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Abstract. Several linear and nonlinear integral inequalities for multi-
variable functions developed in the literature are presented. These inequal-
ities can be used as ready and powerful tools in the analysis of various
classes of hyperbolic partial differential, integral, and integro-differential
equations. In addition, some new nonlinear retarded integral inequalities
for Gronwall–Bellman-type multi-variable functions of are established. Ap-
plications of some of the existing inequalities as well as the new ones are
included.
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1. Introduction

The importance of inequalities has long been recognized in the field of
mathematics. The mathematical foundations of the theory of inequalities
were established in part during the 18th and 19th centuries by mathemati-
cians such as K. F. Gauss (1777–1855), A. L. Cauchy (1789–1857) and
P. L. Chebyshev (1821–1894). In the years thereafter the influence of in-
equalities has been immense and the subject has attracted many distin-
guished mathematicians, including H. Poincaré (1854–1912), A. M. Lya-
punov (1857–1918), O. Hölder (1859–1937) and J. Hadamard (1865–1963).

Analysis has been the dominant branch of mathematics for the last three
centuries and inequalities are the heart of analysis. Although inequalities
play a fundamental role in all branches of mathematics, the subject was
developed as a branch of modern mathematics during the 20th century
through the pioneering work Inequalities by G. H. Hardy, J. E. Littlewood
and G. Pólya [39], which appeared in 1934. This theoretical foundation,
which was further developed by other mathematicians, has in turn led to the
discovery of many new inequalities and interesting applications in various
fields of mathematics.

Since 1934, when the key work of Hardy et al. [39], Inequalities, was pub-
lished, several papers devoted to inequalities were published. These dealt
with new inequalities that are useful in many applications. It appears that
in the theory of inequality, the three fundamental inequalities, namely, AM-

GM inequality, the Hölder (in particular, Cauchy–Schwarz) inequality and
the Minkowski inequality, have played dominant roles. A detailed discussion
of these inequalities can be found in the book Inequalities by E. F. Beck-
enbach and R. Bellman [9], which appeared in 1961, and the two books
Analytic Inequalities Involving Functions and Their Integrals and Deriva-
tives and Classical and New Inequalities in Analysis by D. S. Mitrinović et
al. [45], [46], which appeared in 1991 and 1992, respectively.

Many problems, arising in a wide variety of application areas, give rise
to mathematical models involving boundary value problems for ordinary or
partial differential equations. The foremost desire of an investigator is to
solve the problem explicitly. If little theory is available and no explicit solu-
tion is readily obtainable, generally the ensuing line of attack is to identify
circumstances under which the complexity of the problem may be reduced.
In the past rew years the growth of the concerned theory has taken beautiful
and unexpected paths and will continue with great vigor in the next few
decades.

Integral inequalities that give explicit bounds on unknown functions pro-
vide a very useful and important device in the study of many qualitative
as well as quantitative properties of solutions of nonlinear differential equa-
tions. One of the best known and widely used inequalities in the study of
nonlinear differential equations can be stated as follows.
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If u is a continuous function defined on the interval J = [α, α+ h] and

0 ≤ u(t) ≤

t∫

α

[bu(s) + a] ds, t ∈ J, (1.1)

where a and b are nonnegative constants, then

0 ≤ u(t) ≤ ah exp(bh), t ∈ J. (1.2)

This inequality was found by Gronwall [38] in 1919 while investigating
the dependence of systems of differential equations with respect to a pa-
rameter. In fact the roots of such an inequality can be found in the work
of Peano [69], which explicitly dealt with the special case of the above in-
equality having a = 0, and proved some quite general results concerning
differential inequalities as well as maximal and minimal solutions of differ-
ential equations.

In a paper published in 1943, Bellman [15] proved the following inequal-
ity:

Let u and f be non-negative continuous functions on an interval J =
[α, β], and let c be a nonnegative constant. Then the inequality

u(t) ≤ c+

t∫

α

f(s)u(s) ds, t ∈ J, (1.3)

implies that

u(t) ≤ c exp

( t∫

α

f(s) ds

)
, t ∈ J. (1.4)

It is clear that Bellman’s result includes that of Gronwall, since
t∫

α

a ds ≤

ah for α ≤ t ≤ α+ h.
Bellman’s inequality exerted tremendous influence in the subsequent

years, and the study of such inequalities has grown into a subsequent field
with many important applications in various branches of differential and
integral equations.

After the discovery of the above inequality by Bellman, inequalities of
this type are known in the literature as ‘Bellman’s lemma or inequality’,
the ‘Gronwall–Bellman inequality’, Gronwall’s inequality’, or the Bellman–
Gronwall inequality’; For examples, Agarwal at al. [2], [3], [5], Akinyele
[7], Bainov and Simeonov [8], Beesack [10], [12], [13], Chandra and Davis
[21], Cho at al. [24], Conlan and Wang [25], [26], Dragomir and Kim [30],
[31], Ghoshal and Masood [34], Ghoshal [35], Headley [40], Kasture and Deo
[73], Pachpatte [48], [50], [54], [66], Snow [73], [74], Young [80], and Gao and
Ding [82].

Bihari [16] in 1956 proved the following useful nonlinear generalization
of the Gronwall–Bellman inequality:
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Let u and f be nonnegative continuous functions defined on R+. Let
w(u) be a continuous nondecreasing function defined on R+ and w(u) > 0
on (0,∞). If

u(t) ≤ k +

t∫

0

f(s)w(u(s)) ds, (1.5)

for t ∈ R+, where k is a nonnegative constant, then for 0 ≤ t ≤ t1,

u(t) ≤ G−1

(
G(k) +

t∫

0

f(s) ds

)
, (1.6)

where

G(r) =

r∫

r0

ds

w(s)
, r > 0, r0 > 0, (1.7)

and G−1 is the inverse function of G and t1 ∈ R+ is chosen so that

G(k) +

t∫

0

f(s) ds ∈ Dom(G−1), (1.8)

for all t ∈ R+ in the interval 0 ≤ t ≤ t1.
Since 1975 an enormous amount of effort has been devoted to the discov-

ery of new types of inequalities and their applications in various branches
of ordinary and partial differential and integral equations. Owing to the
tremendous success enjoyed during the past few years, a large number of
papers have appeared in the literature, which are partly inspired by the
challenge of research in various branches of differential and integral equa-
tions, where inequalities are often the bases of important lemmas for proving
various theorems or approximating various functions. Several isolated re-
searchers have developed valuable work in the field of integral inequalities.
The concerned application in the theory of differential and integral equations
is vast and is rapidly growing. Part of this growth is due to the fact that
the subject is genuinely rich and lends itself to many different approaches
and applications.

Beckenbach and Bellman [9] stated without proof a two-independent-
variable generalization of the well-known Gronwall–Bellman inequality due
to Wendroff, which has its origin in the field of partial differential equations.
A new beginning in the theory of such inequalities due to Wendroff, given in
Beckenbach and Bellman [9, p. 154], is embodied in the following statement.

Let u(x, y) and c(x, y) be nonnegative continuous functions defined on
x, y ∈ R+. If

u(x, y) ≤ a(x) + b(y) +

x∫

0

y∫

0

c(s, t)u(s, t) ds dt,
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for x, y ∈ R+, where a(x), b(y) are positive continuous functions for x, y ∈
R+, having derivatives such that a′(s) ≥ 0, b′(y) ≥ 0 for x, y ∈ R+, then

u(x, y) ≤ E(x, y) exp

( x∫

0

y∫

0

c(s, t) ds dt

)
, (1.9)

for x, y ∈ R+, where

E(x, y) = [a(x) + b(0)][a(0) + b(y)]/[a(0) + b(0)], (1.10)

for x, y ∈ R+.
While analyzing the dynamics of physical systems governed by various

nonlinear partial differential equations, one often needs some new ideas
and methods. It is well-known that the method of differential and integral
inequalities plays an important role in the qualitative theory of partial dif-
ferential, integral, and integro-differential equations. During the past few
years, many papers have appeared in the literature which deal with integral
inequalities in more than one independent variable, which are motivated
by certain applications in the theory of hyperbolic partial differential and
integral equations.

The main aim of this paper is to present a number of two- as well as
n-dimensional linear and nonlinear integral inequalities developed in the
literature. These inequalities can be used as ready and powerful tools in
the analysis of various classes of hyperbolic partial differential, integral,
and integro-differential equations. Applications of some of the inequalities
are also presented and some new nonlinear retarded integral inequalities of
Gronwall–Bellman-type are established. These inequalities can be used as
basic tools in the study of certain classes of functional differential equations
as well as integral equations.

2. Gronwall–Bellman-Type Linear Inequalities I

It is well known that the method of integral inequalities plays an im-
portant role in the qualitative theory of partial differential, integral, and
integro-differential equations. During the past few years, many papers have
appeared in the literature which deal with integral inequalities in two in-
dependent variables: For instance, refer Bondge and Pachpatte [17], [18],
Bondge et al. [20], Ghoshal and Masood [34], Kasture and Deo [41], Pach-
patte [51], [55]–[57], Shastri and Kasture [70], and Snow [74].

In this section we present a number of two-dimensional linear integral
inequalities developed in the literature. These inequalities can be used as
ready and powerful tools in the analysis of various classes of hyperbolic
partial differential, integral, and integro-differential equations.

Beckenbach and Bellman [9] stated without proof a two-independent-
variable generalization of the well-known Gronwall–Bellman inequality due
to Wendroff, which has its origin in the field of partial differential equations.
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The result due to Wendroff, given in Backenbach and Bellman [9, p. 154]
is embodied in the following theorem.

Theorem 2.1 (Wendroff). Let u(x, y), c(x, y) be nonnegative continuous
functions defined for x, y ∈ R+. If

u(x, y) ≤ a(x) + b(y) +

x∫

0

y∫

0

c(s, t)u(s, t) ds dt, (2.1)

for x, y ∈ R+, where a(x), b(y) are positive continuous functions for x, y ∈
R+, having derivative such that a′(t) ≥ 0, b′(y) ≥ 0 for x, y ∈ R+, then

u(x, y) ≤ E(x, y) exp

( x∫

0

y∫

0

c(s, t) ds dt

)
, (2.2)

for x, y ∈ R+, where

E(x, y) = [a(x) + b(0)][a(0) + b(y)]/[a(0) + b(0)], (2.3)

for x, y ∈ R+.

Snow [73], [74] gave one of the first Gronwall-type integral inequalities
involving two independent variables for scalar and vector functions using
the notation of a Riemann function. The inequalities given in Snow [73],
[74] have significant applications in the study of various properties of the
solutions of partial differential equations.

Snow [73] established a useful generalization of Theorem 2.1 in the fol-
lowing form.

Theorem 2.2 (Snow, 1971). Suppose u(x, y), a(x, y) and b(x, y) are con-
tinuous on a domain D with b ≥ 0. Let P0(x0, y0) and P (x, y) be two point
in D such that (x−x0)(y−y0) ≥ 0 and let R be the rectangular region whose
opposite corners are the points P0 and P . Let v(s, t;x, y) be the solution of
the characteristic initial value problem

L[v] = vst − b(s, t)v = 0, v(s, y) = v(x, t) = 1,

and let D+ be connected subdomain of D which contains P and on which
v ≥ 0. If R ⊂ D+ and u(x, y) satisfies

u(x, y) ≤ a(x, y) +

x∫

0

y∫

0

b(s, t)u(s, t) ds dt,

then u(x, y) also satisfies

u(x, y) ≤ a(x, y) +

x∫

0

y∫

0

a(s, t)b(s, t)v(s, t;x, y) ds dt.
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Wendroff’s inequality given in Theorem 2.1 is very effective in the study
of various properties of the solutions of certain hyperbolic partial differen-
tial equations. In the past few years many authors have obtained various
interesting and useful generalizations and extensions of this inequality.

The following theorem deals with a useful two-independent-variable gen-
eralization of the inequality given by Greene [37].

Theorem 2.3 (Greene, 1977). Let u(x, y), v(x, y), hi(x, y), i = 1, 2, 3, 4
be nonnegative continuous functions defined for x, y ∈ R+ and c1, c2 and µ
be nonnegative constants. If

u(x, y) ≤ c1 +

x∫

0

y∫

0

h1(s, t)u(s, t) ds dt+

x∫

0

y∫

0

h2(s, t)v(s, t) ds dt, (2.4)

v(x, y) ≤ c2 +

x∫

0

y∫

0

h3(s, t)u(s, t) ds dt+

x∫

0

y∫

0

h4(s, t)v(s, t) ds dt, (2.5)

for x, y ∈ R+, where u(x, y) = exp(−µ(x + y))u(x, y) and v(x, y) =
exp(−µ(x + y))v(x, y) for x, y ∈ R+, then

u(x, y) ≤ (c1 + c2) exp

(
µ(x+ y) +

x∫

0

y∫

0

h(s, t) ds dt

)
, (2.6)

v(x, y) ≤ (c1 + c2) exp

( x∫

0

y∫

0

h(s, t) ds dt

)
, (2.7)

for x, y ∈ R+, where

h(x, y) = max
{

[h1(x, y) + h3(x, y)], [h2(x, y) + h4(x, y)]
}
,

for all x, y ∈ R+.

Following are some inequalities of the Wendroff type given by Pachpatte
[56] and analogous inequalities useful in the study of qualitative properties
of the solutions of certain integro-differential and integral equations. An
interesting and useful integro-differential inequality given by Pachpatte [56]
reads as follows.

Theorem 2.4 (Pachpatte, 1980). Let u(x, y), ux(x, y), uy(x, y), uxy(x, y)
and c(x, y) be nonnegative continuous functions defined for x, y ∈ R+ and
u(x, 0) = u(0, y) = 0. If

uxy(x, y)≤a(x)+b(y)+M

[
u(x, y)+

x∫

0

y∫

0

c(s, t)(u(s, t)+ust(s, t)) ds dt

]
(2.8)

for x, y ∈ R+, where a(x) > 0, b(y) > 0 are continuous for x, y ∈ R+,
having derivatives such that a′(x) ≥ 0, b′(y) ≥ 0 for x, y ∈ R+, and M ≥ 0
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is constant, then

uxy(x, y) ≤ E(x, y) exp

( x∫

0

y∫

0

[
M + (1 +M)c(s, t)

]
ds dt

)
, (2.9)

for x, y ∈ R+, where E(x, y) is defined by (2.3) in Theorem 2.1.

Pachpatte [61] established the following inequality, which can be widely
used in various applications.

Theorem 2.5 (Pachpatte, 1995). Let u(x, y), p(x, y), and q(x, y) be
nonnegative continuous functions defined for x, y ∈ R+. Let k(x, y, s, t) and
its partial derivatives kx(x, y, s, t), ky(x, y, s, t), kxy(x, y, s, t) be nonnegative
continuous functions for 0 ≤ s ≤ x <∞, 0 ≤ t ≤ y <∞. If

u(x, y) ≤ p(x, y) + q(x, y)

x∫

0

y∫

0

k(x, y, s, t)u(s, t)) ds dt, (2.10)

for x, y ∈ R+, then

u(x, y)≤p(x, y)+q(x, y)

( x∫

0

y∫

0

A(σ, τ) dσ dτ

)
exp

( x∫

0

y∫

0

B(σ, τ) dσ dτ

)
, (2.11)

for x, y ∈ R+, where

A(x, y) = k(x, y, x, y)p(x, y) +

x∫

0

kx(x, y, s, y)p(s, y) ds+

+

y∫

0

ky(x, y, x, t)p(x, t) dt +

x∫

0

y∫

0

kxy(x, y, s, t)p(s, t) ds dt, (2.12)

B(x, y) = k(x, y, x, y)q(x, y) +

x∫

0

kx(x, y, s, y)q(s, y) ds+

+

y∫

0

ky(x, y, x, t)q(x, t) dt +

x∫

0

y∫

0

kxy(x, y, s, t)q(s, t) ds dt, (2.13)

for all x, y ∈ R+.

An interesting and useful generalization of Wendroff’s inequality, given
in Pachpatte [63, p. 325] is embodied in the following theorem.

Theorem 2.6 (Pachpatte, 1998). Let u(x, y), n(x, y) and c(x, y) be non-
negative continuous functions defined for x, y ∈ R+, and let n(x, y) be non-
decreasing in each variable x, y ∈ R+. If

u(x, y) ≤ n(x, y) +

x∫

0

y∫

0

c(s, t)u(s, t) ds dt, (2.14)
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for x, y ∈ R+, then

u(x, y) ≤ n(x, y) exp

( x∫

0

y∫

0

c(s, t) ds dt

)
, (2.15)

for x, y ∈ R+.

Given a continuous function a : R+ ×R+ → R+, we write

â(x, y) = max
{
a(s, t) : 0 ≤ s ≤ x, 0 ≤ s ≤ y

}
(2.16)

for x, y ∈ R+. Theorem 2.6 is a part of the following more general result.

Theorem 2.7. Let u(x, y), a(x, y), and c(x, y) be nonnegative continuous
functions defined for x, y ∈ R+. If

u(x, y) ≤ a(x, y) +

x∫

0

y∫

0

c(s, t)u(s, t) ds dt, (2.17)

for x, y ∈ R+, then

u(x, y) ≤ â(x, y) exp

( x∫

0

y∫

0

c(s, t) ds dt

)
, (2.18)

for x, y ∈ R+, where the function â is defined in (2.16).

Proof. Let X > 0 and Y > 0 be fixed. For 0 ≤ x ≤ X , 0 ≤ y ≤ Y, define a
function v(x, y) by

v(x, y) = â(X,Y ) +

x∫

0

y∫

0

c(s, t)u(s, t) ds dt. (2.19)

Then v(x, y) is nondecreasing in each variable x, y, and v(0, y) = â(X,Y )
and

∂v

∂x
(x, y) =

y∫

0

c(x, t)u(x, t) dt ≤ v(x, y)

y∫

0

c(x, t) dt, (2.20)

since u(x, y) ≤ v(x, t) ≤ v(x, y). Using the fact that Lemma 1.1 [2, p. 2],
the differential inequality (2.20) implies

v(x, y) ≤ â(X,Y ) exp

( x∫

0

y∫

0

c(s, t) ds dt

)
(2.21)

for 0 ≤ x ≤ X , 0 ≤ y ≤ Y. Setting X = x and Y = y and changing notation
we get the required inequality in (2.18). �

Another interesting integro-differential inequality, useful in the qualita-
tive analysis of hyperbolic partial differential equations with retarded ar-
guments, given by Pachpatte [64] is as follows. R denotes the set of real
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numbers; R+ = [0,∞), R1 = [1,∞), and J1 = [x0, X) and J2 = [y0, Y ) are
the given subsets of R; 4 = J1 × J2.

Theorem 2.8 (Pachpatte, 2002). Let a, b∈C(4, R+) and α∈C1(J1, J1),
β ∈ C1(J2, J2) be nondecreasing with α(x) ≤ x on J1, β(y) ≤ y on J2. Let
k ≥ 0 be a constant. If u ∈ C(4, R+) and

u(x, y) ≤ k +

x∫

x0

y∫

y0

a(s, t)u(s, t) ds dt+

α(x)∫

α(x0)

β(y)∫

β(y0)

b(s, t)u(s, t) ds dt,

for (x, y) ∈ 4, then

u(x, y) ≤ k exp

( x∫

x0

y∫

y0

a(s, t) ds dt+

α(x)∫

α(x0)

β(y)∫

β(y0)

b(s, t) ds dt,

)
,

for (x, y) ∈ 4.

By a reasoning similar to the proofs of Theorem 2.7 and Theorem 2.8 we
can prove the following assertion.

Theorem 2.9. Let a, b, c∈C(4, R+) and α∈C1(J1, J1), β∈C
1(J2, J2)

be nondecreasing with α(x) ≤ x on J1, β(y) ≤ y on J2. If u ∈ C(4, R+)
and

u(x, y) ≤ c(x, y) +

x∫

x0

y∫

y0

a(s, t)u(s, t) ds dt+

α(x)∫

α(x0)

β(y)∫

β(y0)

b(s, t)u(s, t) ds dt,

for (x, y) ∈ 4, then

u(x, y) ≤ ĉ(x, y) exp

( x∫

x0

y∫

y0

a(s, t) ds dt+

α(x)∫

α(x0)

β(y)∫

β(y0)

b(s, t) ds dt

)
,

for (x, y) ∈ 4, where the function ĉ is defined in (2.16).

3. Gronwall–Bellman-Type Linear Inequalities II

During the past several years some new inequalities of the Wendroff type
have been developed which provide a natural and effective means for fur-
ther development of the theory of partial integro-differential and integral
equations. Here we present some inequalities of the Wendroff type given by
Pachpatte [56] and analogous inequalities which can be used in the study
of qualitative properties of the solutions of certain integro-differential and
integral equations. Pachpatte [56] established the following inequality.
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Theorem 3.1 (Pachpatte, 1980). Let u(x, y), f(x, y) and g(x, y) be non-
negative continuous functions defined for x, y ∈ R+. If

u(x, y)≤a(x)+b(y)+

x∫

0

y∫

0

f(s, t)

(
u(s, t)+

s∫

0

t∫

0

g(σ, η)u(σ, η) dσ dη

)
ds dt, (3.1)

for x, y ∈ R+, where a(x) > 0, b(y) > 0 are continuous for x, y ∈ R+,
having derivatives such that a′(x) ≥ 0, b′(y) ≥ 0 for x, y ∈ R+, then

u(x, y) ≤ a(x) + b(y)+

+

x∫

0

y∫

0

f(s, t)E(s, t) exp

( s∫

0

t∫

0

[
f(σ, η) + g(σ, η)

]
dσ dη

)
ds dt, (3.2)

for x, y ∈ R+, where E(x, y) is defined by (2.3) in Theorem 2.1.

An interesting and useful generalization of Theorem 3.1 given in Pach-
patte [63, p. 336] is embodied in the following theorem.

Theorem 3.2 (Pachpatte, 1998). Let u(x, y), f(x, y), g(x, y) and c(x, y)
be nonnegative continuous functions defined for x, y ∈ R+, and let c(x, y)
be nondecreasing in each variable x, y ∈ R+. If

u(x, y)≤c(x, y)+

x∫

0

y∫

0

f(s, t)

(
u(s, t)+

s∫

0

t∫

0

g(σ, η)u(σ, η) dσ dη

)
ds dt, (3.3)

for x, y ∈ R+, then
u(x, y) ≤ c(x, y)H(x, y), (3.4)

for x, y ∈ R+, where

H(x, y) = 1 +

x∫

0

y∫

0

f(s, t) exp

( s∫

0

t∫

0

[
f(σ, η) + g(σ, η)

]
dσ dη

)
ds dt, (3.5)

for x, y ∈ R+.

An interesting two-independent-variable theorem given in Pachpatte [63,
p. 337] is as follows.

Theorem 3.3 (Pachpatte, 1998). Let u(x, y), f(x, y), g(x, y), h(x, y)
and p(x, y) be nonnegative continuous functions defined for x, y ∈ R+ and
u0 be a nonnegative constant.

(a1) If

u(x, y) ≤ u0 +

x∫

0

y∫

0

[
f(s, t)u(s, t) + p(x, t)

]
ds dt+

+

x∫

0

y∫

0

f(s, t)

( s∫

0

t∫

0

[
g(σ, η)u(σ, η)

]
dσ dη

)
ds dt, (3.6)
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for x, y ∈ R+, then

u(x, y) ≤

(
u0 +

x∫

0

y∫

0

p(s, t) ds dt

)
H(x, y), (3.7)

for x, y ∈ R+, where H(x, y) is as defined by (3.5) in Theorem 3.2.
(a2) If

u(x, y) ≤ u0 +

x∫

0

y∫

0

f(s, t)u(s, t) ds dt+

+

x∫

0

y∫

0

f(s, t)

( s∫

0

t∫

0

[
g(σ, η)u(σ, η) + p(σ, η)

]
dσ dη

)
ds dt, (3.8)

for x, y ∈ R+, then

u(x, y) ≤

(
u0 +

x∫

0

y∫

0

f(s, t)

( s∫

0

t∫

0

p(σ, η) dσ dη

)
ds dt

)
H(x, y), (3.9)

for x, y ∈ R+, where H(x, y) is as defined by (3.5) in Theorem 3.2.
(a3) If

u(x, y) ≤ u0 +

x∫

0

y∫

0

h(s, t)u(s, t) ds dt+

+

x∫

0

y∫

0

f(s, t)

(
u(s, t) +

s∫

0

t∫

0

g(σ, η)u(σ, η) dσ dη

)
ds dt, (3.10)

for x, y ∈ R+, then

u(x, y) ≤ u0 exp

( x∫

0

y∫

0

h(s, t) ds dt

)
H(x, y), (3.11)

for x, y ∈ R+, where H(x, y) is as defined by (3.5) in Theorem 3.2.
(a4) If

u(x, y) ≤ h(x, y)+

+p(x, y)

x∫

0

y∫

0

f(s, t)

(
u(s, t) + p(s, t)

s∫

0

t∫

0

g(σ, η)u(σ, η) dσ dη

)
ds dt, (3.12)
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for x, y ∈ R+, then

u(x, y) ≤ h(x, y) + p(x, y)M(x, y)

[
1+

+

x∫

0

y∫

0

f(s, t)p(s, t)

( s∫

0

t∫

0

[
f(σ, η) + g(σ, η)

]
p(σ, η) dσ dη

)
ds dt

]
, (3.13)

for x, y ∈ R+, where

M(x, y)=

x∫

0

y∫

0

f(s, t)

(
h(s, t) + p(s, t)

s∫

0

t∫

0

g(σ, η)h(σ, η) dσ dη

)
ds dt (3.14)

for x, y ∈ R+.

The following assertion is related to work of Pachpatte [63, p. 340].

Theorem 3.4. Let u(x, y), a(x, y), f(x, y), g(x, y), h(x, y), and p(x, y)
be nonnegative continuous functions defined for x, y ∈ R+ and let f(x, y)
and g(x, y) be positive and sufficiently smooth functions for x, y ∈ R+.
Define the function â by â(x, y) = max

{
a(s, t) : 0 ≤ s ≤ x, 0 ≤ s ≤ y

}
for

x, y ∈ R+.
(b1) If

u(x, y)≤a(x, y)+

x∫

0

y∫

0

f(s, t)

(
h(s, t) +

s∫

0

t∫

0

p(σ, η)u(σ, η) dσ dη

)
ds dt, (3.15)

for x, y ∈ R+, then

u(x, y) ≤ Q(x, y) exp

( x∫

0

y∫

0

f(s, t)

( s∫

0

t∫

0

p(σ, η) dσ dη

)
ds dt

)
, (3.16)

for x, y ∈ R+, where

Q(x, y) = â(x, y) +

x∫

0

y∫

0

f(s, t)h(s, t) ds dt, (3.17)

for x, y ∈ R+.
(b2) If

u(x, y) ≤ a(x, y)+

+

x∫

0

y∫

0

f(s, t)

( s∫

0

t∫

0

g(σ, η)

( σ∫

0

η∫

0

p(s1, t1)u(s1, t1) ds1 dt1

)
dσ dη

)
ds dt, (3.18)
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for x, y ∈ R+, then

u(x, y) ≤ Q(x, y)×

× exp

( x∫

0

y∫

0

f(s, t)

( s∫

0

t∫

0

g(σ, η)

( σ∫

0

η∫

0

p(s1, t1) ds1 dt1

)
dσ dη

)
ds dt

)
, (3.19)

for x, y ∈ R+, where Q(x, y) is as defined by (3.17).

Proof. We provide here the proof of (b1) only; the proof of (b2) can be
completed similarly.

