Memoirs on Differential Equations and Mathematical Physics
VOLUME 46, 2009, 1-114

S. Kharibegashvili

BOUNDARY VALUE PROBLEMS FOR SOME
CLASSES OF NONLINEAR WAVE EQUATIONS



Abstract. For some classes of nonlinear wave equations, the bound-
ary value problems (the first Darboux problem and their multi-dimensional
versions, the characteristic Cauchy problem, and so on) are considered in
angular and conic domains. Depending on the exponent of nonlinearity
and the spatial dimension of equations, the issues of the global and local
solvability as well as of the smoothness and uniqueness of solutions of these
problems are studied.
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Introduction

In mathematical modelling of many physical processes there arise wave
equations involving nonlinearities which are, in particular, represented by
source terms. The Cauchy problem and the mixed problems for these equa-
tions have been studied with sufficient thoroughness (see, for e.g., [9], [11],
[16], [18], [19], [21], [23], [45], [50]-[53], [60]-[62], [64], [65], [75]-[77]). But as
for the boundary value problems for these equations such as, for example,
the characteristic Cauchy problems, the Darboux problems in angular and
conic domains, arising in mathematical modelling of: (i) small harmonic os-
cillations of a wedge in a supersonic flow; (ii) string oscillation in a viscous
liquid (see [13], [67], [68]), they are at the initial stage of investigation.

The goal of the present work is to fill in this gap to a certain extent. The
presence in equations of even weak nonlinearities may violate the correctness
of the problems, which may show itself in the destruction of solutions in
a finite time interval or the non-existence of solvability or uniqueness of
solutions of the problems under consideration.

The work consists of five chapters. In Chapter I we investigate the first
Darboux problem for a weakly nonlinear wave equation with one spatial
variable when, depending on the type of nonlinearity, the problem is globally
solvable in some cases and only locally solvable in other cases. Herein we
consider the issues of the uniqueness and smoothness of the solution ([1],
[20)).

Chapter II studies the characteristic Cauchy problem for a multidimen-
sional nonlinear wave equation in a light cone of the future. Depending
on the exponent of nonlinearity and the spatial dimension of the equation,
we investigate the issues of the global and local solvability of the problem
([25]-[27], [29], [32]).

Chapter III is devoted to Sobolev’s problem for a multidimensional
nonlinear wave equation in a conic domain of time type, while in Chapter
IV we consider multidimensional versions of the first Darboux problem ([6],
28], [30)).

Finally, the last Chapter V studies the characteristic boundary value
problems for a multidimensional hyperbolic equation with power nonlinear-
ity and the iterated wave operator in the principal part. Depending on
the exponent of nonlinearity and the spatial dimension of the equation, we
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investigate the issues on the existence and uniqueness of solutions of the
boundary value problems ([31], [33]).

When investigating the above-mentioned problems, the use will be made
of the classical methods of characteristics and integral equations, as well
as the methods of the modern nonlinear analysis (the method of a priori
estimates, the Schauder and Leray—Schauder fixed point principles and the
principle of contracting mappings, the method of test-functions, embedding
theorems, etc.).

Note that the problems we consider in the present work for linear wave
equations are well-posed in the corresponding function spaces ([2]-[8], [12],
[14], [17], [24], [25], [34], [54], [55], [57], [58], [63], [70], [71]).



CHAPTER 1

The First Darboux Problem for a Weakly
Nonlinear Wave Equation with One Spatial
Variable

1. Statement of the Problem

In the plane of the variables x and ¢t we consider a nonlinear wave
equation of the type

Lju = uy — uze + f(z,t,u) = F(x,t), (1.1)

where f = f(z,t,u) is a given nonlinear with respect to u real function,
F = F(z,t) is a given and u = u(z,t) is an unknown real function.

By Dr: —kt<z<t,0<t<T (0<k=const <1, T < o0) we
denote a triangular domain lying inside the characteristic angle {(:c,t €
R? : ¢ > |z|} and bounded by the characteristic segment 17 : x =
0 <t < T, and the segments yo 7 : = —kt,0 <t <T and y37: ¢
—kT < x < T of time and spatial type, respectively.

For the equation (1.1), we consider the first Darboux problem: find in
the domain D7 a solution u(z,t) of that equation according to the boundary
conditions [2, p. 228]

=, i=1,2, (1.2)

Yi, T
where ¢;, i« = 1,2, are given real functions satisfying the compatibility
condition ¢1(0) = ¢2(0) at the common point O = 0(0,0).

Remark 1.1. Below it will be assumed that the functions f : D xR — R
and F' : Dy — R are continuous. Moreover, and without restriction of
generality we may assume that

f(z,t,0)=0, (z,t) € Dr.

Definition 1.1. Let f € C(Dr x R), F € C(D7) and ¢; € C* (i),
i = 1,2. A function u is said to be a strong generalized solution of the
problem (1.1),(1.2) of the class C' in the domain D, if u € C(D7) and
there exists a sequence of functions u, € CQ(I_)T) such that u,, — u and
Lsu, — F in the space C(D7) and uy|,, 7 — ; in the space C1(v; 1),
i=1,2.
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Remark 1.2. Obviously, a classical solution of the problem (1.1),(1.2)
from the space C%(Dr) is a strong generalized solution of that problem of
the class C' in the domain Dp. In its turn, if a strong generalized solution
of the problem (1.1),(1.2) of the class C' in the domain Dp belongs to
the space C?(Dr), then that solution will also be a classical solution of
that problem. It should be noted that a strong generalized solution of the
problem (1.1), (1.2) of the class C in the domain Dy satisfies the boundary
conditions (1.2) in the usual classical sense.

Definition 1.2. Let f € C(Dy x R), F € C(Dw) and ¢; € C(i00),
i =1,2. We say that the problem (1.1), (1.2) is globally solvable in the class
C if for every finite T' > 0 this problem has a strong generalized solution of
the class C' in the domain Dy.

2. An a Priori Estimate of a Solution of the Problem (1.1), (1.2)
Let

glx,t,u) = /f(:v,us) ds, (x,t,u) € Dy x R. (2.1)
0

Consider the following conditions imposed on the function g = g(z, ¢, u)
from (2.1):
g(z,t,u) Z _Ml - M2u27 (CC,t,’U,) € ET X Rv (22)
gi(z,t,u) < Ms + Myu?, (x,t,u) € Dy x R, (2.3)
where M; = M;(T) = const >0, i=1,2,3,4.
Lemma 2.1. Let f, f, € C(Do xR), F € C(Dr), vi € C (vir),
1 = 1,2, and the conditions (2.2) and (2.3) be fulfilled. Then for a strong

generalized solution u = u(z,t) of the problem (1.1),(1.2) of the class C in
the domain D the a priori estimate

2
lulle@ey <t (1Fllome + 3 leilloran ) +e (2.4)
i=1
is valid with nonnegative constants ¢; = ¢;(f,T), i = 1,2, not depending on
u and F, o1, @2, where ¢; > 0.

Proof. Let u be a strong generalized solution of the problem (1.1),(1.2) of
the class C' in the domain Dy. By Definition 1.1, there exists a sequence of
functions u,, € C*(Dr) such that

Jim =l o,y =0, B L = Flom,, =0, (25)
Jim ] =il ) =0 (2.6)

and hence
T | f(at) — £, 1) ) = 0. (2.7)
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Consider the function u,, € C?(D7) as a solution of the problem

qun = Fn, (2.8)
Unl,, =i, i=12 (2.9)

Here
F, := Lyu,. (2.10)

Multiplying both parts of the equation (2.8) by %ﬂ and integrating

over the domain D, := {(z,t) € Dr: t <7}, 0 <7 <T, by virtue of (2.1)

we obtain
1 (9 8Un 2 a2un 6un
— | = —) dzdt— | — — dxdt
2/8t(8t) * /a;ﬁ 5 dedtt
D. D,
—l—/%(g(:c,t,un(:c,t)) dmdt—/gt(x,t,un(a:,t)) dxdt =
D, B,
Oun,
= /Fnﬁ d dt. (2.11)
D,

Let Q; := Do N{t =7}, 0 < 7 < T. Then, taking into account the
equalities (2.9) and integrating by parts the left-hand side of the equality
(2.11), we obtain

ouy,
F, — dxdt =
/ at “*
D,

[ 3 G o) () - 0] e

i, T

+%/ [(%)2—% (%)1 dm+/g(w,7,un(:v,7)) dr+

Q- Qr

2
+Z / g(w,t, gom(x,t))utds—/gt(:v,t,un(ac,t)) dz dt, (2.12)
i=1
i, T

D,

2
=1,

—

Vi,

where v = (v, 14) is the unit vector of the outer normal to 0D,, 7, :=
Yir N{t < 7}

Since (ut 8% — Vg %) is an inner differential operator on +; -, owing to
(2.9) we have

(G- )

< Mlwinllcrtiny, i=1,2. (2.13)

i,T
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Taking into account that D, : —kt < x <t,0<t < 7,where0 < k < 1,
it can be easily seen that

(Va, V) |71,r = (%, —\/iﬁ),

) , (2.14)
(Vmayt)‘ = (_ T )a
V2,7 \/1+k2 \/1+k2
(i —v)|, =0,07—-12) *E <0
R S (2.15)
ml, <0, i=12

Due to the Cauchy inequality, by (2.2), (2.3), (2.13), (2.14) and (2.15)
it follows from (2.12) that

J [y (2] -

Q,
2
B 1 ouy, ouy, 2 Oun\2, o 9
=2 / w {(W”‘W”x) + () v —m] ds—
=lyir
2
_2/9(17,7', un(:c,T)) d:c—QZ / g(az,t, gpm(:c,t))ut ds+
Q- i:17i,7

Oun
+2/gt(x,t,un(:t,t)) dxdt—&—Q/Fn%dmdtg
D, D

V1+k?
< V2 / ”‘PlnHQCl('yl,T) ds + k / H<P2”H2CI(’72,T) ds+
V1,7 Y2,7

2
+2) / (M1 + Mapj, (2,t)) ds + 2/ (My + Mo2 (z, 7)) da+
i Q.

+2/ (M3 + Myu} (z,1)) d:cdt+2/Fn % dz dt <

D~ D~

2
SM5+MGZ||‘PMH2CI(%1T)+M7/UidI‘FMS/Ui dx dt+

=1 Qr D
Ouy, \ 2 9
+/( (,%) dxdt+/Fn dz dt, (2.16)
D, D,

where we have used the fact that [|0in|lc (v, ) < [|@inllct (ve.r)-
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Here

2
My = 2M, ( Z mes y; 7 + mes QT) + 2Ms3mes D,
i=1

VITR 2 (2.17)

3 mes yo, 7 + 2M> Z mes ;. T,

=1
My = 2M,, Mg = 2M,.

Mg = V2 mes vy 7+

Since v1,: t=2,0<z<7and v, : t:—%x, -k <x <0, by
virtue of (2.9) and the Newton-Leibnitz formula we have

Un (2, 7) = pan(x) + / W do, —kt <z <0,

1
7z

(2.18)
Oun(z,
un (2, 7) = Pin(x) + / % do, 0<z<T.
Using the Cauchy and Schwartz inequalities, from (2.18) we get

2 2 [ Qun(z,0) ?
un(I’ T) < 290271(17) +2 T do <

1,
T T P . )
< 202 (2) +2 / 12do/ (%) do <
“1, “1,

<202 (z) + 2T /T (W)Qda (2.19)

S,
for —k7 <z < 0. Analogously, for 0 < z < 7 from (2.18) we have

T

M)Q do (2.20)

2o 7) < 20 (o) + 27 [ (T

x

It follows from (2.19) and (2.20) that

/uidz: / u? dr + / u? dr <

Q- Q-N{z<0} Q-N{z>0}

< / {2<p§n(z)+2T/T (wyda]dﬁ

QTﬂ{LESO} — T

S
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T

Oun(x,0)\?
+ / {290%”(1:) —|—2T/ (%) da} dx <
Q-N{z>0} T
2 9 Oup\ 2
<273 [l pinll? gy + 2T (W) dedt. (2.21)
i=1 b,

By (2.21), we have

/uidzdt:/da/ufldzg
0 Qo
7 2

D,
9 Oup\2
< [ 120X ez, ) +2T (W) dzdt| do <

0 =1

o

2
Oup\ 2
§2T2[Z”‘Pi"|%(vm)+/(ﬁ) dzdt} (2.22)
=1

-

Taking into account (2.21), (2.22) and the fact that [pinllc(y, ) <
l[inllct (4: )+ from (2.16) we obtain

/ K%)? N (%)2] dw < Ms + Mgg||som|é1<w>+

Qr

2
+M10/(ag—;> d:vdt—&—/Fg dzdt, (2.23)

D, D,
where
Mg = Mg + 2T M7 + 2T*Mg, My = 2T M7 + 2T* Mg + 1. (2.24)
Putting
Oup\ 2 Oup\ 2
w(T) —/ [(W) + (%) :|d.17 (2.25)

QT
and taking into account that

Oup\ 2 B r Oup\ 2
/(W) dmdt—/df’/(ﬁ) az,
D, 0 Q
from (2.23) we have
’w(T) < Mlo/’w(O') do + Ms+
0
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2
01+ 0 Sl + [ I, dodr) <
=1 Dr

T

§M10/w(0)d0+M5+

0
2

+ (Mo + 1) (D el vy + I1Fal2 5, mes D) <
=1
2

w(o) do + Mis (Y il p + 1Pl ) + Ms, (2:26)
=1

IN
=
O\ﬂ

My1 = (Mg + 1) max(1, mes D). (2.27)
By Gronwall’s lemma [15, p. 13], from (2.26) we find that
2
wl) < (M (S Il oy + VFull,y) + M| exp M. (228)
i=1

If (z,t) € Dr, then owing to (2.9) the equality

B [ Oun(o,t) [ Oun(o,t)
un(:zr,t) —Un(—kt,t)—F / Tdo’_(pﬁz(t)‘l' / Tdo
—kt —kt

holds, whence with regard for (2.25), (2.28) and the Cauchy and Schwartz
inequalities we obtain

z 2
|un<x,t>|2s2so§n<t>+2( / Ww) <
X

—kt
r r Oun (o, )\ 2
§2||<p2n||%‘(72T)+2/12d0'/ (%) dO’S
—kt —kt

Oun(o,t)\2

Q
< 2||p2nllEnyy 4 + 200+ R)tw(t) < 2llpanllBry, .+

2
<2(1+k)T [Mu (lewm||201(%T)+||Fn||2c(m)) +M5] exp M1oT. (2.29)
=1
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Taking into account (2.17), (2.24), (2.27) and using the obvious inequal-
ity (> af)l/2 < 37 |agl, from (2.29) we find
i=1

=1

2
lunllo@e < e1(1Fallo@e + D Ieinlloin) +e2 (230
i=1

with nonnegative constants ¢; = ¢;(f,T), ¢« = 1,2, not depending on w,,
F,, ¢1n and @a,; here ¢; > 0. Finally, owing to (2.5)—(2.10) and passing
in the inequality (2.30) to limit as n — oo, we obtain the a priori esti-
mate (2.4). O

3. Reduction of the Problem (1.1), (1.2) to a Nonlinear Integral
Equation of Volterra Type

Let P = P(x,t) be an arbitrary point of the domain Dr. By G5 we
denote the characteristic quadrangle with the vertices at the point P(x, )
as well as at the points P, and P», Ps lying, respectively, on the supports
of the data v, r and 2 7 of the problem (1.1), (1.2), i.e.,

klx—t) t—=
Pl'_Pl( k+1 ’k+1)’

11—k 11—k
P::P(——t— i )
2i= P g -2 g g (- 2)

rx+t v+t
P::P( , )
3 3 2 2

Let u € C?(Dr) be a classical solution of the problem (1.1),(1.2). In-
tegrating the equality (1.1) with respect to the domain G, which is the
characteristic quadrangle of that equation and using the boundary condi-
tions (1.2), we can easily get the following equality [1]; [2, p. 65]:

u(zx,t) —&—% / @ u(, ) da’ dt’ =

Gat

1
= 902(P1) + (pl(Pg) — (PI(PI) + 5 / F(:v',t/) da’ dtl, (,T,t) € Dr. (31)
Got

Remark 3.1. The equality (3.1) can be considered as a nonlinear integral
equation of Volterra type which we rewrite in the form

() + (Lo o)) (@:1) =
= (ﬂal(cpl, ©2)) (@, t) + (Lo 'F)(x,t), (2,t) € Dr. (3.2)
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Here Ly ! and 4y ! are the linear operators acting by the formulas

(Lo o) (x,t) = % / v(2' ") da’ dt’, (3.3)
Gt
(Lo (01, 02)) (2, 1) = @2(P1) + p1(Ps) — 1(P1). (3.4)

Note that Ly v (€5 (¢1,¢2)) from (3.3), (3.4) is a solution of the corre-
sponding to (1.1),(1.2) homogeneous linear problem, i.e., for f = 0, when
F =uv, ¢1 = ¢y =0 (F = 0). Moreover, Ly 'v € C**'(Dr) if v € C*(Dr)
and Egl(gol,cpg) € C*(Dr) for p; € C*(vir),i=1,2;k=0,1,2,....

Lemma 3.1. Let f € C'Y(Dr x R). The function v € C(Dr) is a
strong generalized solution of the problem (1.1),(1.2) of the class C' in the
domain D if and only if it is a continuous solution of the nonlinear integral
equation (3.2).

Proof. Indeed, let u € C(Dr) be a solution of the equation (3.2). Since
F € O(Dr) (p; € C'(yi7)) and the space C%(Dr) (C?(v;r)) is dense in
C(Dr) (CY(vir)) [56, p. 37], there exists a sequence of functions F, €
C*(Dr) (pin € C*(7in)) such that lim |[Fy — Fllop,) = 0 ( lim [lpim —
@illci(riy = 0, = 1,2). Analogously, since u € C(Dr), there exists a
sequence of functions w,, € C?(Dr) such that w, — w in the space C(Dr).
Assume

un = =Lo ' fl Ly + € (P10, 920) + Ly e (3.5)

Since f € CY(Dr x R), according to Remark 3.1 we have u,, € C?(D7) and
Un|y;p = Pin, © = 1,2. Taking now into account that the linear operators

Lyt : C(Dr) — C(Dr) and 45" = Cl(mr) x C'(ye,r) — C(Dr) are
continuous and that by our assumption

Jim Jw, — vl o,y = I ([Fn = Fllom,) =
= lim floin = @illcr(rir) =0, (3.6)
by virtue of (3.5) we have
un(,0) — [ = (L5 lyo) () + (65 (01 02)) )+ (L F) )]
in the space C(Dr). But it follows from the equality (3.2) that
(L5 o) @)+ (65 (P10 02)) @0 + (L F) @.t) = ul, 1),

Thus we have

nlirgo [un = ullom,y = 0. (3.7)
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On the other hand, by Remark 3.1 and (3.5), we have

LOun = _f‘
unyw = Qin, 1=1,2. (3.9)

+ F,, (3.8)

U=Wn,

From (3.6)—(3.9) it follows lim ||uy

since

Yi, T (pi”Cl(%;,T) = 07 1= 172a and

qun:Loun—Ff’ :_f‘u:wn_FFn_'—f’u:un:

U=Unp,

:_(f('vwn)_f('vu))+(f('7un)_f('7u))+Fna

we have Lju, — F in the space C(Dr), as n — oo. The converse is
obvious. 0

4. Global Solvability of the Problem (1.1),(1.2) in the Class
of Continuous Functions

As is mentioned above, Ly ! from (3.3) is a linear continuous operator
acting in the space C(D7). Let us show that this operator acts in fact lin-
early and continuously from the space C (ﬁT) to the space of continuously
differentiable functions C*(Dz). Towards this end, by means of the linear
non-singular transformation of independent variables t = {+n, x = { —n we
pass to the plane of the variables £, . As a result, the triangular domain
Dy transforms into the triangle Dy with vertices at the points O(0,0),
N1 (T, 0), NQ(% T, #T), and the characteristic quadrangle G, from
the previous section transforms into the rectangle CNJM with the vertices

P(t5, 52, Py(5 4 (1), 552, Po(3 15 (1 0),0), Py(5,0), ., in

the variables &, n: ﬁ(f,n), ﬁl(};—’; n.n), ]52(}:_—]7: 1,0) and ]33(5,0). More-

over, the operator L ! from (3.3) transforms into the operator Lj L acting

in the space C(Dr) by the formula

(Lo w)(&.m) = / w(&' ') de' dy =

Gz',t

£ n
= / dg’/w(g’,n') de'dy', (€,m) € Dr.  (4.1)

—k
TFE 1 0

[

If w € C(Dr), then it immediately follows from (4.1) that

%(falw)(f,n) - / w(E') dif. (42)
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n ¢

0 ~

o Tt = 155 [w(¢ d§+/ (€ ) de'. (43)
0 1=

Taking now into account that for (£,7) € Dy we have 0 < £ < T and
0 <n < LET, by virtue of (4.1), (4.2), (4.3) and the fact that 0 < k < 1
we have

~ o ~ ~
L |5 B ez, * o 7o vl e, <
1Eo wlem,) + 50 Vle@n il ™ C<DT>_
k 1-—
(f‘m Nl + 1lelog,, + 1o Molas,*
—k
- = < (T? -
+(e-1op )Hwncwﬂ_(T +30)wll, 5,
ie.,
1Z5 < (17 +37), (4.4)

C(Dr)—CH(Dr) =
which was to be demonstrated.
Further, since the space C 1(DT) is embedded compactly into the space

C(DT) [10, p. 135], the operator Ly* : C(DT) — C(Dr) is, by virtue of
(4.4), linear and compact. Thus getting now back from the variables £ and
7 to the variables  and ¢, for the operator Ly ' from (3.3) we obtain the
validity of the following statement.

Lemma 4.1.  The operator Ly : C(Dr) — C(Dr) acting by the
formula (3.3) is linear and compact.

We rewrite the equation (3.2) in the form
u= Au:= —(Lalf‘u:u(w7t)) + éal(<p1, w2) + LalF, (4.5)

where the operator A : C(D7) — C(Dr) is continuous and compact since
the nonlinear operator K : C(Dr) — C(Dr) acting by the formula

u:= —f(x,t,u) is bounded and continuous and the linear operator Lal :
C(Dr) — CO(Dr) is, by Lemma 4.1, compact. We have taken here into
account that the component Aju := £ (¢1,p2) + Ly ' F of A from (4.5)
is a constant and hence a continuous and compact operator acting in the
space C(D7). At the same time, by Lemmas 2.1 and 3.1 as well as by
(2.2), (2.3), (2.17), (2.24) and (2.27), for any parameter 7 € [0, 1] and every
solution u € C(Dr) of the equation v = TAu the a priori estimate (2.4)
is valid with the same constants ¢; and cg, not depending on u, F', ¢1, @2
and 7. Therefore, by Leray—Schauder’s theorem [66, p. 375] the equation
(4.5) under the conditions of Lemmas 2.1 and 3.1 has at least one solution
u € C(Dr). Thus, by Lemmas 2.1 and 3.1, we proved the following [1]

Theorem 4.1. Let f € C'(Dy xR) and the conditions (2.2) and (2.3)
be fulfilled for every T > 0. Then the problem (1.1), (1.2) is globally solvable
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in the class C in the sense of Definition 1.2, i.e., for every ¢; € C(Vioo),
i=1,2, and F € C(Dx) and for every T > 0 the problem (1.1), (1.2) has
a strong generalized solution of the class C' in the domain Dt in the sense
of Definition 1.1.

We now cite certain classes of functions f = f(z,t,u), frequently en-
countered in applications, for which the conditions (2.2) and (2.3) are ful-
filled:

1. f(z,t,u) = fo(z, ) (u), where fo, % fo € C(Dy) and ¥ € C(R).

In this case g(z,t,u) = fo(x,t) [(s)ds, and if the inequality [¢(u)| <

0
dy|u| + dg is fulfilled, then the conditions (2.2) and (2.3) will be fulfilled.

2. f(z,t,u) = fo(x,t)|u|* sgnu, where fo, % fo € C(Ds), a > 1.

In this case g(z,t,u) = fo(x,t)|u|*"!, and if the inequalities fo(z,t) >
0, 2 fo(z,t) < 0 are fulfilled, then the conditions (2.2) and (2.3) will be
fulfilled.

3. f(z,t,u) = fo(z,t)e", where fo, & fo € C(Dso).

In this case g(z,t,u) = f(x,t,u), and if the inequalities fo(z,t) > 0,
% fo(z,t) <0 are fulfilled, then the conditions (2.2) and (2.3) will be ful-
filled.

Thus, if the function f € C'(Ds x R) belongs to one of the above-
mentioned classes, then according to Theorem 4.1 the problem (1.1),(1.2)
is globally solvable in the class C in the sense of Definition 1.2.

We present here an example of a function f which is also encountered
in applications, when at least one of the conditions (2.2) or (2.3) is violated.
Such a function is

flz,t,u) = folz, t)|u]®, a>1, (4.6)

where fo, % fo € C(Ds) and fo # 0. In this case, by virtue of (4.6) we have
g(x,t,u) = fo(z,t)|u|*T! sgnu, and since o > 1 and fo # 0, the condition
(2.2) is violated. If % fo # 0, then the condition (2.3) will also be violated.

Below, it will be shown that if the conditions (2.2) and (2.3) are violated,
then the problem (1.1), (1.2) fails to be globally solvable.

