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Abstract. Necessary and sufficient conditions are established for stabil-
ity in the Lyapunov sense of solutions of the linear system of generalized
ordinary differential equations

dx(t) = dA(t) · x(t) + df(t),

where A : R+ → R
n×n and f : R+ → R

n (R+ = [0, +∞[ ) are, respectively,
continuous from the left matrix-and vector-functions with bounded total
variation components on every closed interval from R+.

2000 Mathematics Subject Classification. 34K20, 34A37, 34D20.
Key words and phrases. Stability in the Lyapunov sense, linear sys-

tem of generalized ordinary differential equations, Lebesgue–Stiltjes inte-
gral.

� � � � � � � � � � � 	 
 � � 
 � � 	 � � � � 	 � � 
 � � 
 � � 
 � 
 
 � � � � � � � � � � � � 
 � 
 � � � � 
 � �
	 � � � � 
 
 � � � �

dx(t) = dA(t) · x(t) + df(t)
� � � � 
 � � � � � � � � � � � 
 � � � 
 � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � 
 
 � 
 
 � � � � � � �
� � � � � � � � � � � 
 � �  � � � � �

A : R+ → R
n×n � �

f : R+ → R
n (R+ = [0, +∞[ )

 
! 
 � � � � � � � � �  � � � � � � � � � � � � " � 
 � � � � � � � 
 � � � � � � � � � � � � � � � � 
 � � 
 � � � � � � � � �
� � � � 
 � � � � 
 # � � � � 
 � � � � # � � 
 � � � " � � 
 
 � � � 
 � � 
 � � � 
 � � � 
 � 


R+
� � � � $



On the Necessary and Sufficient . . . 117

1. Statement of the Problem and Formulation of the Results

Let A = (aik)n
i,k=1 : R+ → R

n×n and f = (fi)
n
i=1 : R+ → R

n (R+ =

[0, +∞[ ) be, respectively, continuous from the left matrix-and vector-fun-
ctions with bounded total variation components on every closed interval
from R+.

In this paper, necessary and sufficient conditions for stability in the Lya-
punov sense with respect to small perturbations are established for the
solutions of the linear system of generalized ordinary differential equations

dx(t) = dA(t) · x(t) + df(t) for t ∈ R+. (1.1)

To a considerable extent, the interest to the theory of generalized ordi-
nary differential equations has been stimulated by the fact that this theory
enables one to investigate ordinary differential, impulsive and difference
equations from a unified viewpoint.

Quite a few questions of the theory of generalized ordinary differential
equations (both linear and nonlinear) have been studied sufficiently well (see
[1]–[9] and the references therein). In particular, some sufficient (among
them effective) conditions for stability in the Lyapunov sense of solutions
of the system (1.1) have been investigated, e.g., in [3]–[8] (see also the
references therein). Analogous questions, as well as some other ones, are
investigated for example in [9], [10] for linear systems of ordinary differential
equations, and in [12]–[14] for linear systems of both impulsive and difference
equations.

Throughout the paper, the following notation and definitions will be used.
R = ]−∞, +∞[ , [a, b] and ]a, b[ (a, b ∈ R) is, respectively, a closed and

an open interval.
I is an arbitrary interval from R.
R

n×m is the space of all real n ×m – matrices X = (xij )
n,m
i,j=1 with the

components xij (i = 1, . . . , n; j = 1, . . . , m) and the norm

‖X‖ = max
{

n
∑

i=1

|xij | : j = 1, . . . , m
}

.

If X = (xij)
n,m
i,j=1, then |X | = (|xij |)

n,m
i,j=1.

On×m is the zero n×m-matrix.
R+ =

{

(xi,j)
n,m
i,j=1 : xi,j ≥ 0 (i = 1, . . . , n; j = 1, . . . , m)

}

.

R
n = R

n×1 is the space of all real column n-vectors x = (xi)
n
i=1; R

n
+ =

R
n×1
+ .

