Memoirs on Differential Equations and Mathematical Physics
VOLUME 49, 2010, 83-94

Bashir Ahmad

EXISTENCE RESULTS FOR MULTI-POINT
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FOR FRACTIONAL DIFFERENTIAL EQUATIONS



Abstract. In this paper, we obtain some existence results in a Banach
space for a multi-point boundary value problem involving a nonlinear frac-
tional differential equation given by

‘Dix(t) = f(t,z(t)), 0<t<l, 1<qg<2,
a12(0) — 12’ (0) = y1z(m), asz(1) + B2z’ (1) = 722(n2), 0 <n1,m2 <L
Our results are based on contraction mapping principle and Krasnoselskii’s
fixed point theorem.
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‘Dix(t) = f(t,z(t), 0<t<l, 1<qg<2,
a12(0) = £12'(0) = vz (m), aox(l) + Box’(1) = vox(n2), 0<m,me < 1.
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1. INTRODUCTION

In some real world applications, fractional-order models are found to be
more adequate than integer-order models as fractional derivatives provide an
excellent tool for the description of memory and hereditary properties of var-
ious materials and processes. In fact, fractional differential equations arise
in many engineering and scientific disciplines as mathematical modelling
of systems and processes in the fields of physics, chemistry, aerodynam-
ics, electro-dynamics of complex medium, polymer rheology, etc. involves
derivatives of fractional order. In consequence, the subject of fractional
differential equations is gaining much importance and attention. For exam-
ples and details, see [1]-[7], [10], [12], [17], [18], [21]-][23] and the references
therein.

Multi-point nonlocal boundary value problems, initiated by II’in and Moi-
seev [15], [16], have been addressed by many authors, for instance, [8], [9],
[11], [13], [14], [19]. The multi-point boundary conditions appear in certain
problems of thermodynamics, elasticity and wave propagation, see [20] and
the references therein. The multi-point boundary conditions may be under-
stood in the sense that the controllers at the end points dissipate or add
energy according to censors located at intermediate positions.

In this paper, we consider the following nonlinear fractional differential
equation with multi-point boundary conditions

cDix(t) = f(t,x(t)), 0<t<l 1<¢g<2

a1z(0) — A12(0) = n1x(m), a2x(l) + B22'(1) = y22(1n2),
where ¢D is Caputo’s fractional derivative, f : [0,1] x X — X, 0 < nq,
n2 < 1, and a1, ag, b1, B2, 71, 72 are real numbers. Here, (X, || - ) is a
Banach space and C = C([0, 1], X') denotes the Banach space of all con-

tinuous functions from [0, 1] into X endowed with the topology of uniform
convergence with the norm denoted by || - ||.

(1.1)

2. PRELIMINARIES
Let us recall some basic definitions [17], [21], [23] from fractional calculus.

Definition 2.1. For a function g : [0,00) — R, the Caputo derivative of
fractional order ¢ is defined as
¢

1
“Dig(t :7/tfs ==l (g)ds, n—1<qg<mn, q>0,
0= g /¢~ (5
where I' denotes the gamma function.

Definition 2.2. The Riemann—Liouville fractional integral of order ¢ is
defined as

190 = gy [ oo 0> 0
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provided the integral exists.

Definition 2.3. The Riemann-Liouville fractional derivative of order ¢
for a function g(t) is defined by

1 d\n 9(s)
Dig(t)= —— (= — —1<g<
g(t) T —q) (dt) /(%S)q,n+1 ds, n—1<gq<mn, ¢>0,

provided the right hand side is pointwise defined on (0, c0).

We remark that the Caputo derivative becomes the conventional nth de-
rivative of the function as ¢ — n, and the initial conditions for fractional
differential equations retain the same form as that for ordinary differential
equations with integer order derivatives. On the other hand, the Riemann—
Liouville fractional derivative could hardly produce the physical interpreta-
tion of the initial conditions required for the initial value problems involv-
ing fractional differential equations (the same applies to the boundary value
problems for fractional differential equations). Moreover, the Caputo deriv-
ative of a constant is zero while the Riemann-Liouville fractional derivative
of a constant is nonzero. For more details, see [23].

Lemma 2.1 ([18]). For q¢ > 0, the general solution of the fractional
differential equation *Dx(t) = 0 is given by
x(t) =co+crt +cot? + -y i t"
wherec; €R, 1 =0,1,2,...,n—1 (n = [g]+1). Here, [q] denotes the integer
part of the real number q.
In view of Lemma 2.1, it follows that
I9°D(t) = 2(t) +co + et + cot* + -+ cp 1 t" (2.1)

for some ¢; €R,i=0,1,2,...,n—1 (n=1[g] + 1).
Now we state a known result due to Krasnoselskii [24] which is needed
to prove the existence of at least one solution of (1.1).

Theorem 2.1. Let M be a closed conver and nonempty subset of a
Banach space X. Let A, B be operators such that

(i) Az + By € M whenever x,y € M;
(ii) A is compact and continuous;
(iii) B is a contraction mapping.
Then there exists z € M such that z = Az + Bz.