(b1) Let X > 0 and Y > 0 be fixed. For 0 ≤ x ≤ X , 0 ≤ y ≤ Y, we
assume that â(X,Y ) is positive. From (3.15) we have

u(x, y) ≤ q̂(x, y) +

x∫

0

y∫

0

f(s, t)

( s∫

0

t∫

0

p(σ, η)u(σ, η) dσ dη

)
ds dt, (3.20)

where q̂(x, y) = â(X,Y )+
x∫
0

y∫
0

f(s, t)h(s, t) ds dt. Clearly q̂(x, y) is nonnega-

tive and nondecreasing in each variable x, y ∈ R+. From (3.20) we observe
that

u(x, y)

q̂(x, y)
≤ 1 +

x∫

0

y∫

0

f(s, t)

( s∫

0

t∫

0

p(σ, η)
u(σ, η)

q̂(σ, η)
dσ dη

)
ds dt. (3.21)

Define a function z(x, y) by the right-hand side of (3.21). Then z(0, y) =
z(x, 0) = 1 and

zxy(x, y) = f(x, y)

x∫

0

y∫

0

p(σ, η)
u(σ, η)

q̂(σ, η)
dσ dη. (3.22)

From (3.22) it is easy to observe that

∂2

∂x∂y

(zxy(x, y)

f(x, y)

)
= p(x, y)

u(x, y)

q̂(x, y)
. (3.23)

Now by using the fact that u(x, y)/q̂(x, y) ≤ z(x, y) in (3.23) we have

∂
∂y

(
∂
∂x

( zxy(x,y)
f(x,y)

))

z(x, y)
≤ p(x, y). (3.24)

Since
∂

∂x

(zxy(x, y)

f(x, y)

)
≥ 0,

∂

∂y
z(x, y) ≥ 0, z(x, y) > 0,

from (3.24) we observe that

∂
∂y

(
∂
∂x

( zxy(x,y)
f(x,y)

))

z(x, y)
≤ p(x, y) +

∂
∂x

( zxy(x,y)
f(x,y)

)
∂
∂y z(x, y)

z2(x, y)
,
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i.e.

∂

∂y

( ∂
∂x

( zxy(x,y)
f(x,y)

)

z(x, y)

)
≤ p(x, y). (3.25)

Keeping x fixed in (3.25), set y = η and integrate with respect to η from 0
to y to obtain the estimate

∂
∂x

( zxy(x,y)
f(x,y)

)

z(x, y)
≤

y∫

0

p(x, η) dη. (3.26)

Since
zxy(x, y)

f(x, y)
≥ 0, zx(x, y) ≥ 0, z(x, y) > 0,

again as above from (3.26) we observe that

∂

∂x

(( zxy(x,y)
f(x,y)

)

z(x, y)

)
≤

y∫

0

p(x, η) dη. (3.27)

Keeping y fixed in (3.27), set x = σ and integrate with respect to σ from 0
to x to obtain the estimate

zxy(x, y)

z(x, y)
≤ f(x, y)

x∫

0

y∫

0

p(σ, η) dσ dη. (3.28)

Since zx(x, y) ≥ 0, zy(x, y) ≥ 0 and z(x, y) > 0, from (3.28) we observe that

∂

∂y

( ∂
∂xz(x, y)

z(x, y)

)
≤ f(x, y)

x∫

0

y∫

0

p(σ, η) dσ dη. (3.29)

Keeping x fixed in (3.29), set y = t and integrate with respect to t from 0
to y to obtain the estimate

∂
∂xz(x, y)

z(x, y)
≤

y∫

0

f(x, t)

( x∫

0

t∫

0

p(σ, η) dσ dη

)
dt. (3.30)

Keeping y fixed in (3.30), set x = s and integrate with respect to s from 0
to x to obtain the estimate

z(x, y) ≤ exp

( x∫

0

y∫

0

f(s, t)

( s∫

0

t∫

0

p(σ, η) dσ dη

)
ds dt

)
. (3.31)

Using (3.31) in (3.21) where for 0 ≤ x ≤ X, 0 ≤ y ≤ Y, we get the required
inequality in (3.16). The proof of the case where â(X,Y ) is nonnegative can
be carried out as above with â(X,Y ) + ε instead of â(X,Y ), where ε > 0 is
an arbitrary small constant and subsequently allowing ε→ 0 (in the limit)
to obtain (3.16). �
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Remark 3.1. In special cases when a(x, y) = u0, in (3.15) and (3.18) for
x, y ∈ R+, where u0 ≥ 0 is a constant, the bounds obtained in (3.16) and
(3.19) reduce to

u(x, y) ≤ Q̃(x, y) exp

( x∫

0

y∫

0

f(s, t)

( s∫

0

t∫

0

p(σ, η) dσ dη

)
ds dt

)
, (3.32)

u(x, y) ≤ Q̃(x, y)×

× exp

( x∫

0

y∫

0

f(s, t)

( s∫

0

t∫

0

g(σ, η)

( σ∫

0

η∫

0

p(s1, t1) ds1 dt1

)
dσ dη

)
ds dt

)
, (3.33)

for x, y ∈ R+, respectively, where

Q̃(x, y) = u0 +

x∫

0

y∫

0

f(s, t)h(s, t) ds dt.

The requirement k > 0 can be weakened to k ≥ 0 as noted in the proof
of Theorem 3.4. Note that the inequalities given in (3.32) and (3.33) are
two-independent-variable inequalities established by Pachpatte [63, p. 340].

4. Gronwall–Bellman-Type Nonlinear Inequalities I

The fundamental role played by Wendroff’s inequality and its general-
izations and variants in the development of the theory of partial differential
and integral equations is well known. In this section, we present some ba-
sic nonlinear generalizations of Wendroff’s inequality established by Bondge
and Pachpatte [18], [19] and some new variants, which can be used as tools
in the study of certain partial differential and integral equations. Bondge
and Pachpatte [18] proved the following useful nonlinear generalization of
Wendroff’s inequality.

Theorem 4.1 (Bondge and Pachpatte, 1979). Let u(x, y) and p(x, y)
be nonnegative continuous functions defined for x, y ∈ R+. Let g(u) be
continuously differentiable function defined for u ≥ 0, g(u) > 0 for u > 0
and g′(u) ≥ 0 for u ≥ 0. If

u(x, y) ≤ a(x) + b(y) +

x∫

0

y∫

0

p(s, t)g(u(s, t)) ds dt, (4.1)

for x, y ∈ R+, where a(x) > 0, b(y) > 0, a′(x) ≥ 0, b′(y) ≥ 0 are continuous
functions for x, y ∈ R+, then for 0 ≤ x ≤ x1, 0 ≤ y ≤ y1

u(x, y)≤Ω−1

(
Ω(a(0)+b(y))+

x∫

0

a′(s)

g(a(s)+b(0))
ds+

x∫

0

y∫

0

p(s, t) ds dt

)
, (4.2)
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where

Ω(r) =

r∫

r0

ds

g(s)
, r > 0, r0 > 0, (4.3)

Ω−1 is the inverse function of Ω and x1, y1 are chosen so that

Ω(a(0) + b(y)) +

x∫

0

a′(s)

g(a(s) + b(0))
ds+

x∫

0

y∫

0

p(s, t) ds dt ∈ Dom(Ω−1).

for all x, y lying in the subintervals 0 ≤ x ≤ x1, 0 ≤ y ≤ y1 of R+.

Bondge and Pachpatte [19] gave the following generalization of Wen-
droff’s inequality.

Theorem 4.2 (Bondge and Pachpatte, 1980). Let u(x, y), a(x, y), b(x, y),
and c(x, y) be nonnegative continuous functions defined for x, y ∈ R+.
Let g(u), h(u) be continuously differentiable functions defined for u ≥ 0,
g(u) > 0, h(u) > 0 for u > 0 and g′(u) ≥ 0, h′(u) ≥ 0 for u ≥ 0, and let
g(u) be subadditive and submultiplicative for u ≥ 0. If

u(x, y) ≤ a(x, y) + b(x, y)h

( x∫

0

y∫

0

c(s, t)g(u(s, t)) ds dt

)
, (4.4)

for x, y ∈ R+, then for 0 ≤ x ≤ x2, 0 ≤ y ≤ y2

u(x, y) ≤ a(x, y)+

+ b(x, y)h

(
G−1

[
G(A(x, y)) +

x∫

0

y∫

0

c(s, t)g(b(s, t)) ds dt

])
, (4.5)

where

A(x, y) =

x∫

0

y∫

0

c(s, t)g(a(s, t)) ds dt, (4.6)

G(r) =

r∫

r0

ds

g(h(s))
, r > 0, r0 > 0, (4.7)

G−1 is the inverse function of G and x2, y2 are so chosen that

G(A(x, y)) +

x∫

0

y∫

0

c(s, t)g(b(s, t)) ds dt ∈ Dom(G−1).

for all x, y lying in the subintervals 0 ≤ x ≤ x2, 0 ≤ y ≤ y2 of R+.

Various branches of Gronwall-like inequalities can be found in the book,
Inequalities for Differential and Integral Equations by Pachpatte [63]. The
following theorem provides another useful generalization of Wendroff’s in-
equality, which appeared in Pachpatte’ book [63, p. 465].
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Theorem 4.3 (Pachpatte, 1998). Let u(x, y), c(x, y), and p(x, y) be non-
negative continuous functions defined for x, y ∈ R+. Let g(u), g′(u), a(x),
a′(x), b(y), and b′(y) be as in Theorem 4.1 and let g(u) be submultiplicative
on R+. If

u(x, y)≤a(x)+b(y)+

x∫

0

y∫

0

c(s, t)u(s, t) ds dt+

x∫

0

y∫

0

p(s, t)g(u(s, t)) ds dt, (4.8)

for x, y ∈ R+, then for 0 ≤ x ≤ x3, 0 ≤ y ≤ y3

u(x, y) ≤ q(x, y)

[
Ω−1

(
Ω(a(0) + b(y))+

+

x∫

0

a′(s)

g(a(s) + b(0))
ds+

x∫

0

y∫

0

p(s, t)g(q(s, t)) ds dt

)]
, (4.9)

where

q(x, y) = exp

( x∫

0

y∫

0

c(s, t) ds dt

)
, (4.10)

Ω, Ω−1 are as defined in Theorem 4.1, and x3, y3 are so chosen that

Ω(a(0)+b(y))+

x∫

0

a′(s)

g(a(s) + b(t))
ds+

x∫

0

y∫

0

p(s, t)g(q(s, t)) ds dt∈Dom(Ω−1).

for all x, y lying in the subintervals 0 ≤ x ≤ x3, 0 ≤ y ≤ y3 of R+.

A slight variant of Theorem 4.3 is given in the following theorem appear-
ing in Pachpatte [63, p. 467].

Theorem 4.4 (Pachpatte, 1998). Let u(x, y), c(x, y), p(x, y), g(u), g′(u),
a(x), a′(x), b(y), and b′(y) be as in Theorem 4.1. If

u(x, y)≤a(x)+b(y)+

x∫

0

y∫

0

c(s, y)u(s, y) ds dt+

x∫

0

y∫

0

p(s, t)g(u(s, t)) ds dt, (4.11)

for x, y ∈ R+, then for 0 ≤ x ≤ x4, 0 ≤ y ≤ y4

u(x, y) ≤ F (x, y)

[
Ω−1

(
Ω(a(0) + b(y))+

+

x∫

0

a′(s)

g(a(s) + b(0))
ds+

x∫

0

y∫

0

p(s, t)g(F (s, t)) ds dt

)]
, (4.12)

where

F (x, y) = exp

( x∫

0

c(s, y) ds dt

)
, (4.13)
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Ω, Ω−1 are as defined in Theorem 4.1, and x4, y4 are chosen so that

Ω(a(0)+b(y))+

x∫

0

a′(s)

g(a(s) + b(t))
ds+

x∫

0

y∫

0

p(s, t)g(F (s, t)) ds dt∈Dom(Ω−1).

for all x, y lying in the subintervals 0 ≤ x ≤ x4, 0 ≤ y ≤ y4 of R+.

Another interesting and useful two-independent-variable inequality given
by Pachpatte [64] reads as the following two theorems which can be used
in the qualitative analysis of hyperbolic partial differential equations with
retarded arguments. In what follows, R denotes the set of real numbers;
R+ = [0,∞), R1 = [1,∞), and J1 = [x0, X) and J2 = [y0, Y ) are the given
subsets of R; 4 = J1 × J2.

Theorem 4.5 (Pachpatte, 2002). Let a, b∈C(4, R+) and α∈C1(J1, J1),
β ∈ C1(J2, J2) be nondecreasing with α(x) ≤ x on J1, β(y) ≤ y on J2. Let
c ≥ 1, k ≥ 0, and p > 1 are constants.

(a1) If u ∈ C(4, R1) and

u(x, y) ≤ k +

x∫

x0

y∫

y0

a(s, t)u(s, t) logu(s, t) ds dt+

+

α(x)∫

α(x0)

β(y)∫

β(y0)

b(s, t)u(s, t) logu(s, t) ds dt,

for (x, y) ∈ 4, then

u(x, y) ≤ cexp(A(x,y)+B(x,y)),

for (x, y)∈4, where A(x, y)=
x∫

x0

y∫
y0

a(s, t) ds dt, B(x, y)=
α(x)∫

α(x0)

β(y)∫
β(y0)

b(s, t) ds dt.

(a2) If u ∈ C(4, R+) and

up(x, y) ≤ k +

x∫

x0

y∫

y0

a(s, t)u(s, t) ds dt+

α(x)∫

α(x0)

β(y)∫

β(y0)

b(s, t)u(s, t) ds dt,

for (x, y) ∈ 4, then

u(x, y) ≤

[
k(p−1)/p +

(
p− 1

p

)
[A(x, y) +B(x, y)]

]1/(p−1)

(4.14)

for (x, y)∈4, where A(x, y)=
x∫

x0

y∫
y0

a(s, t) ds dt, B(x, y)=
α(x)∫

α(x0)

β(y)∫
β(y0)

b(s, t) ds dt.

Theorem 4.6 (Pachpatte, 2002). Let a, b∈C(4, R+) and α∈C1(J1, J1),
β ∈ C1(J2, J2) be nondecreasing with α(x) ≤ x on J1, β(y) ≤ y on J2. Let
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c ≥ 1, k ≥ 0, and p > 1 are constants. For i = 1, 2, let gi ∈ C(R+, R+) be
nondecreasing functions with gi(u) > 0 for u > 0.

(a1) If u ∈ C(4, R+) and for (x, y) ∈ 4,

u(x, y) ≤ k +

x∫

x0

y∫

y0

a(s, t)u(s, t)g1(u(s, t)) ds dt+

+

α(x)∫

α(x0)

β(y)∫

β(y0)

b(s, t)u(s, t)g2(u(s, t)) ds dt,

then for x0 ≤ x ≤ x1, y0 ≤ y ≤ y1,

(i) in case g2(u) ≤ g1(u),

u(x, y) ≤ G−1
1

[
G1(k) +A(x, y) +B(x, y)

]
,

(ii) in case g1(u) ≤ g2(u),

u(x, y) ≤ G−1
2

[
G2(k) +A(x, y) +B(x, y)

]
,

where A(x, y), B(x, y) are as defined in Theorem 4.5 and for i =
1, 2 : G−1

i are the inverse functions of

Gi(r) =

r∫

r0

ds

gi(s)
, r > 0, r0 > 0,

and x1 ∈ J1, y1 ∈ J2 are so chosen that for i = 1, 2,

Gi(k) +A(x, y) +B(x, y)) ∈ Dom(G−1
i ),

for all x and y lying in [x0, x1] and [y0, y1], respectively.

(a2) If u ∈ C(4, R1) and for (x, y) ∈ 4,

u(x, y) ≤ c+

x∫

x0

y∫

y0

a(s, t)u(s, t)g1(log u(s, t)) ds dt+

+

α(x)∫

α(x0)

β(y)∫

β(y0)

b(s, t)u(s, t)g2(logu(s, t)) ds dt,

then for x0 ≤ x ≤ x2, y0 ≤ y ≤ y2,

(i) in case g2(u) ≤ g1(u),

u(x, y) ≤ exp
(
G−1

1

[
G1(log c) +A(x, y) +B(x, y)

])
,

(ii) in case g1(u) ≤ g2(u),

u(x, y) ≤ exp
(
G−1

2

[
G2(log c) +A(x, y) +B(x, y)

])
,
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where A(x, y), B(x, y), Gi, G
−1
i are as in (a1) and x2 ∈ J1, y2 ∈ J2

are so chosen that for i = 1, 2,

Gi(log c) +A(x, y) +B(x, y) ∈ Dom(G−1
i ),

for all x and y lying in [x0, x2] and [y0, y2], respectively.

(a3) If u ∈ C(4, R+) and for (x, y) ∈ 4,

up(x, y) ≤ k +

x∫

x0

y∫

y0

a(s, t)u(s, t)g1(u(s, t)) ds dt+

+

α(x)∫

α(x0)

β(y)∫

β(y0)

b(s, t)u(s, t)g2(u(s, t)) ds dt,

then for x0 ≤ x ≤ x3, y0 ≤ y ≤ y3,

(i) in case g2(u) ≤ g1(u),

u(x, y) ≤ H−1
1

[
H1(k) +A(x, y) +B(x, y)

]
,

(ii) in case g1(u) ≤ g2(u),

u(x, y) ≤ H−1
2

[
H2(k) +A(x, y) +B(x, y)

]
,

where A(x, y), B(x, y) are as defined in Theorem 4.5 and for i =
1, 2, H−1

i are the inverse functions of

Hi(r) =

r∫

r0

ds

gi(s1/p)
, r > 0, r0 > 0,

and x3 ∈ J1, y3 ∈ J2 are so chosen that for i = 1, 2,

Hi(k) +A(x, y) +B(x, y)) ∈ Dom(H−1
i ),

for all x and y lying in [x0, x3] and [y0, y3] respectively.

Another interesting and useful two-independent-variable inequality given
by Pachpatte [68] reads as in the following theorem. This can be used in the
qualitative analysis of retarded partial differential equations with retarded
arguments. In what follows, R denotes the set of real numbers; R+ = [0,∞),
R1 = [1,∞), and J1 = [x0, X) and J2 = [y0, Y ) are the given subsets of R;
4 = J1 × J2.

Theorem 4.7 (Pachpatte, 2004). Let u, ai, bi ∈ C(4, R+) and αi ∈
C1(J1, J1), βi ∈ C

1(J2, J2) be nondecreasing with αi(x) ≤ x on J1, βi(y) ≤
y on J2 for i = 1, . . . , n. Let c ≥ 0 and p > 1 be constants.

(a1) If

up(x, y) ≤ c+ p

n∑

i=1

α(x)∫

α(x0)

β(y)∫

β(y0)

[
ai(s, t)u

p(s, t) + bi(s, t)u(s, t)
]
ds
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for (x, y) ∈ 4, then

u(x, y) ≤

{
B(x, y) exp

(
(p− 1)

n∑

i=1

α(x)∫

α(x0)

β(y)∫

β(y0)

ai(s, t) ds dt

)} 1

p−1

,

for (x, y) ∈ 4, where

B(x, y) = {c}
p−1

p + (p− 1)

n∑

i=1

α(x)∫

α(x0)

β(y)∫

β(y0)

bi(s, t) ds dt,

for (x, y) ∈ 4.
(a2) Let w ∈ C(R+, R+) be nondecreasing with w(u) > 0 of (0,∞). If for

(x, y) ∈ 4,

up(x, y) ≤ c+ p

n∑

i=1

α(x)∫

α(x0)

β(y)∫

β(y0)

[
ai(s, t)w(u(s, t)) + bi(s, t)u(s, t)

]
ds dt,

then for x0 ≤ x ≤ x1, y0 ≤ y ≤ y1,

u(x, y) ≤

{
G−1

[
G(B(x, y)) + (p− 1)

n∑

i=1

α(x)∫

α(x0)

β(y)∫

β(y0)

ai(s, t) ds dt

]} 1

p−1

,

where B(x, y) is as defined (a1), G
−1 is the inverse functions of

G(r) =

r∫

r0

ds

w(s
1

p−1 )
, r > 0, r0 > 0,

and x1 ∈ J1, y1 ∈ J2 are chosen so that

G(B(x, y)) + (p− 1)

n∑

i=1

α(x)∫

α(x0)

β(y)∫

β(y0)

ai(s, t) ds dt ∈ Dom(G−1
i ),

for all x and y lying in [x0, x1] and [y0, y1], respectively.

More interesting and useful two-independent-variable inequalities given
by Cheung and Ma [23] read as in the following Theorems 4.8–4.11. These
can be used in the qualitative analysis of partial differential equations with
retarded arguments.

Theorem 4.8 (Cheung and Ma, 2005). Let u(x, y), a(x, y), c(x, y),
and d(x, y) be nonnegative continuous functions defined for x, y ∈ R+ and
w(u) be a nonnegative, nondecreasing continuous function for u ∈ R+ with
w(u) > 0 for u > 0 and e(x, y) ∈ C(R2

+, R+). Let ϕ(u) ∈ C1(R+, R+) with
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ϕ′(u) > 0 for u > 0. Here ϕ′ denotes the derivative of ϕ. Assume that a(x, y)
and c(x, y) are nondecreasing in x and nonincreasing in y for x, y ∈ R+. If

ϕ(u(x, y))≤a(x, y)+c(x, y)

x∫

0

∞∫

y

ϕ′(u(s, t))
[
d(s, t)w(u(s, t))+e(s, t)

]
ds dt,

for x, y ∈ R+, then

u(x, y) ≤ G−1

{
G

[
ϕ−1(a(x, y)) +E(x, y)

]
+ c(x, y)

x∫

0

∞∫

y

d(s, t) ds dt

}
,

for all 0 ≤ x ≤ x1, y1 ≤ y <∞, where

E(x, y) = c(x, y)

x∫

0

∞∫

y

e(s, t) ds dt,

G−1 is the inverse function of

G(r) =

r∫

r0

ds

w(s)
, r ≥ r0 > 0,

and x1, y1 ∈ R+ are so chosen that

G
[
ϕ−1(a(x, y)) +E(x, y)

]
+ c(x, y)

x∫

0

∞∫

y

d(s, t) ds dt ∈ Dom(G−1).

Theorem 4.9 (Cheung and Ma, 2005). Let u(x, y), a(x, y), c(x, y),
and d(x, y) be nonnegative continuous functions defined for x, y ∈ R+ and
w(u) be a nonnegative, nondecreasing continuous function for u ∈ R+ with
w(u) > 0 for u > 0 and e(x, y) ∈ C(R2

+, R+). Let ϕ(u) ∈ C1(R+, R+) with
ϕ′(u) > 0 for u > 0, here ϕ′ denotes the derivative of ϕ. Assume that a(x, y)
and c(x, y) are nonincreasing in y in each of the variables x, y ∈ R+. If

ϕ(u(x, y))≤a(x, y)+c(x, y)

∞∫

x

∞∫

y

ϕ′(u(s, t))
[
d(s, t)w(u(s, t))+e(s, t)

]
ds dt,

for x, y ∈ R+, then

u(x, y) ≤ G−1

{
G

[
ϕ−1(a(x, y)) +E(x, y)

]
+ c(x, y)

∞∫

x

∞∫

y

d(s, t) ds dt

}
,

for all x2 ≤ x <∞, y2 ≤ y <∞, where

E(x, y) = c(x, y)

∞∫

x

∞∫

y

e(s, t) ds dt,
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G and G−1 are as defined in Theorem 4.8 and x2, y2 ∈ R+ are so chosen
that

G
[
ϕ−1(a(x, y)) +E(x, y)

]
+ c(x, y)

∞∫

x

∞∫

y

d(s, t) ds dt ∈ Dom(G−1).

Theorem 4.10 (Cheung and Ma, 2005). Let u(x, y), a(x, y), c(x, y),
and d(x, y) be nonnegative continuous functions defined for x, y ∈ R+ and
w(u) be a nonnegative, nondecreasing continuous function for u ∈ R+

with w(u) > 0 for u > 0 and e(x, y), f(x, y) ∈ C(R2
+, R+). Let ϕ(u) ∈

C1(R+, R+) with ϕ′(u) > 0 for u > 0, where ϕ′ denotes the derivative of ϕ.
Assume that b(x, y) and d(x, y) be are nondecreasing in x and non-increasing
in y. If

ϕ(u(x, y)) ≤ a(x, y) + b(x, y)

x∫

α

c(s, y)ϕ(u(s, y)) ds+

+ d(x, y)

x∫

0

∞∫

y

ϕ′(u(s, t))
[
f(s, t)w(u(s, t)) + e(s, t)

]
ds dt,

for x, y, α ∈ R+ with α ≤ x, then

u(x, y) ≤ G−1

{
G

[
ϕ−1(p(x, y)a(x, y)) + p(x, y)E1(x, y)

]
+

+ p(x, y)d(x, y)

x∫

0

∞∫

y

f(s, t) ds dt

}
,

for all 0 ≤ x ≤ x3, y3 ≤ y <∞, where

p(x, y) = 1 + b(x, y)

x∫

α

c(s, y) exp

( x∫

s

b(m, y)c(m, y) dm

)
ds,

E1(x, y) = d(x, y)

x∫

0

∞∫

y

e(s, t) ds dt,

G and G−1 are as defined in Theorem 4.8 and x3, y3 ∈ R+ are so chosen
that

G
[
ϕ−1(p(x, y)a(x, y)) + p(x, y)E1(x, y)

]
+

+ p(x, y)d(x, y)

x∫

0

∞∫

y

f(s, t) ds dt ∈ Dom(G−1).

Theorem 4.11 (Cheung and Ma, 2005). Let u(x, y), f(x, y), e(x, y),
ϕ(u), and w(u) be defined as in Theorem 4.10. Let a(x, y), b(x, y), c(x, y),
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and d(x, y) be nonnegative continuous and non-increasing in each variable
x, y ∈ R+. If

ϕ(u(x, y)) ≤ a(x, y) + b(x, y)

β∫

x

c(s, y)ϕ(u(s, y)) ds+

+ d(x, y)

∞∫

x

∞∫

y

ϕ′(u(s, t))
[
f(s, t)w(u(s, t)) + e(s, t)

]
ds dt,

for x, y, β ∈ R+ with x ≤ β, then

u(x, y) ≤ G−1

{
G

[
ϕ−1(p(x, y)a(x, y)) + p(x, y)E1(x, y)

]
+

+ p(x, y)d(x, y)

∞∫

x

∞∫

y

f(s, t) ds dt

}
,

for all x4 ≤ x <∞, y4 ≤ y <∞, where

p(x, y) = 1 + b(x, y)

β∫

x

c(s, y) exp

( s∫

x

b(m, y)c(m, y) dm

)
ds,

E1(x, y) = d(x, y)

∞∫

x

∞∫

y

e(s, t) ds dt.

G and G−1 are as defined in Theorem 4.8 and x4, y4 ∈ R+ are so chosen
that

G
[
ϕ−1(p(x, y)a(x, y)) + p(x, y)E1(x, y)

]
+

+ p(x, y)d(x, y)

∞∫

x

∞∫

y

f(s, t) ds dt ∈ Dom(G−1).

In [43], Ma and Pečarić established new explicit bounds on the solu-
tions to a class of new nonlinear retarded Volterra–Fredholm type integral
inequalities in two independent variables. These are embodied in Theo-
rems 4.12 and 4.13, which can be used as effective tools in the study of
certain integral equations. In what follows,

E =
{
(x, y, s, t) ∈ 42 : x0 ≤ s ≤ x ≤M, y0 ≤ t ≤ y ≤ N

}
.

