s(y)}-\frac{\partial \ln r}{\partial s(y)} \frac{\partial \theta}{\partial s(x)} .
$$

Since

$$
\frac{\partial \theta}{\partial s(x)}=\frac{1}{2 \rho(x)}, \quad \frac{\partial \theta}{\partial s(y)}=\frac{1}{2 \rho(y)},
$$

we have

$$
\begin{aligned}
\frac{\partial \theta}{\partial s(x) \partial s(y)}=- & \frac{\partial \ln r}{\partial s(x)} \frac{1}{2 \rho(y)}-\frac{\partial \ln r}{\partial s(y)} \frac{1}{2 \rho(x)}= \\
& =-\frac{\partial \ln r}{\partial s(x)} \frac{1}{2}\left(\frac{1}{\rho(y)}-\frac{1}{\rho(x)}\right)-\left(\frac{\partial \ln r}{\partial s(x)}+\frac{\partial \ln r}{\partial s(y)}\right) \frac{1}{\rho(x)}
\end{aligned}
$$

The above expression represents a Hölder continuous function on the whole plane.

Thus we have proved that when we pay no attention to the terms in (2.16), the validity of the above calculations becomes obvious.

From the equation (2.12), integrating over S, we obtain

$$
\int_{S} h d s+\left(Z^{(0)}-Z^{(1)}\right) \int_{S} h d s=\int_{S} F d s
$$

that is, taking into account (2.11),

$$
2 Z^{(0)} \int_{S} h d s=\int_{S} F d s
$$

If $\int_{S} F d s=0$, then taking into account that $\operatorname{det} Z^{(0)} \neq 0$, we find that

$$
\begin{equation*}
\int_{S} h d s=0 . \tag{2.18}
\end{equation*}
$$

This condition ensures that $u^{(0)}(x)$ is equal to zero at infinity.

3. Investigation of the Integral Equations of the Basic Contact Problem

Let us prove that the integral Fredholm equations (2.9) and (2.12) for $f=F=0$ have only trivial solutions. Assume the contrary that (2.9) and (2.12) have nontrivial solutions which we denote again by g and h. Using the uniqueness theorems, we obtain

$$
u^{(1)}(x)=u^{(0)}(x)=c_{1} .
$$

But $u^{(1)}(0)=0$ (without restriction of generality, we assume that the origin is in the domain D_{1}^{+}), and we find that $c_{1}=0$ and hence

$$
\begin{array}{ll}
u^{(1)}(x)=0, & x \in D_{1}^{+}, \\
u^{(0)}(x)=0, & x \in D_{0}^{+} . \tag{3.1}
\end{array}
$$

Taking into account (3.1) and (2.15), we have

$$
\begin{aligned}
& v^{(1)}(x)=c_{1}, \\
& v^{(0)}(x)=c_{0},
\end{aligned}
$$

where c_{1} and c_{0} are constants. It is already known that $v^{(0)}(\infty)=0$ and $c_{0}=0$. Since $v^{(1)}$ is defined to within a constant, we can choose it such that $v^{(1)}(x)=0, x \in D_{1}^{+}$. Finally, we obtain

$$
\begin{gathered}
v^{(1)}(x)=\frac{1}{\pi} \int_{S} \operatorname{Im}\left\{\left[\left(N_{y}^{(1)} \Gamma^{(1)}\right)^{\prime} X^{(1)}+\frac{\partial \Gamma^{(1)}}{\partial s(y)} Y^{(1)}\right] g+\Gamma^{(1)} Z^{(1)} h\right\} d s=0 \\
x \in D_{1}^{+} \\
v^{(0)}(x)=\frac{1}{\pi} \int_{S} \operatorname{Im}\left\{\left[\left(N_{y}^{(0)} \Gamma^{(0)}\right)^{\prime} X^{(0)}+\frac{\partial \Gamma^{(0)}}{\partial s(y)} Y^{(0)}\right] g+\Gamma^{(0)} Z^{(0)} h\right\} d s=0 \\
x \in D_{0}^{+}
\end{gathered}
$$