Lemma 2.2. For a given o € C[0, 1], the unique solution of the boundary
value problem

cD4 = <
{Dx(t) o(t), 0<t<l, 1<q<2, (2.2)

a1z(0) — 12/ (0) = yiz(m), azx(l) + G2 (1) = y2w(n2),
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is given by
x(t)—/(t};q))ql (5) ds+
0
Al(az(l—t>+ﬁg+72(t—nz))f(nlr_(;;q 1 (s) ds+
—&-l (Br+7m) +tlon — Qs | 1_3‘1 : o(s)ds—
(3 )| e [
[0 s T 25!
520/(_1) (5)d5+720/nl—‘(q)0(5)d5]a

where
= [(51 +ym) (a2 —72) + (a2 + B2 — yem2) (a1 — 71)} # 0. (2.3)

Proof. Using (2.1), for arbitrary constants cp, ¢ € R we have

(t—s)77t
I'(q)

In view of the relations ¢D? I9x(t) = x(t) and 19 IPx(t) = [97Pz(t) for
q¢,p >0,z € L(0,1), we obtain

t
x(t) =1(t) —co — 1t = / o(s)ds — co — cit. (2.4)
0

o(s)ds — c;.

o\ﬁ
Pj H~
= |
| CIJ
,_. »a

l\')

Applying the boundary conditions from (2.2), we find that

m

_ mlao+ B —yamp) [ (i —s)!
co=— A / o) o(s)ds+
(B1 +7v1m) 71771 / (1-3s)
+ — |2 )d8+
S
[(1—s)r? T (2= 5y
+B2/F(q—1)0(5)d372/1"(q)g(8)d5 )
0 0
¢ = %(042A — ) / (m r—(gq_ o(s) ds+
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(=) [, [=9 o
+ [ O/ (s)ds+

A I'(q)
17(1_8)(172 s)ds — nzi(UQ_s)qilas s
+520/ g o) d 720/ ol ds).

where A is given by (2.3). Substituting the values of ¢y and ¢; in (2.4), we
obtain

I'(q)
0
m B )q 1
+ 3 (01— 0+ Bt =) [P o) s
0
1
_ 1
+%((51 +y1m) + tlon — { a2/ (1= )" o(s)ds—
0
[ ) 7 (= sy
520/(_1) (s)der’yzo/F(q)a(s)ds )
This completes the proof. (Il

3. MAIN RESULTS

To prove the main results, we need the following assumptions:

(Aq) [IF () = Ft )l < Lz —yll, VE €[0,1], 2, y € X;
(Az) [[f(t2)[l < p(t), V(¢ 2) € [0,1] x X, and p € LH([0, 1], RT).

Theorem 3.1. Assume that f :[0,1] x X — X is a continuous function
satisfying the assumption (A1). Then the boundary value problem (1.1) has
a unique solution provided

1 1
v g (0 pag (ool a0+ ) i

-1
+ (181 + | + lar = ) (|az] + |Balg + |’72|77§)})} :

Proof. Define f : C — C by

(Fz)(t) = /Wif(s,x(s))ds—&-
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m g—1

+ 2 (a1 - 1)+ 5 +72<t—n2>)/(”1;<;§f< #(s)) dst

x ((51 +y1m) + ten — { ag/l z(s)) ds—
0

712

(1—s)772 (ny —s)7*
6, / gy s (e dsts / F(q)ﬂs,us»ds] te.1

Setting sup;c(o,1) [|f(¢,0)[| = M and choosing

M
>
N PEY [1 N { (] + 1821 + 1al) P nf +

(8 + ] + s = )l + 132l + ala) .

we show that F B, C B,, where B, = {z € C: ||z| < r}. For « € B,, we
have

a0l < [ 2 Il ds
0

s)a-t

+| 2 (a2<1_t>+52+72<t—n2>)y/1(’“;() 1 (s, 2(s)) | ds+

i ’ (Br +71m) +

+|52\/

| 2\/ — " (s () | ds+

A I'(g)

||f 5,2(s)) | ds el / (2 — )" ||f<s,x<s>>||ds} <

['(q

S/(t— (1 (s,2()) — F(5.0)] + [ (s, 0)]) dst
0

(Oéz (1—1t)+f +72(t_772))‘
m 1

(74 S, T — f(s S S
/ fo (1 .(6)) = (5,0l 175, 0)1) ds+

0

)
’ it

A

s)

(Br +v1im) +t(or —m1) ‘x

+ ‘ A
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e

(5)) = (s, 0)[[ + [ £ (s, 0)]]) ds+

w1 () — F(5.0)]| + [ (s.)|]) ds-+
ol | 2(8)) = £(5,0)l| + (s, )] ds} <
td Y1 ‘11
< (Lr+M){F(q+1) + ’Z (ag(l—t)+52+72(t—ng))‘ NCESI

(B +mm) + o — 1) || |32 Iv2(n3
+| A Kr(qil) i r<q2+21>)} :

1
< L{F(q—i—l) (1 & {(|a2| + 18| + 12l [ Inf+

+ (|ﬂ1 +ym|+ o — ’Yl‘) (|012| + |Ba]q + |V2|7lg)})]7‘+

+ laa| +[B2] + |y2l) |71 nf+

M
Mg+ 1) [1 i
+ (181 + | + lea = ml) |zl + |B2lg + mmg)}] <r.