Theorem 4.12 (Ma and Pečarić, 2008). Let u(x, y), l(x, y) ∈ C(4, R+),
a(x, y, s, t), b(x, y, s, t) ∈ C(E,R+) with a(x, y, s, t) and b(x, y, s, t) be non-
decreasing in x and y for each s ∈ J1, and t ∈ J2, and α ∈ C1(J1, J1),
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β ∈ C1(J2, J2) be nondecreasing with α(x) ≤ x on J1, β(y) ≤ y on J2. If

up(x, y) ≤ l(x, y) +

α(x)∫

α(x0)

β(y)∫

β(y0)

a(x, y, s, t)uq(s, t) ds dt+

+

α(M)∫

α(x0)

β(N)∫

β(y0)

b(x, y, s, t)ur(s, t) ds dt,

for (x, y) ∈ 4, where p ≥ q ≥ 0, p ≥ r ≥ 0, p, q, and r are constants and

λ1 =
r

p

α(M)∫

α(x0)

β(N)∫

β(y0)

b(x, y, s, t)K
r−p

p

2 (s, t) exp(A1(s, t)) ds dt < 1,

for (x, y) ∈ 4, then

u(x, y) ≤

[
l(x, y) +

A1(x, y) +B1(x, y)

1− λ1(x, y)
exp(A1(x, y))

] 1

p

,

for (x, y) ∈ 4 and any Ki(x, y) ∈ C(4, R0), i = 1, 2, where

A1(x, y) =
q

p

α(x)∫

α(x0)

β(y)∫

β(y0)

a(x, y, s, t)K
q−p

p

1 (s, t) ds dt,

A1(x, y) =

α(x)∫

α(x0)

β(y)∫

β(y0)

a(x, y, s, t)

[
q

p
K

q−p

p

1 (s, t)l(s, t)+
p−q

p
K

q

p

1 (s, t)

]
ds dt,

B1(x, y) =

α(M)∫

α(x0)

β(N)∫

β(y0)

b(x, y, s, t)

[
r

p
K

r−p

p

2 (s, t)l(s, t)+
p−r

p
K

r
p

2 (s, t)

]
ds dt,

for (x, y) ∈ 4.

Theorem 4.13 (Ma and Pečarić, 2008). Let u(x, y), l(x, y) ∈ C(4, R+),
ai(x, y, s, t), bi(x, y, s, t) ∈ C(E,R+) with ai(x, y, s, t) and bi(x, y, s, t) be
nondecreasing in x and y for each s ∈ J1, and t ∈ J2. Let αi, γj ∈
C1(J1, J1), βi, δj ∈ C1(J2, J2), i = 1, 2, . . . , n, j = 1, 2, . . . ,m be nonde-
creasing with αi(x) ≤ x, γj(x) ≤ x on J1, βi(y) ≤ y, δj(y) ≤ y on J2. Let
p ≥ qi ≥ 0 and p > rj ≥ 0 be constants. If

up(x, y) ≤ l(x, y) +

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

ai(x, y, s, t)u
qi(s, t) ds dt+
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+

m∑

j=1

γj(M)∫

γj(x0)

δj(N)∫

δj(y0)

bj(x, y, s, t)u
rj (s, t) ds dt,

for (x, y) ∈ 4, and

λ2 =
m∑

j=1

rj
p

γj(M)∫

γj(x0)

δj(N)∫

δj(y0)

bj(x, y, s, t)K
rj−p

p

2j (s, t) exp(A2(s, t)) ds dt < 1,

for (x, y) ∈ 4, then

u(x, y) ≤

[
l(x, y) +

A2(x, y) +B2(x, y)

1− λ2(x, y)
exp(A2(x, y))

] 1

p

,

for (x, y) ∈ 4 and any K1i(x, y),K2j(x, y) ∈ C(4, R0), i = 1, 2 . . . , n,
j = 1, 2 . . . ,m, where

A2(x, y) =

n∑

i=1

qi
p

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

ai(x, y, s, t)K
qi−p

p

1i (s, t) ds dt,

A2(x, y) =
n∑

i=1

qi
p

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

ai(x, y, s, t)×

×

[
qi
p
K

qi−p

p

1i (s, t)l(s, t) +
p− qi
p

K
qi
p

1i (s, t)

]
ds dt,

B2(x, y) =
m∑

j=1

γj(M)∫

γj(x0)

δj(N)∫

δj (y0)

bj(x, y, s, t)×

×

[
rj
p
K

rj−p

p

2j (s, t)l(s, t) +
p− rj
p

K
rj

p

2j (s, t)

]
ds dt,

for (x, y) ∈ 4.

In the next we present some new nonlinear retarded Gronwall–Bellman-
type integral inequalities in two independent variables. These are stated as
the following Theorems, which can be used as effective tools in the study
of certain integral equations. In what follows, R denotes the set of real
numbers; R+ = [0,∞), R1 = [1,∞), and J1 = [x0, X) and J2 = [y0, Y )
are the given subsets of R; 4 = J1 × J2. Given a continuous function
a : J1 × J2 → R+, we write

â(x, y) = max
{
a(s, t) : x0 ≤ s ≤ x, y0 ≤ s ≤ y

}
. (4.15)

Theorem 4.14. Let u, a, c, fi, gi ∈ C(4, R+), i = 1, . . . , n and let
αi ∈ C1(J1, J1) be nondecreasing with αi(t) ≤ t, i = 1, . . . , n, and βi ∈
C1(J2, J2) be nondecreasing with βi(t) ≤ t, i = 1, . . . , n. Suppose that q > 0
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is a constant, ϕ ∈ C(R+, R+) is an increasing function with ϕ(∞) = ∞
and ψ(u) is a nondecreasing continuous function for u ∈ R+ with ψ(u) > 0
for u > 0. If

ϕ(u(x, y)) ≤ a(x, y)+

+ c(x, y)

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

uq(s, t)
[
fi(s, t)ψ(u(s, t)) + gi(s, t)

]
dt ds (4.16)

for all (x, y) ∈ 4, then

u(x, y) ≤

≤ϕ−1

{
G−1

[
Φ−1

(
Φ(k(x0, y))+ĉ(x, y)

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[fi(s, t)] dt ds

)]}
(4.17)

for all (x, y) ∈ [x0, x1]× [y0, y1], where

k(x0, y) = G(â(x, y)) + ĉ(x, y)
n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[gi(s, t)] dt ds,

G(r) =

r∫

r0

ds

[ϕ−1(s)]q
, r ≥ r0 > 0, (4.18)

Φ(r) =

r∫

r0

ds

ψ[ϕ−1(G−1(s))]
, r ≥ r0 > 0, (4.19)

G−1,Φ−1 denote the inverse function of G,Φ and (x1, y1) ∈ 4 is so chosen
that

[
Φ(k(x0, y)) + ĉ(x, y)

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[fi(s, t)] dt ds

]
∈ Dom(Φ−1).

Proof. Fixing any numbers X and Y with x0 ≤ x ≤ X and y0 ≤ y ≤ Y, we
assume that â(X,Y ) is positive and define a positive function z(x, y) by

z(x, y) = â(X,Y )+

+ĉ(X,Y )

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

uq(s, t)[fi(s, t)ψ(u(s, t)) + gi(s, t)] dt ds. (4.20)

Then z(x, y) > 0, z(x0, y) = z(x, y0) = â(X,Y ) and (4.16) can be restated as

u(x, y) ≤ ϕ−1[z(x, y)]. (4.21)
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It is easy to observe that z(x, y) is a continuous non-decreasing function for
all x ∈ J1, y ∈ J2 and

D1z(x, y) = ĉ(X,Y )×

×

n∑

i=1

[ βi(y)∫

βi(y0)

uq(αi(x), t)
[
fi(αi(x), t)ψ(u(αi(x), t))+gi(αi(x), t)

]
dt

]
α′i(x) ≤

≤ ĉ(X,Y )
[
ϕ−1(z(x, y))

]q
×

×

n∑

i=1

[ βi(y)∫

βi(y0)

[
fi(αi(x), t)ψ

(
ϕ−1(z(αi(x), t))

)
+ gi(αi(x), t)

]
dt

]
α′i(x).

Using the monotonicity of ϕ−1 and z, we deduce
[
ϕ−1(z(x, y))

]q
≥

[
ϕ−1(z(x0, y0))

]q
=

[
ϕ−1(â(X,Y ))

]q
> 0.

From the definition of G and the above relation, we have

D1G(z(x, y)) =
D1z(x, y)

[ϕ−1(z(x, y))]q
≤ ĉ(X,Y )×

×
n∑

i=1

[ βi(y)∫

βi(y0)

[
fi(αi(x), t)ψ

(
ϕ−1(z(αi(x), t))

)
+gi(αi(x), t)

]
dt

]
α′i(x). (4.22)

Keeping y fixed in (4.22), setting x = σ and integrating it with respect to
σ from x0 to x, x ∈ J1 and making the change of variable, we obtain

G(z(x, y)) ≤ G(z(x0, y))+

+ ĉ(X,Y )
n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

{
fi(s, t)ψ

[
ϕ−1(z(s, t))

]
+ gi(s, t)

}
dt ds. (4.23)

Now, define a function k(x, y) by

k(x, y) = G(â(X,Y )) + ĉ(X,Y )

n∑

i=1

αi(X)∫

αi(x0)

βi(Y )∫

βi(y0)

gi(s, t) dtds+

+ ĉ(X,Y )

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

fi(s, t)ψ
[
ϕ−1(z(s, t))

]
dt ds.

Then k(x0, y) = G(â(X,Y ))+ĉ(X,Y )
n∑

i=1

αi(X)∫
αi(x0)

βi(Y )∫
βi(y0)

gi(s, t) dt ds, and (4.23)

can be restated as

z(x, y) ≤ G−1[k(x, y)]. (4.24)
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It is easy to observe that k(x, y) is a continuous non-decreasing function for
all x ∈ J1, y ∈ J2 and

D1k(x, y) = ĉ(X,Y )

n∑

i=1

[ βi(y)∫

βi(y0)

fi(αi(x), t)ψ
[
ϕ−1(z(αi(x), t))

]
dt

]
α′i(x) ≤

≤ ĉ(X,Y )ψ
{
ϕ−1

[
G−1(k(x, y))

]} n∑

i=1

[ βi(y)∫

βi(y0)

fi(αi(x), t) dt

]
α′i(x).

From the definition of Φ and the above relation, we have

D1k(x, y)

ψ{ϕ−1[G−1(k(x, y))]}
≤ ĉ(X,Y )

n∑

i=1

[ βi(y)∫

βi(y0)

fi(αi(x), t) dt

]
α′i(x). (4.25)

Keeping y fixed in (4.25), setting x = σ and integrating it with respect to
σ from x0 to x, x ∈ I and making the change of variable, we obtain

Φ(k(x, y)) ≤ Φ(k(x0, y)) + ĉ(X,Y )

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[fi(s, t)] dt ds. (4.26)

Now, using the inequalities (4.24) and (4.26) in (4.21), we get

u(x, y) ≤ ϕ−1

{
G−1

[
Φ−1

(
Φ(k(x0, y))+

+ ĉ(X,Y )

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[fi(s, t)] dt ds

)]}
. (4.27)

Taking X = x, Y = y in the inequality (4.27), since X and Y are arbitrary,
we get the required inequality.

If â(x, y) = 0, we carry out the above procedure with ε > 0 instead of
â(x, y) and subsequently let ε→ 0. This completes the proof. �

Corollary 4.15. Let u, c, ai∈C(4, R+), αi∈C
1(J1, J1), βi∈C

1(J2, J2)
be nondecreasing with αi(x) ≤ x on J1, βi(y) ≤ y on J2, for i = 1, 2, . . . , n.
And let ϕ ∈ C(R+, R+) be an increasing function with ϕ(∞) = ∞, and let
c be a nonnegative constant. Moreover, let w1 ∈ C(R+, R+) be a nonde-
creasing function with w1 > 0 on (0,∞). If

ϕ(u(x, y)) ≤ c(x, y) +

n∑

i=1

[ αi(x)∫

αi(x0)

βi(y)∫

βi(x0)

ai(s, t)w1(u(s, t)) dt ds

]
,
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for x ∈ J1, y ∈ J2, then for x0 ≤ x ≤ x1, y0 ≤ y ≤ y1, x1 ∈ J1, y1 ∈ J2,

u(x, y) ≤ ϕ−1

{
G−1

[
G(ĉ(x, y)) +

n∑

i=1

( αi(x)∫

αi(x0)

βi(y)∫

βi(x0)

ai(s, t) dt ds

)]}
,

where

G(r) =

z∫

r0

ds

w1[ϕ−1(s)]
, r ≥ r0 > 0,

and ϕ−1, G−1 are respectively the inverse of ϕ, G, and x1 ∈ J1, y1 ∈ J2,
are so chosen that

G(ĉ(x, y)) +
n∑

i=1

( αi(x)∫

αi(x0)

βi(y)∫

βi(x0)

ai(s, t) dt ds

)
∈ Dom(G−1),

for all x and y lying in [x0, x1] and [y0, y1].

For the special case ϕ(u) = up (p > q is a constant), Theorem 4.14 gives
the following retarded integral inequality for nonlinear functions.

Corollary 4.16. Let u, a, c, fi, gi, αi, βi, i = 1, . . . , n and ψ(u) be as
defined in Theorem 4.14. Suppose that p > q > 0 are constants. If

up(x, y)≤a(x, y)+c(x, y)

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

uq(s, t)
[
fi(s, t)ψ(u(s, t))+gi(s, t)

]
dt ds

for all (x, y) ∈ 4, then

u(x, y) ≤

≤

[
G−1

1

(
G1(k1(x0, y)) +

p− q

p
ĉ(x, y)

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[fi(s, t)] dt ds

)] 1

p−q

for all (x, y) ∈ [x0, x1]× [y0, y1], where

k1(x0, y) = [â(x, y)]
p−q

p +
p− q

p
ĉ(x, y)

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[gi(s, t)] dt ds,

G1(r) =

r∫

r0

ds

ψ(s
1

p−q )
, r ≥ r0 > 0,

G−1
1 denotes the inverse function of G1 and (x1, y1) ∈ 4 is so chosen that

(
G1(k1(x0, y)) + ĉ(x, y)

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[fi(s, t)] dt ds

)
∈ Dom(G−1

1 ).
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Corollary 4.17 (Cheung, 2006). Let u, a, b ∈ C(4, R+) and α, γ ∈
C1(J1, J1), β, δ ∈ C

1(J2, J2) be nondecreasing with α(x) ≤ x, γ(x) ≤ x on
J1, β(y) ≤ y, δ(y) ≤ y on J2. Let k ≥ 0 and p > q > 1 be constants and
ϕ ∈ C(R+, R+) is non-decreasing with ϕ(r) > 0 for r > 0. If

up(x, y) ≤ k +
p

p− q

α(x)∫

α(x0)

β(y)∫

β(y0)

a(s, t)uq(s, t) ds dt+

+
p

p− q

γ(x)∫

γ(x0)

δ(y)∫

δ(y0)

b(s, t)uq(s, t)ϕ(u(s, t)) ds dt

for (x, y) ∈ 4, then

u(x, y) ≤

{
Φ−1

1

[
Φ1

(
k1−q/p +

α(x)∫

α(x0)

β(y)∫

β(y0)

a(s, t) ds dt

)
+

+

γ(x)∫

γ(x0)

δ(y)∫

δ(y0)

b(s, t) ds dt

]} 1

p−q

for (x, y) ∈ [x0, x1]× [y0, y1], where Φ−1
1 is the inverse functions of

Φ1(r) =

r∫

1

ds

ϕ(s1/(p−q))
, r > 0,

and x1 ∈ J1, y1 ∈ J2 are so chosen that

Φ1

(
k1−q/p+

α(x)∫

α(x0)

β(y)∫

β(y0)

a(s, t) ds dt

)
+

γ(x)∫

γ(x0)

δ(y)∫

δ(y0)

b(s, t)b ds dt∈Dom(Φ−1
1 )

for all x and y lying in [x0, x1] and [y0, y1], respectively.

In the presence of a nonlinear integral term in (4.16) we can obtain other
results such as the following theorems. In the same way as in Theorem 4.14
we can prove the following theorems.

Theorem 4.18. Let u, a, c, fi, gi, ϕ, αi, βi, i = 1, . . . , n and ψ(u) be
as defined in Theorem 4.14. If

ϕ(u(x, y)) ≤ a(x, y)+

+c(x, y)

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

ϕ(u(s, t))
[
fi(s, t)ψ(u(s, t)) + gi(s, t)

]
dt ds (4.28)
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for all (x, y) ∈ 4, then

u(x, y) ≤ ϕ−1

{
â(x, y) exp

[
H−1

(
H(k2(x0, y))+

+ ĉ(x, y)
n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

fi(s, t) dt ds

)]}
(4.29)

for all (x, y) ∈ [x0, x1]× [y0, y1], where

k2(x0, y) = ĉ(x, y)

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

gi(s, t) dt ds,

H(r) =

r∫

r0

ds

ψ[ϕ−1(ces)]
, r ≥ r0 > 0, (4.30)

â and ĉ are as defined in (4.15), H−1 denotes the inverse function of H
and (x1, y1) ∈ 4 is so chosen that

(
H(k2(x0, y)) + ĉ(x, y)

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

fi(s, t) dt ds

)
∈ Dom(H−1).

Proof. The proof follows by an argument similar to that in the proof of
Theorem 4.14 with suitable modification. We omit the details here. �

For the special case ϕ(u) = up (p > 0 is a constant), Theorem 4.18 gives
the following retarded integral inequality.

Corollary 4.19. Let u, a, c, fi, gi, αi, βi, i = 1, . . . , n and ψ(u) be as
defined in Theorem 4.14. Suppose that p > 0 is a constant. If

up(x, y) ≤ a(x, y)+

+ c(x, y)

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

up(x, y)
[
fi(s, t)ψ(u(s, t)) + gi(s, t)

]
dt ds

for all (x, y) ∈ 4, then

u(x, y) ≤ â
1

p (x, y)×

× exp

[
1

p
H−1

1

(
H1(k2(x0, y)) + ĉ(x, y)

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

fi(s, t) dt ds

)]
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for all (x, y) ∈ [x0, x1] × [y0, y1], where k2(x0, y) is as defined in Theo-
rem 4.18,

H1(r) =

r∫

r0

ds

ψ
[
a

1

p exp( s
p )

] , r ≥ r0 > 0,

H−1
1 denotes the inverse function of H1 and (x1, y1) ∈ 4 is so chosen that

(
H1(k2(x0, y)) + ĉ(x, y)

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

fi(s, t) dt ds

)
∈ Dom(H−1

1 ).

Proof. The proof follows by an argument similar to that in the proof of
Theorem 4.18 with suitable modification. We omit the details here. �

Theorem 4.20. Let u, a, c, fi, gi, ϕ, αi, βi, i = 1, . . . , n and ψ(u) be
as defined in Theorem 4.14. If

ϕ(u(x, y)) ≤ a(x, y)+

+c(x, y)

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

ϕ′(u(s, t))
[
fi(s, t)ψ(u(s, t)) + gi(s, t)

]
dt ds (4.31)

for all (x, y) ∈ 4, then

u(x, y) ≤ G−1
2

(
G2(k5(x0, y)) + ĉ(x, y)

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

fi(s, t) dt ds

)
(4.32)

for all (x, y) ∈ [x0, x1]× [y0, y1], where

k5(x0, y) = ϕ−1(â(x, y)) + ĉ(x, y)

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

gi(s, t) dt ds,

G2(r) =

r∫

r0

ds

ψ(s)
, r ≥ r0 > 0, (4.33)

G−1
2 denotes the inverse function of G2 and (x1, y1) ∈ 4 is so chosen that

(
G2(k5(x0, y)) + ĉ(x, y)

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

fi(s, t) dt ds

)
∈ Dom(G−1

2 ).
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Proof. Fixing any numbers X and Y with x0 ≤ x ≤ X and y0 ≤ y ≤ Y, we
assume that â(X,Y ) is positive and define a positive function z(x, y) by

z(x, y) = â(X,Y )+

+ĉ(X,Y )

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

ϕ′(u(x, y))
[
fi(s, t)ψ(u(s, t))+gi(s, t)

]
dt ds. (4.34)

Then z(x, y) > 0, z(x0, y) = z(x, y0) = â(X,Y ) and (4.31) can be restated
as

u(x, y) ≤ ϕ−1[z(x, y)]. (4.35)

It is easy to observe that z(x, y) is a continuous non-decreasing function for
all x ∈ I , y ∈ J and

D1z(x, y) ≤ ĉ(X,Y )ϕ′
(
ϕ−1(z(αi(x), t))

)
×

×

n∑

i=1

[ βi(y)∫

βi(y0)

[
fi(αi(x), t)ψ

(
ϕ−1(z(αi(x), t))

)
+gi(αi(x), t)

]
dt

]
α′i(x). (4.36)

From the above relation, we have

D1z(x, y)

ϕ′(ϕ−1(z(x, y)))
≤ ĉ(X,Y )×

×
n∑

i=1

[ βi(y)∫

βi(y0)

[
fi(αi(x), t)ψ

(
ϕ−1(z(αi(x), t))

)
+gi(αi(x), t)

]
dt

]
α′i(x). (4.37)

Keeping y fixed in (4.37), setting x = σ and integrating it with respect to
σ from x0 to x, x ∈ J1 and making the change of variable, we obtain

ϕ−1(z(x, y)) ≤ ϕ−1(z(x0, y))+

+ĉ(X,Y )

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

{
fi(s, t)ψ

[
ϕ−1(z(s, t))

]
+ gi(s, t)

}
dt ds. (4.38)

Now, define a function k(x, y) by

k(x, y) = ϕ−1(z(x0, y)) + ĉ(X,Y )
n∑

i=1

αi(X)∫

αi(x0)

βi(Y )∫

βi(y0)

gi(s, t) dt ds+

+ ĉ(X,Y )

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

fi(s, t)ψ
[
ϕ−1(z(s, t))

]
dt ds.

Then (4.38) can be restated as

ϕ−1(z(x, y)) ≤ k(x, y)). (4.39)
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It is easy to observe that k(x, y) is a continuous non-decreasing function for
all x ∈ J1, y ∈ J2 and

D1k(x, y) = ĉ(X,Y )

n∑

i=1

[ βi(y)∫

βi(y0)

fi(αi(x), t)ψ
[
ϕ−1(z(αi(x), t))

]
dt

]
α′i(x) ≤

≤ ĉ(X,Y )ψ(k(x, y))
n∑

i=1

[ βi(y)∫

βi(y0)

fi(αi(x), t) dt

]
α′i(x).

From the above relation, we have

D1k(x, y)

ψ(k(x, y))
≤ ĉ(X,Y )

n∑

i=1

[ βi(y)∫

βi(y0)

fi(αi(x), t) dt

]
α′i(x). (4.40)

Keeping y fixed in (4.40), setting x = σ, and integrating it with respect to
σ from x0 to x, x ∈ J1, using the definition of G2 and making the change
of variable, we obtain

G2(k(x, y)) ≤ G2(k(x0, y)) + ĉ(X,Y )
n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

fi(s, t) dt ds. (4.41)

Now, using the inequalities (4.39) and (4.41) in (4.35), we get

u(x, y) ≤ G−1
2

(
G2(k(x0, y))+ ĉ(X,Y )

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

fi(s, t) dt ds

)
. (4.42)

Taking X = x, Y = y in the inequality (4.42), since X and Y are arbitrary,
we get the required inequality.

If â(X,Y ) = 0, we carry out the above procedure with ε > 0 instead of
â(X,Y ) and subsequently let ε→ 0. This completes the proof. �

Theorem 4.21. Let u, a, c, fi, gi ∈ C(4, R+), i = 1, . . . , n, and let
αi ∈ C1(J1, J1) be nondecreasing with αi(t) ≤ t, i = 1, . . . , n, and βi ∈
C1(J2, J2) be nondecreasing with βi(t) ≤ t, i = 1, . . . , n. Let ϕ ∈ C1(R+, R+)
be an increasing function with ϕ(∞) = ∞ and ϕ′ be a nondecreasing func-
tion. And let ψ1, ψ2 ∈ C(R+, R+) be a non-decreasing function with
ψ1, ψ2 > 0 on (0,∞). If

ϕ(u(x, y)) ≤ a(x, y) + c(x, y)×

×

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

ϕ′(u(s, t))
[
fi(s, t)ψ1(u(s, t))+gi(s, t)ψ2(u(s, t))

]
dt ds (4.43)
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for all x ∈ J1, y ∈ J2, then, for x0 ≤ x ≤ x2, y0 ≤ y ≤ y2 with x2 ∈ J1,
y2 ∈ J2, we have the following results.

(1) For the case ψ2(u) ≤ ψ1(u),

u(x, y) ≤ G−1
1

[
G1

(
ϕ−1(â(x, y))

)
+

+ ĉ(x, y)

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[
fi(s, t) + gi(s, t)

]
dt ds

]
,

(2) For the case ψ1(u) ≤ ψ2(u),

u(x, y) ≤ G−1
2

[
G2

(
ϕ−1(â(x, y))

)
+

+ ĉ(x, y)

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[
fi(s, t) + gi(s, t)

]
dt ds

]
,

where

Gi(z) =

z∫

z0

ds

ψi[(s)]
, z ≥ z0 > 0 (i = 1, 2),

ϕ−1, G−1
i are, respectively, the inverses of ϕ, Gi for i = 1, 2 and x2 ∈ J1,

y2 ∈ J2 are so chosen that

Gi

(
ϕ−1(â(x, y))

)
+ĉ(x, y)

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[
fi(s, t)+gi(s, t)

]
dt ds∈Dom(G−1

i )

for all x ∈ [x0, x2] and y ∈ [y0, y2].

Proof. Fixing any numbers X and Y with x0 ≤ x ≤ X and y0 ≤ y ≤ Y, we
assume that â(X,Y ) is positive and define a positive function z(x, y) by

z(x, y) = â(X,Y ) + ĉ(X,Y )×

×

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

ϕ′(u(s, t))
[
fi(s, t)ψ1(u(s, t))+gi(s, t)ψ2(u(s, t))

]
dt ds. (4.44)

Then z(x, y) > 0, z(x0, y) = z(x, y0) = â(X,Y ) and (4.43) can be restated
as

u(x, y) ≤ ϕ−1[z(x, y)]. (4.45)
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It is easy to observe that z(x, y) is a continuous non-decreasing function for
all x ∈ J1, y ∈ J2 and

D1z(x, y) = ĉ(X,Y )

n∑

i=1

[ βi(y)∫

βi(y0)

ϕ′(u(αi(x), t))×

×
[
fi(αi(x), t)ψ1

(
u(αi(x), t)

)
+ gi(αi(x), t)ψ2

(
u(αi(x), t)

)]
dt

]
α′i(x) ≤

≤ ĉ(X,Y )ϕ′
[
ϕ−1(z(x, y))

] n∑

i=1

[ βi(y)∫

βi(y0)

[
fi(αi(x), t)ψ1

(
ϕ−1(z(αi(x), t))

)
+

+ gi(αi(x), t)ψ1

(
ϕ−1(z(αi(x), t))

)]
dt

]
α′i(x).

Using the monotonicity of ϕ′, ϕ−1, and z, we deduce

ϕ′
[
ϕ−1(z(x, y))

]
≥ ϕ′

[
ϕ−1(z(x0, y0))

]
= ϕ′

[
ϕ−1(â(X,Y ))

]
> 0.