5. The Smoothness and Uniqueness of the Solution of the
Problem (1.1),(1.2). The Existence of a Global Solution
in Do
According to Remark 3.1, by virtue of the equalities (3.2), (3.3) and
(3.4), if the conditions of Theorem 4.1 except possibly (2.2) and (2.3) are

fulfilled, then a strong generalized solution of the problem (1.1),(1.2) be-
longs in fact to the space C'!'(Dr). The same reasoning leads us to

Lemma 5.1. Let u be a strong generalized solution of the problem
(1.1), (1.2) of the class C in the domain D in the sense of Definition 1.1.



Boundary Value Problems for Some Classes of Nonlinear Wave Equations 17

Then if f € C¥(Dr x R), F € C¥(Dr) and ¢; € C** L (y;7), i = 1,2,
k >0, then we have u € C**1(Dr).

From the above lemma it follows, in particular, that for £ > 1 a strong
generalized solution of the problem (1.1),(1.2) of the class C' in the domain
Dy is a classical solution of that problem in the sense of Definition 1.1.

It is said that a function f = f(x,t,u) satisfies the local Lipschitz
condition on the set Do x R if

‘f(l‘ﬂf,’LLg) — f(x7t,u1)| <
< M(T,R)lug —u1|, (x,t) € Dr, |us| <R, i=1,2, (5.1)
where M = M (T, R) = const > 0.
Lemma 5.2.  If the function f € C(Dr x R) satisfies the condi-

tion (5.1), then the problem (1.1),(1.2) cannot have more than one strong
generalized solution of the class C' in the domain Dr.

Proof. Indeed, assume that the problem (1.1),(1.2) has two strong general-
ized solutions u; and us of the class C in the domain Dp. By Definition 1.1,
there exists a sequence of functions uj, € C? (Dr), j = 1,2, such that

lim ||u;n — Uj”c(ET) = nlggo [ Lpujn — FHC(BT) =

n—oo

= lim [lujnl, = ¢illorgy =0, 3,5 =1,2. (5.2)

n—oo

Let w,, = U9, —U1,. It can be easily seen that the function w,, € C? (ﬁT)
is a classical solution of the problem

9?2 9?
Wl . = Pin, 1= 1,2. (5.4)
Here
gn = f(.%'ﬂf, u2n) - f(m,t7u1n), (5'5)
Fn = Lf’lLQn - quln, (56)

Pin = (u2n - uln) yir? 1= 132 (57)

By virtue of (5.2), there exists a number m = const > 0, not depending
on the indices j and n, such that ||ujn |5, < m, whence, in its turn, by
(5.1) and (5.5) it follows that
|gn| < M(T,2m)|usn — w1n)- (5.8)
The equalities (5.2), (5.6) and (5.7) imply that

T [Fulley =0 lm [gillcin =0, i=12  (5.9)
Multiplying both parts of the equation (5.3) by %“’t“ and integrating
with respect to the domain D, := {(:v,t) eDr: t< T}, 0<7<T, due
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to the boundary conditions (5.4), just as in obtaining the inequality (2.16),
from (2.12)—(2.15) and (5.8) we have

/ k%)ﬁ(%ﬂ
=3 [l Gy - (Gt

+2/(F - )a_ d dt <

D-

V14 k2
<VE [Nl ds+ 5 [ leanlagn dst
.

2
—I—/(Fn—gn)2 dmdt—k/(%) de dt <

D, D,

VY el + [ () et

= D,

+2/gid:cdt+2/F3 drdt <

DT DT
2
Owp,\ 2
Z |(panCI %T +/(W) dCCdt—F
— 2
+2M*(T, 2m)/w;i d:cdt+2/F3 dz dt. (5.10)
DT DT

By the inequalities (2.21) and (2.22) which, with regard for (5.4), are
likewise valid for the function wy,, from (5.10) we find that

[l ey (] s

-

[

2
Own\ 2
i=1 D,

2
N A\ 2
—|—M£ H(plnHél(%T)—F/(W) dx dt+
1=1

D,

2
B 2
LAT2M(T, 2m)[ZII%II2c1(M)+/(%) dxdt] +2/F3 dz dt <
i=1 b b,
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SM]/ [w§+(%)2+(%)1 dz di+

-

2
B[ il + I FalE g,y ], 0<T<T,
=1
where

My =1+ 2T + 4T*>M?(T, 2m),
My = 2mes Dy + 2T + M + AT?M?(T,2m).

o= [ [+ () + (529

Qr

Assuming

and taking into account the equality

Owp\ 2 Owp,\ 2 r
2 —n _-n —
/[w"+(8t> +(8z> ]dwdt /Un(o)do7
Q. 0
from (5.11) we obtain that

T

19

(5.11)

2
vn(7) < M /vn(a) 4o + 30 3 il + 1Fal2 ) (5:12)

0 i=1

By Gronwall’s lemma, from (5.12) it follows

2
on () < M, [Z I Pin &t ¢y, 1) + ||Fn||20(5T)} expMiT, 0<7<T. (5.13)
=1

Since wy, = Uy — Uiy, from (5.2) and (5.9) it also follows that

nlggo ||Wn||c(ET) = [luz — U1||C(BT)7
nhﬂngo l|lwn — (uz — ul)HC(ET) =0.

In particular, from (5.13) for 7 = T' we have

Dr

(5.14)

2
/w;i drdt < Moy [Z linllZ g,y + ||Fn||20(5TJ exp MiT.  (5.15)
=1

Passing now in the inequality (5.15) to limit as n — oo and taking into
account the equalities (5.9) and (5.14) as well as the theorem on the passage

to limit under the integral sign, we obtain

/ lug — u1|? dedt <0,

Dr

whence it immediately follows that us = uq, and hence the proof of Lem-

ma 5.2 is complete.

O
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Theorem 4.1 and Lemmas 5.1 and 5.2 imply the following

Theorem 5.1.  Let ¢; € C?(yi00), i = 1,2, F € CY(Dw), f €
C'(Dwo x R), and the conditions (2.2) and (2.3) be fulfilled. Then the prob-
lem (1.1),(1.2) has a unique global classical solution u € C(Ds) in the
domain D .

Proof. Since the function f from the space C'(Ds, x R) satisfies the local
Lipschitz condition (5.1), according to Theorem 4.1 and Lemmas 5.1 and
5.2, in the domain Dp for T' = n there exists a unique classical solution u,, €
C?(Dr) of the problem (1.1), (1.2). Since u, 41 is likewise a classical solution
of the problem (1.1),(1.2) in the domain D,,, by virtue of Lemma 2.5 we
have u,41|p, = un. Therefore the function u constructed in the domain
Do by the rule u(x,t) = up(z,t) for n = [t] + 1, where [t] is the integer
part of the number ¢ and (z,t) € Du, will be the unique classical solution
of the problem (1.1),(1.2) in the domain D, of the class C?(Dy).

Thus the proof of Theorem 5.1 is complete. O

6. The Cases of the Non-Existence of a Global Solution
of the Problem (1.1),(1.2)

Below it will be shown that in case the conditions (2.2) or (2.3) are
violated, the problem (1.1), (1.2) cannot be globally solvable in the class C
in the sense of Definition 1.2.

Lemma 6.1. Let u be a strong generalized solution of the problem
(1.1), (1.2) of the class C in the domain Dr in the sense of Definition 1.1
under the homogeneous boundary conditions, i.e., for o; =0, 1 =1,2. Then
the following integral equality

/uDgodxdt:—/f(%t,u)go dxdt+/Fg0 dx dt (6.1)
D~ D~ Dr
is valid for any function @ such that
p e 02(5'1—')7 SO’t:T = 07 (pt‘t:T = 07 SO”}?,T = 07 (62)

o2 22
where [ := B~ HeZ

Proof. By the definition of a strong generalized solution u of the problem
(1.1), (1.2) of the class C in the domain D7, we have u € C(Dr), and there
exists a sequence of functions u,, € C?(D7) such that

nhjgo [|wn — UHC@T) = 7}5{.10 I Lpun — F||C(BT) =

= lim [un|,  —Ollciyr) =0, i=1,2. (6.3)

Let F, = Lyun, Qin = Unl|y, +, © = 1,2. We multiply both parts of the
equality Lfu, = F, by the function ¢ and integrate the obtained equality
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over the domain Dp. After integration of the left-hand side of the above
equality by parts, we obtain

Ouy, dy
/ullpdmdt—i— a—Ngods— / una—Nds+
D~ oD 0D

—l—/f(cc,t,un)(p dxdt:/Fn<p dx dt, (6.4)
DT DT

where 8% =1 % — Uy 8% is the derivative with respect to the conormal,
and v = (v, 1) is the unit vector of the outer normal to dDr.

Taking into account that the operator of differentiation with respect to
the conormal % is an outer differential operator on the characteristic curve

OUn _ Opin

~1,7, and hence by the equalities from (6.2) we have

ON Iy 0 =~ ON
Oy, _ Op1n
/ N pds = N pds,
O0DT Y1,T (6 5)
dp 2 dp .
/una—NdS—Z/goma—Nds.
0Dt lzl%‘,T
Since pin = Un|y, , @ = 1,2, by virtue of (6.3) we find that
590171 . .
I H —0, 1 inllcie oy =0, i=1,2. 6.6
A BN e Jim il ) ¢ (6.6)

By (6.3) and (6.6), passing in the equality (6.4) to limit as n — oo we
obtain the equality

/uDgodxdt—&-/f(at,u)godmdtz/Fcpdxdt.
Dr Dr Dt

Thus the lemma is proved. (Il

Consider the following condition imposed on the function f:
flzt,u) < —Au|*™, (z,t,u) € Doo x R; A\, = const > 0. (6.7)

It can be easily verified that if the condition (6.7) is fulfilled, then the
condition (2.2) is violated.
Introduce into consideration a function ¢® = ¢%(z,t) such that

0 2/ 0 0 _ 0 —
¢* € C*(Deo), ¢°|p_ >0, ¢ \mO =0, ¢°|,5, =0 (6.8)
and let
00 1
ny = / &dxdt<+oo, pP=1+—. (6.9)
[

|0 =

T=1
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It is not difficult to verify that in the capacity of the function ¢( satis-
fying the conditions (6.8) and (6.9) we can take the function

(po(xvt)_{(()x—i-kt) (1—6)™, (2,{) € Dres,
) t21’

for sufficiently large positive constants n and m.
Putting ¢ (z,t) = cpo(%, %), T > 0, by virtue of (6.8) we can see that

<PT 6 02(500)5 wT’DT > 07

dpr ’

(6.10)
=0, ¢r|,_p=0, =

Y2, T

Assuming the function F' is fixed, we interoduce into consideration the
function of one variable T',

¢(T) = /FQDT dedt, T > 0. (6.11)
Dt

There takes place the following theorem on the nonexistence of global
solvability of the problem (1.1), (1.2) [1].

Theorem 6.1.  Let the function [ € C(Ds x R) satisfy the con-
dition (6.7), F € C(Dw), F > 0, and the boundary conditions (1.2) be
homogeneous , i.e., p; =0, 1= 1,2. Let, moreover,

lTlrilJlrr;(ij(T) > 0. (6.12)

Then there exists a positive number Ty = To(F') such that for T > Ty the
problem (1.1), (1.2) cannot have a strong generalized solution u of the class
C' in the domain Dr.

Proof. Assume that under the conditions of the above theorem there exists
a strong generalized solution u of the problem (1.1),(1.2) of the class C' in
the domain Dp. Then, by Lemma 6.1, we have the equality (6.1) in which,
owing to (6.10), we can take in the capacity of the function ¢ the function

P = pr, le.,

— / flx, t,u)pr dedt + / For dedt = / udyr dx dt. (6.13)
Dr Dr Dr
Since ¢ > 0 in the domain Dp, by the condition (6.7) and the desig-
nation (6.11), from (6.13) we have

/\/ |ulPor dedt < / lu| |Oy| dedt — {(T), p=a+1. (6.14)
DT DT

If in Young’s inequality with parameter € > 0,

, 1 1
abgfap—k—/bp;a,bz(), —+—-—=1, p=a+1>1,
p pler'—1 p 7
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we take a = |u\<plT/p, b= JDI—%L, then taking into account that p'/p = p’ — 1
Pr

we will obtain

Opr| _ ¢ 1 [Oerl”
Or] = fulgt/? 1222 < € EE 6.15
|U (,DT| |U|SDT S0,—11—‘/p — P |’LL| SOT + p/ep/fl (pgj,l ( )

It follows from (6.14) and (6.15) that

£ 1 [Der|?’
()\ _ ]—?) / uPor dedt < g / Sl dedt — ((T),
Dr pr T
whence for € < Ap we find that
p Ber|” p
ulPor dedt < ; —— dxdt———((T). (6.16
Jat EEE (7). (610)

DT DT

/
1 1 1 ! = = 1 = L
Bearing in mind that p —Lp_l , D —Lp,_l and 0<r1;1<r£\p —L(/\p_(s)p,gp/,l 3

which is achieved for e = A, from (6.16) we get

1 Oor|? /
/ |ulPor dodt < G | f,T_L dx dt — Z%((T). (6.17)
Dy P

Dr

Since pr(z,t) = ¢°(%, %), by virtue of (6.8) and (6.9), after the change
of variables t = Tt', x = Ta’, we can easily verify that

Dpr[”

\)ﬂl

) drdt =
Dr SDT
, |:| 0 p/ ’
_ p20/-D) / (I opr_l do’ dt' = T2 13 < 4oo. (6.18)
©

Dr=1

By virtue of (6.10) and (6.18), the inequality (6.17) yields

1 : '
0< / [l er dudt < T2 =1 5 — % ¢(T). (6.19)
Dt

Because of the fact that p’ = ;iLl > 1 we have —2(p’ — 1) < 0, and by

(6.9) we get
Jim Aip T2~V 5 = 0.

Therefore, by (6.12) there exists a positive number Ty = To(F') such
that for T > T, the right-hand side of the inequality (6.19) is negative,
while the left-hand side of that inequality is nonnegative. This means that
if there exists a strong generalized solution u of the problem (1.1),(1.2)

of the class C' in the domain Dy, then necessarily T' < Tp, which proves
Theorem 6.1. (]
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Remark 6.1. Tt is not difficult to verify that if FF € C(Ds), F > 0 and
F(z,t) > ct7™™ for t > 1, where ¢ = const > 0 and 0 < m = const < 2, then
the condition (6.12) is fulfilled, and according to Theorem 6.1 in this case
the problem (1.1),(1.2) has no strong generalized solution u of the class C
in the domain Dy for large T [1].

7. The Local Solvability of the Problem (1.1), (1.2)

Theorem 7.1. Let f € CY(Dy xR), F € C(Dy) and ¢; € C*(Vioo),
i =1,2. Then there exists a positive number Ty = To(F, p1,¢2) such that
for T < Ty the problem (1.1), (1.2) has a unique strong generalized solution
u of the class C in the domain Dr.

Proof. By Lemma 3.1, the existence of a strong generalized solution of the
problem (1.1),(1.2) of the class C in the domain Dy is equivalent to that
of a continuous solution u of the nonlinear integral equation (3.2), or what
is the same thing, of the equation (4.5), i.e.,

u=Au = —(Lglf\u:u(m)) + 45 (1, 2) + Ly ' F, (7.1)

where A : C(D7) — C(Dr) is a continuous and compact operator. There-
fore, to prove that the equation (7.1) is solvable, it suffices, by Schauder’s
theorem, to show that the operator A transforms some ball B(0, R) := {v €
C(Dr) : lolle@,y < R} of radius R > 0 (which is a closed and convex set

in the Banach space C(Dr)) into itself for sufficiently small T
Owing to (3.3) and (3.4), we can easily see that

_ 1 1
Lo 1||C(5T)*>C(BT) < 5 mes Dr = 1 (1+k)T?, (7.2)

—1
16 et myx et (o m)— 0By < 3 (7.3)

We fix now an arbitrary positive number T, and let T' < T,. By (7.1),
(7.2) and (7.3), for

2
”ullc(ﬁT) <R= 42 ||90i||01(’y7;,T*)7 M, = sSup ’f(wﬂfa u)‘ (7'4)

i=1 (z,t)eDr,
|u|<R

we have

[Aullopy) < ||L51HC(ET)_>C@T) sup | f(x,t,u)|+
(z,t)eDr,
lul<R

2
+||£al ||Cl('¥l,T)XCl('Y2,T)"C(ﬁT) {Z ”(pincl(%,T)} +
=1

Lo N o@r) @ IFllo@y) <
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2
1
(1 + k)M*T2 + 1 (1 + k)T2||F||C(BT*) + 32 ||(pi||cl(’vi,T) =
=1

<

1=

2
1 1
= [FA+BM. + 5 A+ W) Flo, )| T2 +33 leilleitn:  (75)

i=1
From (7.4) and (7.5), in its turn, it follows that if T < Ty, where

2 1/2
. 1 1 1
o iuin |7 {( (DM T 00l opy) Sl ) |
i=1

then ||Aullop,) < R for |ulqp,) < R. Thus Theorem 7.1 is proved
completely, since the uniqueness of a solution follows directly from Lem-
ma 3.1. O



CHAPTER 2

The Characteristic Cauchy Problem for a
Class of Nonlinear Wave Equations in the
Light Cone of the Future

1. Statement of the Problem

Consider the nonlinear wave equation of the type

9%u

Lyu:= 52 Au—+ f(u) = F, (1.1)

where f and F' are given real functions, f is a nonlinear function, and u is

. n 2
an unknown real function, A = Z:l 5%?', n > 2.
1=
For the equation (1.1) we consider the characteristic Cauchy prob-

lem: find in the frustrum of the light cone of future Dy : |z| < t < T,
x = (21,...,&), n > 1, T = const > 0, a solution u(z,t) according the
boundary condition

ulg, =0, (1.2)

where St : t = |z|, t < T, is the characteristic conic surface. Considering
the case T = 400, we assume that Do : ¢ > |2] and Soo = 0D @ t = |z|.

Below we will consider the following conditions imposed on the func-
tion f:

feOM®), [fw)] <M+ Mohl®, a=const>0,  (13)
/f(S) ds > =My — Myu?®, (1.4)
0

where M; = const > 0,1 =1,2,3,4.

Remark 1.1. Note that in case a < 1 the inequality (1.3) results in the
inequality (1.4).

Let W3(Dr, St) := {u € W3(Dr) : uls, =0}, where W (Dr) is the
well-known Sobolev’s space consisting of the functions v € Lo(Dy) whose
all generalized derivatives up to the k-th order, inclusive, also belong to the
space La(Dr), while the equality u|s, = 0 is understood in the sense of the
trace theory [49, p. 70].

26
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Definition 1.1. Let F € La(Dr). A function u € W(Dr, St) is said
to be a strong generalized solution of the problem (1.1), (1.2) of the class W4

o —
in the domain D7 if there exists a sequence of functions u,, € C*(Dr, St)

such that u,, — u in the space W%(DT, St) and Lfu,, — F in the space
Lo(Dry).

Definition 1.2. Let F € Lg joc(Doo) and F € Lo(Dry) for any T > 0.
We say that the problem (1.1),(1.2) is globally solvable in the class W3 if
for every 1" > 0 this problem has a strong generalized solution of the class
W4 in the space Dr.

2. A Priori Estimate of a Solution of the Problem (1.1), (1.2)
in the Class W3

Lemma 2.1. Let F' € Lo(Dr), and let the function f € C(R) sat-
isfy the condition (1.4). Then for every strong generalized solution u €

W3(Dr, St) of the problem (1.1),(1.2) of the class Wy in the domain D
the estimate

[l 5y < CIF raom + €2 1)

is valid with nonnegative constants ¢; = ¢;(f,T), i = 1,2, independent of u
and F.

Proof. Let u € W3(Dz, St) be a strong generalized solution of the problem
(1.1), (1.2) of the class W4 in the domain Dr. By Definition 1.1, there exists

a sequence of functions u,, € C?(Dr, St) such that

i fum —ulle, oo =0 M Lytm = Fll,pg) =0 (22)
2 )

Consider the function u,, € C?(Dr, St) as a solution of the problem

Ly, = Fy, (2.3)

Un|g = 0. (2.4)
Here

Fo := Lty (2.5)
Putting

g(u):= [ f(s)ds (2.6)
/

and multiplying both parts of the equation (2.3) by a—gﬁ, after integration
over the domain D,, 0 < 7 < T, we obtain
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1 0 /0um\?2 Oup,
5/— (W) dmdt—/Aum o do di+

D, D,
Oup,

d
+/§g(um) dIdt:/Fdezdt. (2.7)

D D,
Let Q; := Do N{t = 7} and denote by v = (v1,...,vp, ) the unit

vector of the outer normal to St \ {(0,...,0)}. Integrating by parts and
taking into account the equality (2.4) and v|q, = (0,...,0,1), we easily get

[ (0 s

D,
Oupm \ 2 Oty \ 2 U, \ 2
_/(at)yods_/(at)d+/(8t)”0d8’
aD- Q, S,
/8_Q(Um) dx dt = /g(um)yods:/g(um)dx,
D~ oD, Qr
0%y, Oup, Oy, OUpy, 1 0 /0um\?2
/ 9z o / ge g vl =y | g () dwdt=
. oD, D,
Oy, OUpy, 1 Oum \ 2 B
oz, ot V973 / (81:1-) vods =
aD. oD~
O, O, 1 O, 1 O, \ 2
= zd o . d )
/8961 at 1 2/(3@)”05 2/(6:101) v
0D~ S Q-
whence by virtue of (2.7), it follows that
Ouyy,
F,, —— dxdt =
/ o
D,
B 1 n aum 8Um 2 8Um 2 ) n )
_/%[z(axi 0T he n) o+ ( ot ) (”0_;%‘)}515*
S, = =
1 Oupm \ 2 " O\ 2
5/{( 6t) Z(axi”d“’”*/g(“m)dx' (2:8)
Q, i=1 Q,
Since S is a characteristic surface, we have
(yg -3 uf) —0. (2.9)
S,

j=1



Boundary Value Problems for Some Classes of Nonlinear Wave Equations 29

Taking into account the fact that (1/0 a%i - %), 1 =1,...,n,is an
inner differential operator on S;, by virtue of (2.4) we have
Oup, Ou,
( o0x; v ot Vi)
Bearing in mind (2.9) and (2.10), it follows from (2.8) that

/{(%)2+i(%1;?)2] d“?/g(um)dx:
Q i=1

T T

=0, i=1,...,n. (2.10)

-

Oup,
=2 | F,, — dxdt. 2.11
/ o d (2.11)
D,
By (1.4) and (2.6) as well as by the Cauchy inequality 2F,, %‘fl <
F2 + (6—“m~)2 from (2.11) we have

[[C5) 3 (52 s

2
< 2M3mes Q. +2M4/u d:c+/(ag—;”) d:cdt+/F,i dx dt <
D

Q. .

< 2M3mes ., +2M4/u dx+/(— d:vdt+/ dx dt. (2.12)
Q- D, D,

From the equalities v|s; = 0 and v(z,t) = f 8”(62’7) dr, (x,t) € Dr,

||

o _
valid for every function v € C?(Dr, St), reasoning in a standard way we
obtain the following inequalities [49, p. 63]:

ov\ 2
2de < — < .
/u dx_T/(at> dedt, 0<7<T, (2.13)
Q. D,
/v2dzdt<T2/(@)2dzdt 0<7<T (2.14)
= at ’ =4 '
D D,

By virtue of (2.13) and (2.14), from (2.12) we get

/{u +(8g;n)2+;(%121) }d:c<2M3mesQ +

-

2 2
+(2M4+1)T/(ag—;”) dmdt—k/(ag—;") dxdt+/Fi dz dt <

D, D,

< [2(My+1)T +1 /{ au”) +2:(%1;"‘)2] dz+

D,




30 S. Kharibegashwvili
+2Mzmes Qr + || Fn 17,y (2.15)

Putting

wir) = [z (G’ + z (G as e

Q. =

and taking into account the equality

T

/ [ufn+ (%z_:@>2+§; (%1;"‘)2] dxdt:o/w(o)do—,

-

from (2.15) we have

w(r) < M5/w(o) 40 + (| Fmll2, 1y + Me). (2.17)
0
Here
M5 = (2M4 + 1)T + 1, Mﬁ = 2M3 mes QT. (218)

From (2.17), by Gronwall’s lemma [15, p. 13] it follows that

w(r) < (||Fm||2L2(DT) + Ms) exp MsT <
< (||Fm||%2(DT) + Mg) exp M5T. (2.19)
The inequality (2.19) with regard for (2.16) implies that

n

bl = [ [t (552 + 2 (G2)'] e -

T

T
= /w(a) do < T(||Fm||2L2(DT) + Ms) exp M5T,
0

that is,
||um||ﬁ/%(DT7ST) < c1llFmllLa(py) + co- (2.20)
Here
o =VT exp% MsT, co =+/TM;g exp %M5T. (2.21)

By (2.2) and (2.5), passing in the inequality (2.20) to limit as m — oo,
we obtain the required inequality (2.1). O
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3. The Global Solvability of the Problem (1.1), (1.2)
in the Class W}

Remark 3.1. Before we proceed to considering the issue of the solvability
of the nonlinear problem (1.1), (1.2), let us consider the same issue for the
linear case in which in the equation (1.1) the function f = 0, i.e., for the
problem

0%u
Lou := i Au = F(z,t), (z,t) € Dr, (3.1)
u(z,t) =0, (x,t) € Sr. (3.2)

In this case, for F' € La(D7r) we introduce analogously the notion of a strong

generalized solution u € Wi(Dr, St) of the problem (3.1), (3.2) of the class
W21 in the domain Dy for which there exists a sequence of functions u,, €
C?(Dr, St) such that n}gn@ |wm—ullwz(ps) =0, W}gnoo | Lotm—F||,(Dr) =
0. It should be noted that as is seen from the proof of Lemma 2.1, for the
solution of the problem (3.1),(3.2) the a priori estimate (2.1) is also valid
in which, by virtue of (1.3),(1.4) for M; =0, i = 1,2, 3,4, the constant Mg
from (2.18) is equal to zero, and hence ¢, by virtue of (2.21), is also equal
to zero. Thus for a strong generalized solution u of the problem (3.1),(3.2)
of the class W3 in the domain Dt the estimate

1
Hu”ﬁ/;(DT,ST) <cillFllLypry, 1= VT exp g MsT (3.3)
holds by virtue of (2.20).

The constant M5 here is defined from (2.18), and since for f = 0 in the
inequality (1.4) the constant My = 0, therefore My = T + 1, and hence

o =VT exp%T(1+T). (3.4)

As far as the space C§°(Dr) of finitary infinitely differentiable in Dy
functions is dense in Lo (D7), for a given F' € Lo(Dr) there exists a sequence
of functions F,, € C§°(Dr) such that lim | F,—F||1,(p,) = 0. For a fixed

m, extending the values of the function F,, by zero beyond the domain Dy
and leaving the same notation, we will have F,, € C>(R’/*") for which the
support supp F,, C Do, where R7T! = R**1 1 {¢ > 0}. Denote by u, the
solution of the Cauchy problem: Lou,, = Fy,, tmli=0 = 0, ag—tm 0 =0,
which, as is known, exists, is unique and belongs to the space C* (Riﬂ)
[17, p. 192]. Moreover, since supp Fy, C Doo, Um|t=0 = 0 and a—gfk’tzo =0,
taking into account the geometry of the domain of dependence of a solution
of the linear wave equation we will have supp u.,, C D [17, p. 191]. Leaving
for the restriction of the function wu,, to the domain D7 the same notation,
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we can easily see that u,, € C?(Dr, St), and in view of (3.3) the inequality

[ — uil| o < e[ Fon = Fill Lo (or) (3:5)

Wi(Dr,S7) —

holds.
Since the sequence {F,,} is fundamental in Lo(Dr), the sequence {uy,}

o
is likewise fundamental in the entire space Wi(Dr,S7). Therefore there

exists a function u € VV2 (Dr, St) such that hm [t — ul| o

)

Wi(Dr.Sr)
and since Lou,, = F;, — F in the space LQ(DT), this function is, according
to Remark 3.1, a strong generalized solution of the problem (3.1), (3.2).

