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1D PERIODIC POTENTIALS

WITH GAPS VANISHING AT k = 0



Abstract. Appearance of energy bands and gaps in the dispersion rela-
tions of a periodic potential is a standard feature of Quantum Mechanics.
We investigate the class of one-dimensional periodic potentials for which
all gaps vanish at the center of the Brillouin zone. We characterise them
through a necessary and sufficient condition. Potentials of the form we fo-
cus on arise in different fields of Physics, from supersymmetric Quantum
Mechanics, to Korteweg-de Vries equation theory and classical diffusion
problems. The O.D.E. counterpart to this problem is the characterisation
of periodic potentials for which coexistence occurs of linearly independent
solutions of the corresponding Schrödinger equation (Hill’s equation). This
result is placed in the perspective of the previous related results available
in the literature.
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1. Introduction

A well-known achievement of Quantum Mechanics is the understanding
of the band structure of the energy spectrum for periodic potentials [1].
Since ever the characterisation of dispersion relations and gaps between
bands of permitted energy has turned out to be of importance, due to their
crucial role in the conductor-insulator properties of crystalline solids.

In this scenario, the case of one-dimensional (1D) periodic potentials,
despite its simplicity, is physically meaningful not only for pedagogical rea-
sons, but also because it models real structures with a preferred direction
(as nanotubes or nanowires).

Our interest here is to study a sub-class of the very general problem
of ‘vanishing gaps ’, focusing on real 1D periodic potentials of the form
W 2 + W ′ + v0, v0 being a constant and W (x) changing sign after half a
period. These potentials – and only these – turn out to have all the gaps
vanishing at the centre of the Brillouin zone.

Remarkably, one ends up with a (not necessarily periodic) 1D potential
of the form v(x) = W (x)2 +W ′(x) in several different fields of Physics, as
in supersymmetric Quantum Mechanics [6], where spectral analysis com-
bined with the formalism of SuSYQM has led to a large class of analytically
solvable 1D periodic potentials [27], [25], [30], and peculiar features of su-
persymmetry breaking can be exploited [10], [9]. Other examples are in
the framework of the Korteweg-de Vries equation, via the Miura transform
[14, 5], and in the mapping of a Fokker-Plank equation onto a quantum
stationary problem [39], [42], together with simulation methods related [3].

The outline of this paper is as follows. In Section 2 we state the physical
problem and its mathematical formulation. Also, we mention some previous
results on the criteria which make energy gaps disappear. In Section 3 we
state and discuss our vanishing-gaps results with some examples. Section 4
shows the proofs by means of elementary Quantum Mechanics and operator
theory, as well as standard O.D.E. and Complex Analysis theory. The
appendix contains a more detailed review of the mathematics underlying
the band structure theory.

2. Background Theory

A Schrödinger-like particle in a periodic 1D potential is described by the
Hamiltonian

H = − d2

dx2
+ v(x), (2.1)

where v(x+1) = v(x). A unit period for v, as well as units ~ = 2m = 1, are
assumed without loss of generality. We take v to be real and suitably regular,
as specified later. This means that the first Brillouin zone is bounded by
−π, π.

According to the Floquet–Bloch theory, the eigenfunctions of H can be
chosen of the form ψk(x) = eikxuk(x), with uk(x + 1) = uk(x), namely a
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plane wave eikx modulated by a periodic function uk of the same periodicity
of v. The energy E(k) of the eigenfunction ψk, when plotted against k, gives
the well-known band structure. Forbidden and permitted energies, bands
filling, conductivity, and other related features can then be discussed in view
of such dispersion relations [1], [32], [18].

Since we are interested in the vanishing of the gaps at the centre (k = 0)
and at the edge (k = π) of the Brillouin zone, we study the Hamilton-
ian (2.1) as the operator H(0) or H(π) defined on the domain D+ and
D− respectively, of the measurable functions on the interval [0, 1] that are
square-summable together with their first two derivatives, and satisfy the
boundary conditions

ψ(1) = ψ(0), ψ′(1) = ψ′(0) (D+),

ψ(1) = −ψ(0) , ψ′(1) = −ψ′(0) (D−).
(2.2)

One recovers the Bloch periodic/antiperiodic functions simply extending
any ψ ∈ D± by periodicity on R, and the familiar structure with bands and
gaps as depicted in Fig. 1 with the customary notations. Eigenfunctions at
k = 0 have period equal to 1, while those at k = π have period equal to 2.
One band and its subsequent collapse into a unique band at the centre of
the Brillouin zone at the energy E, iff E is a doubly degenerate eigenvalue
of H(0). Similarly they collapse at the edge of the Brillouin zone iff E is a
doubly degenerate eigenvalue of H(π).
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Figure 1. Typical dispersion relations for a 1D periodic
potential

A more detailed description of this theory, which in the mathematical
literature is known as the Hill’s equation theory, is reported in the appendix.

Notice that the emergence of vanishing gaps is quite ‘unusual’, as for
most potentials all gaps have a nonzero width [36], [44]. In fact, in a sense
that resembles the way that real numbers can be suitably approximated by
rationals, any potential with vanishing gaps can be suitably approximated
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with a potential with all nonzero gaps. This establishes a sort of ‘peculiarity
condition’ for potentials with vanishing gaps, which motivates the interest
towards them.

An example of 1D periodic potential which is well known to exhibit some
vanishing gaps in the dispersion relations is the square well Kronig–Penney

model [7] when certain conditions on the depth and length of the wells are
met [33], [13]. Nevertheless, infinitely many nonzero gaps always occur.

Through numerical analysis vanishing gaps have been found to occur for
a hybrid of triangular wells separated by flat interstitial regions [33]. The
emergence of vanishing gaps has been established by perturbative analysis
on a smooth potential [38], dispelling the misleading idea that in some way
only flat sections are associated with the vanishing phenomenon.

The Whittaker–Hill potential, also known as the trigonometric Razavy

potential [30], [34], [40], [26], [12], is an example where all gaps except for a
finite number of them, vanish only at the centre or only at the edge of the
Brillouin zone. In the particular case n = 0 we have the example given in
equation (3.6) below.