From the above relation, we have

D1z(x, y)

ϕ′[ϕ−1(z(x, y))]
≤ ĉ(X,Y )

n∑

i=1

[ βi(y)∫

βi(y0)

[
fi(αi(x), t)ψ1

(
ϕ−1(z(αi(x), t))

)
+

+ gi(αi(x), t)ψ1

(
ϕ−1(z(αi(x), t))

)]
dt

]
α′i(x). (4.46)

Observe that for any continuously differentiable and invertible function ζ(ξ),
by a change of variable η = ζ−1(ξ), we have

∫
dξ

ζ ′[ζ−1(ξ)]
=

∫
ζ ′(η)

ζ ′(η)
= η + c = ζ−1(ξ) + c. (4.47)

Keeping y fixed in (4.46), setting x = σ and integrating it with respect to
σ from x0 to x, x ∈ I, using (4.47) to the left-hand side and making the
change of variable, we obtain

ϕ−1(z(x, y)) ≤

≤ ϕ−1(z(x0, y)) + ĉ(X,Y )

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

{
fi(s, t)ψ1

[
ϕ−1(z(s, t))

]
+

+ gi(s, t)ψ2

[
ϕ−1(z(s, t))

]}
dt ds. (4.48)
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When ψ1(u) ≥ ψ2(u), from the inequality (4.48), we find

ϕ−1(z(x, y)) ≤ ϕ−1(z(x0, y)) + ĉ(X,Y )×

×
n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

{[
fi(s, t) + gi(s, t)

]
ψ1

(
ϕ−1(z(s, t))

)}
dt ds. (4.49)

Now, using the definition of the function G1, and applying Corollary 4.15
to the inequality (4.49), we conclude that

ϕ−1(z(x, y)) ≤ G−1
1

[
G1

[
ϕ−1(z(x0, y))

]
+

+ ĉ(X,Y )
n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[
fi(s, t) + gi(s, t)

]
dt ds

]
. (4.50)

Similarly, when ψ2(u) ≤ ψ1(u), from the inequality (4.49), we find

ϕ−1(z(x, y)) ≤ ϕ−1(z(x0, y))+

+ĉ(X,Y )

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

{[
fi(s, t)+gi(s, t)

]
ψ1

(
ϕ−1(z(s, t))

)}
dt ds. (4.51)

Now, using the definition of the function G2, and applying Corollary 4.15
to the inequality (4.51), we conclude that

ϕ−1(z(x, y)) ≤ G−1
2

[
G2

[
ϕ−1(z(x0, y))

]
+

+ ĉ(X,Y )

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[
fi(s, t) + gi(s, t)

]
dt ds

]
. (4.52)

Now, using the inequalities (4.50) and (4.52) in (4.45), takingX = x, Y = y,
since X and Y are arbitrary, we get the required inequality.

If â(X,Y ) = 0 we carry out the above procedure with ε > 0 instead of
â(X,Y ) and subsequently let ε→ 0. This completes the proof. �

5. Gronwall–Bellman-Type Nonlinear Inequalities II

During the past twenty years several authors have developed extensions
and variants of Wendroff’s inequality and exhibited applications in partial
differential and integral equations. Next we deal with the Wendroff-type
inequalities investigated by Pachpatte [60] and Bondge and Pachpatte [17],
[18]. These inequalities which can be used in the study of certain partial
differential and integral equations. Pachpatte [60] established the Wendroff-
type inequalities in the following theorem.
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Theorem 5.1 (Pachpatte, 1995). Let u(x, y), a(x, y), and b(x, y) be
nonnegative continuous functions defined for x, y ∈ R+ and let L : R3

+ →
R+ be a continuous function which satisfies the condition

0 ≤ L(x, y, v)− L(x, y, w) ≤M(x, y, w)(v − w), (5.1)

for x, y ∈ R+ and v ≥ w ≥ 0, where M : R3
+ → R+ is a continuous

function.
(i) If

u(x, y) ≤ a(x, y) + b(x, y)

x∫

0

y∫

0

L(s, t, u(s, t)) ds dt, (5.2)

for x, y ∈ R+, then

u(x, y)≤a(x, y)+b(x, y)A(x, y) exp

( x∫

0

y∫

0

M(s, t, a(s, t))b(s, t) ds dt

)
, (5.3)

for x, y ∈ R+, where

A(x, y) =

x∫

0

y∫

0

L(s, t, a(s, t)) ds dt, (5.4)

for x, y ∈ R+.
(ii) Let F (u) be continuous, strictly increasing, convex and submultiplica-

tive function for u > 0, lim
u→∞

F (u) = ∞, F−1 denote the inverse function of

F , α(x, y), β(x, y) be continuous and positive functions defined on R2
+ and

α(x, y) + β(x, y) = 1. If

u(x, y) ≤ a(x, y) + b(x, y)F−1

( x∫

0

y∫

0

L(s, t, F (u(s, t))) ds dt

)
, (5.5)

for x, y ∈ R+, then

u(x, y) ≤ a(x, y)+

+ b(x, y)F−1

[( x∫

0

y∫

0

L
(
s, t, α(s, t)F

(
a(s, t)α−1(s, t)

))
ds dt

)
×

× exp

( x∫

0

y∫

0

M
(
s, t, α(s, t)F

(
a(s, t)α−1(s, t)

))
×

× β(s, t)F
(
b(s, t)β−1(s, t)

)
ds dt

)]
, (5.6)

for x, y ∈ R+.
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(iii) Let g(u), h(u) be continuously differentiable functions defined for
u ≥ 0, g(u) > 0, h(u) > 0 for u > 0 and g′(u) ≥ 0, h′(u) ≥ 0 for u ≥ 0,
and let g(u) be subadditive and submultiplicative for u ≥ 0. If

u(x, y) ≤ a(x, y) + b(x, y)h

( x∫

0

y∫

0

L
(
s, t, g(u(s, t))

)
ds dt

)
, (5.7)

for x, y ∈ R+, then for 0 ≤ x ≤ x1, 0 ≤ y ≤ y1,

u(x, y) ≤ a(x, y)+

+b(x, y)h

[
G−1

(
G(B(x, y))+

x∫

0

y∫

0

M
(
s, t, g(a(s, t))g(b(s, t))

)
ds dt

)]
, (5.8)

where

B(x, y) =

x∫

0

y∫

0

L
(
s, t, g(a(s, t))

)
ds dt, (5.9)

and G, G−1 are as defined in Theorem 4.2 and x1, y1 are so chosen that

G(B(x, y)) +

x∫

0

y∫

0

M
(
s, t, g(a(s, t))g(b(s, t))

)
ds dt ∈ Dom(G−1)

for all x, y lying in the subintervals 0 ≤ x ≤ x1, 0 ≤ y ≤ y1 of R+.

The next two theorems proved by Bondge and Pachpatte [18] can be used
more effectively in certain situations.

Theorem 5.2 (Bondge and Pachpatte, 1979). Let u(x, y), ux(x, y),
ux(x, y), and uxy(x, y) be nonnegative continuous functions defined for x, y ∈
R+, u(x, 0) = u(0, y) = 0, and p(x, y) ≥ 1 be a continuous function defined
for x, y ∈ R+. Let g(u), g′(u), a(x), a′(x), b(y), and b′(y) be as in Theo-
rem 4.1. If

uxy(x, y) ≤ a(x)+ b(y)+M

[
u(x, y)+

x∫

0

y∫

0

p(s, t)g(ust(s, t)) ds dt

]
, (5.10)

for x, y ∈ R+, then for 0 ≤ x ≤ x2, 0 ≤ y ≤ y2

uxy(x, y) ≤ H−1

[
H(a(0) + b(y))+

+

x∫

0

a′(s)

a(s) + b(0) + g(a(s) + b(0))
ds+M

x∫

0

y∫

0

p(s, t) ds dt

]
, (5.11)

where

H(r) =

r∫

r0

ds

s+ g(s)
, r > 0, r0 > 0, (5.12)
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and H−1 is the inverse function of H, and x2, y2 are chosen so that

H(a(0) + b(y))+

+

x∫

0

a′(s)

a(s) + b(0) + g(a(s) + b(0))
ds+M

x∫

0

y∫

0

p(s, t) ds dt ∈ Dom(Ω−1).

for all x, y lying in the subintervals 0 ≤ x ≤ x2, 0 ≤ y ≤ y2 of R+.

Theorem 5.3 (Bondge and Pachpatte, 1979). Let u(x, y), uxy(x, y),
p(x, y), g(u), g′(u), a(x), a′(x), b(y), and b′(y) be as in Theorem 5.2. If

uxy(x, y) ≤ a(x) + b(y) +

x∫

0

y∫

0

p(s, t)g(u(s, t) + ust(s, t)) ds dt, (5.13)

for x, y ∈ R+, then for 0 ≤ x ≤ x3, 0 ≤ y ≤ y3

uxy(x, y) ≤ a(x) + b(y) +

x∫

0

y∫

0

p(s, t)g

(
H−1

[
H(a(0) + b(y))+

+

s∫

0

a′(s1)

a(s1)+b(0)+g(a(s1)+b(0))
ds1+

s∫

0

t∫

0

p(s1, t1) ds1 dt1

])
ds1 dt1, (5.14)

where H, H−1 are as defined in Theorem 5.2 and x3, y3 are chosen so that

H(a(0) + b(y)) +

s∫

0

a′(s1)

a(s1) + b(0) + g(a(s1) + b(0))
ds1+

+

s∫

0

t∫

0

p(s1, t1) ds1 dt1 ∈ Dom(Ω−1).

for all x, y lying in the subintervals 0 ≤ x ≤ x3, 0 ≤ y ≤ y3 of R+.

Another interesting and useful two independent-variable inequalities given
by Cheung and Ma [23] read as following from Theorem 5.4 to 5.5.

Theorem 5.4 (Cheung and Ma, 2005). Let u(x, y), a(x, y) c(x, y) and
d(x, y) be nonnegative continuous functions defined for x, y ∈ R+ and
w(u) be a nonnegative, nondecreasing continuous function for u ∈ R+

with w(u) > 0 for u > 0 and e(x, y), f(x, y) ∈ C(R2
+, R+). Let ϕ(u) ∈

C1(R+, R+) with ϕ′(u) > 0 for u > 0, here ϕ′ denotes the derivative of ϕ.
Assume that b(x, y) and d(x, y) be are nondecreasing in x and non-increasing
in y, and L,M ∈ C(R3

+, R+) satisfy

0 ≤ L(x, y, v)− L(x, y, w) ≤M(x, y, w)(v − w)
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for all s, y, v, w ∈ R+ with v ≥ w. If

ϕ(u(x, y)) ≤ a(x, y) + b(x, y)

x∫

α

c(s, y)ϕ(u(s, y)) ds+

+ d(x, y)

x∫

0

∞∫

y

ϕ′(u(s, t))
[
f(s, t)L(s, t, u(s, t)) + e(s, t)

]
ds dt,

for x, y, α ∈ R+ with α ≤ x, then

u(x, y) ≤ A1(x, y) + p(x, y)d(x, y)A2(x, y) exp(A3(x, y)),

for all x, y ∈ R+, where

p(x, y) = 1 + b(x, y)

x∫

α

c(s, y) exp

( x∫

s

b(m, y)c(m, y) dm

)
ds,

E1(x, y) = d(x, y)

x∫

0

∞∫

y

e(s, t) ds dt,

A1(x, y) = ϕ−1(p(x, y)a(x, y)) + p(x, y)E1(x, y),

A2(x, y) =

x∫

0

∞∫

y

f(s, t)L(s, t, A1(s, t)) ds dt,

A3(x, y) =

x∫

0

∞∫

y

f(s, t)p(s, t)d(s, t)M(s, t, A1(s, t)) ds dt.

Theorem 5.5 (Cheung and Ma, 2005). Let u(x, y), f(x, y), e(x, y),
ϕ(u), w(u), L(x, y, v), and M(x, y, v) be as defined in Theorem 5.4. Let
a(x, y), b(x, y), c(x, y), and d(x, y) be nonnegative continuous and non-
increasing in each variable x, y ∈ R+. If

ϕ(u(x, y)) ≤ a(x, y) + b(x, y)

β∫

x

c(s, y)ϕ(u(s, y)) ds+

+ d(x, y)

∞∫

x

∞∫

y

ϕ′(u(s, t))
[
f(s, t)L(s, t, u(s, t)) + e(s, t)

]
ds dt,

for x, y, β ∈ R+ with x ≤ β, then

u(x, y) ≤ A1(x, y) + p(x, y)d(x, y)A2(x, y) exp(A3(x, y))
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for all x, y ∈ R+, where

p(x, y) = 1 + b(x, y)

x∫

α

c(s, y) exp

( x∫

s

b(m, y)c(m, y) dm

)
ds,

E1(x, y) = d(x, y)

x∫

0

∞∫

y

e(s, t) ds dt,

A1(x, y) = ϕ−1
(
p(x, y)a(x, y)

)
+ p(x, y)E1(x, y),

A2(x, y) =

x∫

0

∞∫

y

f(s, t)L(s, t, A1(s, t)) ds dt,

A3(x, y) =

x∫

0

∞∫

y

f(s, t)p(s, t)d(s, t)M(s, t, A1(s, t)) ds dt.

In [23], Ma and Pečarić established new explicit bounds on the solutions
to a class of new nonlinear retarded integral inequalities in two independent
variables as following Theorem 5.6. In what follows,

E =
{
(x, y, s, t) ∈ 42 : x0 ≤ s ≤ x ≤M, y0 ≤ t ≤ y ≤ N

}
.

Theorem 5.6 (Ma and Pečarić, 2008). Let u(x, y), l(x, y) ∈ C(4, R+),
a(x, y, s, t), b(x, y, s, t) ∈ C(E,R+) with a(x, y, s, t) and b(x, y, s, t) be non-
decreasing in x and y for each s ∈ J1, and t ∈ J2, and α ∈ C1(J1, J1),
β ∈ C1(J2, J2) be nondecreasing with α(x) ≤ x on J1, β(y) ≤ y on J2, and
L, M ∈ C(R3

+, R+) satisfy

0 ≤ L(x, y, v)− L(x, y, w) ≤M(x, y, w)(v − w)

for all s, y, v, w ∈ R+ with v ≥ w. If

up(x, y) ≤ l(x, y) +

α(x)∫

α(x0)

β(y)∫

β(y0)

a(x, y, s, t)uq(s, t) ds dt+

+

α(M)∫

α(x0)

β(N)∫

β(y0)

b(x, y, s, t)L(s, t, u(s, t)) ds dt,

for (x, y) ∈ 4, where p ≥ q ≥ 0, p ≥ r ≥ 0, p, q, and r are constants and

λ(x, y) =

=
1

p

α(M)∫

α(x0)

β(N)∫

β(y0)

b(x, y, s, t)M

(
s, t,

p− 1

p
+

1

p
l(s, t)

)
exp(A1(s, t)) ds dt < 1
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for (x, y) ∈ 4, then

u(x, y) ≤

[
l(x, y) +

A1(x, y) + L1(x, y)

1− λ(x, y)
exp(A1(x, y))

] 1

p

,

for (x, y) ∈ 4 and any K1(x, y) ∈ C(4, R0), i = 1, 2, where

A1(x, y) =
q

p

α(x)∫

α(x0)

β(y)∫

β(y0)

a(x, y, s, t)K
q−p

p

1 (s, t) ds dt,

A1(x, y) =

α(x)∫

α(x0)

β(y)∫

β(y0)

a(x, y, s, t)

[
q

p
K

q−p

p

1 (s, t)l(s, t)+
p−q

p
K

q

p

1 (s, t)

]
ds dt,

L1(x, y) =

α(M)∫

α(x0)

β(N)∫

β(y0)

L
(
s, t,

p− 1

p
+

1

p
l(s, t)

)
ds dt,

for (x, y) ∈ 4.

We next present some new nonlinear retarded Gronwall–Bellman-type
integral inequalities in two independent variables as following Theorems,
which can be used as effective tools in the study of certain integral equations.
In what follows, given a continuous function a : J1 × J2 → R+, we write

â(x, y) = max
{
a(s, t) : x0 ≤ s ≤ x, y0 ≤ s ≤ y

}
.

Theorem 5.7. Let u, a, c ∈ C(4, R+), fi, gi ∈ C(4, R+), i = 1, . . . , n,
and let αi ∈ C1(J1, J1) be nondecreasing with αi(t) ≤ t, i = 1, . . . , n, and
βi ∈ C1(J2, J2) be nondecreasing with βi(t) ≤ t, i = 1, . . . , n. Suppose
that q > 0 is a constant, ϕ ∈ C(R+, R+) is an increasing function with
ϕ(∞) = ∞ and ψ(u) is a nondecreasing continuous function for u ∈ R+

with ψ(u) > 0 for u > 0 and let L : 4×R+ → R+ be a continuous function
which satisfies the condition

0 ≤ L(x, y, v)− L(x, y, w) ≤M(x, y, w)(v − w), (5.15)

for x, y ∈ R+ and v ≥ w ≥ 0, where M : 4× R+ → R+ is a continuous
function. If

ϕ(u(x, y)) ≤ a(x, y) + c(x, y)×

×

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

uq(s, t)
[
fi(s, t)L(s, t, u(s, t)) + gi(s, t)

]
dt ds (5.16)
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for all (x, y) ∈ 4, then

u(x, y) ≤ ϕ−1

{
G−1

[
Φ−1

(
Φ(k(x0, y))+

+ ĉ(x, y)

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

fi(s, t)M(s, t) dt ds

)]}
(5.17)

for all (x, y) ∈ [x0, x1]× [y0, y1], where

k(x0, y) = G(â(x, y))+ĉ(x, y)
n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[
fi(s, t)M(s, t)+gi(s, t)

]
dt ds,

G(r) =

r∫

r0

ds

[ϕ−1(s)]q
, r ≥ r0 > 0,

Φ(r) =

r∫

r0

ds

ϕ−1(G−1(s))
, r ≥ r0 > 0,

G−1, Φ−1 denote the inverse function of G, Φ and (x1, y1) ∈ 4 is chosen
so that

[
Φ(k(x0, y)) + c(x, y)

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

fi(s, t)M(s, t) dt ds

]
∈ Dom(Φ−1).

Proof. Fixing any numbers X and Y with x0 ≤ x ≤ X and y0 ≤ y ≤ Y, we
assume that â(X,Y ) is positive and define a positive function z(x, y) by

z(x, y) = â(X,Y ) + ĉ(X,Y )×

×

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

uq(s, t)
[
fi(s, t)L(s, t, u(s, t)) + gi(s, t)

]
dt ds. (5.18)

Then z(x, y) > 0, z(x0, y) = z(x, y0) = â(X,Y ), and (5.15) can be restated
as

u(x, y) ≤ ϕ−1[z(x, y)]. (5.19)

It is easy to observe that z(x, y) is a continuous non-decreasing function for
all x ∈ J1, y ∈ J2 and

D1z(x, y) = ĉ(X,Y )

n∑

i=1

[ βi(y)∫

βi(y0)

uq(αi(x), t)×

×
[
fi(αi(x), t)L

(
αi(x), t, u(αi(x), t)

)
+ gi(αi(x), t)

]
dt

]
α′i(x) ≤
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≤ ĉ(X,Y )
[
ϕ−1(z(x, y))

]q
×

×

n∑

i=1

[ βi(y)∫

βi(y0)

[
fi(αi(x), t)L

(
αi(x), t, ϕ

−1(z(αi(x), t))
)
+gi(αi(x), t)

]
dt

]
α′i(x).

Using the monotonicity of ϕ−1 and z, we deduce
[
ϕ−1(z(x, y))

]q
≥

[
ϕ−1(z(x0, y0))

]q
=

[
ϕ−1(â(X,Y ))

]q
> 0.

From the definition of G and the above relation, we have

D1G(z(x, y)) =
D1z(x, y)

[ϕ−1(z(x, y))]q
≤ ĉ(X,Y )

n∑

i=1

[ βi(y)∫

βi(y0)

[
fi(αi(x), t)×

× L
(
αi(x), t, ϕ

−1(z(αi(x), t))
)
+gi(αi(x), t)

]
dt

]
α′i(x). (5.20)

Keeping y fixed in (5.6), setting x = σ, integrating it with respect to σ from
x0 to x, x ∈ J1, and making the change of variable, we obtain

G(z(x, y)) ≤ G(z(x0, y)) + ĉ(X,Y )×

×

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

{
fi(s, t)L

[
s, t, ϕ−1(z(s, t))

]
+ gi(s, t)

}
dt ds. (5.21)

Now, define a function k(x, y) by

k(x, y) = G(â(X,Y ))+

+ ĉ(X,Y )
n∑

i=1

αi(X)∫

αi(x0)

βi(Y )∫

βi(y0)

[
fi(s, t)L(s, t) + gi(s, t)

]
dtds+

+ ĉ(X,Y )

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[
fi(s, t)M(s, t)ϕ−1(z(s, t))

]
dt ds.

Then

k(x0, y) = G(â(X,Y ))+

+ ĉ(X,Y )

n∑

i=1

αi(X)∫

αi(x0)

βi(Y )∫

βi(y0)

[
fi(s, t)L(s, t) + gi(s, t)

]
dt ds,

and (5.7) can be restated as

z(x, y) ≤ G−1[k(x, y)]. (5.22)



Multidimensional Gronwall—Bellman-Type Integral Inequalities with Applications 67

It is easy to observe that k(x, y) is a continuous non-decreasing function for
all x ∈ J1, y ∈ J2 and

D1k(x, y) = ĉ(X,Y )×

×
n∑

i=1

[ βi(y)∫

βi(y0)

fi(αi(x), t)M(αi(x), t)ϕ
−1

(
z(αi(x), t)

)
dt

]
α′i(x) ≤

≤ ĉ(X,Y )ϕ−1
[
G−1(k(x, y))

] n∑

i=1

[ βi(y)∫

βi(y0)

fi(αi(x), t)M(αi(x), t) dt

]
α′i(x).

From the above relation, we have

D1k(x, y)

ϕ−1[G−1(k(x, y))]
≤

≤ ĉ(X,Y )

n∑

i=1

[ βi(y)∫

βi(y0)

fi(αi(x), t)M(αi(x), t) dt

]
α′i(x). (5.23)

Keeping y fixed in (5.23), setting x = σ, integrating it with respect to σ
from x0 to x, x ∈ J1, and making the change of variable, from the definition
of Φ, we obtain

Φ(k(x, y))≤Φ(k(x0, y))+ĉ(X,Y )

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

fi(s, t)M(s, t) dt ds. (5.24)

Now, using the inequalities (5.22) and (5.24) in (5.19), we get

u(x, y) ≤ ϕ−1

{
G−1

[
Φ−1

(
Φ(k(x0, y))+

+ ĉ(X,Y )

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

fi(s, t)M(s, t) dt ds

)]}
. (5.25)

AllowingX = x, Y = y in the inequality (5.25), sinceX and Y are arbitrary,
we get the required inequality.

If â(X,Y ) = 0 we carry out the above procedure with ε > 0 instead of
â(X,Y ) and subsequently let ε→ 0. This completes the proof. �

For the special case ϕ(u) = up (p > q is a constant), Theorem 5.7 gives
the following retarded integral inequality for nonlinear functions.
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Corollary 5.8. Let u, a, c, fi, gi, αi(t), βi, i = 1, . . . , n, L and M be
as defined in Theorem 5.7. Suppose that p > q > 0 are constants. If

up(x, y) ≤ a(x, y) + c(x, y)×

×
n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

uq(s, t)
[
fi(s, t)L(s, t, u(s, t)) + gi(s, t)

]
dt ds (5.26)

for all (x, y) ∈ 4, then

u(x, y) ≤

[
G−1

1

(
G1(k1(x0, y))+

+
p− q

p
ĉ(x, y)

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

fi(s, t)M(s, t) dt ds

)] 1

p−q

(5.27)

for all (x, y) ∈ [x0, x1]× [y0, y1], where

k1(x0, y) =
[
â(x, y)

] p−q

p +

+
p− q

p
ĉ(x, y)

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[
fi(s, t)L(s, t) + gi(s, t)

]
dt ds,

G1(r) =

r∫

r0

ds

ϕ(s
1

p−q )
, r ≥ r0 > 0,

G−1
1 denotes the inverse function of G1 and (x1, y1) ∈ 4 is so chosen that

(
G1(k1(x0, y))+

p−q

p
ĉ(x, y)

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

fi(s, t)M(s, t) dt ds

)
∈Dom(G−1

1 ).

In the presence of a nonlinear integral term in (5.16) we can obtain other
results, such as the following theorems. In the same way as in Theorem 5.7
we can prove the following theorems.

Theorem 5.9. Let u, a, c, fi, gi, αi, βi(t), i = 1, . . . , n, ϕ, L and M
be as defined in Theorem 5.7. If

ϕ(u(x, y)) ≤ a(x, y) + c(x, y)×

×

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

ϕ(u(s, t))
[
fi(s, t)L(s, t, u(s, t)) + gi(s, t)

]
dt ds (5.28)

for all (x, y) ∈ 4, then
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u(x, y) ≤ ϕ−1

{
â(x, y) exp

[
G−1

2

(
G2(k2(x0, y))+

+ ĉ(x, y)

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

fi(s, t)M(s, t) dt ds

)]}
(5.29)

for all (x, y) ∈ [x0, x1]× [y0, y1], where

k2(x0, y) = ĉ(x, y)

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[
fi(s, t)L(s, t) + gi(s, t)

]
dt ds,

G2(r) =

r∫

r0

ds

ϕ−1(bes)
, r ≥ r0 > 0,

b is a constant, G−1
2 denotes the inverse function of G2 and (x1, y1) ∈ 4 is

so chosen that

(
G2(k2(x0, y)) + ĉ(x, y)

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

fi(s, t)M(s, t)dt ds

)
∈ Dom(G−1

2 ).

Proof. The proof follows by an argument similar to that in the proof of
Theorem 5.7 with suitable modification. We omit the details here. �

Theorem 5.10. Let u, a, c, fi, gi, αi, βi(t), i = 1, . . . , n, ϕ, L and M
be as defined in Theorem 5.7. If

ϕ(u(x, y)) ≤ a(x, y) + c(x, y)×

×
n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

ϕ′(u(s, t))
[
fi(s, t)L(s, t, u(s, t)) + gi(s, t)

]
dt ds (5.30)

for all (x, y) ∈ 4, then

u(x, y) ≤ k3(x, y) exp

(
ĉ(x, y)

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

fi(s, t)M(s, t) dt ds

)]
(5.31)

for all (x, y) ∈ [x0, x1]× [y0, y1], where

k3(x0, y)=ϕ
−1(â(x, y))+ĉ(x, y)

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[
fi(s, t)L(s, t)+ |!gi(s, t)

]
dt ds.

Proof. The proof follows by an argument similar to that in the proof of
Theorem 5.7 with suitable modification. We omit the details here. �
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Theorem 5.7, Theorem 5.9 and Theorem 5.10 can easily be applied to gen-
erate other useful nonlinear integral inequalities in more general situations.
For example, we have the following results, Theorem 5.11, Theorem 5.13
and Theorem 5.14, respectively.

Theorem 5.11. Let u, a, c, fi, gi, αi, βi(t), i = 1, . . . , n, ϕ, L and M
be as defined in Theorem 5.7. If

ϕ(u(x, y)) ≤ a(x, y) + c(x, y)×

×

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

uq(s, t)
[
fi(s, t)L(s, t, u(s, t)) + gi(s, t)u(s, t)

]
dt ds (5.32)

for all (x, y) ∈ 4, then

u(x, y) ≤ ϕ−1

{
G−1

[
Φ−1

(
Φ(k(x0, y))+

+ ĉ(x, y)

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[
fi(s, t)M(s, t) + gi(s, t)

]
dt ds

)]}
(5.33)

for all (x, y) ∈ [x0, x1]× [y0, y1], where

(x0, y) = G(â(x, y)) + ĉ(x, y)

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

fi(s, t)L(s, t) dt ds,

G(r) =

r∫

r0

ds

[ϕ−1(s)]q
, r ≥ r0 > 0,

Φ(r) =

r∫

r0

ds

ϕ−1(G−1(s))
, r ≥ r0 > 0,

G−1, Φ−1 denote the inverse functions of G, Φ and (x1, y1) ∈ 4 is so
chosen that

[
Φ(k(x0, y))+̂c(x, y)

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[
fi(s, t)M(s, t)+gi(s, t)

]
dt ds

]
∈Dom(Φ−1).