The uniqueness of this solution in the space Wi(Dz, St) follows from the
estimate (3.3). Thus for the solution u of the problem (3.1),(3.2) we can

write u = Ly ' F, where Ly' : Ly(Dr) — W(Dr, St) is a linear continuous
operator whose norm admits, by virtue of (3.3) and (3.4), the estimate

[l < VT exp ; T(1+T). (3.6)

La(Dr)—WL(Dr,S7) =

Remark 3.2. The embedding operator I : V?/%(DT,ST) — L¢(Dr) is
linear continuous and compact for 1 < ¢ < %, when n > 2 [49, p. 81].
At the same time, the Nemytski operator K : L,(Dr) — Lo(Dr), acting
by the formula Ku = f(u), where the function f satisfies the condition
(1.3), is continuous and bounded if ¢ > 2a [47, p. 349], [48, pp. 66, 57].

Thus if a < "+1 , Le., 2a < 2("+1)
l<g< 2(nj—1)

, then there exists a number ¢ such that

and q > 2a. Therefore, in this case the operator
Ko =KI:W3(Dr,Sr) — Lao(Dr) (3.7)

will be continuous and compact. Moreover, from u € W 3(Dr, St) it fol-
lows that f(u) € Lo(Dr), and if u,, — w in the space W2(DT, St), then
f(um) — f(u) in the space La(Dr).

By Remarks 3.1 and 3.2, for F' € Ly(Dr) and o < 25 the function

u € Wi(Dr, St) is a strong generalized solution of the problem (1.1), (1.2)
of the class W3 in the domain Dr if and only if u is a solution of the
following functional equation

u=Ly'"(— f(u)+F)
or, what is the same thing, of the equation

u= Au:= Ly (—~Kou+ F) (3.8)

in the space W3(Dr, St). Since the operator Ky : VV2 (Dr,St) — L2(D7)
from (3.7) is, by Remark 3.2, continuous and compact, the operator A :
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W3(Dr,Sr) — WA(Dr,Sr) is, owing to (3.6), likewise continuous and
compact. At the same time, by Lemma 2.1 and (1.4), (2.18), (2.20), for any

parameter 7 € [0,1] and every solution u € W3(Dr, Sr) of the equation

u = TAu with the parameter 7, the a priori estimate (2.1) is valid with

the same nonnegative constants ¢; and ce not depending on w, F' and the

parameter 7. Therefore, by the Leray—Schauder theorem [66, p. 375] the

equation (3.8), and hence the problem (1.1),(1.2), has at least one solution
o

u € W%(DT, ST)
Thus the following theorem is valid.

Theorem 3.1. Let F' € Lo joc(Ds) and F € La(Dr) for any T > 0.
Let0 < a< %ﬁ—i and the function f satisfy the inequality (1.3). Moreover,
in case a > 1, let the function f satisfy also the condition (1.4). Then
the problem (1.1),(1.2) is globally solvable in the class Wy in the sense of
Definition 1.2, i.e., for any T > 0 this problem has at least one strong
generalized solution of the class W4 in the domain Dy .

Remark 3.3. Note that under the conditions of Theorem 3.1 the problem
(1.1),(1.2) may have more than one solution. Indeed, if F =0 and f(u) =
—|u|®, where 0 < a < 1, then the conditions of Theorem 3.1 are fulfilled
and the problem (1.1),(1.2) has, besides a trivial solution, an infinite set
of global solutions u, (z, ) in the domain D+, depending on the parameter
o > 0 and given by the formula

a1
T (e T s S
o 0, x| <t <o+,

where

1 4o 2(n+1)1- 1=
= \T—o |: i| .
p 1 (1-a)? + 1-«
It can be easily seen that uq(z,t) € W3(Dr, St) for any T > 0. Moreover,
uy(z,t) € C1(Ds), and for 1/2 < a < 1 the function u,(x,t) belongs to
the space C%(D).

4. The Local Solvability of the Problem (1.1), (1.2) in the Class
W3 in Case the Condition (1.4) is Violated

As it will be shown, when the condition (1.4) is violated the problem
(1.1),(1.2) is unable to be globally solvable in the sense of Definition 1.2,
although, as we will see below, there takes place the local solvability.

We restrict ourselves to the consideration of the case

n+1
n—1

l<ax< , (4.1)

since for o < 1 from (1.3) it follows (1.4).
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In [27] it is shown that if the condition (4.1) is fulfilled, then we have
the inequality

el Lo (Dr) < Colan T Jull o YueWy(Dr, Sr),  (42)

1(Dr.S7)

where

da,n
Wn, n+1 1 1 1
éan:( ) ) 50471:(_ _—) 17
= \nrl G S YA

a positive constant ¢y does not depend on uw and 7T, and, as is easily seen,
the condition d,,, > 0 is equivalent to the condition o < %; wy is the
volume of the unit ball in R™.

Remark 4.1. Let B(0,R) := {u € W}(Dr,Sr) : |lu ||W1 DrSi) < R}
T

be a closed (convex) ball in the Hilbert space W3 (D7, St) with radius R > 0
and center in the zero element. Since the problem (1.1),(1.2) is equivalent

to the equatlon (3.8) in the class Wl 3(Dr, St) and by Remark 3.2 the oper-

ator A : WQ(DT, St) — Wl(DT7 St) from (3.8) is (if the condition (4.1) is
fulfilled) continuous and compact, according to the Schauder’s principle to
prove the solvability of the equation (3.8) it suffices to prove that the oper-
ator A transforms the ball B(0, R) into itself [66, p. 370]. Towards this end,

on the basis of the inequality (4.2) we estimate the value ||Au||W1(D o)’
T,°T

For the operator K¢ from (3.7), by means of (1.3) and (4.2), we have
1Koull Lo(pry = 1 ()l La(pry < ||(My +M2|u|a)||L2(DT) =

< M (mes Dr)"/? + M2H|U|QHL2(DT

= M (mes Dr)"/? + M|ullZ,, Dy <

< M1 (mes DT)l/2 + MQCOKOL nTJa " || || (43)

W1(Dr,S7)
for any u € W3(Dr, St).
Next, for the operator A from (3.8) by virtue of (3.6) and (4.3) we have

vl ) <

<L 1 Kotll po(pry + 1 FllLanry] <

La(Dr)—W(Dr,S1)
1
<VT (expiT(1+T))x

[Ml (mes D)2 + Mocolo nTO || o ,t ||F||L2(DT)} (4.4)

Wi(Dr,Sr
for any u € W%(DT, St).

Fix the numbers R > 0 and Ty > 0, and let T' < Ty. Then for Vu €
B(0, R), by virtue of (4.4) and the fact that d,, > 0, if the condition (4.1)
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is fulfilled, then we have

1
| Aul < /T (exp§T0(1+To))x

3(Dr,ST) —

X [Ml(mes DTD)1/2 + M260€a,nTga’”R + ||F||L2(DT0):| ;
whence it follows that for sufficiently small Ty > 0

| Au| <R YueB(O,R), T<T. (4.5)

o
W(Dr,Sr)

From (4.5), by Remark 4.1, we find that the problem (1.1),(1.2) is
locally solvable in the class W3.
Thus the following theorem is valid.

Theorem 4.1. Let F € La joc(Ds) and F € La(Dr) for any T > 0.
Let 1 < a < Z—ﬂ For the function f let the condition (1.3) be fulfilled but
the condition (1.4) may be violated. Then the problem (1.1), (1.2) is locally
solvable in the class W3, i.e., there exists a number Ty = To(F) > 0 such
that for T < Ty this problem has at leat one strong generalized solution of
the class W3 in the domain Dr.

5. The Non-Existence of the Global Solvability of the Problem
(1.1), (1.2) in the Class W, in Case the Condition (1.4)
is Violated

We restrict ourselves to the consideration of the case where
n+1

l<a<
@ n—1

(5.1)

and
fu) < =Aul®, A= const > 0. (5.2)

It can be easily verified that if the conditions (5.1) and (5.2) are fulfilled,
then the condition (1.4) is violated. It will be shown that if for the function
F the condition

F € Lyje(Deo), F€Ly(Dy) YT >0, F>0 (5.3)
is fulfilled, then the problem (1.1),(1.2) fails to be globally solvable in the
class W3.

Assume that if the conditions (5.1), (5.2) and (5.3) are fulfilled, then

the problem (1.1),(1.2) is globally solvable in the class Wy, i.e., for any
T > 0 this problem has a strong generalized solution u of the class W in

o
the domain Dr. By Definition 1.1, this means that w € W3(Dr, Sr) and
there exists a sequence of functions u,, € C? (ET, St) such that

I — 0. lm [|Lyum — Fliyon =0.  (54)

Wi(Dr)
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We use here the method of test functions [53, pp. 10-12]. Let the
function ¢ be such that
¢
ot
Then putting F}, := Lyu,, and integrating the integral equality

p € C*(Dr), ¢|,_, =0, =0, ¢[,, >0 (5.5)

t=T

/(qum)gp dx dt = /Fm<p dx dt
DT DT

by parts, we obtain

/umD<pdxdt+/ {?—wa—g—;um} ds+
DT ST

+ | flum)pdxdt= | Fpedxdt, (5.6)
/ /

Dt
8 o o n o . . .
where [ := 5 — A, 55 = 10 5; — Yo Vi ol the derivative with respect
to the conormal, and v = (vq,...,v0, ) is the unit vector of the outer

normal to 0D.

Since on the characteristic conic surface S the derivative with respect
to the conormal % is an inner differential operator, by virtue of the fact
that um,|s, =0 we have %‘—A’}”‘ s, =0

Therefore the equality (5.6) takes the form

/uchp dx dt + /f(um)go dx dt = /Fmgo dx dt. (5.7)
D~ D~ Dr

Further, by (5.4), passing in the equality (5.7) to limit as m — oo, we
obtain

/ungo dmdt—i—/f(u)(p dx dt = /Fcp dx dt. (5.8)
Dr Dt Dr
Assuming
~(T) = /F(p dzx dt, (5.9)
Dr

by (5.2) and (5.5) we get from (5.8) that

A / |u|“p dzdt < / ubOe dx dt — ~v(T). (5.10)
DT DT
If in Young’s inequality

’ (0%
b, a,b>0, o =

€
ab< —a%*+ ——
e o’ed’'—1 a—1
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Eﬂ , then taking

with the parameter ¢ > 0 we take a = |u|p!/® and b =

into account that "(;—/ =o' — 1 we have

— 1/a | ||:|90| o 1 |D<P|a,
Bl = ful/* - 38 < S al+ oy (5.11)
By virtue of (5.11), from (5.10) it follows the inequality
1 O]
()\ - 5) / ul®p da dt < ——— | 9?'71 dz dt —~(T),
« a’'e® >
Dr
whence for € < Ao we find that
a D]
Yo drdt < dx dt — ~(T). 5.12
Jurodear< ot [B deat o). G
Dt
Taking into account the equalities
, « o and o' 1
o = o= nd min —m———— = —
a—1’ a —1 0<e<ra (A —g)a/e®’—1 )\
which is achieved for £ = A\, we obtain from (5.11) that
D /
/ [ul e dedt < < LQ"," Fdedt — < A(T). (5.13)

Dr

In the capacity of the test function ¢ we take now the function p(z,t) =
@o[ 4 (t* + |z[?)], where the function o = ¢o(c) of one variable o is such
that [53, p. 22]

o € C*(R), w0 20, @) <0;
(5.14)
‘90’[0,1] =1, @0’[2,00) =0, 9"0’(1,2) >0
By (5.14), the test function ¢(z,t) = @o[4 (12 + |z[*)] = 0 for r =
(t? + |x[>)'/? > T. Therefore, after the change of variables ¢ = % T¢y and
T = % T¢ it is not difficult to verify that

|D<P| Op| 1 iz
o dedi= s dzdt_(jiT) s, (5.15)

Dr r=(t2+|z|?)<T,
t>|z|
where
2(1 — n)o" +4 2 PAPATY
%o

1<|&o|?+]€]2 <2,
&o>1€]
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Due to (5.15), from the inequality (5.13) with regard for the fact that
wo(0) =1 for 0 < o <1 we obtain the inequality

o drdt< [Julre dedi< — (= 7Y 7 0 Ty, (5.16
[l dwins fupedsies s (1) =S 610
TS%T Dr
In caseoz<Z—J_“},i.e., for n +1 — 2a’ < 0, the equation
1 1 n+1—2a’ o
T) = ,(—T) _ Y m=o0 5.17
o) = 5 (55 0o~ 5(T) (.17)

has a unique positive root T'= T, > 0 because

0(T) = — ( % T)nﬂ,ga,%

is a positive, continuous, strictly decreasing function on the interval (0, +o0)
satisfying %im0 91(T) = 400 and Tlim 91(T) = 0, and the function (T,
— — 400

T > 0, is, by virtue of (5.9), (5.14) and the fact that F|p__ > 0, positive,
continuous and decreasing with Tlim ~(T) > 0. Moreover, g(T) < 0 for
——+00

T > Ty, and g(T) > 0 for 0 < T < Tp. Consequently, for T > Ty, the
right-hand side of (5.16) is negative, but this is impossible. The obtained
contradiction proves that if the conditions (5.1), (5.2) and (5.3) are fulfilled,
the problem (1.1), (1.2) is not globally solvable in the class W3 . Incidentally,
we have obtained an estimate of T' when the problem (1.1),(1.2) (which is,
as shown in the previous section, locally solvable) has a strong generalized
solution of the class W21 in the domain Dp. The estimate is T' < Ty, where
Tp is the unique positive root of the equation (5.17).

6. The Global Solvability of the Problem (1.1), (1.2)
in the Class W3

Below, in considering the problem (1.1), (1.2) we will restrict ourselves
to the case of three spatial variables, i.e., n = 3. The increase of the
smoothness of the solution of the problem (1.1), (1.2) allows us to widen the
interval (5.1) in which the exponent « varies.

Instead of the conditions (1.3) and (1.4) imposed on the function f, we
consider the following conditions:

feC'R), f(0)=0, |f'(w)] <M+ u), ueR, (6.1)
g(u) = /f(T) dr, 1irél%g(u) > —o0, g(u)>—-Mu? ueR, (6.2)
0

where M, M, = const > 0.

Obviously, the function f(u) = m?u + u?® satisfies the conditions (6.1)
and (6.2) [58]. At the same time, for n = 3, the interval of variation (5.1)
of the exponent v is 1 < a < 2.
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Assume W5(Drp, St) := {W3(Dr) : uls, = 0}, where W§(Dr) is the
well-known Sobolev’s space [49, p. 56] consisting of the elements Lo(Dr)
having generalized derivatives up to the order k, inclusive, from Ls(Dr),

while the equality u|s, = 0 is understood in the sense of the trace theory
[49, p. 70].

Definition 6.1. Let F' € Wi(Dr, Sr). A function u = u(z,t) is said to
be a solution of the problem (1.1), (1.2) of the class W3 in the domain Dr, if

u € W3(Dr, St) and it satisfies both the equation (1.1) almost everywhere
in the domain Dp and the boundary condition (1.2) in the sense of the trace

theory (and hence u € V?/%(DT, St)).

Definition 6.2. Let F' € W}(Dz, St). The function v € W3(Dr, St)
is said to be a strong generalized solution of the problem (1.1), (1.2) of the
class W2 in the domain Dr if there exists a sequence of functions u,, €
C*>(Dr) satisfying the boundary condition (1.2) and

nlirn(lo [[tin — u||W22(DT) =0, nhjgo 1 Fn — F||W21(DT) =0, (6.3)
where
F, = Lsu, and suppF, NSy = a. (6.4)

Since f£(0) = 0, it is evident that F, € Wi(Dr, Sz).

Remark 6.1. A strong generalized solution of the problem (1.1),(1.2)
of the class W3 in the sense of Definition 6.2 is likewise a solution of the
problem (1.1),(1.2) of the class W# since, as it will be shown below, the
first equality of (6.3) implies that f(u,) — f(u) in Ly(Dr). On the other
hand, we will show the solvability of the problem (1.1), (1.2) in the sense of
Definition 6.2 and the uniqueness of the solution of the problem in the sense
of Definition 6.1. Obviously, this implies the uniqueness of the solution of
the problem in the sense of Definition 6.2, and hence the equivalence of
these definitions.

Definition 6.3. Let F € L o.(Ds) and F € Wi(Dyp, St) for any
T > 0. We say that the problem (1.1),(1.2) is globally solvable in the class
W2 if for any T > 0 this problem has a solution of the class W2 in the
domain D7 in the sense of Definition 6.1.

Lemma 6.1. Let n = 3 and the conditions (6.1), (6.2) and F €

W3(Dr,S7) be fulfilled. Then for every strong generalized solution u of
the problem (1.1), (1.2) of the class W2 in the domain Dt in the sense of
Definition 6.2 the a priori estimate

||u||W22(DT) <
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is valid with a positive constant ¢ not depending on u and F'.

Proof. By Definition 6.2 of a strong generalized solution u of the problem
(1.1),(1.2) of the class W3 in the domain Dr, there exists a sequence of
functions u, € C*°(Dr) satisfying the conditions (1.2), (6.3) and (6.4) and,
hence,
qun = Fn, Uy € OOO(ET), (66)
un| Sp = 0.
The proof of the above lemma runs in a few steps.

19, Putting Q. := Do N {t = 7}, we first show the validity of the a
priori estimate

/[u +(a“") +Z(6“") ]dmgq(H/F,% dxdt), 0<t<T, (6.8)

t Dt

with a positive constant ¢; not depending on u,, and F,,. Indeed, multiplying
both parts of the equation (6.6) by % and integrating over the domain
D., 0 <7 <T, with regard for (6.2) we obtain

1 0 /0uy, oun, 0
5/515(W) dx dt—/Aun dx dt+/6—g(un)dxdt

D, D,

ouy, B 0
—/F - dx dt (A_;(?—:C%)

T

Denote by v = (v1,12,v3,10) the unit vector of the outer normal to St \
{(0,0,0,0)}. The integration by parts, with regard for g(0) = 0 from (6.2),
the inequality (2.7) and v|q, = (0,0,0,1), provides us with

/% (%")2 da dt =

D~
Oup\ 2 B ouy, Oup\ 2
= / (G7) wods = /( 6t) d”/(ﬁ) v ds,
oD~ Q- Sr
9, 4 2 2
pn (uy) dedt = unvods = | u;, dz,
D, oD, Qr
0
/gg(un) dx dt = /g(un)VOdSZ/g(un)dwa
D, oD, Q-
02U, Ouy, ou,, Ou,, 1 0 /0up\? B
/agﬁd“” /axlﬁyzds /at(ami) d dt =

D, 0D~ D,
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Qup dup 1 Oup \ 2 _
oz ot VP2 / (ax) vods =
oD, oD,
ou, Ouy, Oouy, 1 Oun\ 2 .
- / oz, ot V% 2/(6;51-) ”Ods_i/(axi) de, 1=1,2,3,
oD~ S Q-

whence by virtue of (6.9) we have

ouy,
F, — dxdt =
/ at

D-

- o [ (G- B () (- o8 | s

S, =1 Jj=1

% [(%)2+;(ZZ’:)]M+/( o) da. (6.10)

Q- = Qr

Since S is a characteristic surface, we have
3

E

j=1

=0. (6.11)
ST

Taking into account that (1/0 % -y g—t), i =1,2,3, is an inner differ-
ential operator on S, by virtue of (6.7) we get

(S 2|

Bearing in mind (6.11) and (6.12), we rewrite the equality (6.10) in the

=0, i=1,23. (6.12)

form
ouy, Oun \ 2 _
()3 (G 2 =
Q. =1 Q.
Ouy,
=2 | F,— dxdt. 6.13
JE (613)
D,
By (6.2), there exists a number My = const > 0 such that
g(u) > =My, ueR. (6.14)

Using (6.14) and the Cauchy inequality 2F, 24 < F2 + (%L{L)Q, from
(6.13) we find that

-

2
§2M0mesQT+/(%) d:vdt—i—/F,% dx dt. (6.15)

D. D,
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.
From the equalities u,|s, = 0 and up(z,7) = [ (%"T(f’t) dt, z € Q,
||

0 <7 <T, in a standard way we obtain the inequality [49, p. 63]

Oun\ 2
2dx < = <T. .
/undm_T/(at) dedt, 0<7<T (6.16)

Q. D,

Summing the inequalities (6.15) and (6.16), we get

[ [t () o3 (G2 ] <

-

8 3 Oup \ 2 9
< S Mo+ (1 +T)/(W) dmdt+/Fn dz dt. (6.17)

D. D,

Introduce the notation

o) = [ [+ (%) 3 (52)] e

Qs
Then by virtue of (6.17) we have

w(5)S(1+T)/[u i (G’ +_§;(“§Zﬂ do dit

+§7TT3MO+/F3 drdt =

5
8
=(1+7) /w(a) do + 2 7T Mo + | FullZ,(py), 0<0<T. (6.18)
0

From (6.18), taking into account that ||Fn||%2(Dé) as a function of ¢ is
nondecreasing, by Gronwall’s lemma [15, p. 13] we obtain

8
w(d) < |27 T Mo + | Falld,py | exp +1)8 < e1 (14 1Bl 0,
whence for ¢t = T' it follows the inequality (6.8) with the constant
€1 = max (gTFTgMO exp(1 + T)T, exp(1 + T)T).

20, By (6.4), we have supp F,, N St = @. Therefore there exists a
positive number §,, < T" such that

supp £y, C Dy, = {(I,t) €Dp: t>|x|+ 5n}. (6.19)
At this step we will show that

| oy, = O (6.20)
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Indeed, let (z°,°) € Dr \ Drgs,. Introduce into consideration the
domain D,o 0 = {(z,t) € R*: |z| <t < t° — |z — 2°|} which is bounded
from below by the surface St and from above by the boundary S;% o0 =
{(z,t) € R* : ¢t =% — |z — 2|} of the light cone of the past G o0 =
{(z,t) e R*: t <t® — |z — 2°|} with the vertex at the point (2°,¢°). By
(6.19), we have

Fulp =0, (2%¢°) € Dr\ Drg,. (6.21)

Let Dgo 40 7 := Dgo 4o N {t < 7} and Qo0 - == Dgo 1o N {t=71},0<
7 < t°. We have 0D,o0 40 » = S1,-USs,-US5 -, where St = 0Dy0 40, N Seo,
Sar =0Dg040 . N S;),t07 S3+=0Dz0 0, N gzoﬁtoﬂ..

