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SOLUTIONS TO THE STATIC EQUATIONS

OF THE HEMITROPIC ELASTICITY THEORY



Abstract. We consider the differential equations of statics of the theory
of elasticity of hemitropic materials. We derive general representation for-
mulas for solutions, i.e., for the displacement and microrotation vectors by
means of three harmonic and three metaharmonic functions. These formu-
las are very convenient and useful in many particular problems for domains
with concrete geometry. Here we demonstrate an application of these formu-
las to the Neumann type boundary value problem for a ball. We construct
explicit solutions in the form of absolutely and uniformly convergent series.
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1. Introduction

Technological and industrial developments as well as great success in bi-
ological and medical sciences require to use more generalized and refined
models for elastic bodies. In a generalized solid continuum, the usual dis-
placement field has to be supplemented by a microrotation field. Such
materials are called micropolar or Cosserat solids. They model compos-
ites with a complex inner structure whose material particles have 6 degrees
of freedom (3 displacement components and 3 microrotation components).
Recall that the classical elasticity theory allows only 3 degrees of freedom
(3 displacement components).

Experiments have shown that micropolar materials possess quite differ-
ent properties in comparison with the classical elastic materials (see, e.g.,
[1]–[6] and the references therein). For example, in noncentrosymmetric
micropolar materials (which are called also hemitropic or chiral materials)
there propagate the left-handed and right-handed elastic waves. Moreover,
the twisting behaviour under an axial stress is a purely hemitropic (chiral)
phenomenon and has no counterpart in classical elasticity.

Hemitropic solids are not isotropic with respect to inversion, i.e., they
are isotropic with respect to all proper orthogonal transformations but not
with respect to mirror reflections.

Materials may exhibit chirality on the atomic scale, as in quartz and
biological molecules – DNA, as well as on a large scale, as in composites
with helical or screw–shaped inclusions, certain types of nanotubes, bone,
fabricated structures such as foams, chiral sculptured thin films and twisted
fibers. For more details see the references [1], [2], [4], [7]–[15].

Mathematical models describing chiral properties of elastic hemitropic
materials have been proposed by Aero and Kuvshinski [1], [2] (for historical
notes see also [4], [12], [13] and the references therein).

In the mathematical theory of hemitropic elasticity there are introduced
the asymmetric force stress tensor and the moment stress tensor which
are kinematically related with the asymmetric strain tensor and torsion
(curvature) tensor via the constitutive equations. All these quantities are
expressed in terms of the components of the displacement and microrota-
tion vectors. In turn, the displacement and microrotation vectors satisfy
a coupled complex system of second order partial differential equations of
dynamics. When the mechanical characteristics (displacements, microro-
tations, body force and body couple vectors) do not depend on the time
variable t, we have the differential equations of statics. These equations
generate a 6× 6 strongly elliptic, formally self-adjoint differential operator
involving 9 material constants and have very complex form.

The Dirichlet, Neumann and mixed type boundary value problems
(BVPs) corresponding to this model are well investigated for general do-
mains of arbitrary shape and the uniqueness and existence theorems are
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proved. Regularity results for solutions are also established by potential as
well as by variational methods (see [13], [16]–[19] and the references therein).

The main goal of this paper is to derive general representation for-
mulas for the displacement and microrotation vectors by means of har-
monic and metaharmonic functions. That is, we can represent solutions to
the very complicated coupled system of simultaneous differential equations
of hemitropic elasticity with the help of solutions of a simpler canonical
equations (similar formulas in the classical elastostatics are well known as
Papkovich–Neuber representation formulas).

Namely, we prove that the six components of the field vectors (three
displacement and three microrotation components) can be expressed linearly
by three harmonic and three metaharmonic scalar functions. Moreover, we
show that this correspondence is one-to-one. The representation formulas
obtained have proved to be very useful in the study of many problems for
domains with concrete geometry.

In particular, here we apply these representation formulas to construct
explicit solutions to the Neumann type boundary value problem for a ball.
We represent the solution in the form of Fourier–Laplace series and show
their absolute and uniform convergence along with their derivatives of the
first order if the boundary data satisfy appropriate smoothness conditions.

The motivation for the choice of the transmission problems treated in the
paper is that by the same approach one can construct explicit solutions to
transmission problems for layered composites with finitely many spherical
interfaces.

Moreover, the representations obtained can be applied to some gener-
alizations of the classical Eshelby type inclusion problems for hemitropic
materials (see [20], [21]). For a wider overview of the subject concerning
different areas of application we refer to the references [5], [7], [9], [10], [15],
and [22]–[24].