Proof. Fixing any numbers X and Y with x0 ≤ x ≤ X and y0 ≤ y ≤ Y, we
assume that â(X,Y ) is positive and define a positive function z(x, y) by

z(x, y) = â(X,Y ) + ĉ(X,Y )×

×

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

uq(s, t)
[
fi(s, t)L(s, t, u(s, t))+gi(s, t)u(s, t)

]
dt ds. (5.34)
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Then z(x, y) > 0, z(x0, y) = z(x, y0) = â(X,Y ) and (5.32) can be restated
as

u(x, y) ≤ ϕ−1[z(x, y)]. (5.35)

It is easy to observe that z(x, y) is a continuous non-decreasing function for
all x ∈ J1, y ∈ J2 and

D1z(x, y) = ĉ(X,Y )

n∑

i=1

[ βi(y)∫

βi(y0)

uq(αi(x), t)×

×
[
fi(αi(x), t)L

(
αi(x), t, u(αi(x), t)

)
+gi(αi(x), t)u(αi(x), t)

]
dt

]
α′i(x)≤

≤ ĉ(X,Y )
[
ϕ−1(z(x, y))

]q
×

×

n∑

i=1

[ βi(y)∫

βi(y0)

[
fi(αi(x), t)L

(
αi(x), t, ϕ

−1(z(αi(x), t))
)
+

+ gi(αi(x), t)u(αi(x), t)
]
dt

]
α′i(x).

Using the monotonicity of ϕ−1 and z, we deduce
[
ϕ−1(z(x, y))

]q
≥

[
ϕ−1(z(x0, y0))

]q
=

[
ϕ−1(â(X,Y ))

]q
> 0.

From the definition of G and the above relation, we have

D1G(z(x, y)) =
D1z(x, y)

[ϕ−1(z(x, y))]q
≤

≤ ĉ(X,Y )
n∑

i=1

[ βi(y)∫

βi(y0)

[
fi(αi(x), t)L

(
αi(x), t, ϕ

−1(z(αi(x), t))
)
+

+ gi(αi(x), t)u(αi(x), t)
]
dt

]
α′i(x). (5.36)

Keeping y fixed in (5.36), setting x = σ, and integrating it with respect to
σ from x0 to x, x ∈ J1 and making the change of variable, we obtain

G(z(x, y)) ≤ G(z(x0, y)) + ĉ(X,Y )×

×
n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

{
fi(s, t)L

[
s, t, ϕ−1(z(s, t))

]
+gi(s, t)ϕ

−1(z(s, t))
}
dt ds. (5.37)

Now, define a function k(x, y) by

k(x, y) = G(â(X,Y )) + ĉ(X,Y )

n∑

i=1

αi(X)∫

αi(x0)

βi(Y )∫

βi(y0)

fi(s, t)L(s, t) dtds+
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+ ĉ(X,Y )

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[
fi(s, t)M(s, t) + gi(s, t)

]
ϕ−1(z(s, t)) dt ds.

Then k(x0, y) = G(â(X,Y ))+ ĉ(X,Y )
n∑

i=1

αi(X)∫
αi(x0)

βi(Y )∫
βi(y0)

fi(s, t)L(s, t) dtds, and

(5.37) can be restated as

z(x, y) ≤ G−1[k(x, y)]. (5.38)

It is easy to observe that k(x, y) is a continuous non-decreasing function for
all x ∈ J1, y ∈ J2 and

D1k(x, y) ≤ ĉ(X,Y )ϕ−1
[
G−1(k(x, y))

]
×

×

n∑

i=1

[ βi(y)∫

βi(y0)

[
fi(αi(x), t)M(αi(x), t) + gi(αi(x), t)

]
dt

]
α′i(x). (5.39)

From the above relation, we have

D1k(x, y)

ϕ−1[G−1(k(x, y))]
≤ ĉ(X,Y )×

×

n∑

i=1

[ βi(y)∫

βi(y0)

[
fi(αi(x), t)M(αi(x), t) + gi(αi(x), t)

]
dt

]
α′i(x). (5.40)

Keeping y fixed in (5.40), setting x = σ and integrating it with respect to σ
from x0 to x, x ∈ J1 and making the change of variable, from the definition
of Φ, we obtain

Φ(k(x, y)) ≤ Φ(k(x0, y))+

+ ĉ(X,Y )

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[
fi(s, t)M(s, t) + gi(s, t)

]
dt ds. (5.41)

Now, using the inequalities (5.38) and (5.41) in (5.35), we get

u(x, y) ≤ ϕ−1

{
G−1

[
Φ−1

(
Φ(k(x0, y))+

+ ĉ(X,Y )
n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[
fi(s, t)M(s, t) + gi(s, t)

]
dt ds

)]}
. (5.42)

Taking X = x, Y = y in the foregoing inequality, since X and Y are arbi-
trary, we get the required inequality.

If â(X,Y ) = 0, we carry out the above procedure with ε > 0 instead of
â(X,Y ) and subsequently let ε→ 0. This completes the proof. �
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For the special case ϕ(u) = up (p > q is a constant), Theorem 5.11 gives
the following retarded integral inequality for nonlinear functions.

Corollary 5.12. Let u, a, c, fi, gi, αi(t), βi, i = 1, . . . , n, L and M be
as defined in Theorem 5.11. Suppose that p > q > 0 are constants. If

up(x, y) ≤ a(x, y) + c(x, y)×

×

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

uq(s, t)
[
fi(s, t)L(s, t, u(s, t)) + gi(s, t)u(s, t)

]
dt ds (5.43)

for all (x, y) ∈ 4, then

u(x, y) ≤

[
G−1

(
G(k1(x0, y))+

+
p− q

p
ĉ(x, y)

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[
fi(s, t)M(s, t) + gi(s, t)

]
dt ds

)] 1

p−q

(5.44)

for all (x, y) ∈ [x0, x1]× [y0, y1], where

k1(x0, y) =
[
â(x, y)

] p−q

p +

+
p− q

p
ĉ(x, y)

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

fi(s, t)L(s, t) dt ds,

G(r) =

r∫

r0

ds

s
1

p−q

, r ≥ r0 > 0,

G−1 denotes the inverse function of G and (x1, y1) ∈ 4 is so chosen that

G(k1(x0, y)) +
p− q

p
ĉ(x, y)×

×
n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[
fi(s, t)M(s, t) + gi(s, t)

]
dt ds ∈ Dom(G−1).

Theorem 5.13. Let u, a, c, fi, gi, αi, βi(t), i = 1, . . . , n, ϕ, L and M
be as defined in Theorem 5.11. If

ϕ(u(x, y)) ≤ a(x, y) + c(x, y)×

×

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

ϕ(u(s, t))
[
fi(s, t)L(s, t, u(s, t))+gi(s, t)u(s, t)

]
dt ds (5.45)
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for all (x, y) ∈ 4, then

u(x, y) ≤ ϕ−1

{
â(x, y) exp

[
G−1

2

(
G2(k2(x0, y))+

+ ĉ(x, y)

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[
fi(s, t)M(s, t) + gi(s, t)

]
dt ds

)]}
(5.46)

for all (x, y) ∈ [x0, x1]× [y0, y1], where

k2(x0, y) = ĉ(x, y)

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

fi(s, t)L(s, t) dt ds,

G2(r) =

r∫

r0

ds

ϕ−1(bes)
, r ≥ r0 > 0,

b is a constant, G−1
2 denotes the inverse function of G2 and (x1, y1) ∈ 4 is

so chosen that

G2(k2(x0, y)) + ĉ(x, y)×

×

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[
fi(s, t)M(s, t) + gi(s, t)

]
dt ds ∈ Dom(G−1

2 ).

Proof. The proof follows from an argument similar to that found in the
proofs of Theorems!5.9 and 5.11 with suitable modification. We omit the
details here. �

Theorem 5.14. Let u, a, c, fi, gi, αi, βi(t), i = 1, . . . , n, ϕ, L and M
be as defined in Theorem 5.11. If

ϕ(u(x, y)) ≤ a(x, y) + c(x, y)×

×
n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

ϕ′(u(s, t))
[
fi(s, t)L(s, t, u(s, t)) + gi(s, t)u(s, t)

]
dt ds (5.47)

for all (x, y) ∈ 4, then

u(x, y) ≤

≤k3(x, y) exp

(
ĉ(x, y)

n∑

i=1

αi(x)∫

αi(x0)

βi(y)∫

βi(y0)

[
fi(s, t)M(s, t)+gi(s, t)

]
dt ds

)]
(5.48)
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for all (x, y) ∈ [x0, x1]× [y0, y1], where

k3(x0, y) = ϕ−1(â(x, y)) + ĉ(x, y)

n∑

i=1

αi∫

αi(x0)

fi(s, t)L(s, t) dt ds.

Proof. he proof here also follows from an argument similar to that found in
the proofs of Theorems 5.9 and 5.11 with suitable modification. We omit
the details here. �

6. Gronwall–Bellman-Type Nonlinear Inequalities III

Pachpatte [48], [49] investigated some nonlinear Bihari-type integral in-
equalities which are applicable in certain general situations. In this section
we present some two-independent-variable generalizations of the certain in-
equalities in Pachpatte [48], [49] obtained by Bondge and Pachpatte [18],
[19]. These inequalities can be used as tools in the study of certain par-
tial integro-differential and integral equations. Bondge and Pachpatte [18]
established the following generalization of the inequality given by Pach-
patte [48].

Theorem 6.1 (Bondge and Pachpatte, 1979). Let u(x, y) and p(x, y)
be nonnegative continuous functions defined for x, y ∈ R+. Let g(u) be a
continuously differentiable function defined for u ≥ 0, g(u) > 0 for u > 0
and g′(u) ≥ 0 for u ≥ 0, and let a(x) > 0, b(y) > 0, a′(x) ≥ 0, b′(y) ≥ 0
are continuous functions defined for x, y ∈ R+. If

u(x, y) ≤ a(x) + b(y)+

+

x∫

0

y∫

0

f(s, t)

(
u(s, t)+

s∫

0

t∫

0

p(s1, t1)g(u(s1, t1)) ds1 dt1

)
ds dt, (6.1)

for x, y ∈ R+, then for 0 ≤ x ≤ x1, 0 ≤ y ≤ y1,

u(x, y) ≤ a(x) + b(y)+

+

x∫

0

y∫

0

p(s, t)H−1

[
H(a(0) + b(t))+

+

s∫

0

a′(s1)

a(s1) + b(0) + g(a(s1) + b(0))
ds1+

s∫

0

t∫

0

p(s1, t1) ds1 dt1

]
ds dt, (6.2)

where

H(r) =

r∫

r0

ds

s+ g(s)
, r ≥ r0 > 0, (6.3)
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H−1 denotes the inverse function of H and x1, y1 are so chosen that

H(a(0) + b(y)) +

x∫

0

a′(s1)

a(s1) + b(0) + g(a(s1) + b(0))
ds1+

+

x∫

0

y∫

0

p(s1, t1) ds1 dt1 ∈ Dom(H−1).

for all x, y lying in the subintervals 0 ≤ x ≤ x1, 0 ≤ y ≤ y1 of R+.

Bondge and Pachpatte [19] established the following three theorems which
deal with two-independent-variable generalizations of certain inequalities
given by Pachpatte [48], [49].

Theorem 6.2 (Bondge and Pachpatte, 1980). Let u(x, y), a(x, y), and
b(x, y) be nonnegative continuous functions defined for x, y ∈ R+. Let g(u)
be a continuously differentiable function defined for u ≥ 0, g(u) > 0 for
u > 0 and g′(u) ≥ 0 for u ≥ 0, and in addition g(u) be subadditive on R+.
If

u(x, y) ≤ a(x, y)+

+

x∫

0

y∫

0

b(s, t)

(
u(s, t) +

s∫

0

t∫

0

b(s1, t1)g(u(s1, t1)) ds1 dt1

)
ds dt, (6.4)

for x, y ∈ R+, then for 0 ≤ x ≤ x2, 0 ≤ y ≤ y2,

u(x, y) ≤ a(x, y) +A(x, y)+

+

x∫

0

y∫

0

b(s, t)

{
H−1

[
H(A(s, t))+

s∫

0

t∫

0

p(s1, t1) ds1 dt1

]}
ds dt, (6.5)

where

A(x, y)=

x∫

0

y∫

0

b(s1, t1)

(
a(s1, t1)+

s1∫

0

t1∫

0

b(s2, t2)g(a(s2, t2)) ds2 dt2

)
ds1 dt1,

H, H−1 are as defined in Theorem 6.1 and x2, y2 are chosen so that

H(A(x, y)) +

x∫

0

y∫

0

p(s1, t1) ds1 dt1 ∈ Dom(H−1).

for all x, y lying in the subintervals 0 ≤ x ≤ x2, 0 ≤ y ≤ y2 of R+.

Theorem 6.3 (Bondge and Pachpatte, 1980). Let u(x, y), a(x, y), b(x, y),
and c(x, y) be nonnegative continuous functions defined for x, y ∈ R+. Let
g(u) be a continuously differentiable function defined for u ≥ 0, g(u) > 0
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for u > 0 and g′(u) ≥ 0 for u ≥ 0, and in addition g(u) be subadditive
on R+. If

u(x, y) ≤ a(x, y) +

x∫

0

y∫

0

b(s, t)

[
u(s, t) +

s∫

0

t∫

0

c(s1, t1)u(s1, t1) ds1 dt1+

+

s∫

0

t∫

0

[
b(s1, t1) + c(s1, t1)

]
g(u(s1, t1)) ds1 dt1

]
ds dt, (6.6)

for x, y ∈ R+, then for 0 ≤ x ≤ x3, 0 ≤ y ≤ y3,

u(x, y) ≤ a(x, y) +B(x, y)+

+

x∫

0

y∫

0

b(s, t)

{
H−1

[
H(B(s, t))+

s∫

0

t∫

0

[
b(s1, t1)+c(s1, t1)

]
ds1 dt1

]}
ds dt, (6.7)

where

B(x, y) =

x∫

0

y∫

0

b(s1, t1)

(
a(s1, t1) +

s1∫

0

t1∫

0

b(s2, t2)c(s2, t2) ds2 dt2+

+

s1∫

0

t1∫

0

[
b(s2, t2) + c(s2, t2)

]
g(a(s2, t2)) ds2 dt2

)
ds1 dt1,

H,H−1 are as defined in Theorem 6.1 and x3, y3 are so chosen that

H(B(x, y)) +

x∫

0

y∫

0

[
b(s1, t1) + c(s1, t1)

]
ds1 dt1 ∈ Dom(H−1).

for all x, y lying in the subintervals 0 ≤ x ≤ x3, 0 ≤ y ≤ y3 of R+.

Theorem 6.4 (Bondge and Pachpatte, 1980). Let u(x, y), a(x, y), b(x, y),
c(x, y), and k(x, y) be nonnegative continuous functions defined for x, y ∈
R+. Let g(u) be a continuously differentiable function defined for u ≥ 0,
g(u) > 0 for u > 0 and g′(u) ≥ 0 for u ≥ 0, and in addition g(u) be
subadditive on R+. If

u(x, y) ≤ a(x, y) + b(x, y)×

×

x∫

0

y∫

0

c(s, t)g

(
u(s, t)+b(s, t)

s∫

0

t∫

0

k(s1, t1)g(u(s1, t1)) ds1 dt1

)
ds dt, (6.8)
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for x, y ∈ R+, then for 0 ≤ x ≤ x4, 0 ≤ y ≤ y4,

u(x, y) ≤ a(x, y)+

+ b(x, y)

[
L(x, y) +

x∫

0

y∫

0

c(s, t)g

(
b(s, t)

{
Ω−1

[
Ω(L(s, t))+

+

s∫

0

t∫

0

[
c(s1, t1) + k(s1, t1)

]
g(b(s1, t1)) ds1 dt1

]})
ds dt

]
, (6.9)

where

L(x, y) =

x∫

0

y∫

0

c(s1, t1)×

× g

(
a(s1, t1) + b(s1, t1)

s1∫

0

t1∫

0

k(s2, t2)g(a(s2, t2)) ds2 dt2

)
ds1 dt1,

Ω, Ω−1 are as defined in Theorem 4.1 and x4, y4 are so chosen that

Ω(L(x, y)) +

x∫

0

y∫

0

[
c(s1, t1) + k(s1, t1)

]
ds1 dt1 ∈ Dom(Ω−1).

for all x, y lying in the subintervals 0 ≤ x ≤ x4, 0 ≤ y ≤ y4 of R+.

In view of wider applications, Wendroff’s inequality given in Beckenbach
and Belllman [9] has been generalized and extended in various directions.
The current article is devoted to the Wendroff-like inequalities investigated
by Pachpatte [59], [60], [62] in order to apply them in the study of certain
higher order partial differential equations. Pachpatte [59] established the
Wendroff-like inequalities in the following two theorems.

Theorem 6.5 (Pachpatte, 1988). Let u(x, y) and h(x, y) be nonnegative
continuous functions defined for x, y ∈ R+. Let a(x), b(y), p(x), q(y) be
positive and twice continuously differentiable functions defined for x, y ∈
R+; also let a′(x), b′(y), p′(x), q′(y) be nonnegative for x, y ∈ R+. Define
c(x, y) = a(x)+ b(y)+yp(x)+xq(y), for x, y ∈ R+. Let g be a continuously
differentiable function defined on R+ and g(u) > 0 on (0,∞), g′(u) ≥ 0 on
R+ and

u(x, y) ≤ c(x, y) +A
[
x, y, h(s1, t1)g(u(s1, t1))

]
, (6.10)

holds for x, y ∈ R+.
(i) If a′′(x), p′′(x) are nonnegative for x ≥ 0, then for 0 ≤ x ≤ x5,

0 ≤ y ≤ y5,

u(x, y) ≤ Ω−1

[
Ω(c(0, y)) + x

( cx(0, y)

g(c(0, y))

)
+
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+

x∫

0

s∫

0

a′′(s1) + yp′′(s1)

g(c(s1, 0))
ds1 ds+A

[
a, y, h(s1, t1)

]]
, (6.11)

where

Ω(r) =

r∫

r0

ds

s+ g(s)
, r > 0, r0 > 0, (6.12)

Ω−1 denotes the inverse function of Ω and x5, y5 are so chosen that

Ω(c(0, y)) + x
( cx(0, y)

g(c(0, y))

)
+

+

x∫

0

s∫

0

a′′(s1) + yp′′(s1)

g(c(s1, 0))
ds1 ds+A

[
a, y, h(s1, t1)

]
∈ Dom(H−1).

for all x, y lying in the subintervals 0 ≤ x ≤ x5, 0 ≤ y ≤ y5 of R+.
(ii) If b′′(x), q′′(x) are nonnegative for y ≥ 0, then for 0 ≤ x ≤ x6,

0 ≤ y ≤ y6,

u(x, y) ≤ Ω−1

[
Ω(c(x, 0)) + y

( cy(x, 0)

g(c(x, 0))

)
+

+

y∫

0

t∫

0

b′′(t1) + xq′′(t1)

g(c(0, t1))
dt1 dt+A

[
y, x, h(s1, t1)

]]
, (6.13)

where Ω, Ω−1 are as defined in (i) and x6, y6 are so chosen that

Ω(c(x, 0)) + y
( cy(x, 0)

g(c(x, 0))

)
+

+

y∫

0

t∫

0

b′′(t1) + xq′′(t1)

g(c(0, t1))
dt1 dt+A

[
y, x, h(s1, t1)

]
∈ Dom(H−1).

for all x, y lying in the subintervals 0 ≤ x ≤ x6, 0 ≤ y ≤ y6 of R+.

Theorem 6.6 (Pachpatte, 1988). Let u(x, y) and h(x, y) be nonnegative
continuous functions defined for x, y ∈ R+. let a(x), b(y), p(x), q(y) be
positive and twice continuously differentiable functions defined for x, y ∈
R+; also let a′(x), b′(y), p′(x), q′(y) be nonnegative for x, y ∈ R+ Define
c(x, y) = a(x)+ b(y)+yp(x)+xq(y), for x, y ∈ R+. Let g be a continuously
differentiable function defined on R+ and g(u) > 0 on (0,∞), g′(u) ≥ 0
on R+. Also,

u(x, y) ≤ c(x, y)+

+A
[
x, y, h(s1, t1)

[
u(s1, t1) +A

[
s1, t1, h(s2, t2)g(u(s2, t2))

]]]
, (6.14)

holds for x, y ∈ R+.
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(i) If a′′(x), p′′(x) are nonnegative for x ∈ R+, then for 0 ≤ x ≤ x7,
0 ≤ y ≤ y7,

u(x, y) ≤ c(0, y)) + xcx(0, y)+

+

x∫

0

s∫

0

[
a′′(s1) + yp′′(s1)

]
ds1 ds+A

[
a, y, h(s1, t1)Q1(s1, t1)

]
, (6.15)

in which

Q1(x, y) ≤ H−1

[
H(c(0, y)) + x

( cx(0, y)

c(0, y) + g(c(0, y))

)
+

+

x∫

0

s2∫

0

a′′(s3) + yp′′(s3)

c(s3, 0) + g(c(s3, 0))
ds3 ds2 +A

[
x, y, h(s3, t3)

]]
, (6.16)

where

H(r) =

r∫

r0

ds

s+ g(s)
, r > 0, r0 > 0,

H−1 denotes the inverse function of H and x7, y7 are so chosen that

H(c(0, y)) + x
( cx(0, y)

c(0, y) + g(c(0, y))

)
+

+

x∫

0

s2∫

0

a′′(s3) + yp′′(s3)

c(s3, 0) + g(c(s3, 0))
ds3 ds2 +A

[
x, y, h(s3, t3)

]
∈ Dom(H−1).

for all x, y lying in the subintervals 0 ≤ x ≤ x7, 0 ≤ y ≤ y7 of R+.
(ii) If b′′(x), q′′(x) are nonnegative for y ∈ R+, then for 0 ≤ x ≤ x8,

0 ≤ y ≤ y8,

u(x, y) ≤ c(x, 0)) + ycy(x, 0)+

+

y∫

0

t∫

0

[
b′′(t1) + xq′′(t1)

]
dt1 dt+A

[
y, xh(s1, t1)Q2(s1, t1)

]
, (6.17)

in which

Q2(x, y) ≤ H−1

[
H(c(x, 0)) + x

( cy(x, 0)

c(x, 0) + g(c(x, 0))

)
+

+

y∫

0

t2∫

0

b′′(t3) + xq′′(t3)

c(0, t3) + g(c(0, t3))
dt3 dt2 +A

[
y, x, h(s3, t3)

]]
, (6.18)
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where H, H−1 are as defined in (i) and x8, y8 are so chosen that

H(c(x, 0)) + y
( cy(x, 0)

c(x, 0) + g(c(x, 0))

)
+

+

y∫

0

t2∫

0

b′′(t3) + xq′′(t3)

c(0, t3) + g(c(0, t3))
dt3 dt2 +A

[
y, x, h(s3, t3)

]
∈ Dom(H−1).

for all x, y lying in the subintervals 0 ≤ x ≤ x8, 0 ≤ y ≤ y8 of R+.

Pachpatte [63] established the following inequality which can be used in
the study of certain partial differential and integral equations.

Theorem 6.7 (Pachpatte, 1998). Let u(x, y), f(x, y), and p(x, y) be non-
negative continuous functions defined for x, y ∈ R+. Let g be a continuously
differentiable function defined on R+ and g(u) > 0 on (0,∞), g′(u) ≥ 0 on
R+. If

u(x, y)≤c+

x∫

0

s∫

0

f(s1, y)u(s1, y) ds1 ds+A
[
x, y, p(s1, t1)g(u(s1, t1))

]
, (6.19)

for x, y ∈ R+, where c ≥ 0 is a constant, then for 0 ≤ x ≤ x9, 0 ≤ y ≤ y9,

u(x, y) ≤ Q(x, y)
{

Ω−1
[
Ω(c) +A

[
x, y, p(s1, t1)g(Q(s1, t1))

]]}
, (6.20)

where

Q(x, y) = exp

( x∫

0

s∫

0

f(s1, y)u(s1, y) ds1 ds

)
,

Ω, Ω−1 are as defined in Theorem 5.5 and x9, y9 are so chosen that

Ω(c) +A
[
x, y, p(s1, t1)g(Q(s1, t1))

]
∈ Dom(H−1)

for all x, y lying in the subintervals 0 ≤ x ≤ x9, 0 ≤ y ≤ y9 of R+.

The inequalities given in the following theorem have been recently es-
tablished by Pachpatte [60], [62] and are motivated by the study of certain
higher order partial differential equations.

Theorem 6.8 (Pachpatte, 1993, 1996). Let u(x, y), a(x, y), and b(x, y)
be nonnegative continuous functions defined for x, y ∈ R+ and h : R3

+ → R+

be a continuous function which satisfies the condition

0 ≤ h(x, y, v1)− h(x, y, v2) ≤ k(x, y, v2)(v1 − v2), (6.21)

for x, y ∈ R+ and v1 ≥ v2 ≥ 0, where k : R3
+ → R+ is a continuous

function.
(i) If

u(x, y) ≤ a(x, y) + b(x, y)B
[
x, y, h(s, t, u(s, t))

]
, (6.22)

for x, y ∈ R+, then

u(x, y) ≤ a(x, y) + b(x, y)p(x, y) exp
(
B

[
x, y, k(s, t, a(s, t))b(s, t)

])
, (6.23)
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for x, y ∈ R+, where

p(x, y) = B
[
x, y, h(s, t, a(s, t))

]
(6.24)

for x, y ∈ R+.
(ii) Let F (u) be a continuous, strictly increasing, convex, submultiplica-

tive function for u > 0, lim
u→∞

F (u) = ∞, F−1 denote the inverse function of

F, and α(x, y), β(x, y) be continuous and positive functions for x, y ∈ R+

and α(x, y) + β(x, y) = 1. If

u(x, y) ≤ a(x, y) + b(x, y)F−1
(
B

[
x, y, h(s, t, F (u(s, t)))

])
, (6.25)

for x, y ∈ R+, then

u(x, y) ≤ a(x, y)+

+ b(x, y)F−1
(
B

[
x, y, h

(
s, t, α(s, t)F

(
a(s, t)α−1(s, t)

))]
×

× exp
(
B

[
x, y, k

(
s, t, α(s, t)F

(
a(s, t)α−1(s, t)

))
×

× β(s, t)F
(
b(s, t)β−1(s, t)

)]))
, (6.26)

for x, y ∈ R+.
(iii) Let g(u) be a continuously differentiable function defined for u ≥ 0,

g(u) > 0 for u > 0 and g′(u) ≥ 0 for u ≥ 0 and g(u) is subadditive and
submultiplicative for u ≥ 0. If

u(x, y) ≤ a(x, y) + b(x, y)B
[
x, y, h(s, t, g(u(s, t)))

]
, (6.27)

for x, y ∈ R+, then for 0 ≤ x ≤ x0, 0 ≤ y ≤ y0,

u(x, y) ≤ a(x, y)+

+ b(x, y)Ω−1
[
Ω(q(x, y)) +B

[
x, y, k(s, t, g(a(s, t)))g(b(s, t))

]]
, (6.28)

where

q(x, y) = B
[
x, y, h(s, t, g(a(s, t)))

]
, (6.29)

Ω, Ω−1 are as defined in Theorem 6.5 and x0, y0 are so chosen that

Ω(q(x, y)) +B
[
x, y, k(s, t, g(a(s, t)))g(b(s, t))

]
∈ Dom(H−1),

for x, y lying in the subintervals 0 ≤ x ≤ x0, 0 ≤ y ≤ y0 of R+.