If X ∈ R
n×n, then X−1 is the matrix inverse to X ; det X is the deter-

minant of X ; r(X) is the spectral radius of X .
In is the identity n× n-matrix.
The inequalities between the matrices are understood componentwise.
A matrix function is said to be continuous, integrable, nondecreasing,

etc., if such is every its component.
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If X : R+ → R
n×m is a matrix-function, then

b
∨
a
(X) is the sum of total

variations on [a, b] ⊂ R+ of its components xij (i = 1, . . . , n; j = 1, . . . , m);

V (X)(t) = (v(xij)(t))
n,m
i,j=1 , where v(xij )(0) = 0, v(xij)(t) =

t
∨
0
(xij) for t > 0

(i = 1, . . . , n; j = 1, . . . , m);
X(t−) and X(t+) are, respectively, the left and the right limits at the

point t∈R+ (X(0−)=X(0)); d1X(t)=X(t)−X(t−), d2X(t)=X(t+)−X(t).
BV([a, b]; Rn×m) is the set of all matrix-functions X : [a, b] → R

n×m such

that
b
∨
a
(X) < +∞.

BVloc(I; R
n×m) is the set of all matrix-functions X : I → R

n×m such

that
b
∨
a
(X) < +∞ for a, b ∈ I.

s0 : BVloc(R+; R) → BVloc(R+; R) is the operator defined by

s0(x)(0) = x(0),

s0(x)(t) = x(t) −
∑

0≤τ<t

d2x(τ).

If g : R+ → R is a continuous from the left nondecreasing function,
x : R+ → R and 0 ≤ s < t, then

t
∫

s

x(τ) dg(τ) =

∫

]s,t]

x(τ) ds0(g)(τ) +
∑

s≤τ<t

x(τ) d2g(τ),

where
∫

]s,t]

x(τ) ds0g(τ) is the Lebesgue–Stiltjes integral over the interval ]s, t]

with respect to the measure corresponding to the function s0(g);
If s= t, then

t
∫

s

x(τ) dg(τ) = 0.

If g(t) ≡ g1(t) − g2(t), where g1, g2 are continuous from the left nonde-
creasing functions, then

t
∫

s

x(τ) dg(τ) =

t
∫

s

x(τ) dg1(τ) −

t
∫

s

x(τ) dg2(τ) for 0 ≤ s ≤ t.

If G = (gik)l,n
i,k=1 ∈ BVloc(R+; Rl×n) is a continuous from the left matrix-

function and X = (xkj )
n,m
k,j=1 : R+ → R

n×m, then

t
∫

s

dG(τ) ·X(τ) =

( n
∑

k=1

t
∫

s

xkj(τ) dgik(τ)

)l,m

i,j=1

for 0 ≤ s ≤ t.
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A,B,L : BVloc(R+; Rn×n)× BVloc(R+; Rn×m) → BVloc(R+; Rn×m) are
the operators defined by the equalities (for corresponding X):

A(X, Y )(0) = Y (0),

A(X, Y )(t) = Y (t)−
∑

0≤τ<t

d2X(τ) · (In + d2X(τ))−1 d2Y (τ) for t > 0;

B(X, Y )(t) ≡ X(t)Y (t)−X(0)Y (0)−

t
∫

0

dX(τ) · Y (τ)

and

L(X, Y )(t) ≡

t
∫

0

d
(

X(τ) + B(X, Y )
)

(τ) ·X−1(τ) for n = m.

A vector-function x ∈ BVloc(R+; Rn) is said to be a solution of the system
(1.1) if

x(t) = x(s) +

t
∫

s

dA(τ) · x(τ) + f(t)− f(s) for 0 ≤ s ≤ t.

We will assume that A ∈ BVloc(R+; Rn×n), f ∈ BVloc(R+; Rn) and

det
(

In + d2A(t)
)

6= 0 for t ∈ R+). (1.2)

Moreover, we assume that A(0) = On×n without loss of generality.
The condition (1.2) guarantees the unique solvability of the Cauchy prob-

lem x(t0) = c0 for the system (1.1) (see [9, Theorem III.1.4]).
We will use the following formulae (see [9, Proposition III.1.25])

X−1(t) = X−1(s)−X−1(t)A(t) + X−1(s)A(s)+

+

t
∫

s

dA(τ) ·X−1(τ) for 0 ≤ s ≤ t, (1.3)

where X ∈ BVloc(R+; Rn×n) is a fundamental matrix of the homogeneous
system

dx(t) = dA(t) · x(t). (1.10)

Definition 1.1. Let ξ : R+ → R+ be a nondecreasing function such
that

lim
t→+∞

ξ(t) = +∞.