2. General Representation of Solutions

The basic equations of statics of the hemitropic elasticity read as follows
[1], [2]

(µ + α)∆u(x) + (λ + µ− α) graddiv u(x) + (κ + ν)∆ω(x)+

+(δ + κ − ν) graddiv ω(x) + 2α curlω(x) = 0,

(κ + ν)∆u(x) + (δ + κ − ν) graddiv u(x) + 2α curlu(x)+

+(γ + ε)∆ω(x) + (β + γ − ε) graddiv ω(x)+

+4ν curlω(x)− 4αω(x) = 0,

(2.1)

where ∆ = ∂2
1+∂2

2+∂2
3 is the Laplace operator, ∂j = ∂/∂xj , u=(u1, u2, u3)

>

and ω = (ω1, ω2, ω3)
> are the displacement vector and the micro-rotation

vector, respectively; α, β, γ, δ, λ, µ, ν, κ and ε are the material constants;
here and in what follows the symbol ( ·)> denotes transposition.
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The material constants satisfy the following inequalities

µ>0, α>0, γ >0, ε>0, λ+2µ>0, µγ−κ
2 >0, αε−ν2 >0,

(λ + µ)(β + γ)− (δ + κ)2 > 0,

(3λ + 2µ)(3β + 2γ)− (3δ + 2κ)2 > 0,

d1 := (µ + α)(γ + ε)− (κ + ν)2 > 0,

d2 := (λ + 2µ)(β + 2γ)− (δ + 2κ)2 > 0,

µ[(λ + µ)(β + γ)− (δ + κ)2] + (λ + µ)(µγ − κ
2) > 0,

µ[(3λ + 2µ)(3β + 2γ)− (3δ + 2κ)2] + (3λ + 2µ)(µγ − κ
2) > 0.

(2.2)

Now we formulate our basic assertion.

Theorem 2.1. A vector u = (u, ω)> is a solution to the system (2.1) if

and only if it is representable in the form

u(x) = gradΦ1(x)− a grad
[
r2(r∂r + 1)Φ2(x)

]
+ rot rot[xr2Φ2(x)]+

+ rot[xΦ3(x)] + (δ + 2κ) gradΦ4(x)+

+

2∑

j=1

[
rot rot[xΨj(x)] + kj rot[xΨj(x)]

]
,

ω(x) = σ grad
[
(2r∂r + 3)(r∂r + 1)Φ2(x)

]
− rot[x(2r∂r + 3)Φ2(x)]+

+ 2−1 rot rot[xΦ3(x)] − (λ + 2µ) gradΦ4(x)−

−
2∑

j=1

ηj

[
rot rot[xΨj(x)] + kj rot[xΨj(x)]

]
, (2.3)

where x = (x1, x2, x3)
>, r = |x|, r∂r = x · grad,

∆Φj(x) = 0, j = 1, 2, 3, (∆− λ2
1)Φ4(x) = 0,

(∆ + k2
j )Ψj(x) = 0, j = 1, 2,

a = µ/(λ + 2µ), σ = − 1

2α

[
a(δ + 2κ)− κ + ν

]
, λ2

1 = 4α(λ + 2µ)/d2,

k1,2 = 2d−1
1

[
µν − ακ ± i

√
(µ + α)[µ(αε− ν2) + α(µγ − κ2)]

]
,

σ1 =
d1

2α∆1

[
α(γ + ε)− 2ν(κ + ν)

]
, ηj = kj

(
σ1k

2
j − σ2kj −

1

2

)
,

σ2 =
1

α∆1

[
α(κ + ν)d1 + 2(µν − ακ)(α(γ + ε)− 2ν(κ + ν))

]
,

∆1 = 4α(αγ + κ
2 + αε− ν2) > 0,

d1 and d2 are defined in (2.2).

Proof. Let u and ω solve the system (2.1). Let us show that then they admit
the representation (2.3). Apply the divergence operation to both equations
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of the system (2.1)

(λ + 2µ)∆ div u + (δ + 2κ)∆ div ω = 0,

(δ + 2κ)∆ div u +
[
(β + 2γ)∆− 4α

]
div ω = 0.

From this system we get

(∆− λ2
1) div ω = 0, ∆(∆− λ2

1) div u = 0, (2.4)

where

λ2
1 = 4α(λ + 2µ)/d2, d2 = (λ + 2µ)(β + 2γ)− (δ + 2κ)2.

Now apply the curl operation to both equations of the system (2.1)

(µ + α)∆ rot u +
[
(κ + ν)∆ + 2α rot

]
rot ω = 0,

[
(κ + ν)∆ + 2α rot

]
rotu +

[
(γ + ε)∆ + 4ν rot−4α

]
rot ω = 0.