We next present some new nonlinear retarded Gronwall–Bellman-type
integral inequalities in two independent variables as following Theorems.
These inequalities can be used as effective tools in the study of certain
integral equations. In what follows, given a continuous function a : J1×J2 →
R+, we write

â(x, y) = max
{
a(s, t) : x0 ≤ s ≤ x, y0 ≤ s ≤ y

}
.
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Theorem 6.9. Let u, a, c, f, g ∈ (4, R+, ) and ψ(u) be a nondecreasing
continuous function for u ∈ R+ with ψ(u) > 0 for u > 0. If

u(x, y) ≤ a(x, y)+

+ c(x, y)

x∫

x0

y∫

y0

f(s, t)

(
u(s, t)+

s∫

x0

t∫

y0

g(s1, t1)ψ(u(s1, t1)) ds1 dt1

)
ds dt, (6.30)

for x, y ∈ R+, then
(i) in the case ψ(u) ≤ u,

u(x, y) ≤ â(x, y) exp

( x∫

x0

y∫

y0

[
ĉ(x, y)f(s, t) + g(s, t)

]
ds dt

)
, (6.31)

for all (x, y) ∈ 4 and
(ii) in the case ψ(u) > u,

u(x, y) ≤ H−1

(
H(â(x, y)) +

x∫

x0

y∫

y0

[
ĉ(x, y)f(s, t) + g(s, t)

]
ds dt

)
, (6.32)

for all x0 ≤ x ≤ x1, y0 ≤ y ≤ y1, where

H(r) =

r∫

r0

ds

ψ(s)
, r ≥ r0 > 0, (6.33)

H−1 denotes the inverse function of H and x1, y1 are so chosen that

H(â(x, y)) +

x∫

x0

y∫

y0

[
ĉ(x, y)f(s, t) + g(s, t)

]
ds dt ∈ Dom(H−1)

for all x, y lying in the subintervals 0 ≤ x ≤ x1, 0 ≤ y ≤ y1 of R+.

Proof. Fixing any numbers X and Y with x0 ≤ x ≤ X and y0 ≤ y ≤ Y, we
assume that â(X,Y ) is positive and define a positive function z(x, y) by

z(x, y) = â(X,Y )+

+ĉ(X,Y )

x∫

x0

y∫

y0

f(s, t)

(
u(s, t)+

s∫

x0

t∫

y0

g(s1, t1)ψ(u(s1, t1)) ds1 dt1

)
ds dt, (6.34)

then z(x, y0) = â(X,Y ), z(x0, y) = â(X,Y ), u(x, y) ≤ z(x, y) and

zxy(x, y) = ĉ(X,Y )f(x, y)

(
u(x, y)+

x∫

x0

y∫

y0

g(s1, t1)ψ(u(s1, t1)) ds1 dt1

)
≤

≤ ĉ(X,Y )f(x, y)

(
z(x, y)+

x∫

x0

y∫

y0

g(s1, t1)ψ(z(s1, t1)) ds1 dt1

)
. (6.35)
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If we put

v(x, y) = z(x, y) +

x∫

x0

y∫

y0

g(s1, t1)ψ(z(s1, t1)) ds1 dt1

then

v(x, y0) = â(X,Y ), v(x0, y) = â(X,Y ),

zxy(x, y) ≤ ĉ(X,Y )f(x, y)v(x, y), z(x, y) ≤ v(x, y)

and

vxy(x, y) = zxy(x, y) + g(x, y)ψ(z(x, y)) ≤

≤ ĉ(X,Y )f(x, y)v(x, y) + g(x, y)ψ(v(x, y)). (6.36)

When ψ(u) ≤ u, from the inequality (6.36), we find

vxy(x, y)

v(x, y)
≤ ĉ(X,Y )f(x, y) + g(x, y). (6.37)

From (6.37) and by using the facts that vx(x, y) ≥ 0, vy(x, y) ≥ 0, v(x, y) >
0 for x, y ∈ R+, we observe that

vxy(x, y)

v(x, y)
≤ ĉ(X,Y )f(x, y) + g(x, y) +

vx(x, y)vy(x, y)

[v(x, y)]2
,

i.e.
∂

∂y

(
vx(x, y)

v(x, y)

)
≤ ĉ(X,Y )f(x, y) + g(x, y). (6.38)

Keeping x fixed in (6.38), we set y = t; then, integrating with respect to t
from y0 to y and using the fact that vx(x, y0) = 0, we have

vx(x, y)

v(x, y)
≤

y∫

y0

[
ĉ(X,Y )f(x, t) + g(x, t)

]
dt. (6.39)

Keeping y fixed in (6.39), we set x = s; then, integrating with respect to s
from x0 to x and using the fact that v(x0, y) = â(X,Y ), we have

v(x, y) ≤ â(X,Y ) exp

( x∫

x0

y∫

y0

[
ĉ(X,Y )f(s, t) + g(s, t)

]
dt ds

)
. (6.40)

Taking X = x, Y = y and using u(x, y) ≤ z(x, y) ≤ v(x, y) in the inequality
(6.40), since X and Y are arbitrary, we get the required inequality (6.31).

When ψ(u) > u, from the inequality (6.36), we find

vxy(x, y)

ψ(v(x, y))
≤ ĉ(X,Y )f(x, y) + g(x, y). (6.41)
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From (6.41) and by using the facts that vx(x, y) ≥ 0, vy(x, y) ≥ 0, v(x, y) >
0, ψ′(v(x, y)) ≥ 0 for x, y ∈ R+, we observe that

vxy(x, y)

ψ(v(x, y))
≤ ĉ(X,Y )f(x, y) + g(x, y) +

vx(x, y)ψ′(v(x, y))vy(x, y)

[ψ(v(x, y))]2
,

i.e.
∂

∂y

(
vx(x, y)

ψ(v(x, y))

)
≤ ĉ(X,Y )f(x, y) + g(x, y). (6.42)

Keeping x fixed in (6.42), we set y = t; then, integrating with respect to t
from y0 to y and using the fact that vx(x, y0) = 0, we have

vx(x, y)

ψ(v(x, y))
≤

y∫

y0

[
ĉ(X,Y )f(x, t) + g(x, t)

]
dt. (6.43)

Keeping x fixed in (6.43), we set x = s; then, integrating with respect to s
from x0 to x and using the fact that v(x0, y) = â(X,Y ) and the definition
of the function H, we have

v(x, y) ≤ H−1

(
H(â(X,Y )) +

x∫

x0

y∫

y0

[
ĉ(X,Y )f(s, t) + g(s, t)

]
dt ds

)
. (6.44)

Taking X = x, Y = y and using u(x, y) ≤ z(x, y) ≤ v(x, y) in the inequality
(6.44), since X and Y are arbitrary, we get the required inequality (6.32).

If â(X,Y ) = 0 we carry out the above procedure with ε > 0 instead of
â(X,Y ) and subsequently let ε→ 0. This completes the proof. �

Theorem 6.9 can easily be applied to generate other useful nonlinear
integral inequalities in more general situations. For example, we have the
following result (Theorems 6.10–6.11).

Theorem 6.10. Let u, a, c, f, g ∈ (4, R+, ) and ψ(u) be a nondecreas-
ing continuous function for u ∈ R+ with ψ(u) > 0 for u > 0. Suppose that
ϕ ∈ C1(R+, R+) is an increasing function with ϕ(∞) = ∞ and ϕ′(u) is a
nondecreasing continuous function for u ∈ R+. If

ϕ(u(x, y)) ≤ a(x, y) + c(x, y)

x∫

x0

y∫

y0

f(s, t)

(
u(s, t)ϕ′(u(s, t))+

+

s∫

x0

t∫

y0

g(s1, t1)ϕ
′(u(s1, t1))ψ(u(s1, t1)) ds1 dt1

)
ds dt, (6.45)

for x, y ∈ R+, then
(i) in the case ψ(ϕ−1(z)) ≤ ϕ−1(z) for z ∈ R+,

u(x, y) ≤ ϕ−1(â(x, y)) exp

( x∫

x0

y∫

y0

[
ĉ(x, y)f(s, t) + g(s, t)

]
ds dt

)
, (6.46)
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for all (x, y) ∈ 4.
(ii) in the case ψ(ϕ−1(z)) > ϕ−1(z) for z ∈ R+,

u(x, y)≤H−1

(
H(ϕ−1(â(x, y)))+

x∫

x0

y∫

y0

[
ĉ(x, y)f(s, t)+g(s, t)

]
ds dt

)
, (6.47)

for all x0 ≤ x ≤ x1, y0 ≤ y ≤ y1, where

H(r) =

r∫

r0

ds

ψ(s)
, r ≥ r0 > 0, (6.48)

H−1 denotes the inverse function of H and x1, y1 are so chosen that

H(ϕ−1(â(x, y))) +

x∫

x0

y∫

y0

[
ĉ(x, y)f(s, t) + g(s, t)

]
ds dt ∈ Dom(H−1).

for all x, y lying in the subintervals 0 ≤ x ≤ x1, 0 ≤ y ≤ y1 of R+.

Proof. Fixing any numbers X and Y with x0 ≤ x ≤ X and y0 ≤ y ≤ Y, we
assume that â(X,Y ) is positive and define a positive function z(x, y) by

z(x, y) = â(X,Y ) + ĉ(X,Y )

x∫

x0

y∫

y0

f(s, t)

(
u(s, t)ϕ′(u(s, t))+

+

s∫

x0

t∫

y0

g(s1, t1)ϕ
′(u(s1, t1))ψ(u(s1, t1)) ds1 dt1

)
ds dt; (6.49)

then z(x, y0) = â(X,Y ), z(x0, y) = â(X,Y ), u(x, y) ≤ ϕ−1(z(x, y)) and

zx(x, y) = ĉ(X,Y )

y∫

y0

f(x, t)

(
u(x, t)ϕ′(u(x, t))+

+

x∫

x0

t∫

y0

g(s1, t1)ϕ
′(u(s1, t1))ψ(u(s1, t1)) ds1 dt1

)
dt ≤

≤ ϕ′(ϕ−1(z(x, y)))ĉ(X,Y )

y∫

y0

f(x, t)

(
ϕ−1(z(x, t))+

+

x∫

x0

t∫

y0

g(s1, t1)ψ(ϕ−1(z(s1, t1))) ds1 dt1

)
dt,
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i.e.

zx(x, y)

ϕ′(ϕ−1(z(x, y)))
≤ ĉ(X,Y )

y∫

y0

f(x, t)

(
ϕ−1(z(x, t))+

+

x∫

x0

t∫

y0

g(s1, t1)ψ(ϕ−1(z(s1, t1))) ds1 dt1

)
dt. (6.50)

Keeping y fixed in (6.50), we set x = s; then, integrating with respect to s
from x0 to x and using the fact that z(x0, y) = â(X,Y ), we have

ϕ−1(z(x, y)) ≤ ϕ−1(â(X,Y )) + ĉ(X,Y )

x∫

x0

y∫

y0

f(s, t)

(
ϕ−1(z(s, t))+

+

s∫

x0

t∫

y0

g(s1, t1)ψ(ϕ−1(z(s1, t1))) ds1 dt1

)
ds dt. (6.51)

Taking X = x, Y = y, since X and Y are arbitrary, by applying Theo-
rem 6.9 to (6.51), we get the required inequalities (6.46) and (6.47) from
the inequality u(x, y) ≤ ϕ−1(z(x, y)).

If â(X,Y ) = 0 we carry out the above procedure with ε > 0 instead of
â(X,Y ) and subsequently let ε→ 0. This completes the proof. �

Theorem 6.11. Let u, a, c, f, g ∈ (4, R+, ), and ψi(u), i = 1, 2 be non-
decreasing continuous functions for u ∈ R+ with ψi(u) > 0 for u > 0.
Suppose that ϕ ∈ C1(R+, R+) is an increasing function with ϕ(∞) = ∞. If

ϕ(u(x, y)) ≤ a(x, y) + c(x, y)

x∫

x0

y∫

y0

f(s, t)

(
ψ1(u(s, t))+

+

s∫

x0

t∫

y0

g(s1, t1)ψ2(u(s1, t1)) ds1 dt1

)
ds dt, (6.52)

for x, y ∈ R+, then
(i) in the case ψ1(ϕ

−1(z)) ≤ ψ2(ϕ
−1(z)) for z ∈ R+,

u(x, y) ≤ ϕ−1

[
H−1

2

(
H2(â(x, y))+

+ ĉ(x, y)

x∫

x0

y∫

y0

f(s, t)

(
1 +

s∫

x0

t∫

y0

g(s1, t1) ds1 dt1

)
ds dt

)]
, (6.53)
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for all x0 ≤ x ≤ x2, y0 ≤ y ≤ y2, where

H2(r) =

r∫

r0

ds

ψ2(ϕ−1(s))
, r ≥ r0 > 0, (6.54)

H−1
2 denotes the inverse function of H2, x2 and y2 are so chosen that

H2(â(x, y))+

+ ĉ(x, y)

x∫

x0

y∫

y0

f(s, t)

(
1 +

s∫

x0

t∫

y0

g(s1, t1) ds1 dt1

)
ds dt ∈ Dom(H−1

2 )

for all x, y lying in the subintervals 0 ≤ x ≤ x2, 0 ≤ y ≤ y2 of R+.
(ii) in the case ψ1(ϕ

−1(z)) > ψ2(ϕ
−1(z)) for z ∈ R+,

u(x, y) ≤ ϕ−1

[
H−1

1

(
H1(â(x, y))+

+ ĉ(x, y)

x∫

x0

y∫

y0

f(s, t)

(
1 +

s∫

x0

t∫

y0

g(s1, t1) ds1 dt1

)
ds dt

)]
, (6.55)

for all x0 ≤ x ≤ x3, y0 ≤ y ≤ y3, where

H1(r) =

r∫

r0

ds

ψ1(ϕ−1(s))
, r ≥ r0 > 0, (6.56)

H−1
1 denotes the inverse function of H1, x3 and y3 are so chosen that

H1(â(x, y))+

+ ĉ(x, y)

x∫

x0

y∫

y0

f(s, t)

(
1 +

s∫

x0

t∫

y0

g(s1, t1) ds1 dt1

)
ds dt ∈ Dom(H−1

1 )

for all x, y lying in the subintervals 0 ≤ x ≤ x3, 0 ≤ y ≤ y3 of R+.

Proof. Fixing any numbers X and Y with x0 ≤ x ≤ X and y0 ≤ y ≤ Y, we
assume that â(X,Y ) is positive and define a positive function z(x, y) by

z(x, y) = â(X,Y ) + ĉ(X,Y )

x∫

x0

y∫

y0

f(s, t)

(
ψ1(u(s, t))+

+

s∫

x0

t∫

y0

g(s1, t1)ψ2(u(s1, t1)) ds1 dt1

)
ds dt, (6.57)
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then z(x, y0) = â(X,Y ), z(x0, y) = â(X,Y ), u(x, y) ≤ ϕ−1(z(x, y)) and

zx(x, y) = ĉ(X,Y )

y∫

y0

f(x, t)

(
ψ1(u(x, t))+

+

x∫

x0

t∫

y0

g(s1, t1)ψ2(u(s1, t1)) ds1 dt1

)
dt ≤

≤ ĉ(X,Y )

y∫

y0

f(x, t)

(
ψ1(ϕ

−1(z(x, t)))+

+

x∫

x0

t∫

y0

g(s1, t1)ψ2(ϕ
−1(z(s1, t1))) ds1 dt1

)
dt. (6.58)

When ψ1(ϕ
−1(z)) ≤ ψ2(ϕ

−1(z)), from the inequality (6.58), we find

zx(x, y)

ψ2(ϕ−1(z(x, y)))
≤ ĉ(X,Y )

y∫

y0

f(x, t)

(
1+

x∫

x0

t∫

y0

g(s1, t1) ds1 dt1

)
dt. (6.59)

Keeping y fixed in (6.50), we set x = s; then, integrating with respect to s
from x0 to x and using the definition of H2, we have

H2(z(x, y)) ≤ H2(â(X,Y ))

+ ĉ(X,Y )

x∫

x0

y∫

y0

f(s, t)

(
1 +

s∫

x0

t∫

y0

g(s1, t1) ds1 dt1

)
ds dt. (6.60)

Taking X = x, Y = y in (6.60), since X and Y are arbitrary, we get the
required inequality (6.53) from the inequality u(x, y) ≤ ϕ−1(z(x, y)).

When ψ1(ϕ
−1(z)) > ψ2(ϕ

−1(z)), by following the same argument as in
the proof below the inequality (6.59), we get the required inequality (6.55).

If â(X,Y ) = 0 we carry out the above procedure with ε > 0 instead of
â(X,Y ) and subsequently let ε→ 0. This completes the proof. �

For the special case ψ1(u) = ϕ(u), Theorem 6.11 gives the following
integral inequality for nonlinear functions.

Corollary 6.12. Let u, a, c, f, g ∈ (4, R+, ) and ψ(u) be a nondecreas-
ing continuous function for u ∈ R+ with ψ(u) > 0 for u > 0. Suppose that
ϕ ∈ C(R+, R+) is an increasing function with ϕ(∞) = ∞. If

ϕ(u(x, y)) ≤ a(x, y) + c(x, y)

x∫

x0

y∫

y0

f(s, t)

(
ϕ(u(s, t))+
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+

s∫

x0

t∫

y0

g(s1, t1)ψ(u(s1, t1)) ds1 dt1

)
ds dt, (6.61)

for x, y ∈ R+, then
(i) in the case ψ(ϕ−1(z)) ≤ z for z ∈ R+,

u(x, y) ≤

≤ ϕ−1

[
â(x, y) exp

(
ĉ(x, y)

x∫

x0

y∫

y0

f(s, t)

(
1+

s∫

x0

t∫

y0

g(s1, t1) ds1 dt1

)
ds dt

)]
,

for all (x, y) ∈ 4.
(ii) in the case ψ(ϕ−1(z)) > z for z ∈ R+,

u(x, y) ≤ ϕ−1

[
H−1

(
H(â(x, y))+

+ ĉ(x, y)

x∫

x0

y∫

y0

f(s, t)

(
1 +

s∫

x0

t∫

y0

g(s1, t1) ds1 dt1

)
ds dt

)]
, (6.62)

for all x0 ≤ x ≤ x4, y0 ≤ y ≤ y4, where

H(r) =

r∫

r0

ds

ψ(ϕ−1(s))
, r ≥ r0 > 0, (6.63)

H−1 denotes the inverse function of H, x4 and y4 are so chosen that

H(â(x, y))+

+ ĉ(x, y)

x∫

x0

y∫

y0

f(s, t)

(
1 +

s∫

x0

t∫

y0

g(s1, t1) ds1 dt1

)
ds dt ∈ Dom(H−1)

for all x, y lying in the subintervals 0 ≤ x ≤ x4, 0 ≤ y ≤ y4 of R+.

7. Multidimensional Linear Integral Inequalities

Wendroff’s inequality has received considerable attention and several pa-
pers have appeared in the literature dealing with various extensions, gener-
alizations and applications. During the past few years, many papers have
appeared in the literature which deal with integral inequalities in n inde-
pendent variables. See Agarwal at al. [1], [4], [6], Akinyele [7], Beesack [11],
[12]–[14], Chandra and Davis [21], Conlan and Wang [25], [26], Fink [32],
Ghoshal at al. [35], Pachpatte [58], Singare and Pachpatte [71], Yang [77],
[78], Yeh [79], and Young [80], [81].

We present in this section some inequalities of Wendroff’s type in n in-
dependent variables investigated by Pachpatte alone, Pachoatte and his
co-workers, as well as others.
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In what follows, we adopt the following definitions and notational con-
ventions. Let Ω be an open bounded set in Rn and a point (x1, . . . , xn)
in Ω be denoted by x. Let x0 and x(x0 < x) be any two points in Ω

and
x∫

x0

· · · dξ denote the n-fold integral
x1∫
x0

1

· · ·
xn∫
x0

n

· · · dξn · · · dξ1, Di = ∂/∂xi,

1 ≤ i ≤ n. For any pair x, s of points of Ω with x < s we denote

D(x, s) =
{
x ∈ Rn : x ≤ ξ ≤ s

}
⊂ Ω and

s∫
x

· · · dξ denotes the n-fold

integral
s1∫
x1

· · ·
sn∫

xn

· · · dξn · · · dξ1.

Bondge and Pachpatte [18] investigated the inequalities in the following
theorem.

Theorem 7.1 (Bondge and Pachpatte, 1979). Let u(x), p(x), q(x) be
nonnegative continuous functions defined on Ω and ai(xi) > 0, a′i(xi) ≥ 0
for 1 ≤ i ≤ n, be continuous defined for xi ≥ x0

i .
(i) If

u(x) ≤

n∑

i=1

ai(xi) +

x∫

x0

p(y)u(y) dy, (7.1)

for x ∈ Ω, then

u(x) ≤ E(x) exp

( x∫

x0

p(y) dy

)
, (7.2)

for x ∈ Ω, where

E(x)=

[ n∑
i=1

ai(xi)+a1(x
0
1)−a1(x1)

][ n∑
i=1

ai(xi)+a2(x
0
2)−a2(x2)

]

[ n∑
i=3

ai(xi) + a1(x0
1)− a2(x2)

] . (7.3)

(ii) If

u(x) ≤

n∑

i=1

ai(xi) +

x∫

x0

p(y)u(y) dy +

x∫

x0

p(y)

( y∫

x0

q(s)u(s) ds

)
dy, (7.4)

for x ∈ Ω, then

u(x) ≤

n∑

i=1

ai(xi) +

x∫

x0

p(y)E(y) exp

( y∫

x0

[p(s) + q(s)] ds

)
dy, (7.5)

for x ∈ Ω, where E(x) is defined by (7.3).

A slight variant of Theorem 7.1 appeared in [63, pp. 400–401].

Theorem 7.2 (Pachpatte, 1998). Let u(x), p(x), and q(x) be nonnega-
tive continuous functions defined on Ω and let a(x), x ∈ Ω, be a continuous
function which is nonnegative and nondecreasing in each component xi of x.
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(i) If

u(x) ≤ a(x) +

x∫

x0

p(y)u(y) dy, (7.6)

for x ∈ Ω, then

u(x) ≤ a(x) exp

( x∫

x0

p(y) dy

)
, (7.7)

for x ∈ Ω.
(ii) If

u(x) ≤ a(x) +

x∫

x0

p(y)

(
u(y) +

y∫

x0

q(s)u(s) ds

)
dy, (7.8)

for x ∈ Ω, then

u(x) ≤ a(x)

[ x∫

x0

p(y) exp

( y∫

x0

[p(s) + q(s)] ds

)
dy

]
, (7.9)

for x ∈ Ω.

The following theorem deals with general inequalities which appeared in
[63, pp. 401–402].

Theorem 7.3 (Pachpatte, 1998). Let u(x), a(x), b(x), p(x), and q(x)
be nonnegative continuous functions defined on Ω.

(i) If

u(x) ≤ a(x) + b(x)

x∫

x0

p(y)u(y) dy, (7.10)

for x ∈ Ω, then

u(x) ≤ a(x) + b(x)m(x) exp

( x∫

x0

b(y)p(y) dy

)
, (7.11)

for x ∈ Ω, where

m(x) =

x∫

x0

a(y)p(y) dy, (7.12)

for x ∈ Ω.
(ii) If

u(x) ≤ a(x) + b(x)

x∫

x0

p(y)

(
u(y) +

y∫

x0

q(s)u(s) ds

)
dy, (7.13)
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for x ∈ Ω, then

u(x) ≤ a(x) + b(x)r(x)

[
1 +

x∫

x0

p(y)b(y) exp

( y∫

x0

[p(s) + q(s)] ds

)
dy

]
, (7.14)

for x ∈ Ω, where

r(x) =

x∫

x0

p(y)

(
a(y) + b(y)

y∫

x0

q(s)a(s) ds

)
dy, (7.15)

for x ∈ Ω.

Inspired by the inequalities given by Gollwitzer [36], Pachpatte [48], and
Singare and Pachpatte [72] established the inequalities in the following the-
orem.

Theorem 7.4 (Singare and Pachpatte, 1981). Let φ(x), a(x), b(x), and
c(x) be nonnegative continuous functions defined on Ω and u(x) be a positive
continuous function defined on Ω.

(i) If

u(s) ≥ φ(x) − a(s)

s∫

x

b(ξ)φ(ξ) dξ, (7.16)

for x ≤ s, x, s ∈ Ω, then

u(s) ≥ φ(x) exp

(
−a(s)

s∫

x

b(ξ) dξ

)
, (7.17)

for x ≤ s, x, s ∈ Ω.
(ii) If

u(s) ≥ φ(x) − a(s)

[ s∫

x

b(ξ)φ(ξ) dξ +

s∫

x

b(ξ)

( s∫

ξ

c(ρ)φ(ρ) dρ

)
dξ

]
, (7.18)

for x ≤ s, x, s ∈ Ω, then

u(s) ≥ φ(x)

[
1 + a(s)

( s∫

x

b(ξ) exp

( s∫

x

[
a(s)b(ρ) + c(ρ)

]
dρ

)
dξ

)]
, (7.19)

for x ≤ s, x, s ∈ Ω.

Remark 7.1. Note that the method employed in the proofs of the forego-
ing theorems can also be used to obtain n-independent-variable versions of
various inequalities given in earlier section. Since this translation is quite
straightforward in view of the results given in this section, it is left to the
reader to fill in the details where needed.
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Young [80] extended Snow’s technique to n independent variables. Bondge
and Pachpatte [19] gave more general integral inequalities in n independent
variables by using Young’s technique. The inequalities given in Bondge
and Pachpatte [19] are further generalizations of the inequalities given by
Pachpatte [18]. Next, we deal with the inequalities given by Young [80]
and Bondge and Pachpatte [19], which have many important applications
in the theory of partial differential and integro-differential equations in n
independent variables.

The following inequality is established by Young [80].

Theorem 7.5 (Young, 1973). Let φ(x), a(x), and b(x) ≥ 0 be nonnega-
tive continuous functions in Ω ⊂ Rn. Let v(ξ;x) be a solution of the char-
acteristic initial value problem

(−1)nvξ1,...,ξn
(ξ;x)− b(ξ)v(ξ;x) = 0 in Ω,

v(ξ;x) = 1 on ξi = xi, i = 1, . . . , n
(7.20)

and let D+ be a connected subdomain of Ω containing x such that v ≥ 0 for
all ξ ∈ D+. If D ⊂ D+ and

φ(x) ≤ a(x) +

x∫

x0

b(ξ)φ(ξ) dξ, (7.21)

then

φ(x) ≤ a(x) +

x∫

x0

a(ξ)b(ξ)v(ξ;x) dξ. (7.22)

Remark 7.2. The existence and regularity property of v can be deduced
from Courant and Hilbert [28]( see also Copson [27]; Garbedian, [33]). In-
deed, the problem (7.20) is equivalent to the integral equation

v(ξ;x) = 1 +

x∫

ξ

b(η)v(η;x) dη.

The following two theorems given by Bondge and Pachpatte [19] provide
an extension to the case of n independent variables – the quite general
results established by Pachpatte [51].