Taking into account the formulas

$$
\left(N_{y} \operatorname{Im} \Gamma^{(1)}\right)^{\prime}=-\frac{\partial \ln r}{\partial s(y)}, \quad \frac{\partial \operatorname{Im} \Gamma^{(1)}}{\partial s(y)}=m^{(1)} Y^{(1)} \frac{\partial \theta}{\partial s(y)}
$$

we can rewrite (3.2) in the form

$$
\begin{gather*}
v^{(1)}(x)=\frac{1}{\pi} \int_{S}\left\{\left[-\frac{\partial \ln r}{\partial s(y)} X^{(1)}+m^{(1)} Y^{(1)} \frac{\partial \theta}{\partial s(y)}\right] g-\Gamma^{(1)} Z^{(1)} h\right\} d s=0 \\
x \in D_{1}^{+} \\
v^{(0)}(x)=\frac{1}{\pi} \int_{S}\left\{\left[-\frac{\partial \ln r}{\partial s(y)} X^{(0)}+m^{(0)} Y^{(0)} \frac{\partial \theta}{\partial s(y)}\right] g-\Gamma^{(0)} Z^{(0)} h\right\} d s=0 \tag{3.3}\\
x \in D_{0}^{+}
\end{gather*}
$$

whence, passing to limit as $x \rightarrow t \in S$, we obtain

$$
\begin{aligned}
& \left(v^{(1)}(t)\right)^{+}-\left(v^{(1)}(t)\right)^{-}=2 m^{(1)} Y^{(1)} g \\
& \left(v^{(0)}(t)\right)^{+}-\left(v^{(0)}(t)\right)^{-}=2 m^{(0)} Y^{(0)} g,
\end{aligned}
$$

As is known, $\left(v^{(1)}(t)\right)^{+}=\left(v^{(0)}(t)\right)^{-}=0$, and thus we have

$$
\begin{equation*}
\left(v^{(1)}(t)\right)^{-}=-2 m^{(1)} Y^{(1)} g, \quad\left(v^{(0)}(t)\right)^{+}=2 m^{(0)} Y^{(0)} g \tag{3.4}
\end{equation*}
$$

With regard for (2.8), we find that

$$
\begin{equation*}
\left(v^{(1)}(t)\right)^{-}=-\left(v^{(0)}(t)\right)^{+} \tag{3.5}
\end{equation*}
$$

From (3.2), we can now calculate $T^{(1)} v^{(1)}$ and $T^{(0)} v^{(0)}$.
Taking into account the formulas

$$
\begin{aligned}
T_{x}^{(1)}\left(N_{y} \Gamma^{(1)}\right)^{\prime} & =\left(-i E-\varkappa_{N}^{(1)} m^{(1)}\right) \frac{\partial^{2} \ln \sigma}{\partial s(x) \partial s(y)} \\
T_{x}^{(1)}\left(\frac{\partial \Gamma^{(1)}}{\partial s(y)}\right) & =\left(-i E-\varkappa_{N}^{(1)} m^{(1)}\right) \frac{\partial^{2} \ln \sigma}{\partial s(x) \partial s(y)} \\
T_{x}^{(1)} \Gamma^{(1)} & =\left(-i E-\varkappa_{N}^{(1)} m^{(1)}\right) Z^{(1)} \frac{\partial \ln \sigma}{\partial s(x)}
\end{aligned}
$$

and performing partial integration with respect to the vector g, we obtain

$$
\begin{align*}
T^{(1)} v^{(1)}(x)= & \frac{1}{\pi} \int_{S}\left\{\left[X^{(1)} \frac{\partial \ln r}{\partial s(x)}+\varkappa_{N}^{(1)} m^{(1)} X^{(1)} \frac{\partial \theta}{\partial s(x)}\right] \frac{\partial g}{\partial s(x)}+\right. \\
& +\left[Y^{(1)} \frac{\partial \ln r}{\partial s(x)}-\varkappa_{N}^{(1)} m^{(1)} Y^{(1)} \frac{\partial \theta}{\partial s(x)}\right] \frac{\partial g}{\partial s(y)}+ \\
& \left.+\left[\varkappa_{N}^{(1)} m^{(1)} Z^{(1)} \frac{\partial \theta}{\partial s(x)}-Z^{(1)} \frac{\partial \ln r}{\partial s(x)}\right] h\right\} d s, \quad x \in D_{1}^{+}, \tag{3.6}\\
T^{(0)} v^{(0)}(x)= & \frac{1}{\pi} \int_{S}\left\{\left[X^{(0)} \frac{\partial \ln r}{\partial s(x)}+\varkappa_{N}^{(0)} m^{(0)} X^{(0)} \frac{\partial \theta}{\partial s(x)}\right] \frac{\partial g}{\partial s(x)}+\right. \\
& +\left[Y^{(0)} \frac{\partial \ln r}{\partial s(x)}-\varkappa_{N}^{(0)} m^{(0)} Y^{(0)} \frac{\partial \theta}{\partial s(x)}\right] \frac{\partial g}{\partial s(y)}+ \\
& \left.+\left[\varkappa_{N}^{(0)} m^{(0)} Z^{(0)} \frac{\partial \theta}{\partial s(x)}-Z^{(0)} \frac{\partial \ln r}{\partial s(x)}\right] h\right\} d s, \quad x \in D_{0}^{+},
\end{align*}
$$