Only a finite number of nonzero gaps appear in the class of the Lamé

and associated Lamé potentials [27], [30], [34], [45], [28], [29]: depending
on the choice of the parameters entering their definition, they still exhibit a
finite number of bound bands followed by an infinite continuum band, and a
well-studied pattern of vanishing gaps. Analogous results have been proved
to hold for some complex-valued PT-invariant versions [30], [29], [31].

Beyond these examples, on the other hand, necessary conditions are
known on a 1D periodic potential v with a prescribed number of nonzero
gaps in its dispersion relations. In particular [41]:

(1) if no gaps are present, then v is a constant [4], [47], [20], [21];
(2) if precisely one gap occur, v is a Weierstrass elliptic function [21],

[8], [23];
(3) if only finitely many gaps are present, then v is real analytic as a

function on the reals [36], [16], [17];
(4) if v(x+a) = v(x) and all gaps at k = π are absent, then v(x+ a

2 ) =
v(x) [4], [22], [24].

In view of (4) above, we may assume that v has period 1 in the sense
that

1 = min
{
a > 0 : v(x+ a) = v(x)

}

(incidentally, this excludes v to be trivially a constant); if so, some gap at
k = π must be open, whereas nothing is said at k = 0. It is this question
that we are facing in the following.

3. Real Periodic Potentials v0 +W (x)2 +W ′(x) with

W (x+ 1
2 ) = −W (x)

We now come to the main object of our analysis.
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Theorem. Let v be a 1-periodic continuous potential. A necessary and

sufficient condition for v to have all gaps vanish at the centre of the Brillouin

zone is that

v(x) = v0 +W 2(x) +W ′(x) (3.1)

for some constant v0 and some differentiable W changing sign after half a

period:

W
(
x+

1

2

)
= −W (x). (3.2)

Moreover, in terms of v, the function W is given by

W (x) = −1

2

x+ 1

2∫

x

[
v(ξ) −

1∫

0

v(ζ) dζ

]
dξ , (3.3)

thus it is determined only by the odd harmonic part of v:

W ′(x) =
v(x) − v(x+ 1

2 )

2
, (3.4)

whereas the constant v0 is given by

v0 =

1∫

0

[
v(x) −W 2(x)

]
dx . (3.5)

Conditions (3.1) and (3.2) uniquely fix W and hence v0 to have the form

(3.3) and (3.5) respectively. Also, whenever (3.1) and (3.2) hold, then v0 is

the lowest energy in the dispersion relations of v, i.e., it is the ground state

of the Hamiltonian H(0) with periodic boundary conditions.

In other words, the theorem states that given a 1D periodic potential
v (with period 1) and W and v0 as in (3.3) and (3.5) respectively, then
v − [v0 +W 2 + W ′] ≡ 0 if and only if all the gaps vanish at the centre of
the Brillouin zone. In particular, when W is given as in (3.3), W 2 +W ′ has
a zero-energy ground state, and v0 +W 2 +W ′ has ground state v0. Thus,
if EGS is the ground state of any 1D 1-periodic v, condition EGS − v0 6= 0
necessarily implies that at least one gap exists at the centre of the Brillouin
zone and the quantity EGS − v0 can be seen as a ‘measure’ of such a non-
vanishing phenomenon.

We mention that a more detailed analysis1 shows that with a bit of stan-
dard (although non trivial) functional-analytic technicalities, the regularity
of W can be considerably weakened.

It is worth noticing that potentials characterised by the theorem above
may or may not have some vanishing gaps at the edge of the Brillouin zone
as well; nevertheless, as stated above, some of them must be necessarily
nonzero, unless the potential is a constant.

1same authors, in preparation
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Figure 2. Centre: band structure for v(x) = 2π cos 2πx+
sin2 2πx. Left: close-up of the lowest energy band. Right:
at k = π bands do not overlap.

As an example let us concentrate on the very simple choice W (x) =
sin 2πx. The corresponding potential

v(x) = W 2(x) +W ′(x) = 2π cos 2πx+ sin2 2πx (3.6)

has period 1, and is a particular case of the Razavy potential we mentioned
above. According to the theorem all gaps vanish at the centre of the Bril-
louin zone and the ground state is zero. The dispersion relations for v are
plotted in Fig. 2. The emergence of nonzero gaps at the edge of the Bril-
louin zone is necessarily expected, our v being not a constant: indeed some
open gaps at k = π are clearly visible. We underline that this very simple
potential has only two Fourier components, making it interesting also in the
field of optical lattices.

When we slightly perturb W (x) = sin 2πx in such a way that the condi-
tion (3.2) is destroyed, e.g., by substituting

W (x) 7−→W (x) + εη(x), (3.7)

where η(x+ 1
2 ) 6≡ −η(x), the doubly degenerate eigenvalues at k = 0 split,

and non-vanishing gaps appear separating the bands. Such a behaviour is
reproduced in Fig. 3.

As another example we point out the one-gap Lamé potentials, which
turn out to be a subclass of those we are dealing with, since they show a
single gap (the first one) at the edge of the Brillouin zone, whereas all gaps
vanish at the centre. They recently received new attention [43] since they
optimise some key parameters in the band structure and are of practical
interest in the realisation of quasi one-dimensional crystals.
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Figure 3. Removal of the k = 0 vanishing gaps for the
potential v corresponding to the perturbation W (x) =
sin 2πx 7→ sin 2πx+ ε · sin 4πx

To summarise, we have seen that the entire class of potentials with all
gaps vanishing at k = 0 is analytically characterised by the very simple for-
mulas (3.1) and (3.3), while the typical issue one can find in the literature
is to identify specific potentials with a given pattern of open and vanishing
gaps (Kronig–Penney, Razavy, Lamé, . . .). Nevertheless, the formulas char-
acterising this family might be used for band design purposes, or conversely
to check whether a given potential belongs to this class.