Now, for z,y € C and each t € [0, 1], we obtain

(e (6) = f(s, () s+

2y @) — (Fy)(0)]| < / (=
0

]2 (a1t B2t n(e—m))| / e

+‘(51+71771 t(a1—m) [ 2|/ ||f896 s)) = f(s,y(s))|]) ds+

Hf s,x(s))— f s,y(s))”ds—l—

Hf 5,( f(s,y<s)>|}ds} <

’% (Oéz(l — 1)+ B2 +72(t - 772))‘ F(qnj- 1)"'
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(B1 +mm) + o — ) |az| |52 Iv2n3
+| ‘(r( + ] )} =

A q+1) T(q) T(g+1)

1 1
< _ - . q
< tlle = ol [y (1 757 {Qoul + 1821+ P+

+ (181 + | + lar — ) (|az] + |Balg + |’Y2|77§)}>} =

= Aaiﬁimmi,q,LHx - yHu 1=1,2,

where

1 1
Navgimmar = L = {14+ 5 { 4
nsmar =L gy {1+ fag { Ooal + 18al + P i+

+ (181 +mml + lex = ml) (laz| + |B2lg + |72773)}}]’

which depends only on the parameters involved in the problem. As
Ao, Bivimia, . < 1, therefore F is a contraction. Thus, the conclusion of
the theorem follows by the contraction mapping principle. O

Theorem 3.2. Let f : [0,1] x X — X be a continuous function mapping
bounded subsets of [0,1] x X into relatively compact subsets of X, and the
assumptions (A1) — (Aa) hold with

1
L[F(qul)lAl { (sl + 1821 + Irel) I nf+

+ (181 + mam| + lar — ) (|az| + |Balg + 72|ng)}] <L

Then the boundary value problem (1.1) has at least one solution on [0,1].

Proof. Let us fix

1 1
2 il | gy {1+ 7y { el + 1821+ el +

q+1)
+ (|ﬁ1 +yml|+ o — ’Yl‘)(|042| + |Ba|q + |7277§)}}]a

and consider B, = {z € C: ||z| < r}. We define the operators ® and ¥
on B, as

t

-1 — )77 f(s,2(s)) ds
@) = 7o O/<t )1 (s, () ds,
(1) = 2 (wt =)+ 6o+t ) [ L foa(e ot

0
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+ 5 (0 )+ o =) [ = a0 [ U2 fa(e)) ds-
0

1

A=9)T2  (e)) ds (2 =)' o)) ds
520/ el s+ [ Fls.a(s)) s

For z, y € B,., we find that

1 1
2+ 0yl < el | gy (1% g { el + 102l + P i+

(g +1
# (8 ] + s =)l + 3la + elaf) ) <

Thus, ®x + Py € B,. It follows from the assumption (A;) that ¥ is a
contraction mapping for

L[ !
I'(g+1)[A|

+ (181 + mam| + lar = 1)) (|az] + |Balg + wInS)}] <1

{(laal + 182] + Iral) P i+

The continuity of f implies that the operator ® is continuous. Also, ® is
uniformly bounded on B, as

[l 2
dx
] < 2
Now we prove the compactness of the operator ®. In view of (A1), we define
sup £t 2)|| = fmax, and consequently we have

(t,z)€[0,1]x B

ty

H(@x)(tl)—(@x)(tg)H—H q/ to—s)1 = (t1—5)7 1] f(s,2(s)) ds+

0
to

+ /(t2 — )91 f(s, (s)) ds

t1

< .fmax

< ot~y g

which is independent of x. So ® is relatively compact on B,. Hence, by
Arzela—Ascoli Theorem, ® is compact on B,.. Thus all the assumptions of
Theorem 2.1 are satisfied and the conclusion of Theorem 2.1 implies that
the boundary value problem (1.1) has at least one solution on [0, 1]. O

Example. Consider the following boundary value problem
1 ]

(t+5)2 1+ |jz|’
z(0) — 2/(0) = x(l) z(1)+2'(1) = 1ac(l)
3/’ 2°\2/°

‘D3 x(t) =

€ [0,1], 51)
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Here,
1 [Edl
tat) = ——— 11
1(t,2(t)) (t+5)2 1+ ||z
ar=1, fi=1, =1, fo=1 m=1 mn=1/2
As

1
17(t,2) = Ft,9)] < o Nz

therefore (A1) is satisfied with L = g=. Further,

1 1
Ll ———m 1+ — q
|:1“(q + 1) { + |A| {(|a2| + |62| + |’727]2|)|’71|771+

(91 ol + s = l) (el + el + Pt }

144 + 9v/3 + 62
= < 1.
225\/7

Thus, by Theorem 3.1, the boundary value problem (3.1) has a unique
solution on [0, 1].
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