(2.5)

With the help of the identities rot rot = graddiv−∆ and div rot = 0 this
system implies

[
d1 rot rot+4(ακ − µν) rot +4αµ

]
(∆ rotu, ∆ rotω)> = 0. (2.6)

Rewrite the first equation of the system (2.1) in the following form

µ∆u + (λ + µ) graddiv u = v(x) − (δ + 2κ) graddiv ω, (2.7)

where

v(x) = α rot(rotu− 2ω) + (κ + ν) rot rotω. (2.8)

From the second equation of the system (2.1) we get

2α(rot u− 2ω) =− (κ + ν)∆u− (δ + κ − ν) graddiv u− (γ + ε)∆ω−
− (β + γ − ε) graddiv ω − 4ν rotω.

In view of this equality, from (2.8) we obtain

v(x) = −κ + ν

2
∆ rotu− γ + ε

2
∆ rotω + (κ − ν) rot rotω. (2.9)

The equation (2.5) yields

rot rotω = −µ + α

2α
∆ rotu− κ + ν

2α
∆ rotω.

We can rewrite the equation (2.9) as

v(x) = a1∆ rotu + a2∆ rotω, (2.10)

where

a1 =− 1

2α

[
α(κ+ν)+(µ + α)(κ−ν)

]
, a2 =− 1

2α

[
α(γ+ε)+κ

2−ν2
]
.

From the equalities (2.10) and (2.6) we derive
[
d1 rot rot+4(ακ − µν) rot+4αµ

]
v(x) = 0,

i.e.,

(rot−k1)(rot−k2)v(x) = 0, (2.11)
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where k1 and k2 are the roots of the quadratic equation

d1z
2 + 4(ακ − µν)z + 4αµ = 0.

The discriminant of this equation is

D = −16(µ + α)
[
µ(αε− ν2) + α(µγ − κ

2)
]

< 0.

Therefore

k1,2 =
2

d1

[
µν − ακ ± i

√
(µ + α)(µ(αε − ν2) + α(µγ − κ2))

]
.

A solution of the equation (2.11) can be represented as

v(x) = −
2∑

j=1

µk2
j vj(x), (2.12)

where

(rot−kj)vj(x) = 0, div vj(x) = 0. (2.13)

Notice that k2 = k1 and v2 = v1 (the over-bar means complex conjugation).
Moreover, remark that for a vector v = (v1, v2, v3)

> to be a solution of the
system

rot v(x)∓ kv(x) = 0, div v(x) = 0,

necessary and sufficient conditions read as follows

v(x) = rot rot(xΨ(x)) ± k rot(xΨ(x)),

where Ψ is a scalar function satisfying the Helmholtz equation (∆+k2)Ψ =
0. Due to this remark, we can represent a solution to the system (2.13) as

vj(x) = rot rot(x Ψj(x)) + kj rot(x Ψj(x)), j = 1, 2,

where (∆ + k2
j )Ψj(x) = 0. The functions Ψ1 and Ψ2 are mutually complex

conjugate functions. Substituting the expressions of the vectors vj into
(2.12), we get

v(x) = −
2∑

j=1

µk2
j

[
rot rot(xΨj(x)) + kj rot(xΨj(x))

]
. (2.14)

Introduce the function Φ4 by the equation

div ω(x) = −λ2
1(λ + 2µ)Φ4(x). (2.15)

From the equations (2.4) and (2.15) it follows that

(∆− λ2
1)Φ4(x) = 0.

Taking into consideration the equations (2.14) and (2.15), we get from (2.7)

µ∆u+(λ+µ) graddiv u =

=λ2
1(λ+2µ)(δ+2κ) gradΦ4(x)−

2∑

j=1

µk2
j

[
rot rot(xΨj(x))+kj rot(xΨj(x))

]
.
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The general solution of this equation is written as

u(x) = u0(x) + (δ + 2κ) gradΦ4(x)+

+
2∑

j=1

[
rot rot(xΨj(x)) + kj rot(xΨj(x))

]
, (2.16)

where u0 is the general solution of the equation

µ∆u0(x) + (λ + µ) graddiv u0(x) = 0. (2.17)

Now let us express the vector ω from (2.1) in terms of u and div ω

ω = σ1∆ rotu+σ2 rot rotu+
1

2
rot u+σ3 graddiv u+σ4 graddiv ω, (2.18)

where

σ1 =
d1

2α∆1

[
α(γ + ε)− 2ν(κ + ν)

]
,

σ2 =
1

α∆1

[
α(κ + ν)d1 + 2(µν − ακ)

(
α(γ + ε)− 2ν(κ + ν)

)]
,

σ3 =
δ + 2κ

4α
− λ + 2µ

α∆1

[
α(γ + ε)(κ + 3ν)− 4ν2(κ + ν)

]
,

σ4 =
β + 2γ

4α
− δ + 2κ

α∆1

[
α(γ + ε)(κ + 3ν)− 4ν2(κ + ν)

]
.