whence

$$
\begin{gathered}
\left(T^{(1)} v^{(1)}(t)\right)^{+}-\left(T^{(1)} v^{(1)}(t)\right)^{-}= \\
=-2\left(\varkappa_{N}^{(1)} m^{(1)} X^{(1)}-\varkappa_{N}^{(1)} m^{(1)} Y^{(1)}\right) \frac{\partial g}{\partial s(t)}-2\left(\varkappa_{N}^{(1)} m^{(1)} Z^{(1)}\right) h \\
\left(T^{(1)} v^{(1)}(t)\right)^{+}=0 \\
=-2\left(\varkappa_{N}^{(0)} v^{(0)}(t)\right)^{+}-\left(T^{(0)} v^{(0)}(t)\right)^{-}= \\
\left.(0)-\varkappa_{N}^{(0)} m^{(0)} Y^{(0)}\right) \frac{\partial g}{\partial s(t)}-2\left(\varkappa_{N}^{(0)} m^{(0)} Z^{(0)}\right) h \\
\left(T^{(0)} v^{(0)}(t)\right)^{-}=0
\end{gathered}
$$

Thus we have

$$
\begin{gather*}
\left(T^{(1)} v^{(1)}(t)\right)^{-}= \\
=2\left(\varkappa_{N}^{(1)} m^{(1)} X^{(1)}-\varkappa_{N}^{(1)} m^{(1)} Y^{(1)}\right) \frac{\partial g}{\partial s(t)}+2\left(\varkappa_{N}^{(1)} m^{(1)} Z^{(1)}\right) h \tag{3.7}\\
\left(T^{(0)} v^{(0)}(t)\right)^{+}= \\
=2\left(\varkappa_{N}^{(0)} m^{(0)} X^{(0)}-\varkappa_{N}^{(0)} m^{(0)} Y^{(0)}\right) \frac{\partial g}{\partial s(t)}+2\left(\varkappa_{N}^{(0)} m^{(0)} Z^{(0)}\right) h
\end{gather*}
$$

whence, bearing in mind (2.11), we find that

$$
\begin{equation*}
\left(T^{(1)} v^{(1)}(t)\right)^{-}+\left(T^{(0)} v^{(0)}(t)\right)^{+} \equiv 0 \tag{3.8}
\end{equation*}
$$

Using Green's formulas as well as (3.6) and (3.7), we obtain

$$
\int_{D_{0}^{-}} E\left(v^{(1)}, v^{(1)}\right) d \sigma=-\int_{S}\left(v^{(1)}(t)\right)^{-}\left(T^{(1)} v^{(1)}\right)^{-} d s
$$

$$
\int_{D_{1}^{+}} E\left(v^{(0)}, v^{(0)}\right) d \sigma=\int_{S}\left(v^{(0)}(t)\right)^{+}\left(T^{(0)} v^{(0)}\right)^{+} d s
$$

whence

$$
\int_{D_{0}^{-}} E\left(v^{(1)}, v^{(1)}\right) d \sigma+\int_{D_{1}^{+}} E\left(v^{(0)}, v^{(0)}\right) d \sigma=0 .
$$

Thus we obtain

$$
\begin{array}{ll}
v^{(1)}(x)=C^{(1)}+\mathcal{E}^{(1)}\binom{-x_{2}}{x_{1}}, & x \in D_{0}^{-}, \\
v^{(0)}(x)=C^{(0)}+\mathcal{E}^{(0)}\binom{-x_{2}}{x_{1}}, & x \in D_{1}^{+} .
\end{array}
$$

$v^{(1)}(\infty)=0$, that is, $c^{(1)}=0, \mathcal{E}^{(1)}=0, v^{(0)}=0$, i.e. $c^{(0)}=0, \mathcal{E}^{(0)}=0$.
Taking now into account (3.4) and (3.7), we get

$$
g=0 \text { and } h=0 .
$$

Thus we have proved that the homogeneous integral equations corresponding to (2.9) and (2.12) have only trivial solutions if $\int F d s=0$ and the curvature of the curve S is Hölder continuous.

References

1. M. Basheleishvili, Two-dimensional boundary value problems of statics of the theory of elastic mixtures. Mem. Differential Equations Math. Phys. 6 (1995), 59-105.
2. V. Kupradze, T. Gegelia, M. Basheleishvili and T. Burchuladze, Threedimensional problems of the mathematical theory of elasticity and thermoelasticity. Translated from the second Russian edition. Edited by V. D. Kupradze. NorthHolland Series in Applied Mathematics and Mechanics, 25. North-Holland Publishing Co., Amsterdam-New York, 1979.
(Received 29.12.2009)
Author's address:
I Vekua Institute of Applied Mathematics
J. Javakhishvili Tbilisi State University

2, University St., Tbilisi 0143
Georgia