In the same way as in obtaining the equality (6.10), multiplying both
parts of the equality (6.6) by %ﬂ, integrating over the domain Do ;0 .,
0 < 7 < t* and taking into account (6.7) and (6.21), we obtain

0= [ g[S GG () (- 2) e

S1,7US2 +
3
+ / g(un)vods + é / [(%)2 + Z (?;;7:)2] dx. (6.22)
Sa2,7US3,+ S3,r j=1

By (6.7) and (6.11), bearing in mind that the surface Sy , is, just like

st 2 V3 2 _
S1,r, a characteristic one and hence (1/0 ijl Vj)‘sl,TuSQ,T =0, and

1 1
VO}SLT:_E<O’ V0’52,72ﬁ>07 VQ}S3’T:1,

we have
[ S G e (39 . s
S1,,USs - =1 =

Taking into account (6.2) and (6.23), the equality (6.11) yields

/{(%)Zi(gﬁﬂ dr < M, / w2ds, 0<7<t% (6.24)

SS,T i=1 SZ,TUSS,T

Since u,, € C®(Dr), yls,.uss. > 0, [vo| < 1, by virtue of (6.2) we can
define a nonnegative constant M7 independent of the parameter 7 by the
equality

My = 2M, = const > 0. (6.25)
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Since uy|s, = 0, where St : t = |z|, t < T, we have
¢

U (z,t) = / auné%a)da, (x,t) € S2+USs - (6.26)

||

Reasoning in a standard way [49, p. 63], we get from (6.26) that

2 0 Oy 2 0
u? ds < 2 (W) dedt, 0< 1<t (6.27)
S2,-US3 + Do 0,

-

w

Putting v(7) = [ [(%)2 + (%)2} dx, from (6.24) and (6.27) we
Si.r i

Il
-

easily obtain
v(r) < 2t°M, /v(a) ds, 0 <1<t
0

whence by (6.25) and Gronwall’s lemma it immediately follows that v(7) =
0,0 < 7 <t% and hence %Lt” = ‘31;:” = ‘gﬁz = g;: = 0 in the domain Do s0.
Therefore w,| Do, = const, and taking into account the homogeneous
boundary condition (6.7), we find that un|p , , = 0V (2°,t°) € Dr \Dr.s,.
Thus we have proved the equality (6.20).

3%, We will now proceed directly to proving the a priori estimate (6.5).
By (6.20), extending the values of the function u,, from the domain D7 into
the layer Y7 = {(z,t) € R': z € R, 0 <t < T} by zero and preserving
the notation, we obtain

u, € C*(Xr),

= 0. (6.28)

Un, |§T \Dr.s,

In particular, it follows from (6.28) that u, =0 for |z| > T.
Differentiating the equality (6.6) with respect to the variable z;, we
have

Otnz; = —f (Un)tn o, + Fpoyy 0 =1,2,3, (6.29)
where
O OF, 2 02
n,x; — o 9 an: aD-:__ a9
G G T T o ot ; da?
Let

3 3
B(r) = %Z / (0 + 32, ) o, Q= Do {r =7} (630)
i:lﬂT k=1

By virtue of (6.28), in the right-hand side of (6.30) we can replace the
domain Q. by the three-dimensional ball B;(0,T) : |z| < T in the plane
t = 7. Therefore, differentiating the equality (6.30) with respect to the
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variable 7 and then integrating by parts, with regard for (6.6), (6.28) and
(6.29) we obtain

3 3
E/(T) = Z / (un)mtun@itt + Z unwﬂkunwﬂkt) dx =
i:lBT (0,T) k=1
3 3
= Z (un,xittun,mit - Z un,ximkmkun,xit) dr =
=1g_(o1) k=1
3
:Z / (Dt g, )yt AT =
=lp,(0,1)
3
— Z [ = f (un)tn,z, + Foz, |tz de, (6.31)
i:l B, (0,T)

where B (0,T): |z| <T,t=r.
By (6.1) and Gronwall’s inequality [22, p. 134]

’ /f1f2f3 dz

< fllz,, If2llz,, 1 f5llL,,

for p1 = 3, p2 = 6, p3 = 2, E + 5 +— = 1, as well as by the Cauchy

inequality, for the right-hand side (6 31) we have the estimate

3
I'= Z / [ - fl(un)u",wi + Fn,wi}un,mit dx <

IN

DN | =
'Mw
\

e dr+ = Z / Uy, o, AT+

B, (0,T) =B, (0,1)
3
=lp.(0,1)
<1 3 2 g L 3 F? d
_52 Up, 2 :c—i—E‘ n,z; AT+
=lp_(0,1) =1p_(0,1)
3
+MZ ||(1 + u%’)HLg(BT(O,T)) ||un7"E7, ”LG(B.,.(O,T)) ”un@iHLz(BT(O,T))' (632)
i=1

According to the theorem of embedding of the space W/, () into L, (),
fordimQ =3, m=2,£=1,p=6[49, p. 84], [48, p. 111] there takes place
the estimate

||U||L6((|9c|<T)) < CQ”’UH Yov e W%((|:v| < T)) (633)

2((lz]<T))
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with a positive constant c; not depending on v.
There also takes place [49, p. 117]

3 3 .
> / vidr <cs Y / w2, dr YveWi((lz] <T))  (6.34)
=T b=l ier
with a positive constant cs not depending on v.
Applying the inequality (6.33) to the functions u, and wu,,, which,

owing to (6.28), belong to the space Wi((|z| < T)) for fixed t = 7, we

obtain
U, < col|upnl o ,
[ ||L6(BT(O,T)) 2| ||W%(BT(0,T)) (6.35)

Lo(B-(0,1) < C2|tn.a;

By (6.8), (6.30) and (6.35), we have

ez W(B.(0,T))

(1 +u721)HL3(BT(O)T))”un,mi Lo(Br 0,1 [tn,zit | Lo (B, (0,1)) <

4
< (V3 7 ) o 1/2
< (\/;T+ lanllZos, . ) e2llunll gy ) REC)

514
< [\/;T +caen (1 + ||Fn||%2(DT)):|C2[2E(7—)]1/2[2E(T)]1/2
< ca(1+ 1 Fallf, o0 E(7), (6.36)

/4
cy = 2co{ §7TT+20301.

It follows from (6.8), (6.32), (6.34) and (6.36) that

IN

IN

where

1
I <c3E(1)+ 5 ||Fn||§V2I(BT(OﬁT)) +3eaM(1+ ||F|7,p,y) E(T).  (6.37)
By (6.31) and (6.37), we have
E'(r) <a(m)E(r)+ 8(1) <a(r)E(T) + B(1), 7<T. (6.38)
Here )

OC(T) = C3 + 3C4M(1 + ||Fn||L2(DT))7
T (6.39)

() = 51 Eallwy 8. 0,1))-

From (6.28) we have F(0) = 0. Therefore, multiplying both parts of
the inequality (6.38) by exp[—a(T")7] and integrating, in a standard way we

obtain
-

E(r) < ea(T)T/efa(T)gﬁ(J) do < D)7 /6(0) do =
0

0

1 a(T)r T 1 a(T)T
=5 /lIFnllinI(BT(o,T)) do < 5 "D Enllivy o) <
0
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< %ea<T>T||Fn||§V21(DT), 0<7<T. (6.40)
By virtue of (6.6), we have
Une = Aup — fun) + Fy. (6.41)
It follows from (6.1) that

)l = | [ rirao] < ar i+ ) (6.2
0

Squaring both parts of the equality (6.41) and using (6.42) and the
inequality (Y ai)z <n Y a?, we obtain
i=1 i=1
8
/ufm dr < g M? / |, | da 4 4 / [(Aun)2 +2M3u? + Fﬁ] dz,

Q. B.(0,T) B.(0,T)

3
whence by virtue of (6.8), (6.35) and the facts that (Av,)? < 3wy, ..
i=1
and (a + b)% < 25(a8 + b5), we find that

/ui,tt dr <

Qr

< M2 ||lug | 24E 8M?2ci (1 + ||Fnl3
S MElully, o oy T 2B+ M1+ 1 Fally, )+

FAFllT om0y < MPS2°E 1+ |FallG, o, )]+
+8ct M2 (L +[|Fall?,p,)) + 4 EalZ, (s, 0,1y + 24E(7). (6.43)
By (6.40), from (6.43) it follows that

T
/Ui,tt drdt = /dT/ui)tt dz <
0

Dr Q.

< M2E2 T+ [|Fall2ypy] + 8 M*T (1 + | FnlL,p,))+
+4||Fn||%2(DT) + 12T€Q(T)T||Fn||€v;(DT) <

< ¢s + ol Fullo(pr) + 7l Fall Lo,y + cslFalliy o (6.44)

Here
cs = M25253T + 8¢/ MPT, ¢ = 8¢y M>T + 4,

7 = M252°AT, ey = 12T
From (6.8), (6.30), (6.40) and (6.44), we have
T

||un||W22(DT) :/dT><
0

(6.45)
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2 8un 2 3 aun 2 2 > 2 & 2
s G G s s Sk

Q, i= i=1 ik=1

T T
< /c1(1+ 1FullZ,p,)) dm + /ufm dxdt+/2E(T) dr <
0 D, 0
<aT+aT|Fl7,pm + ¢+ 6l Fall, om0+
+erll Fall2, o) + 08||Fn||%/[/21(DT) + Tea(T)THFnH%V;(DT) <
< g+ ol Fall 7, pry + 1l Fall2apr) + cr2ll Falli (- (6.46)
By (6.45) we obtain
co = 1T + M?c52°E3T + 8¢ M*T, c10 = 1T + 8¢ M>T + 4,

6.47
c11 = M20325C?T, c1o = 13Te*(DT, ( )

Taking into account the obvious inequality (3 |a;|)™" < 3 [as|*/?
i=1 ;
along with (6.39) and (6.47), from (6.46) we get

lunllwzpr) < ¢|1+ [ Fallry(pr) + ||Fn||?i2(DT)+

+ 1F w3 oe) 0 (€l Fall2ymp) | (6:48)

where the positive constant ¢ does not depend on u,, and F;,. By virtue of
(6.3), passing in the inequality (6.48) to limit as n — oo, we obtain the a
priori estimate (6.5).

Thus Lemma 6.1 is proved completely. O

Remark 6.2. Note that when deducing the a priori estimate (6.5), we
have used essentially the fact that the spatial dimension of the equation (1.1)
was assumed to be three (see, e.g., the equation (6.33)). Moreover, the same
fact will be used below in proving the compactness of the corresponding to
f(u) nonlinear Nemytski operator.

Remark 6.3. Before we proceed to proving the global solvability of the
nonlinear problem (1.1),(1.2) in the class WZ on the basis of the a priori
estimate (6.5), we will consider the same issue in the linear case, when f = 0,
i.e., for the problem

Lou(z,t) = F(z,t), (2,t) € Dy (L:=0), (6.49)
u(z,t) =0, (x,t) € Sr. (6.50)

In this case, for F € W(Dr,Sr) we introduce the notion of a strong
generalized solution u € W3(Dr, S7) of the problem (6.49), (6.50) of the
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class W3 in the domain Dy for which there exists a sequence of functions
un, € C*°(Dr) satisfying the condition (6.50) and
lim |lun, — ullwz(p,) =0, nh_)rrgo | Loun — Fllwy(pg) = 0. (6.51)

n—oo

Remark 6.4. Following the proof of the a priori estimate (6.5), it is not
difficult to see that for f = 0, i.e., for a strong generalized solution of the
linear problem (6.49), (6.50) of the class W2 in the domain D7 the estimate

lullwzpr) < collFllwi(pr) (6.52)

is valid with a positive constant ¢y independent of u and F'.

Since the space C§°(Dr, St) := {F € C*(Dr) : suppF NSy = &}
of infinitely differentiable in D7 functions vanishing in some neighborhood

(its own for each such function) of the set St is dense in Wi(Dr, St),

for a function F € Wi(Dr, St) there exists a sequence of functions F,, €
C5°(Dr, St) such that lim [|F, — Fllyi(p,) = 0. For fixed n, extending

the function F, from the domain Dy into the layer X7 := {(z,t) € R* :
0<t< T} by zero and leaving the same notation, we have F,, € O (),
for which the support supp F,, C Do, : t > |z|. Denote by u,, a solution of
the following linear Cauchy problem: Lou, = F,,, up|i=0 = 0, %ﬂ o =0
in the layer Xp which, as is known, exists, is unique and belongs to the
space C°(X7) [17, p. 192]. Note that since supp F,, C Do and uy|i—¢ =
agt" —o = 0, taking into account the geometry of the domain of dependence
of solution of the linear wave equation, we have supp u,, C D [17, p. 191].
Leaving for the restriction of the function w,, to the domain D the same
notation, it can be easily seen that u,, € C*(Dr), un|s, = 0, and owing to
the estimate (6.52) we have

un — ullwzpr) < collFn = Fllwg (- (6.53)

Since the sequence {F,} is fundamental in Wi(Dz, St), by virtue of
(6.53) the sequence {u,} will be fundamental in the complete space

[e]

W3(Dr, St) == {u € Wi(Dr) : u’ST = 0},

Therefore there exists a function u € W3(Dr, Sr) such that lim |ju, —
n—oo

u||W22(DT) = 0, and hence, due to the fact that Lou,, = F,, — F in the space
W4 (D7), the function v will, by Remark 6.3, be a strong generalized solu-
tion of the problem (6.49), (6.50) of the class W3 in the space D7. According
to what has been said, for the solution u of the problem (6.49),(6.50) we
can write u = Ly 'F, where Ly' : W(Dr, Sr) — W3(Dr, St) is a linear
continuous operator whose norm admits, by virtue of (6.52), the estimate

oMl o < cp. :
Lo HW;(DT,ST)ng(DT,ST) < co (6.54)
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Remark 6.4. If the condition (6.1) is fulfilled, the Nemytski opera-

tor N': W3(Dr, St) — W3i(Dr,Sr) acting by the formula Nu = — f(u)
is continuous and compact. This assertion is a consequence of the fol-
lowing facts: (1) owing to Dy C R* for n = 4, the embedding operator

I : Wi(Dr, St) — Ly(Dr) is continuous and compact for every g > 1 [49,

p. 84]; (2) the embedding operator I : W3(Dr, St) — L,(Dr) is continu-
ous for 1 < p < 4 [49, p. 83]; (3) the nonlinear Nemytski operator H acting
by the formula Hu = h(z,u), where the function h = h(x,£) possesses the
Carathéodory property, is continuous from the space L,(Dr) into L,(Dr),
p>1,r>1,if and only if |h(x,&)| < d(z) + 6|£[P/T V& € (—o0,00), where
d € L,(Dr), and § = const > 0 [48, p. 66]; (4) according to the condition
(6.1), the inequality

If(u)] < M +2M|ul®, u€eR,

holds, and hence according to the above-said, if u,, — wu in the space
W3(Dr, St), then f(un) — f(u) in the space La(Dr) and f'(un) — f'(u)

in the space Lg(Dr); (5) if u € W(Dr, St), then f'(u) € Ly(Dr) for
g > 1, and since g—; € W3(Dr), therefore g—; € L,(Dy) for 1 < p < 4,
and, in particular, 2% € Lg(Dr); (6) if fi € Ly, (Dr), i = 1,2, =+ = = 1,
p; > 1, r > 1, then fi1fs € L.(Dr) [58, p. 45]; in particular, for p; = 6,
pr=3.r =2 (64 1/3=1/2), fi = f'(u), fo = 2. u € Wi(Dr,Sr),
we obtain aiv—i“ = —f"(u) g_:Z € Lo(Dr), i = 1,2,3; analogously, we have

9Mu ¢ L,(Dr), and hence Nu € W}(Dr) if u € W3(Dr, St). We will

show below that in fact Nu € Wi(Dr, St).

Indeed, let X be some bounded subset of the space W3(Dr, St), and
let {u,} be an arbitrary subset of elements from X. Since the space
W3(Dr, St) is compactly embedded into the space Wi (Dr, St) [48, p. 183],

there exist a subsequence {uy, } and a function u € Wi(Dr, St) such that

1. . 1~ unk a_u —
kinolo ||un;C - UHLz(DT) - kirgo ’ ot - Ot Lo (D)
Oup,  Ou

=0. (6.55)

= lim H —
k—oo Il Ox; Ox; Lo (Dr)

On the other hand, according to what has been said there exists a subse-
quence of the sequence {u,, } (with the same notation) such that
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ouy,
klir‘;o Hf/(u"k) UOHLG Dr) =0, khlgo H 8:0; - ‘ La(Dr) =0
1=1,2,3, (6.56)
. . U
A [ Cane) = ll gy =05 Jimm, ’ ot “4’ Lator)
where vg, v, v;, © = 1,...,4, are some functions respectively from the spaces

Le¢(Dr), La(Dr) for vy, v, and L3(Dr) for v;. Using the definition of
generalized derivatives due to Sobolev, from (6.55) and (6.56), reasoning in
a standard way, we obtain

ou ou
— / — L = — ) = = -
vo = f'(u), v=f(u), v oz, i=1,2,3, vy 5 (6.57)
Let now show that
lim HM N —0, i=1,23,
k—o0 8171 8:61 Lo(Dr) (6 58)
. 8Nunk ONwu :
lim H — =0.
k—o0 8t Lz(DT)

Indeed, using Holder’s inequality for p = 3, ¢ = 3/2 (1/p+ 1/q¢ = 1),
we will have

Ha/\/'unk B ONu B
ox; 0x; |La(Dr)
B , Oun,, , Ou \2 B
= [ (£ G - r ) ) dede =
Dt
oun, oun, oun1?
= [t - ) Gz v ) (G - 22)| e <
Dr
/ / 2 aunk 2
§2/(f (i) = ' (w)* (G2 ) dardi+
Dr !
,ow2/0up,  Ou\2
Dt
’ ’ 2 i, \2
= QH(f (une) = f'(u)) ’ Ls(Dr) ( ox; ) ’ Ly (Dr)
w2 Ouyn,  Ou B
+2H(f (U)) HL3(DT) (azl - azl) ‘L3/2(DT)
2 Oun,, ||2
= 2Hf’(unk) - f/(u)HLg(DT) (9—331 La(Dr)
, 2 Oup,  Ou
L2 (PO, | o~ 220 (6.59
By virtue of (6.56), the sequence {H B ‘LQ(D )} is bounded. There-

fore from (6.59), in view of (6.56) and (6.57), there follow the first three
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equalities from (6.58) for ¢ = 1,2, 3. The last equality from (6.58) is proved
analogously. Thus the fact that N u,, — Nu in the space W3 (D) follows
directly from (6.56), (6.57) and (6.58). So we have proved that the oper-

o
ator N from Remark 6.4 is compact, acting from the space W3(Dr, St)
to the space W4 (Dr). This implies that this operator is also continuous
since the above-mentioned spaces, being the Hilbert ones, are reflexive [48,

p. 182]). Finally, the fact that the image N (W3(Dr,St)) is actually a
subspace of the space W3(Dz, St) follows from the following reasoning. If
u € W3(Dr, St), then there exists a sequence u,, € C?(Dr, St) := {u €

C%*(Dr) : uls, = 0} such that u, — u in the space W3(Dr, St). But,
according to the above-said, N'u, — Nu in the space W3 (D7), and since

Nu, = —f(u,) € 82(3% St) C V?/%(DT,ST) (recall that f(0) = 0 by the
condition (6.1)), therefore taking into account that the space VCE/% (Dr, St)
is complete, we obtain ./\/(V?/%(DT, St)) C VCI)/%(DT, St), and hence the op-
erator \ : VCI)/%(DT, St) — I/Cl)/é(DT, St) is continuous and compact.

Remark 6.5. As is mentioned in Remark 6.1, from the first equality
(6.3) it follows that lim |[f(un) — f(u)|z,(Dy) = 0. The latter is a direct

consequence of the assertion we formulated in Remark 6.4. From this rea-
[e]
soning it immediately follows that if FF € W2(Dr, S7), then the function

u € W3(Dr, St) is, by virtue of (6.54), a strong generalized solution of the
problem (1.1), (1.2) of the class W# if and only if this function is a solution
of the functional equation

u=Ly"(— f(u)+F) (6.60)

in the space W3(Dr, St).
We rewrite the equation (6.60) in the form
u= Au:= Ly (Nu+ F), (6.61)

[e] [e]
where the operator N : W3(Dr,Sr) — Wi(Dr,St) is, by Remark 6.5,
continuous and compact, and consequently, owing to (6.54), the operator

[e] [e]
A : W2(Dr,St) — W3(Dr,Sr) is likewise continuous and compact. At
the same time, by Lemma 6.1, for any parameter 7 € [0, 1] and every solu-

tion u € W2(Dr, St) of the equation u = TAu with the parameter 7 the
following a priori estimate is valid:

||u||W22(DT) <

< 11PN a0y + T VI s oy 71l o) 0 (I FI )] <



Boundary Value Problems for Some Classes of Nonlinear Wave Equations 53

< | L+ I Fllaor) + I1F 12000y + I1F lwi pr) exp (CIIFIIiQwT))} =
= OQ(C, F),

where Cy = Cy(c, F') is a positive constant not depending on u and the
parameter 7.

Therefore, by the Leray—Schauder theorem [66, p. 375] the equation
(6.61) and hence the problem (1.1), (1.2) has at least one strong generalized
solution of the class W3 in the domain Dz. Thus, by Remark 6.1 and
Definitions 6.1, 6.2 and 6.3, the following theorem is valid.

Theorem 6.1. Letn =3, F € L3 .(Ds) and F € Wi(Dr, St) for
any T > 0. Then the problem (1.1),(1.2) is globally solvable in the class
W2, i.e., for any T > 0 this problem has a solution of the class W3 in the
domain Dt in the sense of Definition 6.1.

Assume

WE 1o (Doo, Soc) = {v € Lajoe(Dac) : v, € Wh(Dr, S7) VT > 0}.

D

In the next section we will prove the uniqueness of solution of the prob-
lem (1.1),(1.2) of the class W3 in the sense of Definition 6.1. This circum-
stance along with Theorem 6.1 allows us to conclude that the theorem below
is valid.

Theorem 6.2. Let n =3, F € W}, .(Doo,Sec). Then the problem
(1.1),(1.2) has in the light cone Do of future a global solution w from the

space W3 1,.(Dr, ST) which satisfies the equation (1.1) almost everywhere
in the domain Do as well as the boundary condition (1.2) in the sense of
the trace theory.

7. The Uniqueness of a Solution of the Problem (1.1), (1.2)
in the Class W2

Lemma 7.1. Let n =3 and the condition (6.1) be fulfilled. Then the
problem (1.1), (1.2) cannot have more than one solution of the class W3 in
the domain Dt in the sense of Definition 1.1.

Proof. Let uy and us be two solutions of the problem (1.1), (1.2) of the class
W2 in the domain D in the sense of Definition 6.1. Then for the difference
u = us — up we have

S Au=—(f(uz) — Fur)), (7.1)

U, U, Uz € W%(DT, ST) (72)
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Multiplying both parts of the equality (7.1) by u; and integrating over
the domain D, just as in obtaining (6.13) we have

/{uf—l—iuil} d:c:—2/(f(u2)—f(u1))ut dedt, 0<7<T. (7.3)

Qr ' D,

We estimate the right-hand side of the equality (7.3). By (6.1) we have

‘ - 2/ (f(uz) = fur))u da dt‘ -

D,
1

= 2‘ [(UQ —uy) [ f(ur+ s(uz —wy)) ds} ug dx dt‘ <
J o]

§2M/|u2—u1|(1—|—2|u1|2+2|u2|2)|ut|dzdt:

D,

= 4M/ (Jur |* + |u2|?)|ul |u| dzdt + 2M/ lu| Jut| dadt =

D D,
:4M/da/(|ul|2+|u2|z)|u| |ut|dx+2M/da/|u| lug|dz.  (7.4)
0 Q 0 Q

Using Holder’s inequality for p; = 3, p2 = 6, p3 = 2 (1/3+1/6+1/2=1)
and the Schwarz inequality, we obtain

/ (Jual? + ) o e d <

Qd
< (HU%HL3(QU) + HUSHL3(QU))”u”Lﬁ(Qg)||ut||L2(Qc,) =
= (luillZ gy + lu2llZ @) el Lo lutll Lo,y 0 <o <T,  (7.5)

/|U| lue| dz < |lull 0,y + el Loc0,)- (7.6)
Qs

By the embedding theorems [49, pp. 69, 78], we have
ol 5,y = COMellwzo,y (dimQo =3, dim Dy = 4),

olo, g0,y < Bllvlo, gy g, < BC@Ilwzo), (7.7)
019 ]] 0, ) < CLDvllwz D)

where the positive constants C(T"), C1(T) and S do not depend on the
parameter o € (0,7 and the function v.
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Due to (7.2), from (7.5), (7.6) and (7.7) it follows that

[ G fuaP) el do < 20l el <
Qs

3
ﬂMW%mﬁwﬂmﬁ=M/W+Z%M% (7.8)
22 e =1
Qs

1
[Jullundde < 3 (el o, + lutl 0,) <
Qo

3
1
<3 /[u2 +u?]de < M5/ [uf + ;ui} dz, (7.9)

o Qo

where

M, = B*C(T) max (||u1||§V22(DT), ||u2||€V§(DT)> < 400, Ms = const > 0;

here we have used the fact that in the space W3(€),) the norm

3 1/2
|M@®f{/W+;@M%

o

is equivalent to the norm [49, p. 62]

||u||:{/ [ﬁ;ug] dm}l/Q.

Qs

Assuming w(t) = [ [uf + Ele u? | dz and taking into account (7.3),
Q,
(7.4), (7.8) and (7.9), we obtain

w(r) < Mg /w(a) do, Mg = const > 0,
0
whence by Gronwall’s lemma we find that w = 0, ie., us = uy, = 0,

i = 1,2,3. Consequently, u = const, and since u|s, = 0, therefore u = 0,
i.e., us = w1, which proves our lemma. O



CHAPTER 3

Sobolev’s Problem for Multi-Dimensional
Nonlinear Wave Equations in a Conic Domain
of Time Type

1. Statement of the Problem

Consider the nonlinear wave equation of the type

2

0*u
L)\UI:W

where A #£ 0 and p > 0 are given real numbers, F' = F(z,t) is a given and

— Au+ Au|Pu = F, (1.1)

n 2
u is an unknown real function, A = 88?7 n>2.
i=1
Let D be a conic domain in the space R™*! of the variables z =

(z1,...,2,) and ¢, i.e., D contains, along with the point (z,t) € D, the
whole ray ¢ : (7z,7t), 0 < 7 < co. By S we denote the conic surface
0D. D is assumed to be homeomorphic to the conic domain w : ¢ > |z,
and S\ O is a connected n-dimensional manifold of the class C*°, where
O =(0,...,0,0) is the vertex of S. Assume also that D lies in the half-space
t>0,and Dy :={(z,t) €D: t<T}, Sp:={(2,t) € S: t<T}, T >0.
In case T' = oo, it is obvious that Do, = D and S, = S.