Further, substitute (2.16) into (2.18) and take into consideration the
equations

∆ rotu0 = 0, λ2
1

[
(δ + 2κ)σ3 − (λ + 2µ)σ4

]
= −(λ + 2µ)

to obtain

ω(x) = σ2 rot rotu0(x) +
1

2
rot u0(x) + σ3 graddiv u0(x)−

− (λ + 2µ) gradΦ4(x)−
2∑

j=1

ηj

[
rot rot(xΨj(x)) + kj rot(xΨj(x))

]
, (2.19)

where ηj = kj(σ1k
2
j −σ2kj −1/2). It is known that a solution of the system

(2.17) is representable in the form [28]

u0(x) = gradΦ1(x)− a grad r2
(
r∂r + 1

)
Φ2(x)+

+ rot rot(xr2Φ2(x)) + rot(xΦ3(x)), (2.20)

where

x = (x1, x2, x3)
>, r∂r = x · grad, r = |x|,

∆Φj(x) = 0, j = 1, 2, 3, a = µ/(λ + 2µ).
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Substitution of (2.20) into (2.16) and (2.19) completes the proof of the
first part of the theorem. The sufficiency easily follows from the identities

σ2 + aσ3 =
1

4α

[
a(δ + 2κ)− κ + ν

]
= −σ

2
,

(κ + ν)
[
σ1

4(µν − ακ)

d1
− σ2

]
− 2ασ1 = − d1

4α
,

(κ + ν)
(4αµ

d1
σ1 +

1

2

)
− 2ασ2 =

ακ − µν

α
,

(γ + ε)
(4αµ

d1
σ1 +

1

2

)
− 4νσ2 − 4ασ1 =

µν − ακ

αµ

[
4ασ3 − (δ + 2κ)

]
a,

(γ + ε)
[
σ1

4(µν − ακ)

d1
− σ2

]
− 4νσ1 =

d1

4αµ

[
4ασ3 − (δ + 2κ)

]
a,

4ασ2 + κ − ν = −a
[
4ασ3 − (δ + 2κ)

]
.

The proof is complete. �

3. Basic Boundary Value Problems

Let Ω1 be a ball whose boundary is the sphere ∂Ω1 having radius R and
centered at the origin:

Ω1 =
{
x : x ∈ R

3, |x| < R}, ∂Ω =
{
x : x ∈ R

3, |x| = R
}
.

Denote Ω2 = R
3 \ Ω1. Assume that the regions Ω1 and Ω2 are filled by

isotropic hemitropic materials.

Problem (I)±. Find a regular vector U = (u, ω)> satisfying the differen-
tial equations (2.1) in Ω1 (Ω2) and the boundary condition

[U(z)]± = F (z), z ∈ ∂Ω,

where

F (z) =
(
f (1)(z), f (2)(z)

)>
, f (j)(z) =

(
f

(j)
1 (z), f

(j)
2 (z), f

(j)
3 (z)

)
, j = 1, 2.

In the case of the exterior domain Ω2, the vector U has to satisfy the
following decay conditions at infinity

U(x) = O(|x|−1),
∂

∂xj
U(x) = O(|x|−2), j = 1, 2, 3. (3.1)

Problem (II)±. Find a regular vector U = (u, ω)> satisfying the differen-
tial equations (2.1) in Ω1 (Ω2) and the boundary condition

[
T (∂z, n(z))U(z)

]±
= F (z), z ∈ ∂Ω, (3.2)

where n(z) is the exterior normal vector to ∂Ω, T (∂z, n(z))U is the gener-
alized stress vector [17]

T (∂x, n)U(x) =
[
H(1)(∂x, n)U(x), H(2)(∂x, n)U(x)

]>
, (3.3)
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where

H(j)(∂x, n)U(x) = T (2j−1)(∂x, n)u(x) + T (2j)(∂x, n)ω(x),

T (2j−1)(∂x, n)u(x) =

= ξ′j
∂u(x)

∂n(x)
+ η′jn(x) div u(x) + ζ ′j [n(x)× rotu(x)],

T (2j)(∂x, n)ω(x) = ξ′′j
∂ω(x)

∂n(x)
+

+η′′j n(x) div ω(x) + ζ ′′j [n(x)× rot ω(x)] + τj [n(x)× ω(x)], j = 1, 2,

(3.4)

with

ξ′l =

{
2µ, l = 1,

2κ, l = 2;
η′l =

{
λ, l = 1,

δ, l = 2;

ζ ′l =

{
µ− α, l = 1,

κ − ν, l = 2;
ξ′′l =

{
2κ, l = 1,

2γ, l = 2;

η′′l =

{
δ, l = 1,

β, l = 2;
ζ ′′l =

{
κ − ν, l = 1,

γ − ε, l = 2;
τl =

{
2α, l = 1,

2ν, l = 2.

Here and in what follows the symbol a× b denotes the cross product of
two vectors a, b ∈ R

3.
In the case of the exterior domain Ω2, the vector U has to satisfy the

decay conditions (3.1).