A solution x0 of the system (1.1) is called ξ-exponentially asymptotically
stable if there exists a positive number η such that for every ε > 0 there
exists a positive number δ = δ(ε) such that an arbitrary solution x of the
system (1.1) satisfying the inequality

∥

∥x(t0)− x0(t0)
∥

∥ < δ for some t0 ∈ R+
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admits the estimate
∥

∥x(t) − x0(t)
∥

∥ < ε exp
(

− η
(

ξ(t)− ξ(t0)
))

for t ≥ t0.

Stability, uniform stability, asymptotical stability and exponential asym-
ptotically stability of the solution x0 of system (1.1) are defined in the same
way as for systems of ordinary differential equations (see, e.g., [9], [10]).
Note that the exponential asymptotical stability is a particular case of the
ξ-exponential asymptotical stability if we assume ξ(t) ≡ t.

Definition 1.2. The system (1.1) is called stable in this or that sense
if every its solution is stable in the same sense.

It is evident that the stability of the system (1.1) is equivalent both to
the stability of some solution of this system and the stability of the zero
solution of the system (1.10).

Therefore the stability is not the property of some solution of the system
(1.1). It is the common property of all solutions, and the vector-function f

does not affect this property. Hence it is the property of only the matrix-
function A. Thus, the following definition is natural.

Definition 1.3. The matrix-function A ∈ BVloc(R+; Rn×n) is called
stable in this or that sense if the system (1.10) is stable in the same sense.

Below, in Theorems 1.1–1.5, we assume that H(0) = In without loss of
generality.

Theorem 1.1. The matrix-function A ∈ BVloc(R+; Rn×n) is stable

if and only if there exists a nonsingular continuous from the left matrix-

function H ∈ BVloc(R+; Rn×n) such that

sup
{

‖H−1(t)‖ : t ∈ R+

}

< +∞ (1.4)

and
+∞
∨
0

(

H + B(H, A)
)

< +∞. (1.5)

Theorem 1.2. The matrix-function A ∈ BVloc(R+; Rn×n)is uniformly

stable if and only if there exists a nonsingular continuous from the left

matrix-function H ∈ BVloc(R+; Rn×n) such that the conditions (1.5) and

sup
{

∥

∥H−1(t)H(τ)
∥

∥ : t ≥ τ ≥ 0
}

< +∞ (1.6)

hold.

Theorem 1.3. The matrix-function A ∈ BVloc(R+; Rn×n) is asymptot-

ically stable if and only if there exists a nonsingular continuous from the left

matrix-function H ∈ BVloc(R+; Rn×n) such that the conditions (1.5) and

lim
t→+∞

‖H−1(t)‖ = 0 (1.7)

hold.
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Theorem 1.4. The matrix-function A ∈ BVloc(R+; Rn×n) is ξ- expo-

nentially asymptotically stable if and only if there exist a positive num-

ber η and a nonsingular continuous from the left matrix-function H ∈
BVloc(R+; Rn×n) such that

sup
{

exp
(

η
(

ξ(t)− ξ(τ)
))

·
∥

∥H−1(t)H(τ)
∥

∥ : t ≥ τ ≥ 0
}

< +∞ (1.8)

and
+∞
∨
0
Bη(H, A) < +∞, (1.9)

where

Bη(H, A)(t) ≡

t
∫

0

exp(−ηξ(τ)) d

(

H(τ) + H(τ)A(τ) −

τ
∫

0

dH(s) · A(s)

)

.

Corollary 1.1. Let a continuous from the left matrix-function Q ∈
BVloc(R+; Rn×n) be such that

det
(

In + d2Q(t)
)

6= 0 for t ∈ R+

and
+∞
∨
0
B(Y −1, A−Q) < +∞, (1.10)

where Y (Y (0) = In) is the fundamental matrix of the system

dy(t) = dQ(t) · y(t) for t ∈ R+.

Then the stability in one or another sense of the matrix-function Q guar-

antees the stability of the matrix-functions A in the same sense.