For the equation (1.1), we consider the problem: find in the domain Dp
a solution u(z,t) of that equation according to the boundary condition

ulg, =9, (1.2)

where ¢ is a given real function on St.
In case the conic manifold S = 9D is time-oriented, i.e.,

n
2 2
(VO—ZVi)‘S<O7 vl g <0, (1.3)
i=1
where v = (v1,...,VUn, 1) is the unit vector of the outer normal to S\ O,

and the equation is linear, i.e., for A = 0, the problem (1.1), (1.2) has been
formulated and investigated by S. L. Sobolev in [63]. Note that in the
case (1.3), the problem (1.1), (1.2) can be considered as a multi-dimensional
version of the second Darboux problem [2, pp. 228, 233] for the nonlinear
equation (1.1).

Below, the condition (1.3) will be assumed to be fulfilled.

56
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Remark 1.1. The embedding operator I : W) (Dr) — Ly(Dr) is linear,
continuous and compact for 1 < ¢ < 2(7:l_+11) , when n > 1 [49, p. 81]. At
the same time, the Nemytski operator K : Lo(Dr) — Lo(Qr) acting by
the formula Ku := A|u|Pu is continuous and bounded if ¢ > 2(p + 1) [47,

pp. 349], [48, pp. 66, 67]. Thus if p < 25, ie., 2(p+1) < 2("+1) , then
2(n+1)

there exists a number ¢ such that 1 < 2(p +1)<g¢g< and hence the
operator

Ko = KI : Wy (Dr) — Lao(Dr) (1.4)
is continuous and compact. In addition, from u € W (D7) it follows that
u e Lp+1(DT).

As mentioned above, it is assumed that here and in the sequel p>0.

Definition 1.1. Let F € Ly(Dr), g € W3(Sr) and 0 < p < —2; . The
function u € Wy (Dr) is said to be a strong generalized solution of the prob-
lem (1.1), (1.2) of the class W4 in the domain Dy if there exists a sequence of
functions uy € CQ(ET) such that uy — u in the space Wi (D7), Lyuy — F
in the space La(D7), and uk|s, — g in the space W3 (S7). Besides, the
convergence of the sequence {A|ug|Pux} to the function A|u|Pu in the space
Lay(Dr) as up — u in the space Wi (Dr) follows from Remark 1.1. Note
that since |u[P™ € Ly(D7) and the domain D7 is bounded, the function
u € Lp+1(DT).

Definition 1.2. Let 0 < p < 27, F € Laoc(D), g € W3 ,,.(5),
and F € Ly(Dr), g € W(Sr) for any T > 0. We say that the problem
(1.1),(1.2) is globally solvable in the class W3 if for any 7 > 0 this problem
has a strong generalized solution of the class W4 in the domain Dr.

2. A Priori Estimate of a Solution of the Problem (1.1),(1.2)
in the Class W,

Lemma 2.1. LetA>0,0<p< 25, F € Ly(Dr), and g € W3(Sr).
Then for every strong generalized solutzon u of the problem (1.1),(1.2) of
the class W3 in the domain Dt the a priori estimate

lullwz(pry < C(HFHLz(DT) + ||9||W21(ST)) (2.1)

is valid with a positive constant ¢ not depending on u and F.

Proof. Let u € W4 (Dr) be a strong generalized solution of the problem
(1.1),(1.2) of the class Wy in the domain D7. Then by Definition 1.1 there
exists a sequence of function uy, € C?(Dr) such that

g —ullwyp,) =0, lm ([ Lyug = Fll,00) = 0, (2.2)

Jim |ur]g, — gllwi (s =0 (2.3)



58 S. Kharibegashwvili

Consider the function uy, € C?(Dr) as a solution of the problem

Lyug = F,
uk|ST = Gk-
Here
Fk = L)\uk, gk = uk’ST' (2.6)

Multiplying both parts of the equation (2.7) by %"t& and integrating
over the domain D, := {(z,t) € D: t <7}, 0 <7 < T, we obtain

1 0 /0up\?2 Ouy,
L0 0uN" gt — [ Ay 2% g ar
2/8t(8t)dz /“’“atdm“L
D D,
A 0 8uk
AN R p+2 — il
+p—|—2/8t g P2 da dt /Fk gt (27)
D, D,

Assume Q, ;= DN{t=7}. Clearly, Q; =D, N{t=7} for 0 <7< T,
Then taking into account the equality (2.5) and our reasoning in Chapter
IT for (2.8), we integrate the left-hand side (2.7) by parts and obtain

Ouy,

D,
- 1 ~ 8uk 8uk 2 8uk "
—/%[Z(a—m”“w”) + (Gt ) (18 =224 s+
S, =1 j=1
8uk o 8uk
o5 G +Zl(axl) Ik
Qr =
s / v ds + 2 / w2 do, 28)
where v = (v1,...,Vp, Vo) is the unit vector of the outer normal to 9D

By virtue of A > 0 and (1.3), it follows from (2.8) that
1 8uk 2 - 8uk 2

= =k <

2/[( 8t> +;(8xi> ]dm—

Q,
_1 S auk 6’U/k 2
= / 2|wo [Z (8171- Yo~ WH) ] ds+

Ouy,
P2u0d Fp —— dxdt. (2.9
+p+2/|gk| V05+/ka x (2.9)
D,
Since S is a conic manifold, sup |vp|™! = sup |1p|7!. At the same
S\O sn{t=1}

time, S\ O is a smooth manifold and SN {t = 1} = 9Q,—; is compact.
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Therefore, taking into account that vy is a continuous function on S\ O, we
have

My :=sup|vo| ' = sup |wo|™t < +oo, || < |v|=1. (2.10)
S\O sn{t=1}
Noticing that (VO % -y %), 1 =1,...,n, is an inner differential op-

erator on St, by virtue of (2.5) we can easily see that

" /0u ou 2
/ {Z (axk Yo = 5: Vi) } ds < ||uk|STH12/V21(ST) = ||ngI2/V21(ST)' (2.11)
g i=1 v

-

It follows from (2.10) and (2.11) that

1 2 8uk 8uk 2 1 2
S E - — < Z ) .
/2|V0| L_l (a:ci YT o VZ) } ds =5 Mollgwllwwy (s (2.12)

T

Taking into account the Cauchy inequality 2F} %“t& < |Fel? + (%‘t‘ﬂ)z,
by virtue of (2.12) from (2.9) we find that

[ [(Zy o5 (2 <

i=1

-

2 8uk 2

SMOHQch%/VQl(ST)-Fm/|gk|p+2ds+/(ﬁ> dxdt—s—/F,f dz dt.
St D, D,

(2.13)

If t = y(«) is the equation of the conic surface S, then by (2.5) we have

T

ug(z, 7) = ug(z,y(z)) + / %uk(x, s)ds =

v(=)

0
gr(x) + / g ug(z, 8)ds, (z,7) € Q.
v(z)
Squaring both parts of the obtained equality, integrating over the do-
main {2, and using the Schwarz inequality, we obtain

/uidwﬁQ/g,%(:c,v(w))dm—&-Q/(/T %uk(x,s)ds)2dm§

Qr Qr Q, v(z)
T 6 9
S?/g,%ds—&-Q/(T—'y(x))[ / (%) ds] dz <
Sr Q2 ()

7 2
g2/g,§ds+2T/[/ (a%) ds]dm:

Sr Qr  y(z)
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2
_2/9,% ds+2T/ (%) dz dt. (2.14)

S,

Adding the inequalities (2.13) and (2.14), we get

[ Gy -2 (G) s

Q i=1

A 2 A
§(2T+1)/(%) dmdt+m/|gk|p+2ds+
St

D,

+/F,§ dz dt + (Mo + 2)llgkll5y; (57 <
D,

S(2T+1)/ [Ui (au’“) +zn:(a“’“) } da di+

i=1

.

ij2/|gk|10+2 ds+(M0+2)[/F,§ dzdt—|—||gk||%,v21(ST)} (2.15)

-

It follows from (2.3), (2.6) and our reasoning in Remark 1.1 that

lim |gk|p+2ds:/|g|p+2ds,
k—oo
St

and also jj: lg|PT2ds < ClH9||12/V21(ST) with a positive constant Cy not de-
pending on g € W4 (St). Therefore, putting

w(r) :—/[ k+(8;k) +zn:(gi’“)2] dz (2.16)

Qr

from (2.15) we find

T

A 2 2
’LU(T) S (QT—FI)/’LU(S) d8+ (MO—Fm Cl+2) |:||Fk||L2(DT)+||ngW21(ST) B
0

whence by Gronwall’s lemma it follows that

w(r) < (Mo + =25 O+ 2) [1Buluoy) + o ls spy] exp(2T + D

p+2
(2.17)
Owing to (2.16) and (2.17), we have

T
||Uk||12/V21(sT) = /w(T) dr <
0
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A 2
< (Mo + i 2)T (exp(2T + 1)T) [ Bl
+lgelg o] (218)
From (2.18) we get

luelwor) < e(I1Fllagom + lgelwssn )- (2.19)

Here

A 1
= M, _— 2T — (2T +T1T)T. 2.2
c \/( 0+p+201+) exp2( +T) (2.20)

By (2.2) and (2.3), passing in (2.19) to limit as k — oo, we obtain the
estimate (2.1) with the constant ¢ defined from (2.20) which by virtue of
(2.10) does not depend on u, g and F. O

3. The Global Solvability of the Problem (1.1), (1.2)
in the Class W3

First of all, let us consider the issue of the solvability of the correspond-
ing to (1.1), (1.2) linear problem, when in the equation the parameter A = 0,
i.e., for the problem

Lou(z,t) = F(z,t), (z,t) € Dr, (3.1)
u(z,t) = g(z,t), (x,t) € Sp. (3.2)

In this case, for F' € Lo(Dr), g € W3 (Sr) we introduce analogously
the notion of a strong generalized solution u € W3 (D7) of the problem
(3.1),(3.2) of the class W4 in the domain D7 for which there exists a se-
quence of functions uj, € C?(Dr) such that ux — u in the space W3 (D7),
Louy, — F in the space L2(D7) and ug|s, — g in the space W3 (Sr). Note
here that as is seen from the proof of Lemma 2.1, the a priori estimate (2.1)
is likewise valid for a strong generalized solution of the problem (3.1), (3.2).

Introduce into consideration the weighted Sobolev space W2’foé(D)7 0<
a < oo, k= 1,2,..., consisting of the functions belonging to the class
W2k 10c(D) and for which the norm ([46])

k .
Ou |2
2 _ —2a—2(k—1)
Il = 3 [ o[ aran,
=01

where

- 1/2 8%u o'u
_ 2 2 o . L .
r_(z;xj 4+t ) ) 5wi'5ti°_8x§1---8zf{b8tio , 1=11] + + 1y + 20,
J:

is finite.
Analogously, we introduce the space W¥,(S5), S = dD.
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Along with the problem (3.1), (3.2), we consider an analogous problem
in the infinite cone D. The problem is posed as follows:

Lou(z,t) = F(z,t), (z,t) € D, (3.3)
u(z,t) = g(z,t), (z,t) €S. (3.4)

By (1.3), according to a result obtained in [24, p. 114], there exists a
sequence agy = ag(k) > 1 such that for @ > g the problem (3.3), (3.4) has a
unique solution u € W¥ (D) for every F € W;;il(D) and g € W;a_l (S).

Since the space C§°(Dr) of finitary, infinitely differentiable in Dp func-
tions is dense in Ly(D7), for a given F' € Lo(Dr) there exists a sequence
of functions F; € C§°(Dr) such that élirgo |Fe = FllLo(pyy = 0. For the

fixed /¢, extending the function F; by zero beyond the domain Dz and
leaving the same as above notation, we have F, € C§°(D). Obviously,
F, e W;;il(D) for any k£ > 1 and a > 1, and hence for o > ag = ag(k).
If ¢ € W}(Sr), then, as is known, there exists a function § € W3 (S)
such that g = g|s, and diamsuppg < +o0o. At the same time, the space
C(S) = {g € C>(S) : diamsuppg < 400, 0 ¢ suppg} is dense in
W3 (S). Therefore there exists a sequence of functions gy € C2°(S) such
that zlggo llge — gllwacsy = 0. It can be easily seen that g, € W;a,%(s)

for any £ > 2 and a > 1, and hence for a > ay = ap(k), as well. Ac-
cording to what has been said, there exists a solution @, € W5, (D) of
the problem (3.3),(3.4) for F = F; and g = gy. Assume u; = Ug|p,.. Since
ug € WX(Dr), when the number k is sufficiently large, namely, k > "—“2'—1 +2,
by the embedding theorem [49, p. 84] the function u, € C?(D7r). As far as
the a priori estimate (2.1) is likewise valid for a strong generalized solution
of the problem (3.1), (3.2) of the class W3 in the domain D7, we have

e = wellwy o2y < (1B = Forllaqoe + lge = 90 lwysm) - (3:5)

Since the sequences {Fy} and {g,;} are fundamental respectively in the
spaces Lo(Dr) and W3 (Dr), owing to (3.5) the sequence {u,} will be funda-
mental in the space W, (D). Therefore because the space W, (D7) is com-
plete, there exists a function u € W3 (Dr) such that elirgo Jwe —ullwi(pr) =

0, and since Loug = Fy — F in the space Lo(Dr) and g¢ = ug|s, — ¢ in the
space W3 (St), this function is a strong generalized solution of the problem
(3.1), (3.2) of the class W4 in the domain Dr. The uniqueness of the solution
of the problem (3.1), (3.2) of the class W in the domain Dz follows from
the a priori estimate (2.1). Consequently, for a solution u of the problem
(3.1),(3.2) we can write u = Ly *(F, g), where L' : Ly(D7) x Wa(St) —
W4 (D7) is a linear continuous operator whose norm, by virtue of (2.1),
admits the estimate

L6 M La(Dr) Wk (29— W2 (Dz) < €5 (3.6)

where the constant ¢ is defined from (2.20).
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Since the operator Ly : Lo(Dr) x Wa(S7) — W4 (Dr) is linear, there
takes place the representation

Lo '(F,g) = Loy (F) + Lo (9), 3.7)

where Ly : La(Dr) — W3 (Dr) and L, : Wi (S) — Wa (D7) are linear
continuous operators, and by (3.6)

Lo | a(pey—wi 02y <& 1 Loa lwi (s2)—wi (pr) < € (3.8)

Remark 3.1. Note that for F' € Ly(Dy), g € W3(St), 0 < p < =25,
by virtue of (3.6), (3.7), (3.8) and Remark 1.1 the function u € W3 (D7) is
a strong generalized solution of the problem (1.1),(1.2) of the class W3 in
the domain D7 if and only if u is a solution of the functional equation

u= Loy (=AulPu) + Loy (F) + Loz (9) (3.9)
in the space W4 (Dr).
We rewrite the equation (3.9) in the form
= Au = —Lg; (Kou) + Lg; (F) + Loy (9), (3.10)

where the operator Kq : Wi (D7) — Lo(Dr) from (1.4) is, by Remark 1.1,
continuous and compact. Consequently, by (3.8) the operator A : W3 (D7)
— W3 (Dr) is continuous and compact, as well. At the same time, by
Lemma 2.1 and (2.10), (2.20) for any parameter 7 € [0, 1] and every solution
of the equation u = 7Au with the parameter 7 the same a priori estimate
(2.1) is valid with a positive constant ¢ not depending on u, F, g and 7.
Therefore by the Leray—Schauder theorem [66, p. 375] the equation (3.10)
and hence by Remark 3.1 the problem (1.1), (1.2) has at least one solution
u e W21 (DT)
Thus we have proved the following theorem.

Theorem 3.1. Let A>0,0<p< 25, F € Lyjoc(D), g € W3 ,,.(S)
and F € Lo(Dr), g € Wy (St) for any T > 0. Then the problem (1.1), (1.2)
is globally solvable in the class W3, i.e., for any T > 0 this problem has a

strong generalized solution of the class W4 in the domain Dr.

4. The Non-Existence of the Global Solvability of the Problem
(1.1),(1.2)

Below we will restrict ourselves to the case where the boundary condi-
tion (1.2) is homogeneous, i.e.,

ulg, =0 (4.1)

For (2°,t°) € Dz, we introduce into consideration the domain Do 10
which is bounded from below by the conic surface S and from above by the
light cone of the past S, 0 : t =% — |z — 2°| with the vertex at the point
(20, 19).
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Lemma 4.1. Let F € C(D7) and u € C*(D7) be a classical solution
of the problem (1.1), (4.1). Then if for some point (x°,t°) € D the function
Flp,,, =0, thenulp , ,, =0 as well.

Proof. Since the proof of the above lemma is, to a certain extent, analogous
to that of Lemma 2.1, we cite only the main points of that proof.

Assume Do o = Dyop N{t < 7}, Quo40, = DyooN{t = 7},
0 <t < 7. Then 0Dy0 0, = S1+US3+US3 -, where S1 » = 0Dg0,0 . NS,
Sor = 6Dmo7to)7 N S;),to’ Ss.r = aDmo)toﬂ. mﬁwo)toﬂ_. Just in the same way
as in obtaining the equality (2.8), multiplying both parts of the equality
(1.1) by %, integrating over the domain Do 40 ,, 0 < 7 < ¢, and taking
into account (1.1) and the fact that F[p , , =0, we obtain

0= / 2%/0[i(j—;yo—g—?l/i)Q—F(%)Q(Vg—iV?)} ds+

SI,TUSQ,T i=1 J:1
A OUN2 - [ Ou\2
pt2 =
+ / p—|—2|u| vods + / [((%) +;(3xi) ]dm. (4.2)
SZ,TUSS,T SS,T =

By (1.3) and (4.1), bearing in mind that

- 1
2 2
L =0, = —>0,
(VO ; v; ) Sar 1/0‘521 5
o (BB sa o
(8:@» Yo B V) 51 o0 " 9 V) s, i n
we find that
1 - ou ou 2 Oun 2 ) n )
/ 2—V() [Z([)xz UO_EW) +(E) (VO_ZUj):| ds > 0. (4.3)
Sl,q—US2,7— i=1 j=1

In view of (4.3), from (4.2) we get

/{(%)2+i(§;)2}szM / utds, 0<7<t’ (44)

SS,T i=1 SQ,TUSS,T

Here, since u € C?(Dr) and || < 1, in the capacity of the nonnegative
constant M independent of the parameter 7 we can take
A

— p
M= 25 [l 5, < +oo. (4.5)
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By (4.1), reasoning as in proving the inequality (2.14) we obtain

ou\ 2
2 7. < 940 0
/ u®ds < 2t / (_Z%) de, 0 <7 <t". (4.6)

S2,7US3 + Do 40,

-

Putting

wir) = [ [(%)Zi(;‘?‘;f] .

3,7

from (4.4) and (4.6) we easily find that
w(r) < 2t0M/w(5) ds, 0 <1<t
0

whence by (4.5) and Gronwall’s lemma it immediately follows that w(7) = 0,

0 < 7 <t and hence & = 9+ — ... = 9« — () iy the domain

ot — oz — Oz,
Do 0. Therefore U\Dzo .o = const, and taking into account the homoge-
neous boundary condition (4.1), we finally obtain that u|p , , = 0. Thus

the lemma is proved. O

Below we will restrict ourselves to the consideration of the case where
the equation (1.1) involves a parameter A < 0 and the spatial dimension
n = 2. For simplicity of our exposition, we assume that

S t=kolz|, ko= const> 1. (4.7)

Obviously, for the conic surface S given by the equality (4.7) the con-
dition (1.3) is fulfilled. In this case, Dy = {(z,t) € R®: kolz| <t < T}.

Let G4 : ¢ > |x| + a be the light cone of future with the vertex at the
point (0,0,a), where a = const > 0. By (4.7), it is evident that D\ G, =
{(z,t) € R®: kolz| <t < |z|+a, || < %} and

ako

m . (4.8)

D\G,C{(z,t)eR®: 0<t<b}, b=

Lemma 4.2. Letn =2, A<0, Fe CDr), T >b= k‘z]ﬁ)l ,

supp F' C G, and F > 0. Then if u € C%(Dr) is a classical solution of the
problem (1.1), (4.1), then u|p, > 0.

Proof. First, let us show that u[p 7, = 0. Indeed, let (2°,t%) € D\ G,.
Then since supp F C G,, we have that F‘Dzo .0 = 0, and according to
Lemma 4.1 the equality u|p , , = 0 holds. Therefore taking into account

(4.8), extending the functions u and F by zero beyound D, into the strip
Yp = {(x,t) ER?}: 0<t< b}, and leaving the same as above notation,
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we obtain that u € C%(%,) is a classical solution of the Cauchy problem

82
Y Au= —A|ulPu+ F,
ot?
(4.9)
ou
u‘t:O =0, Ot lieo

in the strip ¥5. As is known, for the solution u € C?(X}) of the problem
(4.9) the integral representation [69, pp. 213-216]

[uPu
Q/'Vt_T M—ﬂQﬁdrﬁ%@i%(%ﬂezm
x (4.10)
is valid.
Here
_ 1 F(&,7)
FO(-Iyt) - %Q/ \/(t — 7_)2 — |CC — §|2 d§d7'7 (411)

where Qg == {(&,7) € R¥: [ — 2| <, 0 <7 <t—|6— 2|} is a circular
cone with the vertex at the point (z,t); its base is the circle d : |£ — x| < ¢,
7 =0 in the plane 7 = 0 of the variables &; and &, £ = (&1, &2).

Let (2°,t°) € Dy and ¢y = to(z,t) € C(Qu0,40). Then the linear
operator W : C(Q,0 40) — C(Q,0 40) acting by the formula

1/)0 57 (5’ )

Yo(x,t)
27T \/t—T — |z —¢&)?

¢ dr, (2,t) € Qo go,

is continuous, and for its norm the estimate [69, p. 215]

(to)?

¥ @0 m < olloe ) < o 1olom o

is valid.
Consider the integral equation
o 1) Y& DVNET) e ar 4 By t), (o)1) € Dao o, (4.12)
Vit —7)? |z — ¢

Qo ¢

with respect to the unknown function v. Here

YolE7) = — 2= [u(E, TP € Oyo0), (113)

where w is the classical solution of the problem (1.1),(4.1) appearing in
Lemma 4.2. Since g, Fy € C(ﬁwoﬂgo), and the operator in the right-hand
side (4.12) is an integral operator of Volterra type (with respect to the
variable ¢) with a weak singularity, the equation (4.12) is uniquely solvable
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in the space C(Q,040).

In addition, the solution v of the equation (4.12)

can be obtained by the Picard method of successive approximations:

1/)0 57

'Uk(f, )

0—0 ’Uk+1$t /

\/t—T

Indeed, let w; = Quo 0 N{t =7}, winlg , |
xV,t
=0,1,..

Fo), A (t) = max |wy, (z,t)], m

27T||1/)0||C(Q 0 0)° Then denoting Bgy(t

dédr + Fo(x,t), (4.14)

— |z —¢?
k=1,2,....

= Um+1 — Um (’wo |§m0
5 :, J" dny dnp

L e olle@,, ) =
n

t
)=46[(t—T1)PLo(r)dr, B> 0, and
0

40

taking onto account the equality [15, p. 206]

BYelt) = oo [ GT(0)"0-
0

owing to (4.14) we have

" () dr,

|WMtFW/ Wl dgar| <
VE—T7)2 -z — €2
/dT |¢0| |wm 1| df S
JE-1P -
0 Jo—gl<t—r
/\mfl(T)
< = dr € =
_JWﬂam%@! N el
le—¢|<t—7
t dny d
T anz
= ||¢0||c(§ o to)/(t 5 =
20, L —n]
0 [n|<1
= BQAmfl(t)v (.T,t) S Qwoyto’
whence
Am(t) < Bodm—1(t) < -+ < By*ho(t) =

t

1
(2m )
s
= Tam) O/ (t=7)
(o)™

~ (2m)!

amt HwOHC(ﬁzo,m dr =

CTO" Rl
0 C(Q 0, 0)7
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and consequently,

(o)™
meHC(ﬁzo,to) = H)‘m”C([O,t“]) < Tm)' ||F0Hc(ﬁzo’to)-

(&)
Therefore the series v = lim v, = vg+ >, wy, converges in the class
m—00 m=0

C(Q,0 40), and its sum is a solution of the equation (4.12). The uniqueness of
solution of the equation (4.12) in the space C(Q,0 40) is proved analogously.

Since A < 0, by virtue of (4.13) the function ¢ (¢, 7) = — 5= |[u(¢,7)[P >
0, and according to the equality (4.11) the function Fy(z,t) > 0, as well,
because, by the condition, F(x,t) > 0. Therefore the successive approxi-

mations from (4.14) are nonnegative, and since lim |jvy — v||c(§ y =0,
k—o00 20,0

therefore the solution v > 0 in the closed domain ﬁmo)to. It remains only
to note that due to (4.10), (4.12) and (4.13), the function u is likewise a
solution of the equation (4.12), and owing to the unique solvability of the
equation, we have v = v > 0 in ﬁxoyto. Thus u(2°,t°) > 0 for any point
(2°,t%) € Dy, which was to be demonstrated. |

Let cg and @R be, respectively, the first characteristic value and eigen-
function of the Dirichlet problem in the circle wg : 23 + 23 < R?. Conse-
quently,

(Apr +crer)|, =0, ¢r|y,, =0 (4.15)

As is known, cg > 0, and changing the sign and performing the correspond-
ing normalization, we may assume [59, p. 25] that

‘PR‘

WR

> 0, /ng dr = 1. (4.16)

WR

Below, the conditions of Lemma 4.2 will be assumed to be fulfilled. As
is shown in proving this lemma, extending the functions v and F by zero
beyond D into the strip 3 = {(x,t) ER?: 0<t< b} and leaving the
same notation, we find that u € C2(%;) is a classical solution of the Cauchy
problem (4.9) in the strip Xy.