Transmission Problem (A). Assume that the domains Ωj , j = 1, 2, are
filled by isotropic hemitropic solids with material constants αj , βj , . . . , κj .

Find a pair of regular vectors U (j) = (u(j), ω(j))>, j = 1, 2, satisfying the
differential equations

(µj + αj)∆u(j) + (λj + µj − αj) graddiv u(j) + (κj + νj)∆ω(j)+

+ (δj + κj − νj) graddiv ω(j)2αj rotω(j) = 0,

(κj + νj)∆u(j) + (δj + κj − νj) graddiv u(j) + (γj + εj)∆ω(j)+

+(βj+γj−εj) graddiv ω(j)+2αj rotu(j)+4νj rot ω(j)−4αjω
(j) =0, j =1, 2,

in Ωj and the following transmission conditions on ∂Ω
[
U (1)(z)

]+ −
[
U (2)(z)

]−
= F (1)(z),

[
T 1(∂z, n)U (1)(z)

]+ −
[
T 2(∂z, n)U (2)(z)

]−
= F (2)(z).

Again the vector U (2) has to satisfy the decay conditions (3.1). Here

F (1)(z) =
(
f (1)(z), f (2)(z)

)>
, F (2)(z) =

(
f (3)(z), f (4)(z)

)>
,

f (j)(z) =
(
f

(j)
1 (z), f

(j)
2 (z), f

(j)
3 (z)

)>
, j = 1, 2, 3, 4
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are given vector functions. The stress vector is defined by the formulas (3.3)
with the appropriate material constants equipped with superscript (j) and
with U (j) for U .

There hold the following uniqueness theorems [17].

Theorem 3.1. Problems (I)±, (II)− and (A) have at most one solution.

Solutions to Problem (II)+ are defined modulo the rigid displacement vectors

of the type

u(x) = [a× x] + b, ω(x) = a,

where x = (x1, x2, x3)
>, and a and b are arbitrary three dimensional con-

stant vectors.

4. Explicit Solutions of the Boundary Value Problems

Here we demonstrate our approach for Problem (II)+, since other prob-
lems can be treated quite similarly.

We look for a solution to Problem (II)+ in the form (2.3), where

Φj(x) =

∞∑

k=0

k∑

m=−k

( r

R

)k

Y
(m)
k (ϑ, ϕ)A

(j)
mk, j = 1, 2, 3,

Φ4(x) =
∞∑

k=0

k∑

m=−k

gk(λ1r)Y
(m)
k (ϑ, ϕ)A

(4)
mk ,

Ψj(x) =

∞∑

k=0

k∑

m=−k

hk(kjr)Y
(m)

k (ϑ, ϕ)B
(j)
mk , j = 1, 2.

(4.1)

Here A
(j)
mk, j = 1, 2, 3, 4, and B

(j)
mk, j = 1, 2, are unknown coefficients,

while

gk(λ1r) =

√
R

r

Ik+1/2(λ1r)

Ik+1/2(λ1R)
, hk(kjr) =

√
R

r

Ik+1/2(kjr)

Ik+1/2(kjR)
, j = 1, 2,

Y
(m)
k (ϑ, ϕ) =

√
2k + 1

4π

(k −m)!

(k + m)!
P

(m)
k (cos ϑ)eimϕ.

P
(m)
k (cos ϑ) are the Legendre associated polynomials, Ik+1/2 is the Bessel

function of real argument and Ik+1/2is the Bessel function of complex (pure
imaginary) argument [29].

We assume that the functions Φj , j = 1, 3, and Ψj , j = 1, 2, satisfy the
conditions∫

∂Ω′

Φj(z) ds = 0, j = 1, 3,

∫

∂Ω′

Ψj(z) ds = 0, j = 1, 2, (4.2)

where

∂Ω′ =
{
x : x ∈ R

3, |x| = R′ < R
}
.
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Substituting Φj , j = 1, 3, and Ψj , j = 1, 2, into (4.2) and taking into account
the equalities

∫

∂Ω

Y
(m)
k (ϑ, ϕ) ds =

{
2
√

πR2 for k = 0, m = 0,

0 otherwise,

we get that A
(j)
00 = 0, j = 1, 3, and B

(j)
00 = 0,, j = 1, 2.