4. Proofs

4.1. Proof of sufficiency. We want to make use of elementary operator
theory, unlike the usual O.D.E. approach one can find in the literature (see
appendix). For convenience let us rename the Hamiltonian H(0), as defined
in (A.1), as H := H(0). Once we set v0 = 0 the claim amounts to say that
H is a positive operator, that its ground state is E1 = 0, and that any other
level E > 0 is doubly degenerate. Also, recall by (2.2) and (A.2) that the
domain D+ of H is characterized by the periodic boundary conditions

ψ(1) = ψ(0), ψ′(1) = ψ′(0) . (4.1)

By means of the operator

a :=
d

dx
−W (x) (4.2)

and its adjoint

a† = − d

dx
−W (x) (4.3)
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the Hamiltonian can be factorised as

H = a†a. (4.4)

Notice that W is regular enough to guarantee that (4.4) makes sense with-
out domain problems: both a and a† are only densely defined in L2[0, 1],
nevertheless since W is differentiable, a maps D+ into the domain of a†, so
that a†a makes sense on the whole D+ (just as a a† does).

Of course factorisation (4.4) means that H is a positive operator, hence
all its eigenvalues are nonnegative. By direct inspection one can check that
the ground state is E1 = 0: indeed the (non normalised) state

ψ1(x) = e

x∫
0

W (ξ) dξ
(4.5)

is annihilated by a, i.e., aψ1 = 0, since it solves the O.D.E.

ψ′(x)−W (x)ψ(x) = 0 (4.6)

and then also Hψ1 = 0 holds true. E1 is always nondegenerate, as we recall
in the appendix. Notice, in addition, that the ground state wave function
ψ1 can be chosen to be real.

We now want to exploit another factorisation, beyond the standard one
(4.4). Let T be the operator of translation of half a period

Tψ(x) = ψ
(
x+

1

2

)
, (4.7)

defined with the natural periodicity in order that it becomes a unitary
transformation on L2[0, 1], i.e.,

TT † = T †T = � . (4.8)

As a consequence of the assumption (3.2), the other operators transform
under T as

TWT † = −W, T
d

dx
T † =

d

dx
, TaT † = −a†, T a†T † = −a, (4.9)

=⇒ THT † = T (a†a)T † = a a† , (4.10)

so that one can conveniently rewrite

H = a†a = (Ta)†(Ta) = (Ta)(Ta)† (4.11)

and get the commutation relations

[Ta, (Ta)†] = [H,Ta] = [H, (Ta)†] = O. (4.12)

It follows that any energy level is invariant under the action of Ta or (Ta)†.
On D+ obviously T and T † square to unity; moreover Ta is anti-hermi-

tian, i.e., (Ta)† = −Ta. Indeed, for any ψ ∈ D+ and any x ∈ [0, 1]

(Ta)†ψ(x) = a†T †ψ(x) = −ψ′(x− 1

2
)−W (x)ψ

(
x− 1

2

)
=

= −
[
ψ′

(
x− 1

2

)
+W (x)ψ

(
x− 1

2

)]
=
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= −
[
ψ′

(
x+

1

2

)
−W

(
x+

1

2

)
ψ

(
x+

1

2

) ]
= −(Ta)ψ(x). (4.13)

The anti-hermiticity of Ta implies that all its nonzero eigenvalues are pure
imaginary numbers and that eigenfunctions belonging to distinct eigenvalues
are orthogonal.

Take now any ψ ∈ D+ and any λ 6= 0 in iR such that Taψ = λψ. Then
Hψ = |λ|2ψ, because H = (Ta)†(Ta) = −(Ta)2, that is, ψ has energy
E = |λ|2. Taking all such possible choices of ψ’s and λ’s, one recovers
all the nonzero energy eigenvalues, because of the commutation relations
(4.12).

So, let Taψ = λψ:

ψ′
(
x+

1

2

)
−W

(
x+

1

2

)
ψ

(
x+

1

2

)
= λψ(x); (4.14)

by conjugation, since W (x) ∈ R and λ ∈ iR, this is equivalent to

ψ ′
(
x+

1

2

)
−W

(
x+

1

2

)
ψ

(
x+

1

2

)
= λψ(x) = −λψ(x), (4.15)

ψ(x) being the complex conjugate of ψ(x). That is, Taψ = −λψ. Both ψ
and ψ have energy E = |λ|2, but they are orthogonal, since λ 6= 0 ⇒ λ 6= −λ
(distinct eigenvalues of Ta). Therefore, one has shown that the energy level
E is doubly degenerate, and the conclusion must hold for any E > 0. �

Notice that conjugating the eigenvalue problem Taψ = λψ turns out
to be useful because it leads to the orthogonality of ψ and ψ. The same
does not apply to the eigenvalue problem for H , for Hψ = Eψ do imply
Hψ = Eψ, but one cannot argue that ψ and ψ are linearly independent.

Concerning the possibility that some gaps (or all of them) vanish at
the edge k = π of the Brillouin zone, it is clear that the scheme of the
proof above does not apply. Indeed, at k = π the spectral analysis has
to be performed on the Hamiltonian H(π) now defined on the domain D−
(antiperiodic boundary conditions); although the same factorisation (4.11)
in terms of Ta still holds, when one tries to mimic (4.13) one now gets

(Ta)†ψ(x) = a†T †ψ(x) = −ψ′
(
x− 1

2

)
−W (x)ψ

(
x− 1

2

)
=

= ψ′
(
x+

1

2

)
−W

(
x+

1

2

)
ψ

(
x+

1

2

)
= (Ta)ψ(x) (4.16)

that is, Ta is hermitian on the antiperiodic functions. Then its eigenvalues
are real numbers and conjugating Taψ = λψ one gets Taψ = λψ without
being able to conclude whether ψ⊥ψ or not.

4.2. Proof of Necessity. Let us assume for the moment that v has mean

zero: vmean :=
1∫
0

v(x) dx = 0. In the notation of the appendix, let ψ
[E]
1

and ψ
[E]
2 be the fundamental solutions and let D(E) be the discriminant of
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Hψ = Eψ, H being the Hamiltonian H(0) of the proof above, and of (A.1),
and E being any complex number.