Remark 4.1. In the equation (1.1), without restriction of generality we
may assume that A = —1, since the case A < 0, A # —1, by virtue of p > 0
reduces to the case A = —1 after we introduce a new unknown function
v = |A|"/Pu. Therefore the function v will satisfy the equation

vie — Au = vPT 4 ANYPFE(x,t), (x,t) € %y,
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According to the above remark, instead of (4.9) we consider the follow-
ing Cauchy problem:

2
O _ Au=uPt + F(x,t), (2,t) €y,
ot?
(4.17)
=07 Otl=0

where u|z, > 0 and u € C?(%;). In addition, as is shown in proving
Lemma 4.2, we have

u‘zb\a =0. (4.18)

Take R > b > 1" , where the number kL is the radius of the circle

obtained by 1ntersect10n of the domain D : ¢ > ko|z| and the plane t = b.
Introduce into consideration the functions

E(t):/u(ac,t)goR(:E) dx, fR(x)z/F(:E,t)goR(:v) dr, 0<t<b. (4.19)
WR WR
Since Uly, > 0, u € C*(%) and F € C(%), we have E > 0, E €
02([07b]) and fR € C([O7R])
By (4.15), (4.18) and (4.19), the integration by parts results in

/AugﬁRd:c = /uA(dez = —CR/ugaRd:c = —crkFE. (4.20)

WR WR

By virtue of (4.16) and the fact that p > 0 and u|y, > 0, using Jensen’s
[69, p. 26] inequality we obtain

/up+1ch dx > (/uch dm>p+l = ErtL, (4.21)
WR WR
It immediately follows from (4.17)—(4.21) that
E" 4+ cgrE > EPT 4+ fr, 0<t<b, (4.22)
E(0)=0, E'(0)=0. (4.23)

To investigate the problem (4.22), (4.23), we make use of the method of
test functions [53, pp. 10-12]. Towards this end, we take b1, 0 < by < ba,
and consider a nonnegative test function 1 € C2([0,5]) such that

0<y <1, ¢t)=1, 0<t<b; W) =0, i=0,1,2.  (4.24)

It follows from (4.22)7(4.24) that
b

/EP+1 t)dt < /E ) + crip(t)] dt — /fR(t)w(t) dt. (4.25)
0 0
If in the Young inequality with the parameter € > 0
€ o 1 o , (%
yzS_y +,7/,12 ) y;ZZOa o = )
«a a’e® a—1
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we take a =p+1,a = %173/:131#?%1,2: Jw/q_%w[aundbearimmimd

P+l
that %/ = ﬁ =o' — 1, then we will obtain
" _ 1/a |¢ +CR¢|
El" + cptp| = By e <
£ ra L[+ et
S LBt s e (4.26)
By (4.26), from (4.25) we have
b
£ a ¥ + crp|*
- — < .
(1 a)/E Yt < — a_l/ e f t)dt. (4.27)
0
a—1 1

Taking into consideration that inf [ ] = 1 which is achieved

0<e<a "¥7E
for e = 1, from (4.27) with regard for (4.24) we obtain
by

/E%/;dt</|w“+ch|a /fR (4.28)

0

ga’—1

We take now in the capacity of the test function 1 the function of the
type

t b
P(t) =bo(r), T=7, 0<T<m=. (4.29)

bl bl

Here
Yo € C2([0,7]), 0< <1, to(r)=1, 0<7<1, e
) 4.30
v (n)=0, i=0,1,2.
It is not difficult to see that
c1 c1 c1 1 T
= — < —_— < —_— = — — ]. .

=g SpESp 0= *"1(3) (4.31)

In view of (4.29), (4.30) and (4.31), taking into account that ¢"(t) =0
for 0 <t < by and fr > 0 because F' > 0 as well as the known inequality
ly+2]%" <2971 (Jy|" +12]*"), from (4.28) we get

b1
/Ea dt <

/ [¢" + cryp|* CR1/1|Q

b
dt+ dt — o//fR(t)w(t) dt <

b T o’
’ ; ; 2/¢) +C 1/} ()
=R /M*bl L 0(1/)0( e :

0 1 0
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T1

OOy
S Ca b + 7 / 0 n dT+
PR (Wo(r)

T1 b1
+b12alflc%/1/)0(7')dr—a’/fR(t)dtS
1 0

- 2a,1/1 (A -
7 7 7 T
S ) (Wo(m)
20/710(13/ by
b2a/_1 (Tl - 1) — O[/ / fR(t) dt (432)
1
0

Assuming now that R =b= k‘;k_ol

and the number 71 > 1 is such that

(4.33)

b b—a a+2b a /3ky—1
b = — = 2 = :—( ),
1= TetiTy 3 3\ =1

from (4.32) we find

b1 T1 ’
1 [e%
E% dt S b172a, |:CO/ 1+ 20/—1 =1 + 20/—1/ |Q/JO (T)l/ dr—
o/ CrpEteEe D) o(r)" T

1

by
, 2
—a/b3* ! /fb(t) dt} L2/ —1=Pt2 (4.34)
p
0

As is known, the function ¢y with the property (4.30) for which the

integral
1

_ [ g
d(g) = 1/ (o (7)) T dr < +o0 (4.35)
is finite does exist [53, p. 11].

Bearing in mind (4.19) and (4.31), we have

b1 by
J(b) _O/fb(t) dt_o/dt/F(z,t)cpb(:c) do =

Wh

by b1
- /dt/F(m) b—12 @1(%) dz = /dt/F(bg,t)gol(g) e, (4.36)
0 wp 0 w1

By virtue of (4.35), the value
20’ —1

sy = (e, o ) = Tla {C?/ (1+ 2"~ (7y — 1)+ 2a/71d(¢0)} (4.37)

/

is likewise finite.
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From the above reasoning we have the following

Theorem 4.1. Letn=2,A=—1, F € C(D), F >0 and supp F C
Gy : t > |z| +a, a=const > 0. If the condition

ako - 3k0
ko—1" ' T Bk 1

%b
b [ dt | F(0€, )1 (€) dE > 30, b= (4.38)
[]

is fulfilled, then for T > b the problem (1.1),(4.1) fails to have a classical
solution u € C*(Dr) in the domain Dr.

Proof. Indeed, by (4.33) and (4.36)—(4.38) the right-hand side of the inequal-
ity (4.34) is negative, but this is impossible because the left-hand side of
this inequality is nonnegative. Therefore for 7' > b the problem (1.1),(4.1)
cannot have a classical solution u € C?(Dr) in the domain Dr. Thus the
theorem is proved. O

Remark 4.2. As we can see from the proof, if the conditions of Theo-
rem 4.1 are fulfilled and a solution v € C?(Dy) of the problem (1.1), (4.1)
exists in the domain Dy, then T is contained in the interval (0,b), i.e.,
0<T <b= 2k,

Remark 4.3. In Theorem 4.1, it is assumed that A = —1. Taking into
account Remark 4.1, we can conclude that Theorem 4.1 remains also valid
in case A < 0, provided in the right-hand side of the inequality (4.38) instead

of s¢9 we write |)\|7%%0.

Corollary 4.1. Letn =2, A <0, F = uFy, where p = const > 0,
Fy € C(ﬁ), Fy >0, supp Fy € G, and Folp, £ 0. Then there exists a
positive number o such that if p > po, then the problem (1.1), (4.1) cannot
have a classical solution u € C*(Dr) for T > b.



CHAPTER 4

Some Multi-Dimensional Versions of the First
Darboux Problem for Nonlinear Wave
Equations

1. Statement of the Problems

In the Euclidean space R™t! of the variables ¢, x1,...,2,, n > 2, we
consider the nonlinear wave equation of the type

2

0°u
Lyu ::W—Au—k/\f(u):F7 (1.1)

where f and F are given real functions, f € C(R) is a nonlinear function,

£(0) =0, and w is an unknown real function, A = > %, A # 0 is a given
=1
real number.

By D : t > |z|, z, > 0 we denote one half of the light cone of future
which is bounded by the part S® = DN {z, = 0} of the hyperplane x,, = 0
and by the half S : t = |z|, 2, > 0 of the characteristic conoid C': t = ||
of the equation (1.1). Assume Dy := {(z,t) € D: t <T}, S% := {(x,t) €
SO - tST},S’T = {(x,t)ES: th},T>O. In case T = o0, it is
obvious that Do, = D, S% = 5% and S, = S.

For the equation (1.1), we consider the following problem: find in the
domain D7 a solution u(z, t) of that equation satisfying one of the following
boundary conditions:

Ju
E S% = 07 U‘ST =0 (12)
or
ulgo =0, ulg, =0. (1.3)

The problems (1.1), (1.2) and (1.1), (1.3) are multi-dimensional versions
of the first Darboux problem for the equation (1.1), when one part of the
data support is a characteristic manifold and another part is of time type
(2, pp. 228, 233].

Let f € C(R). If u € C?(D7) is a classical solution of the problem
(1.1),(1.2), then multiplying both parts of the equation (1.1) by an arbitrary
function ¢ € C?(Dr) satisfying the condition |,z = 0, after integration

73
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by parts we obtain

/ %¢ds— /utgat d:cdt—|—/Vmqu<p dx dt+

S%UST Dr

Dr
A flwpdedt= | Fpdedt, (1.4)
Jroee]

Dt

n
0 _ 9 _ .0 ivati i _
where 5% = v 5; 21 Vi 35, is the derivative with respect to the conor
=

mal, v = (v1,...,Vp, 1) is the unit vector of the outer normal to dDr,
_ 0 0 : : ou _ Ou :
Ve = (%, .. .,m). Taking into account that o S0 = Bay and St is

a characteristic manifold in which % is an inner differential operator, by
virtue of (1.2) we have %‘S%UST = 0. Therefore the equality (1.4) takes
the form

—/utsﬁt dIdt—F/Vmuvzsﬁ dIdt—F/\/f(u)(p dz dt =
Dt Dr Dr

= /F(p dz dt. (1.5)
Dt

The equality (1.5) can be considered as a basis of the definition of a
weak generalized solution of the problem (1.1), (1.2) of the class W4 in the
domain Dr.

Suppose W3 (D, St) := {u € W3 (Dr) : uls, =0}, where W3 (Dr) is
the well-known Sobolev’s space, and the equality u|s, = 0 is understood in
the sense of the trace theory [49, p. 70].

Definition 1.1. Let F € La(Dr). The function u € Wi(Dr, St) is
said to be a weak generalized solution of the problem (1.1), (1.2) of the class
Wy in the domain Dy, if f(u) € Lo(Dr) and for every function ¢ € Wy (D7)
such that ¢[;—7 = 0 the equality (1.5) is fulfilled.

Remark 1.1. In a standard way [49, p. 113] it is proved that if a weak
solution u of the problem (1.1), (1.2) belongs to the space W, (Dr), then for
that solution the homogeneous boundary conditions (1.2) will be fulfilled in
the sense of the trace theory.

Assume C?(Dr, 8%, Sr) := {u € C*(Dr) : 2|, =0, uls, =0}.
n T
Definition 1.2. Let F € Ly(Dr). The function u € Wi(Dr,Sr)

is said to be a strong generalized solution of the problem (1.1),(1.2) of
the class W3 in the domain Dr, if there exists a sequence of functions
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up € 02(3T,S%,ST) such that uy — wu in the space W3(Dz,Sr) and
Lyuyp, — F in the space Lao(Dr).

Remark 1.2. Tt can be easily verified that if u € W3(Dr, St) is a strong
generalized solution of the problem (1.1),(1.2) of the class W3, then this
solution will automatically be a weak generalized solution of that problem
if the nonlinear Nemytski operator K : Wi(Dr, Sr) — La(D7r) acting by
the formula Ku = f(u) is continuous. Therefore, if it is additionally known
that u € WZ(D7), then the boundary conditions (1.2) for that solution will
be fulfilled in the sense of the trace theory. Below we will distinguish the

cases where the operator K is continuous from the space Wi(Dz, St) to
Lo(Dr).

Definition 1.3. Let F € L o.(D) and F € Lyo(Dr) for any T > 0.
We say that the problem (1.1),(1.2) is globally solvable in the class W3 if
for every T" > 0 this problem has a strong generalized solution of the class
Wy in the domain Dy.

Remark 1.3. We can define analogously a weak generalized solution
of the problem (1.1),(1.3) of the class W3 in the domain Dy as a func-

tion v € Wi(Dr,S% U Sr) := {v € W3(Dr) : vlsousy = 0} for which
f(u) € La(Dr) and the integral equality (1.5) is valid for every function
¢ € W3(Dr) such that gl = 0, where F' € La(Dr). The function

u € Wi(Dp,S% U Sr) is said to be a strong generalized solution of the
problem (1.1), (1.3) of the class W3 in the domain Dy if there exists a se-

quence of functions uy, € C*(Dr, S2USr) := {v € C*(Dy) : vlsousy = 0}

such that uy — wu in the space Wi(Dz, S% U Sr) and Lyuy — F in the
space Lo(Dr). Analogously, we say that the problem (1.1),(1.3) is glob-
ally solvable in the class W3 if for every T' > 0 this problem has a strong
generalized solution of the class W3 in the domain Dr.

Below we will distinguish particular cases for the nonlinear function
f = f(u), when the problem (1.1), (1.3) is globally solvable in the class W
in one case, and such solvability does not take place in the other case.

2. A Priori Estimates

Lemma 2.1. Let A > 0, f(u) = |[ufPu, p > 0 and F € Lo(Dr).

Then for every strong generalized solution uw € W3(Dr, St) of the problem
(1.1), (1.2) of the class Wy in the domain Dt the a priori estimate

(&
PRy T P 1)
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15 valid.

Proof. Let u € W(Dr, St) be a strong generalized solution of the problem
(1.1), (1.2) of the class W3 in the domain Dr. By Definition 1.2, there exists

o J—
a sequence of functions uy, € C?(Dr, S%, St) such that

hm [lur — u||W1(D 5 =0, klg{)lo | Laur — F||,(ps) = 0. (2.2)

Consider the function uy € C?(Dr, S%, St) as a solution of the problem

L)\’U,k = Fk, (23)
8uk
D |50 = 0, uk|g =0. (2.4)
Here
Fk = L,\uk. (2.5)

Multiplying both parts of the equation (2.3) by 8“’“ and integrating
over the domain D,, 0 <7 < T, we get

1 o0 8uk )\ 0
- | = (—=) dxdt— | Au —d dt+ — | = P2 do dt =
/ 5 (3 / U AT gy vl d
D DT
8uk
= | Fy — dzdt. 2.6
/ "or (2:6)
D,
Assume €2, := DrN{t =71},0 < 7 < T. Obviously, 9D, = S°US, U, .
Taking into account (2.4) and the equalities v|o, = (0,...,0,1), v|g =

(0,...,—1,0), by integration by parts we obtain
8 8uk 2 - 8uk 2 -
[ g G ) awar= [ () et
D D,
o 8uk 2 8uk 2
- [ (Gt) e [ () mas
T ST
9 2 2 2
5 (ug)® dxdt = ugvpds = | ui dz,
D BDT QT
/ lug|PT? da dt = / lug|PT2vg ds = /|uk|p""2 dx,
D, oD,
(92’1% 8uk 8uk 8uk 1 (9 8uk
—— —— dxdt = — ——vvids—= [ =|=—) daxdt=
/axf ar /&’ci ar Q/at(axi) v
D, oD, D,

- 3uk 8uk 1 8uk 2 -
- / oz, ot P 3 / ((%ci) vods =

oD, oD
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e [ G e (G2 e

Sr S, Q,

whence by virtue of (2.6) we get

Oug,

D-
n

- o [5G () 64

Vf)] ds+
=1 J

+%/ {(%) +z;(g::]:) }dx-i-z%/hiﬂp” dz. (2.7)
1= Qr

Qr

n

1

Since S is a characteristic manifold, we have

(Vg - é uf) ’ST —0. (2.8)

Taking into account that (V8 522 — v; %), @ = 1,...,n, is an inner
differential operator on S, by (2.4) we find that

8uk 8uk - -
(8171- UQ—WVZ> ST—O7 1=1,...,n. (2.9)

Owing to (2.8), (2.9), from (2.7) it follows
8uk 2 o 8uk 2 2\ p+2 o
/[(W) +;(8xi)]dz+p+2/|uk| do =
= o

Q-
/Fk % da dt,

D,

whence in view of A > 0, it follows that

/[(%)ZZ(ZZD ]d <2/Fk%L:dmdt. (2.10)

T T

o= [ [+ 5502y

Qs =1

Putting

and taking into account the inequality 2Fy %5 ‘9—“& < 5(%“})2 + %F 2 which is
valid for any & = const > 0, from (2.10) we obtaln

§
1
w(s) §5/w(o) Ao+ 2 |l py), 0<0<T. (2.11)
0
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From (2.11), bearing in mind that |Fi|?,p,, as a function of ¢ is
nondecreasing, by Gronwall’s lemma we get

1
w(8) < = I1FLI, b,y exp e,

whence with regard for the fact that iI>1% C—X;L‘;E = ed which is achieved for
€
e =1/4, we obtain
w(8) < ed||Fyll7,pyy 0<6<T. (2.12)

From (2.12) it in its turn follows that

[l k||‘2/V1(DT7ST) /{(%)Z;(g{;k) } da dt =

Dr

T
€
:/w(a)dag S T IFS - (213)
0

Here we have used the fact that in the space Wi(Dr, St) one of the
equivalent norms is given by means of the expression

LG (2] dxdt}”z.

i=1
T

Indeed, from the equalities u|s, = 0 and u(z,t) f %éildn (x,t) €
P(x)

Dy, where t — 4(x) = 0 is the equation of the conic manifold St, standard

reasoning results in the inequality

ou 2
2 < 72 )
/u dedt <T /(6t) de dt
DT DT

Now, due to (2.2) and (2.5), passing in the inequality (2.13) to limit as
k — oo, we obtain (2.1), which proves the above lemma. O

An a priori estimate for the solution of the problem (1.1), (1.3) is proved
analogously.

Lemma 2.2. Let A >0, f(u) = |u|Pu, p >0 and F € La(Dr). Then

for any strong generalized solution w € Wi(Dr,S% U St) of the problem
(1.1), (1.3) of the class Wy in the domain Dt the a priori estimate

50 sp0sry < 3 T lz-000) (214)
holds.
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3. The Global Solvability

First, let us consider the issue of the solvability of the corresponding to
(1.1),(1.2) linear problem, when in the equation (1.2) the parameter A\ = 0,
i.e., for the problem

Lou(llf,t) = F(.Z‘,t)7 (I7t) € DTa (31)
ou
D sy~ 0, ulg =0. (3.2)

In this case, for F' € Lo(Dr) we introduce analogously the notion of

a strong generalized solution u € W(Dr, St) of the problem (3.1),(3.2)
of the class Wy in the domain Dr for which there exists a sequence of

functions uy € OQ(DT,ST,ST) such that hm lue — ullwy(pr,s0) = 0,
hm | Lour — F||L,(py) = 0. It should be noted “that in view of Lemma 2. 1,

for )\ = 0, the a priori estimate (2.1) is likewise valid for a strong generalized
solution of the problem (3.1), (3.2) of the class Wy in the domain Dr.
Since the space C§°(Dr) of finitary infinitely differentiable in Dp func-
tions is dense in Lo(Dy), for a given F' € Lo(Dy) there exists a sequence
of functions Fy, € C§°(Dr) such that kli)r{)lo |Fr = F|lL,(pr) = 0. For a fixed
k, extending the function F} evenly with respect to the variable x, into
the domain D7 = {(z,t) € R"™ : z, <0, |z| <t < T} and then by
zero beyond the domain Dr U D7, and leaving the same as above notation,
we have Fj, € C°°(R"™!) with the support supp Fy C Do U D, where
R .= R"*1 N {t > 0}. Denote by uy, the solution of the Cauchy problem

Ouk

o =0, (3.3)

t=0

Louk = Fr, ug|,_, =0,

which, as is known, exists, is unique and belongs to the space C'*° (R’f‘l) 17,
p. 192]. In addition, since supp Fj, C Do U D3, C {(z,t) € R" : t > |z}
and ugli=o = 0, 8_%‘1& = 0, taking into account the geometry of the
domain of dependence of a solution of the linear wave equation Lou =
F, we have suppuy C {(z,t) € R""' : ¢ > |z|} [17, p. 191], and, in
particular, ug|s; = 0. On the other hand, the function ug(z1,...,2n,t) =
ug(x1, ..., —xy,,t) is likewise a solution of the same Cauchy problem (3.3),
since F} is an even function with respect to the variable z,,. Therefore,
owing to the uniqueness of the solution of the Cauchy problem, we have
U = ug, 1.6, ug(x1,...,—xn,t) = ug(x1,...,2s, t), and hence the function
uy, is likewise even with respect to the variable x,. This, in turn, implies
that gTui ‘z _o = 0, which along with the condition ug|s; = 0 means that if
we leave for the restriction of the function ug to the domain D7 the same

notation, then u, € C%(Dr, S%, St). Further, by (2.1) and (3.3) there takes
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place the inequality

(&
o =l oy <[5 TIF~ Fillcon 3.4

since the a priori estimate (2.1) is valid for a strong generalized solution of
the problem (3.1), (3.2) of the class W3 in the domain D7, as well.
Since the sequence {F}} is fundamental in Lo(D7), therefore by virtue

of (3.4) the sequence {uy} is also fundamental in the space Wi (Dr, St)

which is complete. Therefore, there exists a function v € W3(Dr, St)

such that lim |Jup — | o = 0, and since Loug = Fr, — F in the
k—o00 W%(DT,ST)

space Lo(Dr), this function will, by the definition, be a strong generalized
solution of the problem (3.1),(3.2). The uniqueness of solution from the

space Wi(Dr, St) follows from the a priori estimate (2.1). Consequently,
for the solution u of the problem (3.1), (3.2) we can write u = Ly ' F, where

)
Lyt Ly(Dr) — Wi(Dr, Sr) is a linear continuous operator whose norm,
owing to (2.1), admits the estimate

(&4
L7t o <./=T. 3.5
Lo HL2(DT)HW%(DT1ST) S4/3 (3.5)

Remark 3.1. The embedding operator I : V?/é(DT,S’T) — L,(Dr) is
linear, continuous and compact for 1 < ¢ < % , when n > 1 [49, p. 81].
At the same time, Nemytski’s operator K : L,(Dr) — Lo(Dr) acting by
the formula Ku := —A|u|Pu is continuous and bounded if ¢ > 2(p + 1) [47,
p. 349], [48, pp. 66, 67]. Thus if p < —27, i.c., 2(p + 1) < 22 then
there exists a number ¢ such that 1 < 2(p+1) < ¢ < % , and hence the
operator

Ko = KI:W3(Dr,Sr) — La(Dr) (3.6)
is continuous and compact. In addition, from wy — wu in the space

W3(Dr, S7) it follows that Kour, — Kou in the space Lo(Dr). There-
fore, according to Remark 1.2, a strong generalized solution of the problem
(1.1), (1.2) of the class W3 in the domain D will also be a weak generalized
solution of that problem of the class W3 in the domain Dr.

Remark 3.2. For F € Ly(Dr), 0 < p < =25, by virtue of (3.5) and

Remark 3.1 a function u € Wi (D, St) is a strong generalized solution of
the problem (1.1), (1.2) of the class W3 in the domain Dy if and only if
is a solution of the functional equation

u= Ly (= AulPu+F) (3.7)

in the space Wi(Dr, St).
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We rewrite the equation (3.7) as follows:

u=Au:= Ly (Kou+ F), (3.8)

where the operator Ko : Wi(Dr,Sr) — Lo(Dr) from (3.6) is, by Re-
mark 3.1, continuous and compact. Consequently, by (3.5) the operator

[e] [e]
A WY Dr,St) — W3(Dr,Sr) is likewise continuous and compact. At
the same time, by Lemma 2.1 for any parameter 7 € [0, 1] and every solu-
tion of the equation u = T7Au with the parameter 7 the a priori estimate

Hu||v<{/l(DT ) < c||F|lzy(pyy is valid with a positive constant ¢ independent
2 3

of u, F' and 7. Therefore, according to the Leray—Schauder theorem [66,
p. 375] the equation (3.8), and hence the problem (1.1),(1.2) has at least
one strong generalized solution of the class W3 in the domain Dz. Thus we
have proved the following

Theorem 3.1. Let A >0, f(u) = |u|Pu, 0 < p < =25, F € Ly 10c(D)
and F € Lo(Dr) for any T > 0. Then the problem (1.1),(1.2) is glob-
ally solvable in the class Wy, i.e., for any T > 0 this problem has a weak

generalized solution of the class W4 in the domain Dy .

Reasoning analogously, we can prove that the statement of Theorem 3.1
is likewise valid for the problem (1.1), (1.3).

4. The Non-Existence of the Global Solvability

Below we will consider the case where in the equation (1.1) the function

f(u) = —|u|P*, p >0, i.e., the equation
2u
Lyu:= oz Au— NulP™ = F, (4.1)
as well as the more general than (1.2) boundary condition
ou
a—xn S% = 07 U‘ST =9, (42)

where ¢ is a given real function on St.