Theorem 7.6 (Bondge and Pachpatte, 1980). Let φ(x), a(x), b(x), c(x),
and σ(x) be nonnegative continuous functions in Ω ⊂ Rn. Let v(ξ;x) be a
solution of the characteristic initial value problem

(−1)nvξ1,...,ξn
(ξ;x) − [b(ξ) + c(ξ)]v(ξ;x) = 0 in Ω,

v(ξ;x) = 1 on ξi = xi, 1 ≤ i ≤ n,
(7.23)
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and let D+ be a connected subdomain of Ω containing x such that v ≥ 0 for
all ξ ⊂ D+. If D ∈ D+ and

φ(x) ≤ a(x) +

x∫

x0

b(ρ)φ(ρ) dρ+

x∫

x0

b(ρ)

[
σ(ρ) +

ρ∫

x0

c(ξ)φ(ξ) dξ

]
dρ, (7.24)

then

φ(x) ≤ a(x)+

+

x∫

x0

b(ρ)

[
a(ρ)+σ(ρ)+

ρ∫

x0

{
a(ξ)c(ξ)+b(ξ)

[
a(ξ)+σ(ξ)

]}
v(ξ; ρ) dξ

]
dρ. (7.25)

Theorem 7.7 (Bondge and Pachpatte, 1980). Let φ(x), a(x), b(x), c(x),
and k(x) be nonnegative continuous functions defined on Ω ⊂ Rn. Let v(ξ;x)
and w(ξ;x) be the solutions of the characteristic initial value problems

(−1)nvξ1,...,ξn
(ξ;x)−

[
b(ξ) + c(ξ) + k(ξ)

]
v(ξ;x) = 0 in Ω,

v(ξ;x) = 1 on ξi = xi, 1 ≤ i ≤ n,
(7.26)

and

(−1)nwξ1,...,ξn
(ξ;x) −

[
b(ξ)− c(ξ)

]
w(ξ;x) = 0 in Ω,

w(ξ;x) = 1 on ξi = xi, 1 ≤ i ≤ n,
(7.27)

respectively and let D+ be a connected subdomain of Ω containing x such
that v ≥ 0, w ≥ 0 for all ξ ∈ D+. If D ⊂ D+ and

φ(x) ≤ a(x) +

x∫

x0

b(ρ)φ(ρ) dρ +

x∫

x0

c(ρ)

( ρ∫

x0

k(ξ)φ(ξ) dξ

)
dρ, (7.28)

then

φ(x)≤a(x)+

x∫

x0

w(ρ;x)

[
a(ρ)b(ρ)+c(ρ)

ρ∫

x0

a(ξ)[b(ξ)+k(ξ)]v(ξ; ρ) dξ

]
dρ. (7.29)

The inequalities established in the following two theorems by Bondge and
Pachpatte [19] can be used in certain applications.

Theorem 7.8 (Bondge and Pachpatte, 1980). Let φ(x), a(x), b(x), c(x),
and d(x) be nonnegative continuous functions defined on Ω ⊂ Rn. Let v(ξ;x)
and w(ξ;x) be the solutions of the characteristic initial value problems

(−1)nvξ1,...,ξn
(ξ;x) −

[
b(ξ) + c(ξ) + d(ξ)

]
v(ξ;x) = 0 in Ω,

v(ξ;x) = 1 on ξi = xi, 1 ≤ i ≤ n,
(7.30)

and
(−1)nwξ1,...,ξn

(ξ;x)− b(ξ)w(ξ;x) = 0 in Ω,

w(ξ;x) = 1 on ξi = xi, 1 ≤ i ≤ n,
(7.31)
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respectively and let D+ be a connected subdomain of Ω containing x such
that v ≥ 0, w ≥ 0 for all ξ ∈ D+. If D ⊂ D+ and

φ(x) ≤ a(x) +

x∫

x0

b(η)φ(η) dη +

x∫

x0

b(η)

( η∫

x0

c(ρ)φ(ρ) dρ

)
dη+

+

x∫

x0

b(η)

( η∫

x0

c(ρ)

( ρ∫

x0

d(ξ)φ(ξ) dξ

)
dρ

)
dη, (7.32)

then

φ(x) ≤ a(x) +

x∫

x0

b(η)

[
a(η) +

η∫

x0

w(ρ; η)

(
a(ρ)

[
b(ρ) + c(ρ)

]
+

+ c(ρ)

ρ∫

x0

a(ξ)
[
b(ξ) + c(ξ) + d(ξ)

]
v(ξ; ρ) dξ

)
dρ

]
dη. (7.33)

Theorem 7.9 (Bondge and Pachpatte, 1980). Let φ(x), a(x), b(x), c(x),
d(x), p(x) and q(x) be nonnegative continuous functions defined on Ω ⊂ Rn.
Let v(ξ;x), w(ξ;x) and e(ξ;x) be the solutions of the characteristic initial
value problems

(−1)nvξ1,...,ξn
(ξ;x)−

[
b(ξ)+c(ξ)+d(ξ)+p(ξ)+q(ξ)

]
v(ξ;x)=0 in Ω,

v(ξ;x) = 1 on ξi = xi, 1 ≤ i ≤ n,
(7.34)

and

(−1)nwξ1,...,ξn
(ξ;x)−

[
b(ξ) + c(ξ) + d(ξ)− p(ξ)

]
w(ξ;x) = 0 in Ω,

w(ξ;x) = 1 on ξi = xi, 1 ≤ i ≤ n,
(7.35)

and

(−1)neξ1,...,ξn
(ξ;x) −

[
b(ξ)− c(ξ)

]
e(ξ;x) = 0 in Ω,

e(ξ;x) = 1 on ξi = xi, 1 ≤ i ≤ n,
(7.36)

respectively and let D+ be a connected subdomain of Ω containing x such
that v ≥ 0, w ≥ 0 for all ξ ∈ D+. If D ⊂ D+ and

φ(x) ≤ a(x) +

x∫

x0

b(η)φ(η) dη +

x∫

x0

c(η)

( η∫

x0

d(ρ)φ(ρ) dρ

)
dη+

+

x∫

x0

c(η)

( η∫

x0

p(ρ)

( ρ∫

x0

q(ξ)φ(ξ) dξ

)
dρ

)
dη, (7.37)
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then

φ(x) ≤ a(x) +

x∫

x0

e(η;x)

[
a(η)b(η) + c(η)

η∫

x0

w(ρ; η)

(
a(ρ)[b(ρ) + d(ρ)]+

+ p(ρ)

ρ∫

x0

a(ξ)
[
b(ξ) + c(ξ) + d(ξ) + q(ξ)

]
v(ξ; ρ) dξ

)
dρ

]
dη. (7.38)

8. Multidimensional Nonlinear Integral Inequalities

The integral inequalities involving functions of many independent vari-
ables, which provide explicit bounds on unknown functions play a funda-
mental role in the development of the theory of partial differential equations.
The last few years have witnessed a great deal of research concerning such
inequalities and their applications in the theory of partial differential equa-
tions. This section deals with some basic inequalities established in Pelczar
[70], Headley [40], Beesack [10] and Pachpatte [58] which provide a very
useful and important device in the study of many qualitative properties of
the solutions of various types of partial differential, integral, and integro-
differential equations.

Pelczar [70] initiated the study of some inequalities for a broad class of
operators. In order to present the main results in Pelczar [70] we need the
following definitions found there.

We call a set P partly ordered if, for some pairs of elements x, y ∈ P, a
relation x ≤ y is defined in such a way that:

(a) for each x ∈ P , x ≤ x,
(b) if x ≤ y and y ≤ x then x = y and
(c) if x ≤ y and y ≤ z, then x ≤ z.
Let P be a partly ordered set and Q ⊂ P. We call z the upper bound of

Q in P if z ∈ P, x ∈ Q, and x ≤ ẑ. We call ẑ the supremum of the set
Q (abbreviated supQ) if ẑ is an upper bound of Q in P and x ≤ ẑ. Each
partially ordered set can have at most one supremum.

The set P will be said to satisfy the condition (II) if the difference x−y ∈
P is defined for each x, y ∈ P in such a way that

(d) if x ≤ y, then for each x ∈ P, x− z ≤ y − z,
(e) there exists an element 0 ∈ P, such that for each x ∈ p, x−0 = x and
(f) x = y if and only if x− y = 0.
The set P will be said to satisfy the condition (II*) if, for each x, y ∈ P,

there exists in P , z = sup{x, y}.
The main result established by Pelczar [70] in embodied in the following

theorem.

Theorem 8.1 (Pelczar, 1963). Assume that
(a1) The set P is not empty, partly ordered and fulfils the conditions (II)

and (II*),
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(a2) the functions W (x) and L(x) are defined in the set P and are such
that W (p) ⊂ P and L(P ) ⊂ P,

(a3) if x ≤ L(x), then x ≤ 0,
(a4) if x ≤ y, then W (x) ≤W (y),
(a5) if 0 ≤W (x) −W (y), then W (x)−W (y) ≤ L(x− y),
(a6) w is a solution of the equation

w = W (w), (8.1)

(a7) v ∈ P is such that

v ≤W (v). (8.2)

Then we have

v ≤ w. (8.3)

As an application, consider the following equation

u(x) = f(x) +

∫

E

F (x, y, u(y)) dy, (8.4)

where x = (x1, . . . , xn), y = (y1, . . . , yn) and E is an n-dimensional set, and
the inequality

v(x) ≤ f(x) +

∫

E

F (x, y, v(y)) dy. (8.5)

Using Theorem 8.1, Pelczar [70] proved the following important result.

Theorem 8.2 (Pelczar, 1963). Assume that
(b1) F (x, y, z) is defined and is continuous in E×E×R, R = (−∞,∞, )
(b2) f(x) is defined and is continuous in E,
(b3) if x ≤ ẑ, then F (x, y, z) ≤ F (x, y, ẑ),
(b4) if |F (x, y, z)−F (x, y, ẑ)| ≤ l(x, y, |z−ẑ|), where the function l(x, y, z)

is defined in E ×E ×R and is such that if

w(x) ≤

∫

E

l(x, y, w(y)) dy,

then

W (x) ≤ 0,

(b5) u(x) is a solution of equation (8.4) in E,
(b6) v(x) is a continuous function defined in E and fulfils the inequality

(8.5). Then in the set E we have

v(x) ≤ u(x). (8.6)

In order to establish the next theorem, given by Headly [40], we require
the following result, given in Beesack [10, p. 88].
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Theorem 8.3 (Beesack, 1975). Let G be an open set in RN , and for
x, y ∈ G let

G(x, y) =
{
z ∈ RN : zj = λjxj + (1− λj)yj , 0 ≤ λj ≤ 1, 1 ≤ j ≤ N

}
,

denote the rectangular parallelepiped with one diagonal joining the points
x, y. Let the points x0, y ∈ G be such that G0 = G(x0, y) ⊂ G, and let
the functions a(x), k(x, t, z) be real-valued and continuous on G0 and on
GT ×R respectively, where

GT =
{
(x, t) : x ∈ G0, t ∈ G(x0, x)

}
.

Suppose also that k is nondecreasing in z for each (x, t) ∈ GT and that

|k(x, t, z)| ≤ h(t)g(|z|), (8.7)

for (x, t, z) ∈ GT × R, where h ∈ L(G0) and g is continuous and nonde-

creasing on R+ with
∞∫
1

ds/g(s) = ∞. Then the integral equation

u(x) = a(x) +

∫

G(x0,x)

k(x, t, u(t)) dt, (8.8)

has a solution which is continuous on G0. Moreover, if {εn} is a strictly
decreasing sequence with lim εn = 0, and if un is a continuous solution on
G0 of the integral equation

u(x) = a(x) + εn +

∫

G(x0,x)

k(x, t, un(t)) dt, (8.9)

then U(x) = limun(x) exists uniformly on G0, and U(x) is the maximal
solution of (8.11).

Headley [40, Theorem 1] considered the case of Theorem 8.3 with k =
k(t, z) continuous on G0 ×R and nondecreasing in z. Hypothesis (8.7) was
overlooked in [40] and in the case k = k(t, z) of the following theorem given
by Headley [40, Theorem 2].

Theorem 8.4 (Headley, 1974). Let G, G0 = G(x0, y) and the functions
a(x), k(x, t, z) be as in Theorem 8.3, and let the function v be continuous
on G0 and satisfy the inequality

v(x) ≤ a(x) +

∫

G(x0,x)

k(x, t, v(t)) dt, x ∈ G0. (8.10)

Then

v(x) ≤ U(x), x ∈ G0, (8.11)

where U is the maximal solution of (8.11) on G0.
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In our further discussion, some useful integral inequalities in n indepen-
dent variables given by Pachpatte [58] are presented. These are motivated
by a well-known integral inequality due to Ważeski [76]. We use the same
notation as given in Section 3.7 without further mention. Pachpatte [58]
gave the following general version of Ważeski’s inequality given in Ważeski
[76].

Theorem 8.5 (Pachpatte, 1981). Let u(x) and a(x) be nonnegative con-
tinuous functions defined on Ω. Let k(x, y, z) and W (x, x) be nonnegative
continuous functions defined on Ω2 × R and Ω× R, respectively, and non-
decreasing in the last variables, and k(x, y, z) be uniformly Lipschitz in the
last variable. If

u(x) ≤ a(x) +W

(
x,

x∫

x0

k(x, t, u(y)) dy

)
, (8.12)

then
u(x) ≤ a(x) +W (x, r(x)), (8.13)

for x ∈ Ω, where r(x) is the solution of the equation

r(x) =

x∫

x0

k
(
x, t, a(y) +W (y, r(y))

)
dy, (8.14)

existing on Ω.

The following inequality established by Pachpatte [58] combines the fea-
tures of two inequalities, namely, the n− independent-variable generaliza-
tion of Wendroff’s inequality, and the integral inequality given by Headley
[40, Theorem 2]. This inequality can be used more effectively in the theory
of certain integral and integro-differential equations involving n independent
variables.

Theorem 8.6 (Pachpatte, 1981). Let u(x), f(x), g(x), q(x), and c(x)
be nonnegative continuous functions defined on Ω, with f(x) > 0 and non-
decreasing in x and q(x) ≥ 1. Let k(x, y, z) and W (x, x) be nonnegative
continuous functions defined on Ω2×R and Ω×R, respectively; let k(x, y, z)
be nondecreasing in x and z and is uniformly Lipschitz in z and W (x, z) is
nondecreasing in both x and z. If

u(x) ≤ f(x) + q(x)

[ x∫

x0

g(y)u(y) dy +

x∫

x0

g(y)q(y)

( y∫

x0

c(s)u(s) ds

)
dy

]
+

+W

(
x,

x∫

x0

k(x, t, u(y)) dy

)
, (8.15)

for x ∈ Ω, then
u(x) ≤ E0(x)

[
f(x) +W (x, r(x))

]
, (8.16)
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for x ∈ Ω, where

E0(x) = q(x)

[
1 +

x∫

x0

g(y)q(y) exp

( y∫

x0

q(s)[g(s) + c(s)] ds

)
dy

]
, (8.17)

and r(x) is the solution of the equation

r(x) =

x∫

x0

k
(
x, y, E0(y)

[
f(y) +W (y, r(y))

])
dy, (8.18)

existing on Ω.

Another interesting and useful integral inequality given by Pachpatte
[58] in n independent variables involving two nonlinear functions on the
right-hand side of the inequality is embodied in the following theorem.

Theorem 8.7 (Pachpatte, 1981). Let u(x), f(x), g(x), q(x), and c(x)
be nonnegative continuous functions defined on Ω, with f(x) ≥ 1 and non-
decreasing in x and q(x) ≥ 1. Let k(x, y, z) and W (x, x) be nonnegative
continuous functions defined on Ω2 × R and Ω × R, respectively; k(x, y, z)
is nondecreasing in x and z and is uniformly Lipschitz in z and W (x, z) is
nondecreasing in both x and z. Let H : R+ → R+ be continuously differen-
tiable function with H(u) > 0 for u > 0, H ′(u) ≥ 0 for u ≥ 0 and satisfy
(1/v)H(u) ≤ H(u/v) for v ≥ 1, u ≥ 0 and H(u) is submultiplicative for
u ≥ 0. If

u(x) ≤ f(x) + q(x)

x∫

x0

g(y)H(u(y)) dy +W

(
x,

x∫

x0

k(x, t, u(y)) dy

)
, (8.19)

for x ∈ Ω, then for x ∈ Ω1 ⊂ Ω, then

u(x) ≤ E1(x)
[
f(x) +W (x, r(x))

]
, (8.20)

where

E1(x) = q(x)G−1

[
G(1) +

x∫

x0

g(y)H(q(y)) dy

]
, (8.21)

in which

G(v) =

v∫

v0

ds

H(s)
, v > 0, v0 > 0, (8.22)

G−1 is the inverse of G and

G(1) +

x∫

x0

g(y)H(q(y)) dy ∈ Dom(G−1),
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for x ∈ Ω, and r(x) is the solution of the equation

r(x) =

x∫

x0

k(x, y, E1(y)[f(y) +W (y, r(y))]) dy, (8.23)

existing on Ω.

Pachpatte [58] gave the following inequality, which can be used in more
general situations.

Theorem 8.8 (Pachpatte, 1981). Let u(x), f(x), and g(x) be nonnega-
tive continuous functions defined on Ω, with f(x) ≥ 1 and nondecreasing in
x and q(x) ≥ 1. Let k(x, y, z) and w(x, x) be nonnegative continuous func-
tions defined on Ω2 ×R and Ω×R, respectively; k(x, y, z) is nondecreasing
in x and z and is uniformly Lipschitz in z and W (x, z) is nondecreasing in
both x and z. Let H : R+ → R+ be continuously differentiable function with
H(u) > 0 for u > 0, H ′(u) ≥ 0 for u ≥ 0 and satisfies (1/v)H(u) ≤ H(u/v)
for v ≥ 1, u ≥ 0. If

u(x) ≤ f(x) +

x∫

x0

g(y)

(
u(y) +

y∫

x0

g(s)H(u(s)) ds

)
dy+

+W

(
x,

x∫

x0

k(x, t, u(y)) dy

)
, (8.24)

for x ∈ Ω, then for x ∈ Ω2 ⊂ Ω,

u(x) ≤ E2(x)
[
f(x) +W (x, r(x))

]
, (8.25)

where

E2(x) = 1 +

x∫

x0

q(y)F−1

[
F (1) +

y∫

x0

g(s) ds

]
dy, (8.26)

in which

F (σ) =

σ∫

σ0

ds

s+H(s)
, σ > 0, σ0 > 0, (8.27)

F−1 is the inverse of F and

F (1) +

y∫

x0

g(s) ds ∈ Dom(F−1),

for x ∈ Ω2, and r(x) is the solution of the equation

r(x) =

x∫

x0

k(x, y, E2(y)[f(y) +W (y, r(y))]) dy, (8.28)

existing on Ω.
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The details of the proof of this theorem follow by an argument similar to
that in the proof of Theorem 8.7 and the details are omitted here.

Pachpatte[58] has established the following generalization of the integral
inequality given by Young [80].

Theorem 8.9 (Pachpatte, 1981). Let u(x), a(x), b(x), c(x), f(x), and
g(x) be nonnegative continuous functions defined on Ω with f(x) > 0 and
nondecreasing in x. Let k(x, y, z) and W (x, x) be nonnegative continuous
functions defined on Ω2 × R and Ω × R, respectively; let k(x, y, z) be non-
decreasing in x and z and be uniformly Lipschitz in z and W (x, z) be non-
decreasing in both x and z. Let v(y;x) and e(y;x) be the solutions of the
characteristic initial value problems

(−1)nvy1···yn
(y;x)−

[
a(y)b(y) + a(y)g(y) + c(y)

]
v(y;x) = 0 in Ω,

v(y;x) = 1 on yi = xi, 1 ≤ i ≤ n,
(8.29)

and

(−1)ney1···yn
(y;x)−

[
a(y)b(y)− c(y)

]
e(y;x) = 0 in Ω,

e(y;x) = 1 on yi = xi, 1 ≤ i ≤ n,
(8.30)

respectively, and let D+ be a connected subdomain of Ω containing x such
that v ≥ 0, e ≥ 0 for all y ∈ D+. If D ⊂ D+ and

u(x) ≤ f(x) + a(x)

[ x∫

x0

b(y)u(y) dy +

x∫

x0

c(y)

( y∫

x0

g(s)u(s) ds

)
dy

]
+

+W

(
x,

x∫

x0

k(x, t, u(y)) dy

)
, (8.31)

for x ∈ Ω, then
u(x) ≤ E3(x)

[
f(x) +W (x, r(x))

]
, (8.32)

where

E3(x)=1+a(x)

[ x∫

x0

e(y;x)

{
b(y)+c(y)

( y∫

x0

[b(s)+g(s)]v(s; y) ds

)}
dy

]
, (8.33)

and r(x) is the solution of the equation

r(x) =

x∫

x0

k
(
x, y, E3(y)

[
f(y) +W (y, r(y))

])
dy, (8.34)

existing on Ω.

We now present some new nonlinear retarded Gronwall–Bellman-type
integral inequalities in many independent variables as following Theorems,
which can be used as effective tools in the study of certain integral equations.

In what follows, we adopt the following definitions and notational conven-
tions. Let Ω be an open bounded set in Rn and a point (x1, . . . , xn) in Ω be
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denoted by x. Let x0 and x(x0 < x) be any two points in Ω and
x∫

x0

· · · dξ de-

note the n-fold integral
x1∫
x0

1

· · ·
xn∫
x0

n

· · · dξn · · · dξ1, Di = ∂/∂xi, 1 ≤ i ≤ n. For

any pair x, s of points of Ω with x < s, D(x, s) = {x ∈ Rn : x ≤ ξ ≤ s} ⊂ Ω

and
s∫
x

· · · dξ the n-fold integral
s1∫
x1

· · ·
sn∫
xn

· · · dξn · · · dξ1. Given a continuous

function a : Ω → R+, we write

â(x) = max
{
a(y) : x0 ≤ y ≤ x

}
.

Theorem 8.10. Let u, a, c, f, g ∈ (Ω, R+, ) and ψ(u) be nondecreasing
continuous functions for u ∈ R+ with ψ(u) > 0 for u > 0. If

u(x) ≤ a(x) + c(x)

x∫

x0

f(y)

(
u(y) +

y∫

x0

g(s)ψ(u(s)) ds

)
dy,

for x ∈ Ω, then
(i) in the case ψ(u) ≤ u,

u(x) ≤ â(x) exp

( x∫

x0

[
ĉ(x)f(s) + g(s)

]
ds

)
, (8.35)

for all x ∈ Ω and
(ii) in the case ψ(u) > u,

u(x) ≤ H−1

(
H(â(x)) +

x∫

x0

[
ĉ(x)f(s) + g(s)

]
ds

)
, (8.36)

for all x0 ≤ x ≤ X1, where

H(r) =

r∫

r0

ds

ψ(s)
, r ≥ r0 > 0, (8.37)

H−1 denotes the inverse function of H and X1 is chosen so that

H(â(x)) + ĉ(x)

x∫

x0

[f(s) + g(s)] ds ∈ Dom(H−1).

for all x lying in the subintervals 0 ≤ x ≤ X1 of Ω.

Proof. Fixing any number X ∈ Ω with x0 ≤ x ≤ X, we assume that â(X)
is positive and define a positive function z(x) by

z(x) = â(X) + ĉ(X)

x∫

x0

f(y)

(
u(y) +

y∫

x0

g(s)ψ(u(s)) ds

)
dy,
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then z(x0) = â(X), u(x) ≤ z(x) and

D1 · · ·Dnz(x) = ĉ(X)f(x)

(
u(x) +

x∫

x0

g(s)ψ(u(s)) ds

)
≤

≤ ĉ(X)f(x)

(
z(x) +

x∫

x0

g(s)ψ(z(s)) ds

)
. (8.38)

If we put

v(x) = z(x) +

x∫

x0

g(s)ψ(z(s)) ds,

v(x) = z(x) on xj = x0
j , 1 ≤ j ≤ n, then D1 · · ·Dnz(x) ≤ ĉ(X)f(x)v(x),

z(x) ≤ v(x) and

D1 · · ·Dnv(x) ≤ ĉ(X)f(x)v(x) + g(x)ψ(v(x)). (8.39)

When ψ(v) ≤ v, from the inequality (8.39), we find

D1 · · ·Dnv(x)

v(x)
≤ ĉ(X)f(x) + g(x). (8.40)

From (8.40) and by using the facts that Dnv(x) ≥ 0, D1 · · ·Dn−1v(x) ≥ 0,
v(x) > 0 for x ∈ Ω, we observe that

D1 · · ·Dnv(x)

v(x)
≤ ĉ(X)f(x) + g(x) +

[Dnv(x)][D1 · · ·Dn−1v(x)]

[v(x)]2
,

i.e.

Dn

(
D1 . . .Dn−1v(x)

v(x)

)
≤ ĉ(X)f(x) + g(x). (8.41)

Keeping x1, . . . , xn−1 fixed in (8.41), we set xn = sn; then, integrating with
respect to sn from x0

n to xn we have

D1 · · ·Dn−1v(x)

v(x)
≤

≤

xn∫

x0
n

[
ĉ(X)f(x1, . . . , xn−1, sn) + g(x1, . . . , xn−1, sn)

]
dsn. (8.42)

Again as above, from (8.42) we observe that

Dn−1

(
D1 . . . Dn−2v(x)

v(x)

)
≤

≤

xn∫

x0
n

[
ĉ(X)f(x1, . . . , xn−1, sn) + g(x1, . . . , xn−1, sn)

]
dsn. (8.43)
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Keeping x1, . . . , xn−2 and xn fixed in (8.43), we set xn−1 = sn−1; then,
integrating with respect to sn−1 from x0

n−1 to xn−1 we have

D1 . . . Dn−2v(x)

v(x)
≤

≤

xn−1∫

x0

n−1

xn∫

x0
n

[
ĉ(X)f(x1, . . . , xn−2, sn−1, sn)+g(x1, . . . , xn−2, sn−1, sn)] dsn dsn−1.

Continuing in this way we have

D1v(x)

v(x)
≤

≤

x2∫

x0

2

· · ·

xn∫

x0
n

[
ĉ(X)f(x1, s2, . . . , sn) + g(x1, s2, . . . , sn)] dsn · · · ds2. (8.44)

Keeping x2, . . . , xn fixed in (8.44), we set x1 = s1; then, integrating with
respect to s1 from x0

1 to x1 we have

v(x) ≤ â(X) exp

( x∫

x0

[
ĉ(X)f(s) + g(s)

]
ds

)
. (8.45)

Taking X = x and using u(x) ≤ z(x) ≤ v(x) in the inequality (8.45), since
X is arbitrary, we get the required inequality (8.35).

When ψ(v) > v, from the inequality (8.39), we find

D1 · · ·Dnv(x)

ψ(v(x))
≤ ĉ(X)f(x) + g(x). (8.46)

The rest of the proof is immediate by analogy with the last argument when
ψ(v) ≤ v, together with the definition of the function H.

If â(X) = 0 we carry out the above procedure with ε > 0 instead of â(X)
and subsequently let ε→ 0. This completes the proof. �

Theorem 8.10 can easily be applied to generate other useful nonlinear
integral inequalities in more general situations. For example, we have the
following result (Theorems 8.11–12).