The object of crucial interest in this proof turns out to be the function

f(E) ≡ ψ
[E]
2 ( 1

2 )− ψ
[E]
2 (− 1

2 )√
2−D(E)
E−E0

. (4.17)

In fact the assumption of all gaps vanishing at k = 0 translates into

2−D(E) = M2(E)(E −E0), (4.18)

where all the zeroes of M(E) are simple and E0 is the lowest real root of
D(E) = 2. Now, let G[E](x) be the Green’s function of the problem

[
− d2

dx2
+ v(x)−E

]
G[E](x) + δ(x) = 0 (4.19)

with periodic boundary conditions on [0, 1]; by means of standard O.D.E.
techniques, it is seen to be

G[E](x) =
ψ

[E]
2 (x)− ψ

[E]
2 (x− 1)

2−D(E)
. (4.20)

Evaluating G[E] at mid-period (x = 1
2 ) one gets

G[E]
(1

2

)
=
ψ

[E]
2 ( 1

2 )− ψ
[E]
2 (− 1

2 )

M2(E)(E −E0)
(4.21)

and since the boundary value problem (4.19) is self-adjoint, such a Green’s
function can have only simple poles in the energy complex plane. Accord-
ingly, by multiplication by M(E)(E − E0)

G[E]
(1

2

)
M(E)(E −E0) =

=
ψ

[E]
2 ( 1

2 )− ψ
[E]
2 (− 1

2 )

M(E)
=
ψ

[E]
2 ( 1

2 )− ψ
[E]
2 (− 1

2 )√
2−D(E)
E−E0

= f(E) (4.22)

must be an entire function.
Our claim at this point is that f is also bounded (as E → ∞): then

by Liouville’s theorem it is identically constant. We enclose such claim in
the following somehow technical Lemma. Its proof is postponed to the next
subsection. Hereafter, the mainstream of the proof continues.

Denote by

N (E) := ψ
[E]
2

(1

2

)
− ψ

[E]
2

(
− 1

2

)
, (4.23)

M(E) :=

√
2−D(E)

E −E0
(4.24)

the numerator and the denominator of f respectively.
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Lemma (uniform boundedness of f and estimates). The entire func-

tion f2, and hence f , is uniformly bounded at infinity. Consequently it

is identically constant, such a constant being 1 due to a direct evaluation.

Further, in the region

Ωε ≡
{
E ∈ C : ε 6 arg(E) 6 2π − ε

}
(4.25)

(ε being any fixed small strictly positive number) the following asymptotic

estimates hold for the square of the numerator

N 2(E) =
4 sin2

√
E
2

E
+ c

sin2
√

E
2

E2
+O

(eIm
√

E

E5/2

)
,

c = 2

[
v
(1

2

)
+ v(0)−

( 1/2∫

0

v(ξ) dξ

)2 ] (4.26)

and the square of the denominator

M2(E) =
4 sin2

√
E
2

E
+ 4E0

sin2
√

E
2

E2
+O

(eIm
√

E

E5/2

)
(4.27)

where in both expansions each term is leading w.r.t. the subsequent, as E →
∞ in Ωε.

Thanks to this Lemma the proof of necessity is completed as follows. By

comparison of the coefficients of the
( sin2

√
E
2

E2

)
-terms in (4.26) and in (4.27),

one has c = 4E0, whence

2E0 = v
(1

2

)
+ v(0)− 1

2

( 1

2∫

0

v(ξ) dξ

)2

. (4.28)

Since the ground state E0 cannot change by any shift in x, this is the same as

2E0 = v
(
x+

1

2

)
+ v(x)− 1

2

( x+ 1

2∫

x

v(ξ) dξ

)2

=

= v
(
x+

1

2

)
+ v(x)− 1

2

(
− 2W (x)

)2
, (4.29)

where W is defined by (3.3) – recall that we are now dealing with a zero-
mean periodic v. Equivalently,

v(x) + v(x+ 1
2 )

2
= E0 +W 2(x). (4.30)

On the other side, definition (3.3) clearly implies (3.4), namely

v(x) − v(x+ 1
2 )

2
= W ′(x), (4.31)
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so that altogether

v(x) =
v(x) + v(x+ 1

2 )

2
+
v(x)− v(x + 1

2 )

2
=

= E0 +W 2(x) +W ′(x). (4.32)

The constant E0 is recovered in terms of W by integrating over one period

and taking into account that
1∫
0

v(x) dx =
1∫
0

W ′(x) dx = 0:

E0 = −
1∫

0

W 2(x) dx. (4.33)

So far v has had mean zero. For a generic v, the result above leads to
ṽ = v− vmean = E0 +W 2 +W ′, where W is given by the full form of (3.3).
Hence v = v0 +W 2 +W ′ with v0 given by (3.5), and (3.1) is proved.

The uniqueness of W is a consequence of the unique decomposition v =
v+ + v−, for any 1-periodic function v, where v±(x+ 1

2 ) = ±v±(x). In fact,

if v = v0 +W 2 +W ′ = u0 + U2 + U ′ for some constants v0, u0 and some
W , U changing sign after half a period, then necessarily

v+ = v0 +W 2 = u0 + U2,

v− = W ′ = U ′
(4.34)

whence U = W + const and by substitution into v the constant turns out
to be zero. �

4.3. Proof of the lemma. We proceed along the following steps.

Step 1. f2 is an entire function for which the following asymptotic estimate

holds as E →∞:

f2(E) =
N 2(E)

M2(E)
=

4 sin2
√

E
2

E + c
sin2

√
E
2

E2 +O( eIm
√

E

E5/2
)

4 sin2

√
E
2

E + 4E0
sin2

√
E
2

E2 +O( eIm
√

E

E5/2
)

(4.35)

with

c = 2

[
v
(1

2

)
+ v(0)−

( 1/2∫

0

v(ξ) dξ

)2]
. (4.36)

Notice that by no means this suffices to say that the ratio is O(1): in-
deed the remainders are not meant to be necessarily subleading w.r.t. the

E−1 sin2
√

E
2 and the E−2 sin2

√
E
2 – terms, since the latter vanish in the

sequences of points (2nπ)2.
f2 is entire because f is. The rest of step 1 is simply a consequence

of plugging into (4.17) the following asymptotic estimates available in the
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literature [34], [21]:

2−D(E) = 4 sin2

√
E

2
+O

(eIm
√

E

E3/2

)
, (4.37)

ψ
[E]
2 (x) =

sinx
√
E√

E
− cosx

√
E

2E
V(x)+

+
sinx

√
E

4E3/2

[
v(x) + v(0)− V2(x)

]
+O

(exIm

√
E
2

E2

)
. (4.38)

(∀E ∈ C and uniformly in x ∈ [0, 1]), where

V(x) :=

x∫

0

v(ξ) dξ. (4.39)

These are extensively discussed in the appendix. We only remark that the
continuity of v is all what is needed to truncate these expansions up to this

order: to go higher to O(eIm
√

EE−n/2)-terms one has to assume v to be
sufficiently differentiable, which is not needed here. Also, we stress again
that, until a given complex path E → ∞ is specified, it is not possible to
identify the leading terms in (4.37) and (4.38).