Substitute Φj , j = 1, 3, and Ψj , j = 1, 2, into (2.3) and use the rela-
tions [28]

grad
[
a(r)Y

(m)
k (ϑ, ϕ)

]
=

da(r)

dr
Xmk(ϑ, ϕ) +

√
k(k + 1)

r
a(r)Ymk(ϑ, ϕ),

rot
[
xa(r)Y

(m)
k (ϑ, ϕ)

]
=

√
k(k + 1) a(r)Zmk(ϑ, ϕ),

rot rot
[
xa(r)Y

(m)
k (ϑ, ϕ)

]
=

k(k + 1)

r
a(r)Xmk(ϑ, ϕ)+

+
√

k(k + 1)
( d

dr
+

1

r

)
a(r)Ymk(ϑ, ϕ),

to get

u(x) = u00(r)X00(ϑ, ϕ) +

∞∑

k=1

k∑

m=−k

{
umk(r)Xmk(ϑ, ϕ)+

+
√

k(k + 1)
[
vmk(r)Ymk(ϑ, ϕ) + ωmk(r)Zmk(ϑ, ϕ)

]}
,

ω(x) = ũ00(r)X00(ϑ, ϕ) +

∞∑

k=1

k∑

m=−k

{
ũmk(r)Xmk(ϑ, ϕ)+

+
√

k(k + 1)
[
ṽmk(r)Ymk(ϑ, ϕ) + ω̃mk(r)Zmk(ϑ, ϕ)

]}
,

(4.3)

where [25], [26]

Xmk(ϑ, ϕ) = erY
(m)
k (ϑ, ϕ), k ≥ 0,

Ymk(ϑ, ϕ) =
1√

k(k + 1)

(
eϑ

∂

∂ϑ
+

eϕ

sinϑ

∂

∂ϕ

)
Y

(m)
k (ϑ, ϕ), k ≥ 1,

Zmk(ϑ, ϕ) =

=
1√

k(k + 1)

( eϑ

sin ϑ

∂

∂ϕ
− eϕ

∂

∂ϑ

)
Y

(m)
k (ϑ, ϕ), k ≥ 1, |m| ≤ k,

(4.4)

er, eϑ and eϕ are the unit vectors

er = (cos ϕ sin ϑ, sinϕ sin ϑ, cosϑ)>,

eϑ = (cos ϕ cosϑ, sin ϕ cosϑ,− sinϑ)>,

eϕ = (− sin ϕ, cosϕ, 0)>.
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The system of vectors {Xmk(ϑ, ϕ), Ymk(ϑ, ϕ), Zmk(ϑ, ϕ)}, |m| ≤ k, k =
1,∞, is orthogonal and complete in L2(Σ1), where Σ1 is the unit sphere,

umk(r) =
k

R

( r

R

)k−1

A
(1)
mk + (k + 1)(bk − 2a)R

( r

R

)k+1

A
(2)
mk+

+ (δ+2κ)
d

dr
gk(λ1r)A

(4)
mk +

k(k + 1)

r

2∑

j=1

hk(kjr)B
(j)
mk , k≥0,

vmk(r) =
1

R

( r

R

)k−1

A
(1)
mk + (b(k + 1) + 2)R

( r

R

)k+1

A
(2)
mk+

+
(δ+2κ)

r
gk(λ1r)A

(4)
mk+

( d

dr
+

1

r

) 2∑

j=1

hk(kjr)B
(j)
mk , k≥1,

ωmk(r) =
( r

R

)k

A
(3)
mk +

2∑

j=1

kjhk(kjr)B
(j)
mk , k ≥ 1,

ũmk(r) =
σk(k+1)(2k+3)

R

( r

R

)k−1

A
(2)
mk+

k(k+1)

2R

( r

R

)k−1

A
(3)
mk−

− (λ+2µ)
d

dr
gk(λ1R)A

(4)
mk−

k(k+1)

r

2∑

j=1

ηjhk(kjr)B
(j)
mk , k≥0,

ṽmk(r) =
σ(k + 1)(2k + 3)

R

( r

R

)k−1

A
(2)
mk +

k + 1

2R

( r

R

)k−1

A
(3)
mk−

− λ+2µ

r
gk(λ1r)A

(4)
mk−

( d

dr
+

1

r

) 2∑

j=1

ηjhk(kjr)B
(j)
mk , k≥1,

ω̃mk(r)=−(2k + 3)
( r

R

)k

A
(2)
mk−

2∑

j=1

ηjkjhk(kjr)B
(j)
mk , k≥1, b=1−a.

(4.5)

Now substitute the vectors u and ω into (3.4) and employ the equalities

er ×Xmk(ϑ, ϕ) = 0, er × Ymk(ϑ, ϕ) = −Zmk(ϑ, ϕ),

er × Zmk(ϑ, ϕ) = Ymk(ϑ, ϕ),

div
[
a(r)Xmk(ϑ, ϕ)

]
=

( d

dr
+

2

r

)
a(r)Y

(m)
k (ϑ, ϕ),

div
[
a(r)Ymk(ϑ, ϕ)

]
= −

√
k(k + 1)

a(r)

r
Y

(m)
k (ϑ, ϕ),

div
[
a(r)Zmk(ϑ, ϕ)

]
= 0,

rot
[
a(r)Xmk(ϑ, ϕ)

]
=

√
k(k + 1)

a(r)

r
Zmk(ϑ, ϕ),

rot
[
a(r)Ymk(ϑ, ϕ)