Remark 4.1. Under the assumption that F' € La(Dr), g € Wy (St) and
0<p< % , similarly to Definitions 1.1 and 1.2 concerning a weak and a
strong generalized solution of the problem (1.1), (1.2) of the class W4 in the
domain D, with regard for Remark 3.1 we introduce the notions of a weak
and a strong generalized solution of the problem (4.1), (4.2) of the class W
in the domain Drp:

(i) a function u € W3 (D7) is said to be a weak generalized solution
of the problem (4.1),(4.2) of the class W3 in the domain Dy if
for every function ¢ € W3 (Dr) such that ¢|;—r = 0 the integral
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equation
— / uppy dx dt + / VuVep dedt =
DT DT
:/\/|u|p+1g0dxdt+/Fg0dzdt—/%(pds (4.3)
Dr Dt St
holds, where % =1 % - 21 v a%i is the derivative with respect

to the conormal being an inner differential operator on St since
the conic manifold Sy is characteristic, and v = (v1,...,vn, 1) is
the unit vector of the outer normal to 0D, V,, := (8%17 ey %);
(ii) a function u € W4 (D7) is said to be a strong generalized solution
of the problem (4.1),(4.2) of the class Wy in the domain Dy, if

there exists a sequence of functions uj € 6§(DT,ST) = {u €
C*(Dr) : %‘S“ = 0} such that ux — u in the space W3 (Dr),
Lyup — F in tfle space Lo(Dr) and ug|s, — g in the space
W3 (St).

Note also that according to Remarks 1.2 and 3.1 a strong generalized
solution of the problem (4.1),(4.2) of the class W3 in the domain Dr is
likewise a weak generalized solution of that problem of the class Wy in the
domain Dr.

Analogously, we introduce the notion of the global solvability of the
problem (4.1), (4.2) of the class W3 .

Remark 4.2. Below we will use the fact that the derivative with respect
to the conormal aiN’ being an inner differential operator on the character-
istic conic manifold .S, coincides with the derivative aa_r with respect to the

spherical variable r = (t2 + |2|?)'/2 with minus sign.

We have the following theorem on the non-existence of the global solv-
ability of the problem (4.1), (4.2).

Theorem 4.1. Let F € Lao.(D), g € W3,,.(S) and F € Ly(Dr),
2

g € W(Sr) for any T > 0. Then if A >0,0<p< and

n—1

F|,>0, g|4>0, >0, (4.4)

o
orls —
then there exists a positive number To = To(F, g) such that for T > T, the
problem (4.1), (4.2) cannot have a weak generalized solution of the class W4
(for F =0 and g = 0, nontrivial) in the domain Dr.

Proof. Let Gr : || <t <T, G :=GrN{z, <0}, Sy : t=|z|, zp <0,
t < T. Obviously, Dy = G; = Gr N{z, > 0} and Gy = G; U S U Dr,
where S = 0D N {z,, = 0}. We extend the functions u, F' and g evenly
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with respect to the variable z,, into G- and S, respectively. For the sake
of simplicity, for the extended functions defined in G and S UST we leave
the same notation u, F and g. Then if u € W3 (Dr) is a weak generalized
solution of the problem (4.1), (4.2) of the class W4 in the domain D7, then
for every function ¢ € W3 (Gr) such that ¥|;—7 = 0 the equality

—/utwt d:vdt—i—/vmuvww dxdt =

Gr Gt

:/\/|u|p+11/) dzdt+/F1/) dz dt — / %WS (4.5)
Gr Gr SpUST
holds.

Indeed, if ¥ € W}(Gr) and Yli—r = 0, then, obviously, ¥|p, €
W3 (D7) and ¢ € Wg(Dr), where, by definition, (z1,...,2n,t) =
(T, ..., —xn,t), (T1,...,Zn,t) € Dr, and ¢|t—r = 0. Therefore, by the
equality (4.3) we have

—/utz/)t dmdt—!—/vmuvzd) dxdt =

DT DT
:/\/|u|p+11/) dzdt+/F1/) dzdt—/g—iﬂ/}ds, (4.6)
DT DT ST
—/utzzt dmdt—!—/vmuvz{/)vdzdt:
DT DT
:)\/ |u|P+11dedt+/F1dedt— g—]iids. (4.7)
DT DT ST

Taking now into account that u, F' and g are even functions with respect
to the variable z,,, as well as the equality

(T, . Ty t) = W(X1, .o, =X, t), (Z1,...,%n,t) € D,
we find that

- /WL d:vdt—k/vmuvqu drdt =
Dt

Dt
= —/uyﬁt d:vdt—i—/vmuvmz/} dx dt, (4.8)
Gr Gr
+1.7 it 99 ~
A JufPT Y dede+ | Fiy daedt— Wﬁ)ds:
Dr Dr St
:)\/|u|p+1z/1 d:vdt+/F¢ dar dt — %wds. (4.9)
DT G; ST
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From (4.7), (4.8) and (4.9) it follows that

—/utz/)t dmdt—!—/vmuvzd) dxdt =

Gr Gr
0
:)\/|u|p+1z/1 da dt + /F¢ dadt — a—]%wds. (4.10)
G, G, St

Finally, adding the equalities (4.6) and (4.10) we obtain (4.5).
Note that the inequality % ’ ¢ = 0 in the condition (4.4) is understood
in the generalized sense, i.e., by the assumption g € W;)ZOC(S) there exists
the generalized derivative %‘% € L 1oc(S) which is nonnegative, and hence,
for every function 8 € C(S) finitary with respect to the variable r, 8 > 0,

the inequality

99
/ 5 Bds >0 (4.11)
5
holds.

Here we will use the method of test functions [53, pp. 10-12]. In the
capacity of a test function in the equality (4.5) we take ¢(z,t) = 1o [ 2 (t2+
|z[?)], where 1y € C?((—00,400)), 1o = 0,1 < 0,1pp(0) =1for0 <o <1
and () = 0 for o > 2 [563, p. 22]. Obviously, ¥|—7 = 0 and ¥ € C*(Gr),
and all the more, 1 € W3 (Gr).

Integrating the left-hand side (4.5) by parts, we obtain

/uD@/J dx dt = )\/ |ulPT1) da dt+

Gt Gr
+/F1/1d:cdt+ / gg—;éds— / %1/)&9. (4.12)
Gr SpUST SpUST

Taking into account Remark 4.1, (4.4) and (4.11), we have

/F¢ da dt > 0, / gg—;\b[ds >0, / %wds <0, (4.13)
Dr S, UST SpUST

where 9 is the above-introduced test function.
Assuming that the functions F', g and v are fixed, we introduce into
consideration the function of one variable T,

oY 99
W(T)—/Fwdxdt—i— / ga—Nds— a—Nwd& T>0. (4.14)
Gr S7UST S7UST
Owing to the absolute continuity of the integral and the inequalities
(4.9), the function (T) from (4.10) is nonnegative, continuous and nonde-
creasing. Note that Tlim ~(T) = 0.
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Taking into account (4.10), we rewrite the equality (4.8) in the form

)\/|u|p+lz/1 dx dt = /umw dxdt —~(T).
GT GT

The rest of our reasoning allowing for proving Theorem 4.1 word by
word repeats that of Section 5 in Chapter II for « = p + 1. O

Remark 4.3. The conclusion of Theorem 4.1 remains valid for the lim-
iting case p = % as well, if we take advantage of the reasoning pre-
sented in [53, p. 23]. The conclusion of that theorem ceases to be valid if
the condition p > 71271 and the second condition of (4.4), i.e., the condi-
tion g|s > 0, are violated simultaneously. Indeed, the function wu(z,t) =
—e(1+ 1% —|2|2)71/P, ¢ = const > 0, is a global classical, and hence, gen-

eralized solution of the problem (4.1),(4.2) for ¢ = —¢ (%|5 = 0) and

2_ 1.2 pEl | aLs .
F= [25’%1 —45%1 #Li'lml—Q — AP (1+¢2 —|z|?)"» ; in addition, as it

. . . n+1— 2@t 1/p
can be easily verified, F|p > 0if p > 71271 and 0 <e < {% [%}} )
Note that the inequality n + 1 — @ > 0 is equivalent to p > % .

Remark 4.4. The conclusion of Theorem 4.1 also ceases to be valid
if only the third condition of (4.4) is violated, i.e., the condition 22| >

orls
0. Indeed, the function u(z,t) = co[(to + 1)* — |z|2}71/p, where ¢y =
)\—1/1)[4(1?4;1) _ 2(n+1)}—1/P

p p

(4.1)7 (4.2) for F=0and g = U|S = co [(t + 1)2 . tz}—l/p S 0.

, is a global classical solution of the problem

Remark 4.5. In case —1 < p < 0, the problem (4.1),(4.2) may have
more than one global solution. For example, for F' = 0 and g = 0, the con-
ditions (4.4) are fulfilled, but the problem (4.1), (4.2) has, besides the trivial
solution, an infinite set of global linearly independent solutions uq(x,t) de-
pending on the parameter o > 0 and given by the formula

~1/
u (:17 t) — Co I:(t - Oé)2 - |‘T|2} p? t>a+ |‘T|7
’ 0, 2] <t < a+ |z,

where ¢y = /\’1/7"[4(’;—;&) — 2("}'%“)}71/10. It is not difficult to see that u,, €

C*(D) for p < 0, while for —1/2 < p < 0 the function u, € C?(D).
5. The Local Solvability

Remark 5.1. Just as is mentioned in Remarks 3.1 and 3.2, for 0 < p <
2

—=7 the operator

o

K1 :W5(Dr, St) — Lo(Dr)  (Kiu = u["*1) (5.1)
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is continuous and compact, and the problem (4.1), (4.2) for g = 0 is equiv-
alent to the functional equation

u=Aju+ ug (5.2)
in the space VCE/% (D, St), where
Ay =Ly 'Ky, wuo=Ly'F e Wi(Dr,Sr) (5.3)

with regard for (5.1). Here L' : Lo(Dr) — W(D7, St) is a linear contin-
uous operator whose norm admits the estimate (3.5).

Remark 5.2. Let B(0,d) := {u € W3(Dr, S7) : ||u||I;>V1(D ) < d} be
5(DT,ST

the closed (convex) sphere in the Hilbert space Wi(Dr, St) of radius d > 0
with the center at the zero element. Since by the above Remark 5.1 the

operator Ay : W}(Dr, St) — Wi(Dr,Sr) for 0 < p < -2 is continuous
and compact, according to the Schauder principle for showing the solvability
of the equation (5.2) it suffices to prove that the operator A5 acting by the
formula Asu = Aju + ug transforms the ball B(0,d) into itself for some
d > 0 [66, p. 379]. Towards this end, we will give here the needed estimate

for || Aul| o .
Wi(Dr,St)

If u € Wi(Dr, St), we denote by @ the function which is, in fact, the
extension of the function w evenly through the planes x, = 0 and t = T.
Obviously u € W3(D%.), where D% : |z| <t < 2T — |z|.

Using the inequality [72, p. 258]

[ 10142 < mes @)= ula o= 1,
Q

and taking into account the equalities

~14q _ q ~112
112,03y = Ml oy WS,

from the well-known multiplicative inequality [49, p. 78]

= 4|ull% ;
) W3(Dr,ST)

~ ~ o
[vllge < BIVYllm allvllg® Yo e Wi(Q), @cR™™,

~ (1 1)(1 1)*1, ~ (n+1)m

o = bl b -_— m = N
n+l—m

roq

forQ:D}CR”“,v:ﬁ,r:l,m:?and1<q§%%l,whereﬂ:
const > 0 does not depend on v and T', we obtain the following inequality:

rom

ull £, (ppy < colmes D)t =2 u| Yu e Wi(Dr, Sr), (5.4)

W3i(Dr,ST)

where ¢y = const > 0 does not depend on wu.
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Taking into account that mes Dp = 2(n +1) T"+1 where w,, is the vol-

ume of the unit ball in R™, for ¢ = 2(p+ 1) (5.4) yields

||u||L2(p+1)(DT) <

~ ) (st~ L 1 °
< Cogp,nT( )(2(p+1) 1 2) HUHI;)V%(DT,ST) YVue W%(DT, ST), (5.5)

where Ty = (sptags) (o F 7 4).

For the value ||Kyul|,(py), where u € W3(Drp, St) and the operator
K, acts by the equality from (5.1), by virtue of (5.5) the estimate

1/2
1
Kl < A[ / P dedt] Al o, <

< Aty T ) 56

holds, where £, ,, = [colpn]PT".
Now from (3.5) and (5.6), for || Ajul| -

Aju= LglKlu, the estimate

$A(Dr 52’ , where by virtue of (5.3)

1480 s 5y < WE0 i 5y 110 <
< \/g)‘fp,nT1+(p+l)(n+1)(m+H}H_§)HUH:;L:(DT . (5.7)
Yu e W2(DT,ST)
is valid.
Note that (p+1) + —= n+1 — % >0 for p < %

Consider the equation
azP b=z (5.8)

with respect to the unknown function z, where

a=@ M (T (bt =1) g = ﬁTnan). (5.9)

For T' > 0, it is evident that @ > 0 and b > 0. A simple analysis similar
to that which for p = 2 is performed in [66, pp. 373, 374] shows that:

(1) if b= 0, the equation (5.8) along with the zero root z; = 0 has the
unique positive root zo = a~1/?;
(2) if b > 0, then for 0 < b < by, where

bo=[(p+1)7F —(p+1)7 7 Ja, (5.10)
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the equation (5.8) has two positive roots z; and za, 0 < 21 < 29,
which for b = by merge into one positive root
_1
n=m=z=|p+1al ;
(3) if b > by, then the equation (5.8) has no nonnegative root.
Note that for 0 < b < by there take place the inequalities
_1
21 < 2= [(p—|— l)a} P zo.
Owing to (5.9) and (5.10), the condition b < by is equivalent to the

condition
(&
eIz <

< [\/g Aep,nT1+<P+1><n+1>(m+%ﬂ%)} 1) — (1)

or
||F||L2(DT) < ’Yn,AyPT_anv Oy > 07 (511)
where

Yoy = [((P+1)77 = (p+1)7% [(\yn) 77 exp [_ % (1 n _)}

ozn:1+% {14‘(?"’1)("“‘1)(2@11) +n—1i-1 _%)}

Bearing in mind that the Lebesgue integral is absolutely continuous, we
have %imo |Fllo(pyy = 0. At the same time, %irr}) T~ = 400. Therefore,

there exists a number Ty = T (F'), 0 < T < +o0 such that inequality (5.11)
holds for

0<T<Ty(F). (5.12)

Let us now show that if the condition (5.12) is fulfilled, then the operator

Ay : W(Dr,Sr) — Wi(Dr,St) acting by the formula Az = Aju + ug
transforms the ball B(0, z2) mentioned in Remark 5.2 into itself, where zo
is the maximal positive root of the equation (3.8). Indeed, if u € B(0, z2),
then by (5.7), (5.8) and (5.9) we have
| Agul| o < allul/?H +b<at +b= 2.
Wi(Dr,ST) W3(Dr,ST)

Therefore, according to Remarks 5.1 and 5.2 the following theorem is

valid.

Theorem 5.1. Let 0 < p < % ,9g=0,F € Lyjoe(D) and F €
Lo(Dr) for any T > 0. Then the problem (4.1),(4.2) in the domain Dy
has at least one strong generalized solution of the class Wy if T satisfies the

inequality (5.12).
Note that analogous results are valid for the problem (4.1), (4.3) as well.



CHAPTER 5

Characteristic Boundary Value Problems for
Nonlinear Equations with the Iterated Wave
Operator in the Principal Part

1. Statement of the First Characteristic Boundary Value

Problem
In the Euclidean space R™*! of the variables x1,...,z,,t, we consider
the nonlinear equation of the type
Lyu := O%u+ \f(u) = F, (1.1)

where A is a given real constant, f : R — R is a given continuous nonlinear
function, f(0) = 0, F is a given and u is an unknown real function, O :=
n
6%27 — 2:1 8%2'4“ ,n > 2.
= 0%

By Dr : |z| < t < T—|z| we denote the domain which is the intersection
of the light cone of future K : t > |z| with the vertex at the origin
0(0,...,0) and the light cone of past K, : t <T — |z| with the vertex at
the point A(0,...,0,T), T = const > 0.

For the equation (1.1), we consider the characteristic boundary value
problem: find in the domain Dy a solution u(x1, ..., x,,t) of that equation
according to the boundary condition

ulyp, =0 (1.2)

Assume C*(Dr,dDr) := {u € C*(D7) : ulop, =0}, k> 1. Let u €
C*(Dr,0D7) be a classical solution of the problem (1.1), (1.2). Multiplying

o

both parts of the equation (1.1) by an arbitrary function ¢ € C?(Dz,dDr)
and integrating the obtained equality by parts over the domain D, we
obtain

/DuD(p dzdt—F/\/f(u)(p dx dt = /F(p dz dt. (1.3)
Dr Dr Dr
When deducing (1.3), we have used the equality

_ d¢ 9 2
/DuD(pdzdt— / 6ND(pds— / (paNDuds—F/tpD w dx dt
DT (’)DT BDT DT

89
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and the fact that since D7 is a characteristic manifold, the derivative with

n
respect to the conormal % =VUpt1 %—Zl/i %, where v=(v1,...,Vn,Vnt1)
i=1 ¢

is the unit vector of the outer normal to d D, is an inner differential operator

on the characteristic manifold Dz, and hence if v € C'(Dr,dDr), then
g_z% opy =Y
T

[e]
Introduce the Hilbert space W3 5(Dr) as the completion with respect
to the norm

lull%, /{u2+(%)2+i((§i)2+(Du)2} dedt  (1.4)

3.0(Pr)

T

of the classical space C?(Dp,dDz). Tt follows from (1.4) that if u €
W;D(DT), then v € W3(Dr) and Ou € Lo(D7). Here Wi(Dr) is the
well-known Sobolev space [49, p. 56] consisting of the elements Lo(Dr)

having the first order generalized derivatives from Lo(Dr), and Wi(Dr) =
{u e W}(Dr) : ulop, = 0}, where the equality u|sp, = 0 is understood
in the sense of the trace theory [30, p. 70].

We take the equality (1.3) as a basis for our definition of the generalized
solution of the problem (1.1), (1.2).

Definition 1.1. Let F € Lo(Dy). The function u € W%E(DT) is
said to be a weak generalized solution of the problem (1.1),(1.2), if f(u) €

Lo(Dyr) and for any function ¢ € W%)D(DT) the integral equality (1.3) is
valid, i.e.,

/DuDgodxdt—i—)\/f(u)(p de dt = /Fgo dx dt V@EI/CI)/%)D(DT). (1.5)
Dr Dt Dr

It is not difficult to verify that if a solution u of the problem (1.1), (1.2)
belongs, in the sense of Definition 1.1, to the class C*(Dr), then it will also
be a classical solution of that problem.

2. The Solvability of the Problem (1.1),(1.2) in Case of the
Nonlinearity of the Type f(u) = |u|*sgnu

Let a nonlinear function f in the equation (1.1) be of the form
f(u) = |u|*sgnu, a=-const>0, al. (2.1)

Then according to (2.1) the equation (1.1) and the integral equality (1.5)
take the form

Lyu := O%u + \u|®sgnu = F (2.2)
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and

/ Oulep dx dt + A / plu|*sgnu de dt =
DT DT

= /ng dedt Vo € Wi o(Dr). (2.3)
Dt

Lemma 2.1. The inequality

lullg, ) < elBuliyom Yu e Wha(Dr) (24)
2,0

holds, where the norm of the space W3 (Dr) is given by the equality (1.4)
and the positive constant ¢ does not depend on u.

Proof. Since the space C?(Dr,0Dr) is a dense subspace of the space
W%)D(DT), it suffices to prove that Yu € C?(Dz, D7)

2 2 2 2 2 2
el <0y y Nl <0y , (2:5)

+ _ _
W;,D(D;m) LQ(DT/Q Q,D(DT/2) LQ(DT/Q)

where D;/Q = Dprn{t <T/2}, Dz = Dr N {t > T/2} and the norm

|- ||ch/1 (D* ) is given by the equality (1.4) in which instead of Dy we have
2,0V T/2

to take D%/Q.
We restrict ourselves to the proof of the first inequality (2.5) since the
second one is word by word proved analogously.
Assume Q, = ﬁ;/z N{t=r}, D} = D;/Q N{t <7}, St :={(z,t) €
ODf : t=|z|}, 0 <7 <T/2 and let v = (v1,...,Vy,Vn41) be the unit

° —_—
vector of the outer normal to D). For u € C?(Dr,dDr), in view of the
equalities ul§, =0, Q; = dDF N {t = 7} and v|o, = (0,...,0,1), the
integration by parts provides us with

8%u du 1 0 /0u\? 1 ou\ 2
[aaiat=s | 5 (G) di=g [ (G) mud-

D Dt Dt

:%/(2—?)2dz+%/(%)zun+lds, ng, (2.6)

Qr st
0%u Ou ou Ju 1 d 7 0u\?2

DY aDF Df

B 8171 ot ‘ _2

oD oD
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Ju Ou ou 1 ou T
_ ou gu <=. (2
Ox; Ot vids— 2 /(&CZ) V1 ds— /(&CZ) dz, T< 2 (2.7)
aDF st Q.
It follows from (2.6) and (2.7) that

ou
/DUE dr dt =

D+

/21/n+1 [i(au %W>2+((Z_1Z>2(V721+1_

oF i=1 J

1/32)] ds+
=1

AJ[G @ )m e<s e

Qr

Since u|ST+ =0and (VnH 9o, Vi at) 1 < i < n, is an inner differential
operator on S, there take place the following equalities:

(@ Unt1 — Ou Vi)

=0, i=1,...,n. 2.9
0x; ot ! L (2:9)

s
n
Therefore, taking into account that v2,; — > VJ2» = 0 on the character-

j=1
istic manifold S}, by virtue of (2.8) and (2.9) we have

[ R @ o= [Gaa <5 ew
q i=1

T Dj

Putting

OUN2 = [ Ou\2
wo = [ () + 2 (5) ]
Qs i=1
and using the equality

ou ou 1
—<e - 2
T (8t) - [Pl

which is valid for every ¢ = const > 0, from (2.10) we obtain

)
T

w(5)gs/ ()da+—|\mu||2 Jopy 0<0< 5 (2.11)
0

From (2.11), taking into account that ||Du||2 as a function of 0 is

2(DY)
nondecreasing, by Gronwall’s lemma [15, p. 13] we find that

1 2
U}((S) < g HDUHLZ(D;) €Xp 567
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whence bearing in mind that in% é exp 6 = e is achieved for e = 1/0, we
e>

obtain
T
2
w(®) < 30l ey 0< 6 . (2.12)
In its turn, from (2.12) it follows that
T/2
OuN2 = 7 Ou 2 B €, 9
/ [(E) +;(8xi) ] dz dt= /w(5)dag§T 10ul, - (213)
Djs " 0
¢
Using the equalities u|s,,, = 0 and u(z,t) = [ %dﬂ (x,t) €

||

_ o pa—
D; /2. which are valid for every function u € C?*(Dr,dD7), and reasoning
in a standard way [49, p. 69], it is not difficult to get the inequality

4 ot

+ +
DT/2 DT/2

2 2
/ u?(z,t) dedt < s (@) dx dt. (2.14)
Owing to (2.13) and (2.14), we have

OuN2 </ Ou 2
1, e = [ e (G) 2 () O] s <
’ +

7/2)

T/2

€ (&
<1+ -T2+ —
_(+8 M

whence we obtain the first inequality from (2.5) with the constant ¢? =
1+ 5 T2 + 35 T*. Thus we have proved the lemma. O

4 2
T )||Du||L2(D;/2),

Lemma 2.2. Let F € Ly(Dr), 0 < o < 1, and in the case o > 1
we additionally require that A > 0. Then for a weak generalized solution

URS W;D(DT) of the problem (1.1), (1.2) with nonlinearity of the type (2.1),
i.e., of the problem (2.2), (1.2) in the sense of the integral equality (2.3) for
|u|* € La(Dr), the a priori estimate

Il ) < ErlPlacon) e (215)
2,

is valid with nonnegative constants ¢;(T,a, A), i = 1,2, independent of u
and F and ¢ > 0.

Proof. First, let a > 1 and A > 0. Putting ¢ = v € W} 5(Dr) in the
equality (2.3) and taking into account (1.4) for any € > 0, we obtain

10ull?,(pyy = /(Du)2 drdt = —\ / || @1 d:vdt+/Fu dzdt <
Dt Dt Dr



94 S. Kharibegashwvili

g/Fudxdt<—/F2dCCdt+€||u||L2 Dr) S

DT

< —||F||? 2 ) 2.16
wﬂmwﬂw%%) (2.16)

By virtue of (2.4) and (2.16), we have

2 2 2 2
lJull | (on) < A |0ullz,(ppy < 4 IFN7,pp +¢ EIIUII (bry
whence for ¢ = %2‘ < Elg' we obtain
2 ¢ 2 4 2
||u||W1 (o) < 1e(1—2c) ||F||L2(DT) =c ||F||L2(DT)' (2.17)

In case @ > 1 and A > 0, from (2.17) it follows the inequality (2.15)
with ¢; = ¢? and ¢p = 0.

Let now 0 < a < 1. Using the well-known inequality ab < % + qsl;q,l
with the parameter € > 0 for a = |u|*™, b =1, p = o%rl >1,q=

a—a’?