Theorem 1.5. Let a continuous from the left matrix-function A0 ∈
BVloc(R+; Rn×n) be uniformly stable and

det
(

In + d2A0(t)
)

6= 0 for t ∈ R+.

Let, moreover, the matrix-function A ∈ BVloc(R+; Rn×n) be such that

+∞
∨
0
A(A0,L(H, A)−A0) < +∞, (1.11)

where H ∈ BVloc(R+; Rn×n) is a nonsingular continuous from the left

matrix-function satisfying the condition (1.6). Then the matrix-function

A is uniformly stable as well.

2. Proof of the Main Results

To proves the theorems we will use the following two lemmas.

Lemma 2.1. Let h ∈ BV([a, b]; Rn), and let H ∈ BV([a, b]; Rn×n) be a

nonsingular matrix-function. Then the mapping

x → y = Hx + h
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establishes a one-to-one correspondence between the solutions of the systems

dx(t) = dA(t) · x(t) + df(t)

and

dy(t) = dA∗(t) · y(t) + df∗(t),

respectively, where

A∗(t) ≡ L(H, A)(t),

and

f∗(t) ≡ h(t)− h(a) + B(H, f)(t)−

t
∫

a

dA∗(τ) · h(τ).

Besides,

In + (−1)jdjA
∗(t) =

=
(

H(t)+(−1)jdjH(t)
)

·
(

In+(−1)jdjA(t)
)

·H−1(t) for t∈ [a, b]. (2.1)

Lemma 2.1 is proved in [2].

Lemma 2.2. Let a continuous from the left matrix-function A0 ∈
BVloc(R+; Rn×n) be such that

det
(

In + d2A0(t)
)

6= 0 for t ∈ R+.

Let, moreover, there exist t0 ∈ R such that the following conditions hold:

a) the Cauchy matrix C0 of the system

dx(t) = dA0(t) · x(t) (2.2)

satisfies the inequality
∣

∣C0(t, t0)
∣

∣ ≤ exp
(

− ξ(t) + ξ(t0)
)

· Ω for t ≥ t0,

where Ω ∈ R
n×n
+ and ξ is a function from BVloc(R+; R+) satisfying the

condition

lim
t→+∞

ξ(t) = +∞;

b) there exists a matrix Q ∈ R
n×n
+ such that

r(Q) < 1 (2.3)

and

t
∫

t0

exp
(

ξ(t)− ξ(τ)
)

·
∣

∣C0(t, τ)
∣

∣ dV
(

A(A0, A
∗ −A0)

)

(τ) ≤ Q for t ≥ t0,

where A∗ ∈ BVloc(R+; Rn×n) is a matrix-function satisfying the condition

det
(

In + d2A
∗(t)

)

6= 0 for t ∈ R+.
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Then an arbitrary solution y of the system

dy(t) = dA∗(t) · y(t) (2.4)

admits the estimate

|y(t)| ≤ exp
(

− ξ(t) + ξ(t0)
)

· R|y(t0)| for t ≥ t0,

where R = (In −Q)−1 · Ω.

Lemma 2.2 is proved in [7].

Proof of Theorem 1.1. First, we show the sufficiency. According to Lem-
ma 2.1 the mapping

x → y = Hx

establishes a one-to-one correspondence between the solutions of systems
(1.10) and (2.4), respectively, where

A∗(t) ≡ L(H, A)(t).

On the other hand, by (1.4)

det H(t+) 6= 0 for t ∈ R+.

Therefore, by (2.1) we have

det
(

In + d2A
∗(t)

)

6= 0 for t ∈ R+.

Let X (X(0) = In) and Y (Y (0) = In) be the fundamental matrices of
the systems (1.10) and (2.4), respectively. Then

X(t) = H−1(t)Y (t) = H−1(t)

(

In +

t
∫

0

dA∗(τ) · Y (τ)

)

=

= H−1(t)

(

In +

t
∫

0

d
(

H(τ) + B(H, A)
)

(τ) ·X(τ)

)

for t ∈ R+.