]
= −

( d

dr
+

1

r

)
a(r)Zmk(ϑ, ϕ),

rot
[
a(r)Zmk(ϑ, ϕ)

]
=

√
k(k+1)

a(r)

r
Xmk(ϑ, ϕ)+

( d

dr
+

1

r

)
a(r)Ymk(ϑ, ϕ)
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to obtain

H(1)(∂x, n)U(x) = a00(r)X00(ϑ, ϕ)+

∞∑

k=1

k∑

m=−k

{
amk(r)Xmk(ϑ, ϕ)+

+
√

k(k+1)
[
bmk(r)Ymk(ϑ, ϕ)+cmk(r)Zmk(ϑ, ϕ)

]}
,

H(2)(∂x, n)U(x) = ã00(r)X00(ϑ, ϕ)+

∞∑

k=1

k∑

m=−k

{
ãmk(r)Xmk(ϑ, ϕ)+

+
√

k(k+1)
[
b̃mk(r)Ymk(ϑ, ϕ)+c̃mk(r)Zmk(ϑ, ϕ)

]}
,

(4.6)

where

amk(r) =
[
(λ + 2µ)

d

dr
+

2λ

r

]
umk(r) +

[
(δ + 2κ)

d

dr
+

2δ

r

]
ũmk(r)−

− k(k + 1)

r

[
λvmk(r) + δṽmk(r)

]
, k ≥ 0,

bmk(r) =
1

r

[
(µ− α)(umk(r)− vmk(r)) + (κ − ν)(ũmk(r) − ṽmk(r))

]
+

+ (µ + α)
d

dr
vmk(r) + (κ + ν)

d

dr
ṽmk(r) + 2αω̃mk(r),

cmk(r) =
[
(µ + α)

d

dr
− (µ− α)

1

r

]
ωmk(r)+

+
[
(κ + ν)

d

dr
− (κ − ν)

1

r

]
ω̃mk(r) − 2αṽmk(r),

ãmk(r) =
[
(δ + 2κ)

d

dr
+

2δ

r

]
umk(r) +

[
(β + 2γ)

d

dr
+

2β

r

]
ũmk(r)−

− k(k + 1)

r

[
δvmk(r) + βṽmk(r)

]
,

b̃mk(r) =
1

r

[
(κ − ν)(umk(r) − vmk(r)) + (γ − ε)(ũmk(r) − ṽmk(r))

]
+

+ (κ + ν)
d

dr
vmk(r) + (γ + ε)

d

dr
ṽmk(r) + 2νω̃mk(r),

c̃mk(r) =
[
(κ + ν)

d

dr
− (κ − ν)

1

r

]
ωmk(r)+

+
[
(γ + ε)

d

dr
− (γ − ε)

1

r

]
ω̃mk(r) − 2νṽmk(r).

Here the vectors umk, vmk, . . . , ω̃mk are given by (4.5).
Represent the boundary data as the Fourier–Laplace series with respect

to the system (4.4)

f (j)(z) = α
(j)
00 X00(ϑ, ϕ) +

∞∑

k=1

k∑

m=−k

{
α

(j)
mkXmk(ϑ, ϕ)+

+
√

k(k + 1)
[
β

(j)
mkYmk(ϑ, ϕ) + γ

(j)
mkZmk(ϑ, ϕ)

]}
, j = 1, 2,
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where α
(j)
mk,

√
k(k + 1)β

(j)
mk,

√
k(k + 1) γ

(j)
mk are the Fourier coefficients.

In view of the boundary condition (3.2), with the help of the equalities
(4.6) we arrive at the system of linear algebraic equations

a00(R) = α
(1)
00 , ã00(R) = α

(2)
00 ;

am1(R) = α
(1)
m1, bm1(R) = β

(1)
m1, cm1(R) = γ

(1)
m1,

ãm1(R) = α
(2)
m1, b̃m1(R) = β

(2)
m1, c̃m1(R) = γ

(2)
m1;

amk(R) = α
(1)
mk, bmk(R) = β

(1)
mk, cmk(R) = γ

(1)
mk,

ãmk(R) = α
(2)
mk, b̃mk(R) = β

(2)
mk, c̃mk(R) = γ

(2)
mk, k ≥ 2.

(4.7)

Let us analyze the solvability of this system. To this end, we prove the
following assertion.

Lemma 4.1. Let the conditions (4.2) be fulfilled. Then the vectors u
and ω represented the by formulas (2.3) vanish identically if and only if Φj ,

j = 1, 2, 3, 4, and Ψj , j = 1, 2, vanish.

Proof. The sufficiency is trivial. Let us show the necessity. From the equa-
tions (2.3) we get

Φ4(x) = − 1

λ2
1(λ + 2µ)

div ω(x),

(
2r

∂

∂r
+ 3

)(
r

∂

∂r
+ 1

)
Φ2(x) =

1

2a

[
div u(x) +

δ + 2κ

λ + 2µ
div ω(x)

]
.