From (4.38) on gets

N (E) = ψ
[E]
2

(1

2

)
− ψ

[E]
2

(
− 1

2

)
=

=
2 sin

√
E
2√

E
− 2 cos

√
E
2

2E

(
V

(1

2

)
− V

(
− 1

2

))
+

+
sin

√
E
2

4E3/2

[
v
(1

2

)
+ v

(
− 1

2

)
+ 2v(0)− 1

2
V2

(1

2

)
− 1

2
V2

(
− 1

2

)]
+

+O
(e 1

2
Im

√
E
2

E2

)
. (4.40)

Since v has period 1 and mean 0, then

V
(1

2

)
− V

(
− 1

2

)
=

1/2∫

0

v(ξ) dξ −
−1/2∫

0

v(ξ) dξ =

1/2∫

−1/2

v(ξ) dξ = 0,

v
(1

2

)
+ v

(
− 1

2

)
= 2v

(1

2

)
,

V
(
− 1

2

)
=

−1/2∫

0

v(ξ) dξ = −
1/2∫

−1/2

v(ξ) dξ +

1/2∫

0

v(ξ) dξ = V
(1

2

)
,

(4.41)

whence
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N (E) =
2 sin

√
E
2√

E
+

sin
√

E
2

2E3/2

[
v
(1

2

)
+ v(0)− V2

(1

2

)]
+

+O
(e 1

2
Im

√
E
2

E2

)
. (4.42)

Now, to square N (E) discarding the subleading terms recall that

∣∣∣ sin
√
E

2

∣∣∣ 6 eIm

√
E
2 ,

∣∣∣ cos

√
E

2

∣∣∣ 6 eIm

√
E
2 ∀E ∈ C (4.43)

(see, e.g., (A.15) in the appendix and the discussion thereafter) so that

N 2(E) =
4 sin2

√
E
2

E
+ c

sin2
√

E
2

E2
+O

(eIm
√

E

E5/2

)
,

with c = 2

[
v
(1

2

)
+ v(0)−

( 1/2∫

0

v(ξ) dξ

)2]
.

(4.44)

Analogously, from (4.37) one gets

M2(E) =
2−D(E)

E −E0
=

4 sin2
√

E
2 + ( eIm

√
E

E3/2
)

E(1− E0

E )
=

=
(4 sin2

√
E
2

E
+

(eIm
√

E

E5/2

))
·
(
1 +

E0

E
+O

( 1

E2

))
=

=
4 sin2

√
E
2

E
+ 4E0

sin2
√

E
2

E2
+O

(eIm
√

E

E5/2

)
. (4.45)

so that (4.35) is achieved and the first step is completed.

Step 2. Pick any ε > 0 small enough. Then f 2 is bounded in the closed

region Ωε defined in (4.25), the bound depending on ε:

∃Cε > 0 : |f2(E)| 6 Cε ∀E ∈ Ωε. (4.46)

In particular (4.46) holds for every point on Γε, the boundary of the angle

C \ Ωε with vertex at the origin, and

lim
E→∞

f2(E) = 1, E ∈ Ωε. (4.47)

Here a shorter truncation in (4.35) suffices, that is,

4 sin2
√

E
2

E + c
sin2

√
E
2

E2 +O
(

eIm
√

E

E5/2

)

4 sin2

√
E
2

E + 4E0
sin2

√
E
2

E2 +O
(

eIm
√

E

E5/2

) =

4 sin2
√

E
2

E +O
(

eIm
√

E

E2

)

4 sin2

√
E
2

E +O
(

eIm
√

E

E2

) .

Then

lim
E→∞
E∈Ωε

f2(E) = lim
E→∞
E∈Ωε

4 sin2
√

E
2

E +O
(

eIm
√

E

E2

)

4 sin2

√
E
2

E +O
(

eIm
√

E

E2

) = 1, (4.48)
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because when E →∞ in Ωε the leading term both in the numerator and the

denominator is E−1 sin2
√

E
2 which dominates the O

(
eIm

√
E

E2

)
-remainders.

Indeed, when E ∈ Ωε and |E| is large enough, (4.43) actually becomes

sin

√
E

2
∼ eIm

√
E
2 (4.49)

(see, e.g., (A.15) in the appendix and the discussion thereafter), and

Im

√
E

2
=

√
|E|
2

sin
θE

2
>

√
|E|
2

sin
ε

2
> 0, E ∈ Ωε. (4.50)

To conclude this step, by continuity the entire function f can blow up neither
at any finite point of Ωε nor at ∞ in Ωε and (4.46) is proved.

Notice that if an arbitrarily small angle around the positive real axis was

not cut off, then Im

√
E
2 would not necessarily increase up to +∞; further-

more the function sin2
√

E
2 has countably many zeroes in the real points

En = (2nπ)2 and a priori it may not dominate the O
(

eIm
√

E

E2

)
remainder.

Step 3. f2 has a finite growth order which does not exceed 1.