Hence by virtue of (1.4) we have

u(t) ≤ r +

t
∫

0

u(τ)da(τ) for t ∈ R+, (2.5)

where

u(t) ≡ ‖X(t)‖, a(t) ≡ r
∥

∥V (H + B(H, A))(t)
∥

∥

and

r = sup
{

‖H−1(t)‖ : t ∈ R+

}

.
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It is evident that a(t) (t ∈ R+) is a nondecreasing continuous from the
left function. Therefore, from (2.5) according to Gronwall’s inequality (see
[9, Theorem I.4.30]) we get

u(t) ≤ r exp
(

2
t
∨
t∗

(b)
)

≤ r exp
(

+∞
∨
0

(

H + B(H, A)
)

)

for t ≥ 0.

Hence, by (1.5)

sup
{

‖X(t)‖ : t ∈ R+

}

< +∞.

Thus the stability of the matrix-function A is proved.
Let us show the necessity. Let the matrix-function A be stable. Then

there exists r > 0 such that

‖X(t)‖ < r for t ∈ R+,

where X (X(0) = In) is the fundamental matrix of the system (1.10).
If we assume H(t) ≡ X−1(t), then by (1.3) we conclude

H(t) + B(H, A)(t) =

= X−1(t) + B(X−1, A)(t) = X−1(t) + In −X−1(t) = In for t ∈ R+.

Therefore the estimates (1.4) and (1.5) hold. The theorem is proved. �

Proof of Theorem 1.2. Let us show the sufficiency. Let C and C∗ be the
Cauchy matrices of the systems (1.10) and (2.2), respectively. Then by
Lemma 2.1, for every fixed s ∈ R+ we have

C(t, s) = H−1(t)C∗(t, s)H(s) =

= H−1(t)

(

In +

t
∫

s

dL(H, A)(τ) · C∗(τ, s)

)

H(s) =

= H−1(t)H(s) + H−1(t)

t
∫

s

d
(

H(τ) + B(H, A)(τ)
)

·H−1(τ)C∗(τ, s)H(s)

for t ∈ R+.

Therefore,

C(t, s) = H−1(t)H(s) + H−1(t)

t
∫

s

d
(

H(τ) + B(H, A)(τ)
)

· C(τ, s)

for t ≥ s.

Hence by (1.6) we find

∥

∥C(t, s)
∥

∥ ≤ r +

t
∫

s

∥

∥C(τ, s)
∥

∥ da(τ) for t ≥ s,
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where

a(t) ≡ r
∥

∥V (H + B(H, A))(t)
∥

∥

and

r = sup
{

‖H−1(t)H(s)‖ : t ≥ s ≥ 0
}

.

Analogously, as in the proof of Theorem 1.1 we get

∥

∥C(t, s)
∥

∥ ≤ 2r exp
(

2
t
∨
s
(b)

)

≤ 2r exp
(

2
+∞
∨
0

(

H + B(H, A)
)

)

for t ≥ s≥0.

Thus,

sup
{

‖C(t, s)‖ : t ≥ s ≥ 0
}

< +∞.

Therefore, the matrix-function A is uniformly stable.
The proof of the necessity is analogous to that for Theorem 1.1. �

Proof of Theorem 1.3. Let ε > 0 be an arbitrary positive number. According
to (1.7) there exists t∗ ∈ R+ such that

‖H−1(t)‖ < ε for t ≥ t∗.

From the last estimate, due to Theorem 1.1, it follows that the matrix-
function A is stable. Therefore, there exists r > 0 such that

‖X(t)‖ < r for t ∈ R+,

where X (X(0) = In) is the fundamental matrix of the system (1.10).
As in the proof of Theorem 1.1, we obtain

u(t) ≤ εr +

t
∫

t∗

u(τ)daε(τ) for t ≥ t∗,

where

u(t) ≡ ‖X(t)‖

and

aε(t) ≡ ε
∥

∥V
(

H + B(H, A)
)

(t)
∥

∥.

The function aε is continuous from the left. Therefore, as above, by Gron-
wall’s inequality we have

‖X(t)‖ ≤ ε exp
(

ε
+∞
∨
0

(

H + B(H, A)
)

)

for t ≥ t∗.

Consequently, with regard to (1.5) we have

lim
t→+∞

‖X(t)‖ = 0.