If u and ω vanish, then by the formulas (4.1) we see that

Φ2(x) = 0, Φ4(x) = 0. (4.8)

Again from (2.3) by (4.8) we have

ω(x) − 1

2
rotu(x) = −

2∑

j=1

(
ηj +

1

2
kj

)[
rot rot(xΨj(x)) + kj rot(xΨj(x))

]
.

Whence, if u and ω vanish, we get

rot rot(xΨj(x)) + kj rot(xΨj(x)) = 0, j = 1, 2.

Taking scalar product of this equation by x leads to
[
r

∂

∂r

(
r

∂

∂r
+ 1

)
+ r2k2

j

]
Ψj(x) = 0, j = 1, 2.

Whence by (4.1) and (4.2)

Ψj(x) = 0, j = 1, 2. (4.9)

The equations (4.8) and (4.9) along with (2.3) imply

u(x) = gradΦ1(x) + rot(xΦ3(x)),

ω(x) =
1

2
rot rot(xΦ3(x)).

(4.10)
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From (4.10) we get

r
∂

∂r

(
r

∂

∂r
+ 1

)
Φ3(x) = 2(x · ω(x)).

If we substitute in these equations ω(x) = 0 and apply (4.1) and (4.2),
we obtain Φ3(x) = 0. In accordance with this equation we get

gradΦ1(x) = u(x).

Whence Φ1(x) = const, and by (4.2) we conclude that Φ1(x) = 0. �

Necessary and sufficient conditions for Problem (II)+ to be solvable read
as follows∫

∂Ω

f (1)(z) ds = 0,

∫

∂Ω

[
z × f (1)(z) + f (2)(z)

]
ds = 0. (4.11)

Substituting f (j), j = 1, 2, into (4.11) and taking into consideration the
equations

∫

∂Ω

Xmk(ϑ, ϕ) ds =






√
2π
3

[
(δ−1m − δ1m)e1 − i(δ−1m + δ1m)e2+

+
√

2 δ0me3

]
R2, k = 1, m = ±1,

0 otherwise;

∫

∂Ω

Ymk(ϑ, ϕ) ds =





2
√

π
3

[
(δ−1m − δ1m)e1 − i(δ−1m + δ1m)e2+

+
√

2 δ0me3

]
R2, k = 1, m = ±1,

0 otherwise;
∫

∂Ω

Zmk(ϑ, ϕ) ds = 0 for all k and m,

where δkj is the Kronecker symbol, e1 = (1, 0, 0)>, e2 = (0, 1, 0)>, e3 =
(0, 0, 1)>, we get (4.12)

α
(1)
m1 + 2β

(1)
m1 = 0, α

(2)
m1 + 2β

(2)
m1 + 2Rγ

(1)
m1 = 0, m = 0,±1. (4.12)

Theorem 3.1 and Lemma 4.1 imply that the system (4.7) is solvable.
Moreover, from (4.12) it follows that we can define all unknown coefficients

but A
(1)
m1 and A

(3)
m1, m = 0,±1. This is natural and reflects the fact that the

solution is defined modulo a rigid displacement vector.
In our analysis we need the following technical results [27].

Theorem 4.2. For k ≥ 0 the following inequalities are true

∣∣Xmk(ϑ, ϕ)
∣∣ ≤

√
2k + 1

4π
, k ≥ 0,

∣∣Ymk(ϑ, ϕ)
∣∣ <

√
2k(k + 1)

2k + 1
, k ≥ 1,

∣∣Zmk(ϑ, ϕ)
∣∣ <

√
2k(k + 1)

2k + 1
, k ≥ 1.
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Theorem 4.3. If f (j) ∈ Cl(∂Ω), where ∂Ω is a sphere, then the coeffi-

cients α
(j)
kj , β

(j)
kj and γ

(j)
kj admit the bounds

α
(j)
mk = O(k−l), β

(j)
mk = O(k−l−1), γ

(j)
mk = O(k−l−1).

Applying the above theorems and the asymptotic behavior of the Bessel
functions, we can show that for x ∈ Ω1 the series are absolutely and uni-
formly convergent in the interior domain.

Let now x ∈ ∂Ω1, i.e., r = R. In this case, due to Theorem 4.2 the
majorizing number series for (4.3) and (4.6) is

∞∑

k=k0

k
1

2

2∑

j=1

[
|α(j)

mk|+ k
(
|β(j)

mk|+ |γ(j)
mk|

)]
.

By Theorem 4.3 this series is convergent if f (j) ∈ C2(∂Ω1).
Thus the series (4.3) and (4.6) are absolutely and uniformly convergent

if f (j) ∈ C2(∂Ω1).
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