Recall ([35]) that an entire function h : C → C is said to have finite
growth order ρ if

ρ := inf
{
µ > 0 : M(r) < erµ}

= lim sup
r→+∞

lnM(r)

rρ
< +∞ (4.51)

where M(r) := max|z|=r |h(z)|. Otherwise h is said to be of infinite order,
and

lim
z→∞

|h(z)|
e|z|ρ

= +∞ ∀ ρ > 0 . (4.52)

We now see that our f2 is not of infinite order. M(E) has only simple
zeroes, that are all real; since f is analytic, these are also zeroes of N (E).
From step 1 and ∀µ ∈ R,

e−|E|
µ

f2(E) =

4 sin2
√

E
2

e|E|µ E
+O

(
eIm

√
E

e|E|µ E2

)

4 sin2

√
E
2

E +O
(

eIm
√

E

E2

)

is still an everywhere defined function, its numerator still vanishing when-
ever its denominator does; but now, due to (4.43), as long as µ > 1

4 sin2
√

E
2

e|E|µE
−−−−→
E→∞

0, O
( eIm

√
E

e|E|µE2

)
−−−−→
E→∞

0 (µ > 1) . (4.53)

This leads to
|f2(E)|
e|E|µ

−−−−→
E→∞

0, (4.54)

namely (4.52) fails to happen. That is, f 2 has finite growth order ρ. In view
of (4.51), we are sure that ρ is certainly dominated by the bound ρb = 1.

Step 4. f2 is bounded also on C \ Ωε, with the same bound as on Ωε.
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In fact the following facts turned out to hold:

a) |f2(E)| 6 Cε ≤ +∞ ∀E ∈ Γε, the boundary of the angle C \ Ωε

(step 2);
b) f2 is entire and its growth order does not exceed ρb = 1 (step 3);
c) the angle C \ Ωε has arbitrarily small amplitude 2ε, which can be

taken less than π
ρb

, namely π.

As a consequence of a standard corollary of the Phragmén–Lindelöf theorem
(see, e.g., Theorem 9.12 in [35]), a)+b)+c) imply that

|f2(E)| 6 Cε ∀E ∈ C \ Ωε. (4.55)

Conclusion of the proof. Fixed a small enough angle with vertex at the
origin, centred around the positive real axis, and with amplitude 2ε, the
entire function f2 turns out to be bounded both inside this angle, namely
on C \ Ωε, and outside of it, namely on Ωε. That is, f2 is bounded on the
whole C-plane, and so must be f as well. Hence f is identically constant,
by the Liouville’s theorem. Such a constant can be evaluated, e.g., taking
the limit E →∞ in some suitable way, as in (4.48). So f 2 ≡ 1. �

The crucial role of analyticity of f 2 is remarkable. In fact, before applying
Phragmén–Lindelöf theorem for analytic functions, that is, without making
use of analyticity, yet one has an apparently striking control on f 2: it
vanishes along any path E →∞ in C but an arbitrarily small angle centred
at the origin around a given ray (the positive real axis). However this
does not suffice to claim the boundedness on the whole C. Neither it would
suffice if in addition one knew f2 to vanish at infinity also along the positive
real axis, or along any ray emanating from the origin. A paradigmatic
counterexample for this phenomenon is the smooth R2 → R functions

h(x, y) = (x2 + y2) e−(x−y2)2 . (4.56)

Indeed for any ε > 0 small enough

lim
x→+∞

h(x, 0) = 0,

lim
(x,y)→∞

h(x, y) = 0 ∀ (x, y) ∈ R
2 such that θ := arg(x, y) ∈ [ε, 2π − ε]

because, when θ ∈ [ε, 2π−ε] (so that | sin θ| > sin ε > 0) and r :=
√
x2 + y2

is large enough,

(x− y2)2 = r4(sin2 θ − r−1 cos θ)2 >
r4 sin4 ε

2

so

0 6 h(x, y) 6 r2e−
1

2
r4 sin4 ε −−−−−→

r→+∞
0.

Yet h diverges as r2 on the curve x− y2 = 0.



150 O. Zagordi and A. Michelangeli

Acknowledgements

We are indebted to S. Baroni and G. Santoro for motivating the origi-
nal interest to this topic. Helpful and critical discussions with R. Adami,
V. Carnevale, G. Dell’Antonio, B. A. Dubrovin and G. Morchio are warmly
acknowledged.

Appendix.

Spectral Analysis of 1D Periodic Potentials and Connections

with Hill’s Equation Theory

A.1 – Spectral analysis. Degeneracy. As a starting point [41], [19] one
has to recognise that the space of wave functions on which the Hamiltonian
(2.1) acts decomposes naturally into subspaces labelled by the boundary
conditions at x = 0 and x = 1. This way one has to consider the one-
particle Hamiltonians

H(k) =
(
− d2

dx2

)

k
+ v(x) (A.1)

acting on the (dense) domain of self-adjointness Dk of the measurable func-
tions on [0, 1] that are square-summable together with their first two deriva-
tives, and satisfy the boundary conditions

ψ(1) = eikψ(0), ψ′(1) = eikψ′(0). (A.2)

(For convenience we rename D+ := D0 and D− := Dπ.) Thus the quantum-
mechanical problem on R is rephrased in terms of the problem of a Schrö-
dinger-like particle on [0, 1] with boundary conditions labelled by k.

The spectral analysis of H on the whole is the union of the spectral
analyses of the H(k)’s, and the following facts hold:

• each H(k) has a purely discrete spectrum;
• its eigenvalues E1(k), E2(k), E3(k), . . . are nondegenerate for any
k ∈ (0, π);

• E1(0) is nondegenerate as well;
• k 7→ En(k) is analytic in (0, π) and continuous in [0, π];
• for k ∈ [0, π], k 7→ En(k) is monotone increasing for n odd and

monotone decreasing for n even, and

E1(0) < E1(π) ≤ E2(π) < E2(0) ≤ E3(0) < E3(π) ≤ · · · ;

• H(k) and H(−k) are antiunitarily equivalent under ordinary com-
plex conjugation, in particular their eigenvalues are identical and
their eigenfunctions are complex conjugates.

The dispersion relations k 7→ En(k) produce the familiar structure with
bands and gaps (Fig. 1). En(·) is the n-th band within the Brillouin zone.
Also, any ψk ∈ Dk, when extended on R with boundary conditions like
(A.2) on every interval [n, n + 1], is the Bloch function ψk(x) = eikxuk(x)
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with uk(x+ 1) = uk(x). If

αn :=

{
En(0) n odd

En(π) n even
, βn :=

{
En(π) n odd

En(0) n even
, (A.3)

then [αn, βn] is the n-th band, (βn, αn+1) is the n-th gap, i.e., the gap
between n-th and the (n+ 1)-th band, and H has a purely absolutely con-
tinuous spectrum σ(H) =

⋃∞
n=1[αn, βn].