Hence, the matrix-function A is asymptotically stable.
The proof of the necessity is analogous to that for Theorem 1.1. �

Theorem 1.4 is proved in [7]. �
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Proof of Corollary 1.1. The cases of stability, uniform stability and asymp-
totical stability of the matrix-function A follow from Theorems 1.1–1.3,
respectively, if we assume that H(t) ≡ Y −1(t) in those theorems. Indeed,
by definition of the operator B as well as by (1.3) and (1.10), it is easy to
verify that

Y −1(t) + B(Y −1, A)(t) = Y −1(t) + B(Y −1, A−Q)(t) + B(Y −1, Q)(t) =

= B(Y −1, A−Q)(t) + In for t ∈ R+

and
+∞
∨
0

(

H + B(H, A)
)

=
+∞
∨
0
B(Y −1, A−Q) < +∞.

Let now the matrix-function Q be ξ-exponentially asymptotically stable.
Then there exist the positive numbers η and ρ such that

∥

∥Y (t)Y −1(s)
∥

∥ ≤ ρ exp
(

− η(ξ(t) − ξ(s))
)

for t ≥ s ≥ 0.

Therefore, the estimate (1.8) is valid, where H(t) ≡ Y −1(t). On the other
hand, by (1.3)

Y −1(t) = In + B(Y −1,−Q)(t) for t ∈ R+.

Then

Bη(H, A)(t) =

t
∫

0

exp
(

− ηξ(τ)
)

dB(Y −1, A−Q)(τ) for t ∈ R+,

where Bη(H, A) is the matrix-function appearing in Theorem 1.4. Hence by
(1.10) we conclude that the condition (1.9) holds.

Hence, due to Theorem 1.4 the matrix-function A is ξ-exponentially
asymptotically stable as well. The theorem is proved. �

Proof of Theorem 1.5. According to Lemma 2.1, the mapping

x → y = Hx

establishes a one-to-one correspondence between the solutions of the systems
(1.10) and (2.4), respectively, where

A∗(t) ≡ L(H, A)(t).

On the other hand, by uniform stability of the matrix-function A0 there
exist a constant matrix Ω ∈ R

n×n
+ such that the Cauchy matrix C0 of the

system (2.2) admits the estimate

|C0(t, t0)| ≤ Ω for t ≥ t0 ≥ 0.

Taking this estimate into account, we conclude

t
∫

t0

|C0(t, τ)| dV
(

A(A0, A
∗ −A0)

)

(τ) ≤ Ω

t
∫

t0

dV
(

A(A0, A
∗ −A0)

)

(τ) =
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=Ω
(

V
(

A(A0, A
∗−A0)

)

(t)−V
(

A(A0, A
∗−A0)

)

(t0)
)

for t≥ t0≥0. (2.6)

Moreover, by the inequality (1.11) the constant matrix

Q = Ω
+∞
∨
t∗

(

A(A0, A
∗ −A0

)

(2.7)

admits the estimate (2.3) for some sufficiently large t∗ ∈ R+.

According to (2.6) and (2.7),

t
∫

t0

|C0(t, τ)| dV
(

A(A0, A
∗ −A0)

)

(τ) ≤ Q for t ≥ t0 ≥ t∗.

Therefore, by Lemma 2.2 every solution y of the system (2.4) admits the
estimate

‖y(t)‖ ≤ ρ‖y(t0)‖ for t ≥ t0 ≥ t∗,

where ρ > 0 is a number independent of t0. The last estimate guarantees the
uniform stability of the matrix-function A∗. Hence, there exist a positive
number ρ1 such that

‖C∗(t, t0)‖ ≤ ρ1 for t ≥ t0 ≥ t∗, (2.8)

where C∗ is the Cauchy matrix of the system (2.4).
Let now C be the Cauchy matrix of the system (1.10). Then, according

to Lemma 2.1

C(t, t0) = H−1(t)C∗(t, t0)H(t0) for t ≥ t0 ≥ 0.

From this, by (1.6) and (2.8) we get

‖C(t, t0)‖ ≤ ρ1ρ2 for t ≥ t0 ≥ t∗,

where

ρ2 = sup
{

∥

∥H−1(t)H(τ)
∥

∥ : t ≥ τ ≥ 0
}

.

Consequently, the matrix-function A is uniformly stable as well. The theo-
rem is proved. �
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