Theorem 8.11. Let u, a, c, f, g ∈ (Ω, R+, ) and ψ(u) be a nondecreas-
ing continuous function for u ∈ R+ with ψ(u) > 0 for u > 0. Suppose that
ϕ ∈ C1(R+, R+) is an increasing function with ϕ(∞) = ∞ and ϕ′(u) is a
nondecreasing continuous function for u ∈ R+. If

ϕ(u(x)) ≤ a(x)+

+ c(x)

x∫

x0

f(y)

(
u(y)ϕ′(u(y)) +

y∫

x0

g(s)ϕ′(u(s))ψ(u(s)) ds

)
dy, (8.47)
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for x ∈ Ω, then
(i) in the case ψ(ϕ−1(z)) ≤ ϕ−1(z) for z ∈ R+,

u(x) ≤ ϕ−1(â(x)) exp

( x∫

x0

[
ĉ(x)f(y) + g(y)

]
dy

)
, (8.48)

for all x, y ∈ Ω,
(ii) in the case ψ(ϕ−1(z)) > ϕ−1(z) for z ∈ R+,

u(x) ≤ H−1

(
H(ϕ−1(â(x))) +

x∫

x0

[
ĉ(x)f(y) + g(y)

]
dy

)
, (8.49)

for all x0 ≤ x ≤ X, where

H(r) =

r∫

r0

ds

ψ(s)
, r ≥ r0 > 0, (8.50)

H−1 denotes the inverse function of H and X is so chosen so that

H(ϕ−1(â(x))) + ĉ(x)

x∫

x0

[f(y) + g(y)] dy ∈ Dom(H−1).

for all x, y lying in the subintervals 0 ≤ x ≤ X of Ω.

Proof. Fixing any numbers X ∈ Ω with x0 ≤ x ≤ X, we assume that â(X)
is positive and define a positive function z(x) by

z(x)= â(X)+ĉ(X)

x∫

x0

f(y)

(
u(y)ϕ′(u(y))+

y∫

x0

g(s)ϕ′(u(s))ψ(u(s)) ds

)
dy,

then z(x0
1, x2, . . . , xn) = â(X), u(x) ≤ ϕ−1(z(x)) and

D1z(x) =

= ĉ(X)

x2∫

x0

2

· · ·

xn∫

x0
n

f(x1, y2, . . . , yn)

(
u(x1, y2, . . . , yn)ϕ′(u(x1, y2, . . . , yn))+

+

x1∫

x0

1

y2∫

x0

2

· · ·

yn∫

x0
n

g(s)ϕ′(u(s))ψ(u(s)) ds

)
dyn · · · dy2 ≤

≤ ϕ′(ϕ−1(z(x)))ĉ(X)

x2∫

x0

2

· · ·

xn∫

x0
n

f(x1, y2, . . . , yn)

(
ϕ−1(z(x1, y2, . . . , yn))+

+

x1∫

x0

1

y2∫

x0

2

· · ·

yn∫

x0
n

g(s)ψ(ϕ−1(z(s))) ds

)
dyn · · · dy2,
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i.e.

D1z(x)

ϕ′(ϕ−1(z(x)))
≤

≤ ĉ(X)

x2∫

x0

2

· · ·

xn∫

x0
n

f(x1, y2, . . . , yn)

(
ϕ−1(z(x1, y2, . . . , yn))+

+

x1∫

x0

1

y2∫

x0

2

· · ·

yn∫

x0
n

g(s)ψ(ϕ−1(z(s))) ds

)
dyn · · · dy2. (8.51)

Keeping x2, . . . , xn fixed in (8.51), we set x1 = s1; then, integrating with
respect to s1 from x0

1 to x1 we have

ϕ−1(z(x)) ≤ ϕ−1(â(X))+

+ĉ(X)

x∫

x0

f(y)

(
ϕ−1(z(y))+

y∫

x0

g(s)ψ(ϕ−1(z(s))) ds

)
dy. (8.52)

Taking X = x, since X is arbitrary, by applying Theorem 8.10 to (8.52), we
get the required inequalities (8.48) and (8.49) from the inequality u(x) ≤
ϕ−1(z(x)).

If â(X) = 0, we carry out the above procedure with ε > 0 instead of
â(X) and subsequently let ε→ 0. This completes the proof. �

Theorem 8.12. Let u, a, c, f, g ∈ (Ω, R+, ) and ψi(u), i = 1, 2 be non-
decreasing continuous functions for u ∈ R+ with ψi(u) > 0 for u > 0.
Suppose that ϕ ∈ C(R+, R+) is an increasing function with ϕ(∞) = ∞. If

ϕ(u(x)) ≤ a(x) + c(x)

x∫

x0

f(y)

(
ψ1(u(y)) +

y∫

x0

g(s)ψ2(u(s)) ds

)
dy, (8.53)

for x, y ∈ Ω, then
(i) in the case ψ1(ϕ

−1(z)) ≤ ψ2(ϕ
−1(z)) for z ∈ R+,

u(x) ≤ ϕ−1

[
H−1

2

(
H2(â(x)) + ĉ(x)

x∫

x0

f(y)

(
1 +

y∫

x0

g(s) ds

)
dy

)]
, (8.54)

for all x0 ≤ x ≤ X, where

H2(r) =

r∫

r0

ds

ψ2(ϕ−1(s))
, r ≥ r0 > 0, (8.55)
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H−1
2 denotes the inverse function of H2, X is chosen so that

H2(â(x)) + ĉ(x)

x∫

x0

f(y)

(
1 +

y∫

x0

g(s) ds

)
dy ∈ Dom(H−1

2 )

for all x lying in the subintervals x0 ≤ x ≤ X of Ω,
(ii) in the case ψ1(ϕ

−1(z)) > ψ2(ϕ
−1(z)) for z ∈ R+,

u(x) ≤ ϕ−1

[
H−1

1

(
H1(â(x)) + ĉ(x)

x∫

x0

f(y)

(
1 +

y∫

x0

g(s) ds

)
dy

)]
, (8.56)

for all x0 ≤ x ≤ Y, where

H1(r) =

r∫

r0

ds

ψ1(ϕ−1(s))
, r ≥ r0 > 0, (8.57)

H−1
1 denotes the inverse function of H1, Y is so chosen that

H1(â(x)) + ĉ(x)

x∫

x0

f(y)

(
1 +

y∫

x0

g(s) ds

)
dy ∈ Dom(H−1

1 )

for all x lying in the subintervals x0 ≤ x ≤ Y of Ω.

Proof. Fixing any numbers X with x0 ≤ x ≤ X, we assume that â(X) is
positive and define a positive function z(x) by

z(x) = â(X) + ĉ(X)

x∫

x0

f(y)

(
ψ1(u(y)) +

y∫

x0

g(s)ψ2(u(s)) ds

)
dy,

then z(x0
1, x2, . . . , xn) = â(X), u(x) ≤ ϕ−1(z(x)) and

D1z(x) = ĉ(X)

x2∫

x0

2

· · ·

xn∫

x0
n

f(x1, y2, . . . , yn)

(
ψ1(u(x1, y2, . . . , yn))+

+

x1∫

x0

1

y2∫

x0

2

· · ·

yn∫

x0
n

g(s)ψ2(u(s)) ds

)
dyn · · · dy2 ≤

≤ ĉ(X)

x2∫

x0

2

· · ·

xn∫

x0
n

f(x1, y2, . . . , yn)

(
ψ1

(
ϕ−1(z(x1, y2, . . . , yn))

)
+

+

x1∫

x0

1

y2∫

x0

2

· · ·

yn∫

x0
n

g(s)ψ2(ϕ
−1(z(s))) ds

)
dyn · · · dy2. (8.58)
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When ψ1(ϕ
−1(z)) ≤ ψ2(ϕ

−1(z)), from the inequality (8.58), we find

D1z(x)

ψ2(ϕ−1(z(x)))
≤

≤ ĉ(X)

x2∫

x0

2

· · ·

xn∫

x0
n

f(x1, y2, . . . , yn)

(
1 +

x1∫

x0

1

y2∫

x0

2

· · ·

yn∫

x0
n

g(s) ds

)
dyn · · · dy2.

(8.59)

Keeping x2, . . . , xn fixed in (8.51), we set x1 = s1; then, integrating with
respect to s1 from x0

1 to x1 and using the definition of H2, we have

H2(z(x)) ≤ H2(â(X)) + ĉ(X)

x∫

x0

f(y)

(
1 +

y∫

x0

g(s) ds

)
dy. (8.60)

TakingX = x in (8.60), sinceX was arbitrary, we get the required inequality
(8.54) from the inequality u(x) ≤ ϕ−1(z(x)).

When ψ1(ϕ
−1(z)) > ψ2(ϕ

−1(z)), by following the same argument as in
the proof below the inequality (8.58), we get the required inequality (8.56).

If â(X) = 0 we carry out the above procedure with ε > 0 instead of â(X)
and subsequently let ε→ 0. This completes the proof. �

For the special case ψ1(u) = ϕ(u), Theorem 6.12 gives the following
integral inequality for nonlinear functions.

Corollary 8.13. Let u, a, c, f, g ∈ (Ω, R+, ) and ψ(u) be a nondecreas-
ing continuous function for u ∈ R+ with ψ(u) > 0 for u > 0. Suppose that
ϕ ∈ C(R+, R+) is an increasing function with ϕ(∞) = ∞. If

ϕ(u(x)) ≤ a(x) + c(x)

x∫

x0

f(y)

(
ϕ(u(y)) +

y∫

x0

g(s)ψ(u(s)) ds

)
dy,

for x ∈ Ω, then
(i) in the case ψ(ϕ−1(z)) ≤ z for z ∈ R+,

u(x) ≤ ϕ−1

[
â(x) exp

(
ĉ(x)

x∫

x0

f(y)

(
1 +

y∫

x0

g(s) ds

)
dy

)]
,

for all x ∈ Ω.
(ii) in the case ψ(ϕ−1(z)) > z for z ∈ R+,

u(x) ≤ ϕ−1

[
H−1

(
H(â(x)) + ĉ(x)

x∫

x0

f(y)

(
1 +

y∫

x0

g(s) ds

)
dy

)]
,
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for all x0 ≤ x ≤ Y , where

H(r) =

r∫

r0

ds

ψ(ϕ−1(s))
, r ≥ r0 > 0, (8.61)

H−1 denotes the inverse function of H, Y is so chosen that

H(â(x)) + ĉ(x)

x∫

x0

f(y)

(
1 +

y∫

x0

g(s) ds

)
dy ∈ Dom(H−1)

for all x lying in the subintervals 0 ≤ x ≤ Y of Ω.

9. Applications

Most of the inequalities given here are recently investigated and can be
used as tools in the study of various branches of partial differential, integral,
and integro-differential equations. Akinyele [7] applied inequalities to a cer-
tain nonlinear hyperbolic functional integro-differential equations; Bondge
and Pachpatte [17], [18] applied these to some differential and integral equa-
tions as well as nonlinear hyperbolic partial differential equations; Ghoshal
and Masood [34] and Ghoshal at al. [35] applied them to a non-linear non-
self-adjoint vector hyperbolic partial differential equations; Pachpatte [51],
[54], [56]–[58] applied inequalities to nonlinear hyperbolic integro-differential
equations and to nonlinear non-self-adjoint hyperbolic partial differential
equations; Shastri and Kasture [70] applied them to scalar hyperbolic dif-
ferential equations; Singare and Pachpatte [71] applied these to nonlinear
integral equations; Snow [74] applied inequalities to nonlinear vector hyper-
bolic partial differential equation; Yang [77], [78] applied them to Volterra
integral equations and hyperbolic integro-partial differential equations.

In this section we present application of some of the inequalities given in
earlier sections to study the qualitative behavior of the solutions of certain
partial differential and integro-differential equations. We first consider a
nonlinear hyperbolic partial differential equation of the form

D2D1z(x, y) =
n∑

i=1

Fi[x, y, z(x, y)], (9.1)

with the given boundary conditions

z(x, 0) = e1(x), z(0, y) = e2(y), e1(0) = e2(0) = 0, (9.2)

where e1, e2 ∈ C(R+, R), Fi ∈ C(R2
+ ×R,R), i = 1, . . . , n.

The following theorem deals with boundedness on the solution of the
problem (9.1).

Theorem 9.1. Assume that Fi : R2
+ × R → R, i = 1, . . . , n are con-

tinuous functions for which there exist continuous non-negative functions
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a(x, y), fi(x, y), gi(x, y), i = 1, . . . , n for x, y ∈ R+ such that
{∣∣Fi(x, y, u)

∣∣ ≤ |u|q
{
fi(x, y)ψ(|u|) + gi(x, y)

}
,∣∣e1(x) + e2(y)

∣∣ ≤ a(x, y),
(9.3)

where 0 < q < 1 is a constant, and ψ(u) is a nondecreasing continuous
function for u ∈ R+ with ψ(u) > 0 for u > 0. If z(x, y) is any solution of
the problem (9.1) with the condition (9.2), then

|z(x, y)| ≤

[
G−1

1

(
G1(k1(0, y)) + (1− q)

n∑

i=1

x∫

0

y∫

0

fi(s, t) dt ds

)] 1

1−q

(9.4)

for all (x, y) ∈ [0, x1]× [0, y1], where

k1(0, y) = [a(x, y)]1−q + (1− q)

n∑

i=1

x∫

0

y∫

0

gi(s, t) dt ds,

G1(r) =

r∫

r0

ds

ψ(s
1

1−q )
, r ≥ r0 > 0,

(9.5)

G−1
1 denotes the inverse function of G1 and x1, y1 ∈ R+ are so chosen that

G1(k1(0, y)) + (1− q)
n∑

i=1

x∫

0

y∫

0

fi(s, t) dt ds ∈ Dom(G−1
1 ).

Proof. It is easy to see that the solution z(x, y) of the problem (9.1) satisfies
the equivalent integral equation:

z(x, y) = e1(x) + e2(y) +
n∑

i=1

x∫

0

y∫

0

Fi(s, t, z(s, t)) dt ds. (9.6)

From (9.3) and making the change of variables, we have

|z(x, y)| ≤ |e1(x) + e2(y)|+

n∑

i=1

x∫

0

y∫

0

∣∣Fi(s, t, z(s, t))
∣∣ dt ds ≤

≤ a(x, y) +

n∑

i=1

x∫

0

y∫

0

|z(s, t)|q
{
fi(s, t)ψ(|z(s, t)|) + gi(s, t)

}
dt ds. (9.7)

Now, a suitable application of the inequality given in Theorem 4.14 or Corol-
lary 4.16 to (9.7) yields the desired result. �

Theorem 9.2. Assume that Fi : 4×R→ R, i = 1, . . . , n are continuous
functions for which there exist continuous non-negative functions a(x, y),
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fi(x, y), gi(x, y) i = 1, . . . , n for x ∈ J1, y ∈ J2 such that
{∣∣Fi(x, y, u)

∣∣ ≤ |u|q
{
fi(x, y)L(x, y, |u|) + gi(x, y)

}
,∣∣e1(x) + e2(y)

∣∣ ≤ a(x, y),

where 0 < q < 1 is constants, and L : 4 × R+ → R+ be a continuous
function which satisfies the condition

0 ≤ L(x, y, v)− L(x, y, w) ≤M(x, y, w)(v − w),

for v ≥ w ≥ 0 with M : 4× R+ → R+ is a continuous function. If z(x, y)
is any solution of the problem (9.1) with the condition (9.2), then

|z(x, y)| ≤

≤

[
G−1

1

(
G1(k2(x0, y)) + (1− q)

n∑

i=1

x∫

x0

y∫

y0

fi(s, t)M(s, t) dt ds

)] 1

1−q

(9.8)

for all (x, y) ∈ [x0, x1]× [y0, y1], where

k2(x0, y) =[a(x, y)]1−q +(1−q)

n∑

i=1

x∫

x0

y∫

y0

[
fi(s, t)L(s, t) + gi(s, t)

]
dt ds,

G1(r) =

r∫

r0

ds

ψ(s
1

1−q )
, r ≥ r0 > 0,

(9.9)

G−1
1 denotes the inverse function of G1 and (x1, y1) ∈ 4 is chosen so that

G1(k2(x0, y)) + (1− q)
n∑

i=1

x∫

x0

y∫

y0

fi(s, t)M(s, t) dt ds ∈ Dom(G−1
1 ).

Proof. The proof follows by an argument similar to that in the proof of
Theorem 9.1 and by using Theorem 5.7 or Corollary 5.8 with suitable mod-
ification. We omit the details here. �

We now present an application of Theorem 6.9, Theorem 6.10, or Theo-
rem 6.11 to obtain bounds on the solutions of a nonlinear hyperbolic partial
integro-differential equation of the form

D2

(
zp−1(x, y)D1z(x, y)

)
=

= F

(
x, y, z(x, y),

x∫

x0

y∫

y0

k(x, y, s, t, z(s, t)) dt ds

)
, (9.10)

with the given boundary conditions

zp(x, y0) = e3(x), zp(x0, y) = e4(y), e3(0) = e4(0) = 0, (9.11)

where ej ∈ C(Ji, R), j = 3, 4 and F ∈ C(4× R2, R).
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The following theorem deals with a boundedness on the solution of the
problem (9.10) with condition (9.11).

Theorem 9.3. Assume that F : 4× R2 → R is a continuous function
for which there exists continuous non-negative functions a(x, y), f(x, y),
g(x, y) for x ∈ J1, y ∈ J2 such that





∣∣e1(x) + e2(y)
∣∣ ≤ a(x, y),∣∣F (x, y, u, v)

∣∣ ≤ f(x, y)
(
|up|+ |v|

)
,∣∣k(x, y, s, t, u)

∣∣ ≤ g(s, t)|up−1|ψ(|u|),

(9.12)

where p > 1 is a constant, ψ(u) is a nondecreasing continuous function for
u ∈ R+ with ψ(u) > 0 for u > 0. If z(x, y) is any solution of the problem
(9.10) with the condition (9.11), then

(i) in the case ψ(z
1

p ) ≤ z
1

p for z ∈ R+,

|z(x, y)| ≤ (â(x, y))
1

p exp

( x∫

x0

y∫

y0

[
pf(s, t) + g(s, t)

]
ds dt

)
, (9.13)

for all (x, y) ∈ 4,

(ii) in the case ψ(z
1

p ) > z
1

p for z ∈ R+,

|z(x, y)| ≤ H−1

(
H((â(x, y))

1

p ) +

x∫

x0

y∫

y0

[
pf(s, t) + g(s, t)

]
ds dt

)
, (9.14)

for all x0 ≤ x ≤ x1, y0 ≤ y ≤ y1, where

H(r) =

r∫

r0

ds

ψ(s)
, r ≥ r0 > 0, (9.15)

H−1 denotes the inverse function of H and x1, y1 are so chosen that

H
(
(â(x, y))

1

p

)
+

x∫

x0

y∫

y0

[
pf(s, t) + g(s, t)

]
ds dt ∈ Dom(H−1).

for all x, y lying in the subintervals 0 ≤ x ≤ x1, 0 ≤ y ≤ y1 of R+.

Proof. It is easy to see that the solution z(x, y) of the problem (9.10) satisfies
the equivalent integral equation:

zp(x, y) = e3(x) + e4(y)+

+ p

x∫

x0

y∫

y0

F

(
s, t, z(s, t),

s∫

x0

t∫

y0

k
(
s, t, s1, t1, z(s1, t1)

)
ds1 dt1

)
dt ds. (9.16)
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From (9.14), (9.16), and making the change of variables, we have

∣∣zp(x, y)
∣∣ ≤ a(x, y) + p

x∫

x0

y∫

y0

f(s, t)

(
|zp(s, t)|+

+

s∫

x0

t∫

y0

g(s1, t1)|z
p−1(s, t)|ψ(|z(s1, t1)|) dt1 ds1

)
dt ds. (9.17)

Now, a suitable application of the inequality given in Theorem 6.10 to (9.17)
yields the desired result. This completes the proof. �

Theorem 9.4. Assume that F : 4×R2 → R is a continuous function for
which there exists continuous non-negative functions a(x, y), f(x, y), g(x, y)
for x ∈ J1, y ∈ J2 such that





∣∣e1(x) + e2(y)
∣∣ ≤ a(x, y),

|F (x, y, u, v)| ≤ f(x, y)(ψ1(|u|) + |v|),

|k(x, y, s, t, u)| ≤ g(s, t)|ψ2(|u|),

(9.18)

where ψi(u), i = 1, 2 are nondecreasing continuous functions for u ∈ R+

with ψi(u) > 0 for u > 0. If z(x, y) is any solution of the problem (9.10)
with the condition (9.11), then

(i) in the case ψ1(z
1

p ) ≤ ψ2(z
1

p ) for z ∈ R+,

|z(x, y)| ≤

[
H−1

2

(
H2(â(x, y))+

+ p

x∫

x0

y∫

y0

f(s, t)

(
1 +

s∫

x0

t∫

y0

g(s1, t1) ds1 dt1

)
ds dt

)] 1

p

, (9.19)

for all x0 ≤ x ≤ x2, y0 ≤ y ≤ y2, where p > 0 is a constant,

H2(r) =

r∫

r0

ds

ψ2(s
1

p )
, r ≥ r0 > 0, (9.20)

H−1
2 denotes the inverse function of H2, x2 and y2 are so chosen that

H2(â(x, y))+p

x∫

x0

y∫

y0

f(s, t)

(
1+

s∫

x0

t∫

y0

g(s1, t1) ds1 dt1

)
ds dt ∈ Dom(H−1

2 )

for all x, y lying in the subintervals 0 ≤ x ≤ x2, 0 ≤ y ≤ y2 of R+,
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(ii) in the case ψ1(z
1

p ) > ψ2(z
1

p ) for z ∈ R+,

|z(x, y)| ≤

[
H−1

1

(
H1(â(x, y))+

+ p

x∫

x0

y∫

y0

f(s, t)

(
1 +

s∫

x0

t∫

y0

g(s1, t1) ds1 dt1

)
ds dt

)] 1

p

, (9.21)

for all x0 ≤ x ≤ x3, y0 ≤ y ≤ y3, where p > 0 is a constant,

H1(r) =

r∫

r0

ds

ψ1(s
1

p )
, r ≥ r0 > 0, (9.22)

H−1
1 denotes the inverse function of H1, x3 and y3 are so chosen that

H1(â(x, y))+p

x∫

x0

y∫

y0

f(s, t)

(
1+

s∫

x0

t∫

y0

g(s1, t1) ds1 dt1

)
ds dt∈Dom(H−1

1 )

for all x, y lying in the subintervals 0 ≤ x ≤ x3, 0 ≤ y ≤ y3 of R+.

Proof. The proof follows by an argument similar to that in the proof of
Theorem 9.3 and using Theorem 6.11 with suitable modification. We omit
the details here. �

We now present application of Theorem 8.10, Theorem 8.11, or Theo-
rem 8.12 to the boundedness of the solutions of some multivariate nonlinear
hyperbolic partial integro-differential equation of the form

D1 . . . Dnz
p(x) = F

(
x, z(x),

x∫

x0

k(x, y, z(y)) dy

)
, (9.23)

with the conditions prescribed on xi = x0
i , 1 ≤ i ≤ n, where k ∈ C(Ω2 ×

R,R) and F ∈ C(Ω×R2, R).
The following theorem deals with a boundedness on the solution of the

problem (9.23) with condition h(x), x ∈ Ω.

Theorem 9.5. Assume that F : Ω × R2 → R is a continuous function
for which there exists continuous non-negative functions a(x), f(x), g(x)
for x ∈ Ω such that





|h(x)| ≤ a(x),

|F (x, u, v)| ≤ f(x)
(
|up|+ |v|

)
,

|k(x, y, u)| ≤ g(y)|up−1|ψ(|u|),

(9.24)

where p > 1 is a constant, ψ(u) is a nondecreasing continuous function
for u ∈ R+ with ψ(u) > 0 for u > 0. If z(x) is any solution of the problem
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(9.23) where the boundary conditions are such that the given equation (9.23)
is equivalent to the integral equation

zp(x) = h(x) +

x∫

x0

F

(
y, z(y),

y∫

x0

k(y, s, z(s)) ds

)
dy, (9.25)

where h(x) depends on the given boundary conditions, then

(i) in the case ψ(z
1

p ) ≤ z
1

p for z ∈ R+,

|z(x)| ≤ (â(x))
1

p exp

( x∫

x0

[f(y) + g(y)] dy

)
, (9.26)

for all x ∈ Ω,

(ii) in the case ψ(z
1

p ) > z
1

p for z ∈ R+,

|z(x)| ≤ H−1

(
H((â(x))

1

p ) +

x∫

x0

[f(y) + g(y)] dy

)
, (9.27)

for all x0 ≤ x ≤ X, X ∈ Ω, where

H(r) =

r∫

r0

ds

ψ(s)
, r ≥ r0 > 0, (9.28)

H−1 denotes the inverse function of H and X is so chosen that

H((â(x))
1

p ) +

x∫

x0

[f(y) + g(y)] dy ∈ Dom(H−1),

for all x lying in the subintervals 0 ≤ x ≤ X of Ω.

Proof. It is easy to see that the solution z(x) of the problem (9.23) satisfies
the equivalent integral equation:

zp(x) = h(x) +

x∫

x0

F

(
y, z(y),

y∫

x0

k(y, s, z(s)) ds

)
dy. (9.29)

From (9.24), (9.29), and making the change of variables, we have

|zp(x)|≤a(x)+

x∫

x0

f(y)

(
|z||zp−1(y)|+

s∫

x0

g(s)|zp−1(s)|ψ(|z(s)|) ds

)
dy. (9.30)

Now, a suitable application of the inequality given in Theorem 8.11 to (9.30)
yields the desired result. �
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Theorem 9.6. Assume that F : Ω × R2 → R is a continuous function
for which there exist continuous non-negative functions a(x), f(x), g(x) for
x ∈ Ω such that





|h(x)| ≤ a(x),

|F (x, u, v)| ≤ f(x)
(
ψ1(|u|) + |v|

)
,

|k(x, y, u)| ≤ g(y)ψ2(|u|),

(9.31)

where ψi(u), i = 1, 2 are nondecreasing continuous functions for u ∈ R+

with ψi(u) > 0 for u > 0. If z(x) is any solution of the problem (9.23) where
the boundary conditions are such that the given equation (9.23) is equivalent
to the integral equation (9.25), then

(i) in the case ψ1(z
1

p ) ≤ ψ2(z
1

p ) for z ∈ R+,

|z(x)| ≤

[
H−1

2

(
H2(â(x)) +

x∫

x0

f(y)

(
1 +

y∫

x0

g(s) ds

)
dy

)] 1

p

, (9.32)

for all x0 ≤ x ≤ X, where p > 0 is constant,

H2(r) =

r∫

r0

ds

ψ2(s
1

p )
, r ≥ r0 > 0, (9.33)

H−1
2 denotes the inverse function of H2, X is so chosen that

H2(â(x)) +

x∫

x0

f(y)

(
1 +

y∫

x0

g(s) ds

)
dy ∈ Dom(H−1

2 ),

for all x lying in the subintervals x0 ≤ x ≤ X of Ω,

(ii) in the case ψ1(z
1

p ) > ψ2(z
1

p ) for z ∈ R+,

|z(x)| ≤

[
H−1

1

(
H1(â(x)) +

x∫

x0

f(y)

(
1 +

y∫

x0

g(s) ds

)
dy

)] 1

p

, (9.34)

for all x0 ≤ x ≤ Y, where where p > 0 is constant,

H1(r) =

r∫

r0

ds

ψ1(s
1

p )
, r ≥ r0 > 0, (9.35)

H−1
1 denotes the inverse function of H1, Y is so chosen that

H1(â(x)) +

x∫

x0

f(y)

(
1 +

y∫

x0

g(s) ds

)
dy ∈ Dom(H−1

1 ),

for all x lying in the subintervals x0 ≤ x ≤ Y of Ω.
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Proof. The proof follows by an argument similar to that in the proof of
Theorem 9.6 and using Theorem 8.12 with suitable modification. We omit
the details here. �
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