Eigenfunctions at the band edge k = 0 have period equal to 1, satisfying
the periodic boundary conditions. Eigenfunctions at the band edge k = π
have period equal to 2, due to the antiperiodic boundary conditions.

With this notation, the n-th gap vanishes iff βn = αn+1: this equivalently
corresponds to En(0) = En+1(0) when n is even, and to En(π) = En+1(π),
when n is odd. Consequently one band and the following one collapse into
a unique band at the centre of the Brillouin zone at the energy E, iff E is
a doubly degenerate eigenvalue of H(0). Similarly they collapse at the edge
of the Brillouin zone iff E is a doubly degenerate eigenvalue of H(π).

A.2 – Hill’s equation theory. Main features. The dispersion relations
k 7→ En(k) can be understood as branches of the parametrisation [19], [2]

cos
(√
E + δ(E)

)

|t(E)| = cos k (A.4)

of the variable E in terms of the parameter k, where δ(E) and |t(E)| are
the phase and the modulus of the transmission amplitude t(E) of a free
particle (i.e., a plane wave) of energy E incident on a single cell of the lattice
described by v. Twice the left hand side of (A.4) is a quantity known as
the discriminant D(E) of Hill’s differential equation

−ψ′′ + vψ = Eψ (A.5)

and this bridges the spectral analysis of 1D periodic potentials to the Hill’s
equation theory [34], [11], [37], [46], [15].

Such a discriminant, by definition, is

D(E) := ψ
[E]
1 (1) + (ψ

[E]
2 )′(1) (A.6)

where E is now allowed to be complex, and ψ
[E]
1 (x) and ψ

[E]
2 (x) are the so

called fundamental solutions of the Hill’s equation, that is, by definition,
the solutions of the Cauchy problems





−(ψ
[E]
1 )′′ + vψ

[E]
1 = Eψ

[E]
1

ψ
[E]
1 (0) = 1

(ψ
[E]
1 )′(0) = 0

,





−(ψ
[E]
2 )′′ + v ψ

[E]
2 = Eψ

[E]
2

ψ
[E]
2 (0) = 0

(ψ
[E]
2 )′(0) = 1

.

(A.7)
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Figure 4. Discriminant behaviour

The discriminant turns out to be an entire function of the complex vari-
able E with some crucial properties in dealing with the general solutions of
(A.5). Within this O.D.E. framework, what one commonly refers to as en-

ergy band, gap, band edge eigenvalues, vanishing gaps, translate respectively
into the concepts of interval of stability, interval of instability, characteristic

values, coexistence, with the features we sketch here below.

• For real E’s, D(E) has a graph somewhat like that in Fig. 4. In
fact, the following asymptotic behaviour is known:

D(E) = 2 cos
√
E +O(E−3/2), E ∈ R, E → +∞,

D(E) = 2 cosh
√
|E| · (1 + o(1)), E ∈ R, E → −∞

(A.8)

For complex E’s, D(E) is an entire function of growth order 1
2 and

type 1 ([35]).
• For any complex E, or real E such that |D(E)| > 2, then all non-

trivial solutions of (A.5) are unbounded in (−∞,+∞); unbounded
solutions are called unstable. If E is real and |D(E)| < 2 then all
nontrivial solutions of (A.5) are bounded in (−∞,+∞); bounded
solutions are called stable.

• D(E) = 2 has infinitely many real roots, which are single or at most
double, increasing up to infinity, denoted in increasing order by

α1, β2, α3, β4, α5, β6, . . . −→ +∞
and D(E) = −2 has infinitely many real roots, which are single
or at most double, increasing up to infinity, denoted in increasing
order by

β1, α2, β3, α4, β5, α6, . . . −→ +∞
so that whenever E belongs to any of the so-called stability intervals

(αn, βn), then all the corresponding solutions of (A.5) are stable,
whereas if E belongs to any of the so-called instability intervals
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(βn, αn+1), or even (−∞, α1), then all the corresponding solutions
of (A.5) are unstable.

• The n-th stability interval has a width (βn − αn) . (2n − 1)π2

and (βn − αn) − (2n − 1)π2 → 0 as n → ∞. The asymptotic
behaviour of the n-th instability interval width is (αn+1 − βn) → 0
and the positions of both edges αn+1, βn are asymptotically given

by n2π2 +
∫ 1

0 v(x)dx .
• All the solutions of (A.5) satisfy the boundary conditions (A.2)

ψ(x + 1) = eikxψ(x),

ψ′(x+ 1) = eikxψ′(x)

or, equivalently, E ∈ R is an eigenvalue of H(k), if and only if
D(E) = 2 cosk. In particular solutions ψ with D(E) = 2 are 1-
periodic, ψ’s with D(E) = −2 are 2-periodic. This gives the cor-
respondence between the bands/gaps and the stability/instability
intervals.

• Whenever D(E) = 2 has a double real root, say Ẽ = β2n = α2n+1,
then the 2n-th interval of instability (β2n, α2n+1) disappears and
there coexist two linearly independent 1-periodic solutions of (A.5)

with E = Ẽ (and therefore all the solutions are 1-periodic at that

Ẽ). Analogously, coexistence happens whenever D(E) = −2 has

a double real root Ẽ = β2n+1 = α2n+2: there are two linearly

independent 2-periodic solutions of (A.5) with that E = Ẽ.

Thus one sees that the vanishing gap phenomenon translates into the
coexistence phenomenon for Hill’s equation, associated to the double zeroes
of 2−D(E) = 0 or 2 +D(E) = 0.

A.3 – Asymptotic estimates. We conclude this appendix discussing the
asymptotic expansions as E → ∞ of the fundamental solutions (A.7). Ac-
tually what we are doing in the following is to restate some classical but
heterogeneous material [36], [34], [47], [20], [21], [24], [15] in an organic
unified perspective.

The integral representation of the fundamental solutions is

ψ
[E]
1 (x) = cosx

√
E +

x∫

0

sin[(x− ξ)
√
E]√

E
v(ξ)ψ

[E]
1 (ξ)dξ,

ψ
[E]
2 (x) =

sinx
√
E√

E
+

x∫

0

sin[(x− ξ)
√
E]√

E
v(ξ)ψ

[E]
2 (ξ)dξ

(A.9)

(these identities can be derived in a swift manner by Laplace transformation
of (A.7)), whence, by iteration,
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ψ
[E]
1 (x) = cosx

√
E+

+

N−1∑

k=1

[
P

[1]
k (x)

sinx
√
E

Ek− 1

2

+Q
[1]
k (x)

cosx
√
E

Ek

]
+

+O
( sinx

√
E

EN− 1

2

)
+O

(cosx
√
E

EN

)
,

ψ
[E]
2 (x) =

sinx
√
E√

E
+

+

N−1∑

k=1

[
Q

[2]
k (x)

cosx
√
E

Ek
+ P

[2]
k+1(x)

sinx
√
E

Ek+ 1

2

]
+

+O
(cosx

√
E

EN

)
+O

( sinx
√
E

EN+ 1

2

)
.

(A.10)

Here P
[i]
k , Q

[i]
k : [0, 1] → R (i = 1, 2; k = 1, . . . , N − 1) are the coefficients of

sin x
√

E

Ek− 1

2

and cos x
√

E
Ek respectively in the expansion of the i-th fundamental

solution. They are suitable continuous (and hence bounded) functions of
x ∈ [0, 1], independent of the parameterE, and depending only on the choice
of the potential v. Their existence is guaranteed provided v is sufficiently

differentiable. In particular P
[2]
1 (x) ≡ 1.

For instance, for real positive values of the parameter E, and if v is
assumed to be only continuous (as in our main theorem), one finds

ψ1(x,E) = cosx
√
E +

sinx
√
E

2
√
E

V(x)+

+
cosx

√
E

4E

[
v(x) − v(0)− 1

2
V2(x)

]
+O

( 1

E3/2

)
,

ψ2(x,E) =
sinx

√
E√

E
− cosx

√
E

2E
V(x)+

+
sinx

√
E

4E3/2

[
v(x) + v(0)− 1

2
V2(x)

]
+O

( 1

E2

)

(A.11)

with

V(x) :=

x∫

0

v(ξ) dξ. (A.12)

The form of the remainders in (A.11) is just a shortcut to include two differ-

ent types of remainders appearing in (A.10): both sinx
√
E and cosx

√
E do

not exceed 1, since E ∈ R+. Incidentally, notice that plugging (A.11) into
the definition (A.6) of the discriminant, immediately gives the first equation
in (A.8).

The above expansions hold when E →∞ in the complex plane. The only
difference with respect to the special real case is that in general the N -th
remainders can diverge (in modulus) as E →∞, as remarked in Section 4.3.
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From (A.10) one deduces an analogous estimate for the quantity D(E),
Indeed, plugging (A.10) into (A.6) and after some lengthy manipulations
one gets

2−D(E) = 4 sin2

√
E

2
+

N−1∑

k=1

[
αk

sin
√

E
2 cos

√
E
2

Ek− 1

2

+βk

sin2
√

E
2

Ek
+γk

1

Ek

]
+

+O
( sin

√
E
2 cos

√
E
2

EN− 1

2

)
+O

( sin2
√

E
2

EN

)
+O

( 1

EN

)
(A.13)

with

αk = −2
[
P

[1]
k (1) + (P

[2]
k )′(1)−Q

[2]
k (1)

]
,

βk = −2γk = −2
[
Q

[1]
k (1) + (Q

[1]
k )′(1) + P

[2]
k+1(1)

]
.

(A.14)

As for the particular case of real E’s, it is customary to condense all the
remainders of (A.10) and of (A.13) into a unique form. This is done by
noticing that ∀α ∈ C

| sinα|2 =
∣∣∣
eiα − e−iα

2

∣∣∣
2

=

=
1

2

(
coshIm(2α)− cosRe(2α)

)
6 e|Im(2α)|,

| cosα|2 =
1

2

(
coshIm(2α) + cosRe(2α)

)
6 e|Im(2α)|

(A.15)

Thus, remainders can be written as O(e|xIm

√
E
2
|E−n) and O(e|Im

√
E|E−n)

respectively. Also, the absolute value can be removed since x ∈ [ 0, 1] and

Im
√
E > 0, due to the standard determination of the square root in the

complex plane (if C 3 E = |E|earg(E) with 0 6 arg(E) 6 2π, then
√
E =√

|E| earg(E)/2 with 0 6 arg(E)/2 6 π, whence Im
√
E > 0).

In the case of zero-mean potential, when suitably truncating (A.10) and
(A.13) one gets exactly the expansions (4.37) and (4.38) used in our proof.
As a further example, going to higher orders one would get

2−D(E) = 4 sin2

√
E

2
− sin

√
E
2 cos

√
E
2

2E3/2

1∫

0

v2(ξ) dξ−

− sin
√

E
2 cos

√
E
2

8E5/2

1∫

0

[
2v3(ξ) + v′(x)2

]
dξ+

+O
(eIm

√
E

E3

)
, (A.16)

ψ
[E]
2 (x) =

sinx
√
E√

E
− cosx

√
E

2E
V(x)+

+
sinx

√
E

4E3/2

[
v(x) + v(0)− 1

2
V(x)2

]
+
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+Q
[2]
2 (x) · cosx

√
E

E2
+ P

[2]
3 (x) · sinx

√
E

E5/2
+

+O
(ex Im

√
E
2

E3

)
(A.17)

where the coefficients Q
[2]
2 and P

[2]
3 (according to the notation in (A.10))

are given by

Q
[2]
2 (x) =

1

8

{V3(x)

3!
−

x∫

0

v2(ξ) dξ − V(x)
[
v(x) + v(0)

]
+ v′(x)− v′(0)

}
,

P
[2]
3 (x) =

V4(x)

4!
− V(x)

x∫

0

v2(ξ) dξ +
5

2

[
v2(x) + v2(0)

]
+ v(x)v(0)−

−v′′(x)+v′′(0)+V(x)
[
v′(x)−v′(0)

]
−V

2(x)

4

[
v(x)+v(0)

]
.

Notice that higher order derivatives of v occur.
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