11—) + ;— = 1, analogously as when deducing the inequality (2.16) we have

||Du||2L2(DT): /(Du) dx dt = —)\/|u|0‘+1 dzdt+/Fu dz dt <

Dr
1 1
§|/\|/[a _;a|u|2+2q 1]dmdt+—/F2d:cdt+s/u dx dt =
Dt
1+«

+ 1)l ) N A=Y mesDr. (2.18)

wmwﬂm S

By virtue of (1.4) and (2.4), it follows from (2.18) that

||U||2° L (D) < A 0ullf,(pyy <
<SP +(w C)uE, o+
- EC u C
= 4¢ "7 E2(D1) W1 o (Dr)
2
q - 1 —a 9

whence for & = 1 ¢72(|A\] 2 + 1)_1 we obtain

Il o <
o(Dr)
1+« -1
< [r-ee(In )}hwmmwwﬂlmmp
=i NFIZ o + 2 (2.19)
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From (2.19), in case 0 < o < 1 it follows the inequality (2.15) with
o = A(A 5 + 1)1/2 and ¢ = ¢(2|\| 357% mes DT)1/2, where ¢ = ——.

11—

Thus the lemma is proved completely. O

Remark 2.1. Tt follows from the proof of Lemma 2.2 that the constants
c1 and ¢z in the estimate (2.15) are equal to:

(1) a>1,A>0: c; =c? ca =0; (2.20)

2)0<a<l, —o00o <A< +o0:

1 1/2 1— 1/2
= c2(|/\| —|2—a + 1) , Co= c(2|)\| F_Ol[ mesDT) , (2.21)

where the constant ¢ = (1 + §T2 + % T‘l)l/2 is taken from the estimate
(2.4) and ¢ = L.

-«

Remark 2.2. Below we will first consider the linear problem corre-
sponding to (1.1),(1.2), i.e., the case where A = 0. In this case, for
F € Ly(Dr) we introduce analogously the notion of a weak generalized

solution u € W3 (D7) of that problem when the integral equality

(u, p)g = /Dchp dz dt = /Fgo dedt Yy € VCI)/'%)D(DT) (2.22)
DT DT
holds.

Remark 2.3. By (1.4) and (2.4), taking into account that
‘(DU7D¢)L2(DT)‘ = ' / Uulle dl‘dt’ <
Dt

< Oul| o) B¢ LoDy < ||DU||V°V1

D o
om0l

3

,D(DT)

we can take the bilinear form (u,¢)n := [ OuOe dzdt from (2.22) as a
Dt

scalar product in the Hilbert space W3 5(Dr). Therefore, for F' € Ly(Dy)

)

Fodzdt| <||F <||F °
]D/ o dod] < VPllaopllelian) < WFlaonlily,
T

and by the Riesz theorem [10, p. 83] there exists a unique function u
from the space W3 (D7) which satisfies the equality (2.22) for every ¢ €
o

W3 5(Dr) and for its norm the estimate

Il ) < IFlcaor) (223
2,

is valid. Thus introducing the notation u = L 'F, we find that to the linear
problem corresponding to (1.1),(1.2), i.e., for A = 0, there corresponds the
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o

linear bounded operator Ly ' : Lo(Dy) — W} 5(Dr) and for its norm the
estimate

1L | La(Dr) (2.24)

: <|F
La(D1)—W} (D)
holds by virtue of (2.23).

Taking into account Definition 1.1 and Remark 2.3, we can rewrite the
equality (2.3), equivalent to the problem (2.2), (1.2), in the form

u=Lg'[— Mu|*sgnu+ F| (2.25)
in the Hilbert space W;D(DT).

Remark 2.4. The embedding operator I : Vci/é (D7) — Lg(Dr) is linear,
continuous and compact for 1 < ¢ < %, when n > 2 [49, p. 81]. At
the same time, the Nemytski operator N : Ly(D7) — Lo(Dr) acting by the
formula Nu = —Mu|*sgnu, a > 1, is continuous and bounded if ¢ > 2«
(47, p. 349], [48, pp. 66, 67]. Thus if 1 < o < 21, then there exists a

1°
number ¢ such that 1 < 2a < ¢ < 2t and hence the operator

n—1
Ny = NI:W3(D7) — Lyo(Dr) (2.26)
is continuous and compact. In addition, from u € W3(Dz) there follows
f(u) = |u|“sgnu € Ly(Dr). Next, since due to (1.4) the space W;D(DT)

is continuously embedded into the space W3(Dr), bearing in mind (2.26)
we will see that the operator

Ny = NII, : Wy (D7) — La(Dr), (2.27)
where I : W;D(DT) — W2X(Dr) is the embedding operator, is likewise
continuous and compact for 1 < a < Z—ﬂ For 0 < a < 1 the operator

(2.27) is also continuous and compact since, by Rellikh’s theorem [49, p. 64],

the space Wi(Dz) is continuously and compactly embedded into Ls(Dr),
and the space Lo(Dy) is, in its turn, continuously embedded into L,(Dr)
for 0 <p<2.

We rewrite the equation (2.25) as follows:

u = Au:= Ly (Nou + F), (2.28)
where the operator Ny : W} 5(Dr) — Lo(Dr), by Remark 2.4, for 0 <
a < %7 a # 1, is continuous and compact. Then, taking into account

(2.24) we conclude that the operator A : Wi 5(Dr) — W1 (Dr) from
(2.28) is likewise continuous and compact. At the same time, according to
the a priori estimate (2.15) of Lemma 2.2 in which the constants ¢; and ¢z
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are given by the equalities (2.20) and (2.21), for any parameter 7 € [0, 1]

and for every solution u € W;D(DT) of the equation u = T7Au with the
above-mentioned parameter the a priori estimate (2.15) is valid with positive
constants ¢; > 0 and ¢y > 0 independent of u, F' and 7. Therefore, by the
Leray—Schauder theorem [66, p. 375] the equation (2.28) and hence the
problem (2.2),(1.2) has at least one weak generalized solution u from the

space W%E(DT). Thus the following theorem is valid.

Theorem 2.1. Let0<a < X o #1, A\#0 and A > 0 for a > 1.

n—17

Then for any F € Lo(Dr) the problem (2.2),(1.2) has at least one weak

generalized solution uw € W3 5(Dr).

3. The Uniqueness of a Solution of the Problem (1.1),(1.2) in
Case of the Nonlinearity of the Type f(u) = |u|*sgnu

Let F € Lo(D7), and moreover, let u; and us be two weak general-

ized solutions of the problem (2.2),(1.2) from the space W%yD(DT), ie.,
according to (2.3) the equalities

/ Ou;Oe dxdt =
Dr
=-A / olui|* sgnu; dx dt + / Fodzdt Vo€ W%,D(DT) (3.1)
DT DT
are valid and |u;|* € La(Dr), i = 1,2.

From (3.1), for the difference v = uy — u; we have

/ Ovle da dt =
Dt

=-) / o(|uz|® sgnug — |u1|* sgnuy) dadt Vo € W%E(DT). (3.2)
Dt

Putting ¢ = v € W} 5(Dr) in the equality (3.2), we obtain

/(Dv)2 drdt =—X\ / (Juz|® sgnug — [u1|* sgnuy) (up — uy) dedt. (3.3)
DT DT
Note that for the finite values u; and ug, for @ > 0 the inequality
(Juz|® sgnug — ug|* sgnuy) (uz — ur) > 0 (3.4)

holds.
From (3.3) and the equality (3.4) which is fulfilled for almost all points

(x,t) € Dr for u; € W%E(DT), i =1,2, in case @ > 0 and A > 0 it follows
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that
/(Dv)2 drdt <0
Dr
whence, owing to (2.4), we find that v =0, i.e. us = u;.

Thus the following theorem is valid.

Theorem 3.1. Let « > 0, @« # 1 and A > 0. Then for any
F € Lo(Dr) the problem (2.2),(1.2) cannot have more than one general-

[e]

ized solution in the space W} 5(Dr).
From Theorems 2.1 and 3.1 it in its turn follows

Theorem 3.2. Let0 < a < 2L o #1 and A > 0. Then for any

n—1"~

F € Ly(Dr) the problem (2.2), (1.2) has a unique weak generalized solution
in the space W3 -(Dr).

4. The Non-Existence of a Solution of the Problem (1.1),(1.2) in
the Case of the Nonlinearity of the Type f(u) = |u|*

Let now in the equation (1.1), and hence in the integral equality (1.2),
the function f(u) = |u]*, a > 1.

Theorem 4.1.  Let F° € Ly(Dy), ||[F°||ry(pyy) # 0, F© >0, and
F = pF° p = const > 0. Then in case f(u) = |u|®, a > 1, for A < 0
there exists a number uo = po(F°, p,a) > 0 such that for u > po the
problem (1.1), (1.2) cannot have a weak generalized solution from the space

W5 5(Dr).

Proof. Assume that the conditions of the theorem are fulfilled and the

solution u € W%)D(DT) of the problem (1.1),(1.2) does exist for any fixed
> 0. Then the equality (1.5) takes the form

/ Oulp dx dt =
Dr
=-A / |u|%p dx dt 4+ p / Flpdxdt Yo W;D(DT). (4.1)
DT DT

It can be easily verified that

/ OuOy da dt = / uPp dxdt ¥ € C*(Dr,dDr), (4.2)
DT DT
where C*(Dr, D7) := {ue C4Dr) : ulap, = 0} W%)D(DT). Indeed,
since u € W%)D(DT) and the space C?(Dr,dD7) is dense in W%E(DT),
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o __
there exists a sequence uy € C2(DT, ODr) such that

li —ul . — 0. 4.3
il u”W;’D(Dr) (4.3)

Taking into account that

/ OurOp dx dt =

Dt
ou o0
= / az\]; Opds — / ko Deds + /ukD2<p dz dt, (4.4)
dD7 oDt D

where the derivative with respect to the conormal 8 = Upnt1 8 : Z v; am

is an inner differential operator on the characteristic manifold 8DT, and

hence a—uh}aD = 0 since uglop, = 0, from (4.4) we obtain
/ OuxDep dz dt = / up % da dt, (4.5)
DT DT

where v = (v1,...,Vn, Vpt1) is the unit vector of the outer normal to 9D .

Passing in (4.5) to limit as k — oo, by virtue of (1.4) and (4.3) we obtain
(4.2).
In view of (4.2), we rewrite the equality (4.1) as follows:

—/\/|u|0‘g0 dx dt =
Dt
= /uDQ@ dzdt—,u/FOga dz dt V¢684(ET,8DT). (4.6)
DT DT

Below we will use the method of test functions [53, pp. 10-12]. As a
test function we take ¢ € C*(Dr,dD7) such that o|p, > 0. If in Young’s
inequality with the parameter € > 0

1 /
abgiao‘—k b a,b>0, o = a
«

Ia—l

a—1

1/«

we take a = |u|p'/®, b= |J%¢p|/p'/*, then taking into account that o’ /o =

o' — 1 we will have

02 1 |02
1/0‘ | 1/i| S E |u|0‘ + !~ —1 | 0;07'1
%) « a'e %)

[ud?¢| = |ulgp (4.7)

By virtue of (4.7) and the fact that —A = |A|, from (4.6) there follows
the inequality

1 02
(|)‘|_£) / |u|“p d dt < T | ?DJ dxdt—u/Focp dx dt,
a O/EO‘ 1 (Pa 1

DT DT
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whence for ¢ < |\|a we get

/ |u|%p dx dt <

= 90|°Y ap 0
(|/\|a—s Ieal 71/ P dwdt—m Fodrdt. (4.8)
Dt

’

Taking into account the equalities o/ = %5, a = 5 and
O<Ian<|%\\aW = MI‘*’ which is achieved for ¢ = |A|, from (4.8)
we find that

1 [ D2 o
uo‘godwdtg—,/f x /F @ dx dt. 4.9
/v ) e B ()

Dt

Note that it is not difficult to show the existence of a test function ¢
such that

4 _ |DQ<P|Q
e C (Dr,9D7), ¢|p, >0, 0= dz dt < +oo. (4.10)

Indeed, it can be easily verified that the function

ola,t) = [(# = o) (T -0 — )]

for a sufficiently large positive m satisfies the conditions (4.10).
Since by the condition of the theorem F® € La(Dr), ||[F°||L,(py) # 0,
FY >0, and mes Dy < +00, due to the fact that ¢|p, > 0 we will have

0<o = /Focp dx dt < 4o0. (4.11)

Dt

Denote by g(u1) the left-hand side of the inequality (4.9) which is a linear
function with respect to u, and by (4.10) and (4.11) we will have

g(p) <0 for p>pg and g(p) >0 for pu < po, (4.12)
where
g dp AL s
= — 5 = 7 > O
g(:u’) |A|a/ |A| 1 Ho O/|A|a 1

Owing to (4.12) for u > po, the right-hand side of the inequality (4.9) is
negative, whereas the left-hand side of that inequality is nonnegative. The
obtained contradiction proves the theorem. O
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5. The Characteristic Cauchy Problem

For the nonlinear equation (1.1) with f(u) = |u|*, o = const > 0, i.e.,
for the equation
Ly = %u+ Mu|* = F, X\ = const < 0, (5.1)
we consider the characteristic Cauchy problem: find in the frustrum of the
cone of future D : |z| < ¢ < T a solution u(z, t) of that equation according
the boundary conditions
ou
u\ST =0, P 0, (5.2)
where St : t = |z|, t < T is the characteristic manifold being a conic portion
of the boundary D; , and % is the derivative with respect to the outer
normal to dD7.. Considering the case T = 400, we assume DX : t > |z
and Soo = DL : t = |z
Below it will be shown that under certain conditions imposed on the
nonlinearity exponent o and on the function F, the problem (5.1), (5.2) has
no global solution, although, as it will be proved, this problem is locally
solvable. 5
Let W3(D4,S7) = {u € WH(D7) : uls, =0, g—Z}ST = 0}, where
W3(DF) is the well-known Sobolev’s space [49, p. 56] consisting of the
elements Lo(D7) having generalized derivatives up to the second order,
inclusive, from Lo(D7), and the conditions (5.2) are understood in the
sense of the trace theory [49, p. 70].

Definition 5.1. Let F € Ly(D7). The function u is said to be a
weak generalized solution of the problem (5.1), (5.2) of the class W3 in the
domain DF if u € W3(D7, Sr), |u|* € Lo(DF), and for every function
¢ € WZ(DZF) such that ¢|—r =0, %f ‘t:T = 0, the integral equality

/ Oulep dz dt + A / lu|%p dx dt = / Fodxdt (5.3)
Dy Dy Dy
is valid.

The integration by parts allows us to verify that the classical solution
u € C4(§;,ST) = {ue C*Dr): uls, =0, g—Z‘ST =0} of the problem
(5.1),(5.2) is also a weak generalized solution of that problem of the class
W2 in the sense of Definition 5.1. Conversely, if a weak generalized solution

of the problem (5.1),(5.2) of the class W2 belongs to the space 04(3;),
then this solution will also be classical. Here we have used the fact that
ifu e 04(3;) and the conditions (5.2) are fulfilled, then as far as St
is a characteristic manifold, the equality Ou|s, = 0 is true. In addition,

n
. . . . o F) F)
since the derivative with respect to the conormal N = Vn+l 57 — E ) Vi g
1=
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(v = (v1,...,Vn,Vnt1)) is an inner differential operator on the characteristic

manifold St, therefore % Du|ST =0, and also g—;f, S =0 because u|g, =0.

Definition 5.2. Let F € Ly(D;). The function u is said to be a
strong generalized solution of the problem (5.1), (5.2) of the class W3 in the

domain D if u € W3(D3, St), |u|* € Lay(Dr) and there exists a sequence

of functions u,, € C* (ﬁ;, Sr) such that u, — u in the space W3(D7., St)
and |um,|* — |u|®, Lyu, — F in the space La(D7).

Obviously, the classical solution of the problem (5.1),(5.2) from the

space C4(ﬁ; ,S7) is a strong generalized solution of that problem of the
class W3. In its turn, a strong generalized solution of the problem (5.1), (5.2)
of the class W# is a weak generalized solution of that problem of the
class W3.

Definition 5.3. Let F € La o.(D%) and F € Ly(D7) for any T > 0.
We say that the problem (5.1), (5.2) is globally solvable in the weak (strong)
sense in the class W3 if for any 7 > 0 this problem has a weak (strong)
generalized solution of the class W2 in the domain DF.

Remark 5.1. Tt can be easily seen that if the problem (5.1), (5.2) is not
globally solvable in the weak sense, then it will not be globally solvable in
the strong sense in the class W$. Obviously, the global solvability of the
problem (5.1), (5.2) in the strong sense implies the global solvability of that
problem in the weak sense in the class W3.

Theorem 5.1. Let F € Ly ,.(DL), F >0, F #0 and F € Ly(D5)
for any T > 0. Then if the nonlinearity exponent a in the equation (5.1)
satisfies the inequalities
n+1
l<a<——, n>3,
“Sh—2 " (5.4)
1< a< oo, n =23,

and in the limiting case o = % for n > 3 the function F satisfies the
condition

lim F dx dt = oo, (5.5)

T—o0
Dt

then the problem (5.1), (5.2) is not globally solvable in the weak sense in the
class W3, i.e., there exists a number Ty = To(F) > 0, such that for T > T,
the problem (5.1), (5.2) fails to have a weak generalized solution of the class
W3 in the domain D7.

Proof. Assume that u is a weak generalized solution of the problem (5.1),
(5.2) of the class W# in the domain D7, i.., the integral equality (5.3)

is valid for any function ¢ € WZ(DF) such that ¢l—r = 0, %f‘t:T = 0.
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Integrating the left-hand side of the equality (5.3) by parts, we obtain

/ Oulp dz dt =
/ / ‘?;; g O da dt + / VouVy(Op) dzdt =
oD oDt D
du 2
N Opds — / USN Dgods—l—/uD o dx dt, (5.6)
oD, oD, Df.

where 8% is the derivative with respect to the conormal.
Let the function ¢y = @o(o) of one real variable o be such that

sosdh gy

¥o € 04((_007 +OO))7 ®o Z 07 ()0/0 S 07 ()00(0') =
0, o=>2.

We use here the method of test functions [53, pp. 10-12]. In the capacity
of the test function in the equality (5.3) we take the function p(z,t) =
@02 (t*+]x[?)]. Taking into account that u|g, = 0 and hence 5% sp =0,

since a_N = Un+1 m Z v; a is an inner differential operator on St as well

as by virtue of (5.7) and the equalities %1? e = 0,0 <0 <4, Oply=r =
oo D<p|t:T = 0, it follows from (5.6) that [ CuOe dzdt = [ u*p dzdt.
Dy Dy
Thus we can rewrite the equality (5.3) in the form

—)\/ |u|*p dx dt = /uD2<p dx dt — /Fcp da dt. (5.8)
Df Df Df
If in Young’s inequality with the parameter € > 0

1 /
ab<—a/ +mba,a7b207 a/:ail

we take a = |u|p'/®, b= |02%p|/p™*, then in view of the fact that o/ /o =
o' — 1 we will have

1|22
a/&-a’—l (po/—l

1/« ||:|2<P|
(PI/Q

[uD?p| = |ulgp (5.9)

Owing to (5.9) and |A\| = — A, from (5.8) it follows the inequality

1 2 o’
(W-2) [retra s —— [EA wa- [ poaea
« oe 1 900‘ 1

Dy Df Dr
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whence for € < |Aa we get

/ |u|“p dzdt <

0 90|a o}
(|)\|Oé _ 6 Iea r_1 / o —1 dr dt — m FQD dz dt. (510)
+

’
Bearing in mind the equalities o/ = =%, a = -5 and

= )\a, which is achieved for € = |A|, it follows from

min -— o
0<e<|Ma (Aa= E)O‘ o’ 1

(5.10) that
1 |32
ul%p drdt < // - dx dt——/Fcpdxdt 5.11
J N | e N (511
D} D}

According to the properties (5.7) of the function g, the test function
o(z,t) = o[ (12 + [z[*)] = 0 for r = (12 + [2[>)}/2 > T. Therefore, after
the change of variables t = T'¢y and z = T we have

/' 9”' da dt =

|clT_4<p6’ (02t2+03|:1c| VTS0 +eaT=8(% —|z|?) 2y
= SOO/ 1 dl’dt:

r=(t24|z|2)1/2<T

pmiicaar [ b+ catb el +eal 1o |”

e dr dt, (5.12)
0
1<2(65+]¢1)<2
o> €]
where ¢; = ¢;(n), i = 1,...,4, are certain integers.

As is known, the test function ¢(z,t) = ¢o[7s (t* + |z[?)] with the
above-mentioned properties for which the integrals in the right-hand sides
of (5.11) and (5.12) are finite does exist [563, p. 28].

Due to (5.12), from the inequality (5.11) and the fact that ¢g(o) = 1
for 0 < o < 1 we obtain the inequality

|u|® dodt <
r=(*+|z]?)/? < L,
t>|x|
Tn+1-4a’ o
< / |’U,|a(p dx dt < W%O — WV(T% (513)

+
DT
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where
/Fcp dz dt,
c cég+c 0 +c 2 0
/ |e1 + (268 +c3/€)? )ff) i A& —[E)*e d§0d§ < 4o00.
, Yo
1<2(&5+1¢1%)

Eo>€|

Consider first the case ¢ = n + 1 — 4o/ < 0 which according to the
condition (5.4) implies that a < 2% for n > 3 and o < oo for n = 2,3. In
this case, the equation

Tn+174a’ O/
9(T) = T — S (1) =0 (5.14)
Al Al
has a unique positive root T'=Tp >0 since the function g1 (T) = % 9

is positive, continuous, strictly decreasing on the interval (0,+o0) with
lim g1(T)=+o0 and lim g¢;(7)=0, and the function v(T')= [ Fy dzdt

T—0 T—+00 D

is, by virtue of F' > 0 and (5.7), nonnegative and nondecreasing and is, be-

cause of the absolute continuity of the integral, also continuous. Moreover,

Tlir_r; ~(T) > 0, since F' > 0 and F # 0, i.e., FF # 0 on some set of the
—T 00

positive Lebesgue measure. Thus g(T) < 0 for T > T and ¢g(T') > 0 for
0 < T < Ty. Consequently, for T > T the right-hand side of the inequality
(5.13) is negative, but this is impossible.

Consider now the limiting case ¢ = n+ 1 —4a’ = 0, i.e., when a = 2+L

n—3
for n > 3. In this case, the equation (5.14) takes the form ——= sy —

IM
% ~(T) = 0 and likewise has, owing to the obvious equality F}imofy( )=20
and the conditions (5.5) and (5.7), a unique positive root T"= T > 0. For
T > Ty, the right-hand side of the inequality (5.13) is negative, and this
again leads to a contradiction. Thus the theorem is proved completely. [

Remark 5.2. It follows from the proof of Theorem 5.2 that if the condi-
tions of the theorem are fulfilled and there exists a weak generalized solution
of the problem (5.1), (5.2) of the class W3 in the domain D7, then the es-
timate

T <T, (5.15)

is valid, where Tp is a unique positive root of the equation (5.14).

Below we will prove the local solvability of the problem (5.1), (5.2). First
we will consider the linear case when in the equation (5.1) the parameter
A =0, i.e., we consider the problem

Lou(z,t) = F(x,t), (x,t) € D7, (5.16)
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ou

aols, =0 (5.17)

’u|sT = 07

where Ly = O2.

Definition 5.4. Let F € Ly(D7). The function u is said to be a
strong generalized solution of the problem (5.16), (5.17) of the class W3 in

the domain D7 if u € W3(DZ, St) and there exists a sequence of functions
U, € C‘%ﬁ;, Sr) such that u,, — u in the space W3 (D7, St) and Lou,, —
F in the space La(D7).

Obviously, the classical solution u € C* (ﬁ;, St) of the problem (5.16),
(5.17) is a strong generalized solution of the problem of the class W3 in the
domain Dr.

Lemma 5.1. For a strong generalized solution u of the problem (5.16),
(5.17) of the class W$ in the domain D7 the estimate

holds, where the positive constant c,, does not depend on u, F and T.

2
faotsm < T IF L) (5.18)

Proof. The same reasoning as when deducing the inequality (2.13) allows
us to prove the inequality

10l ot sy < \[TIIDUHL (0h) v e CX(Dy, Sr), (5.19)

where C2(D,,Sr) = {v e c:D)) : s, = 0} and in the space
W3(DF,S7) == {v e W3 (DF) : v|s, =0} we take, by virtue of (2.14), the

norm
v ||§Vl bt )=/[(g—?)z+;(5—;)2} dz dt.

Dy
By the definition, if w is a strong generalized solution of the problem
(5.16), (5.17) of the class W# in the domain D7, then there exists a sequence
. 2/t =+
of functions u,, € C*(Dy,S7) := {u € C*(Dy) : uls, =0, BV‘ST =0}
such that

i g e =0 im0 Fl oy =0 (20

o _—
Since u,, € C’4(D;r , S7) satisfies the homogeneous boundary conditions
(5.17) and St is a characteristic manifold corresponding to the operator O,
therefore, as is known [8, p. 546],

D, = 0. (5.21)
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Owing to (5.11), the function v = Du,, € CQ(E;, St), due to (5.19),
satisfies the inequalities
e

||Dum||iz(p §T2||D2um”L (D*

Oup, ||2 €, oo
HD ot llL,(pf) — 2T 15 umHL (DF) (5.22)
O, ||2 € o2 )
P2 = 5Ty £ 1

Since a—gf‘“ ) %7;? € OQ(DT,ST), by (5.19) and (5.22) we have

W?(D*S y
= 1)+ Gy ()
D =

n 2
3 (55) + X (grg) | <

)=

8um ~ aum
<
H le D} ST)+1'ZH ox;

Oup,

ot

[

<
W1 DF.,Sr)

2 ou
2 [ m
LQ(D+ Z H ox;

< (5) 0+ DTl

e
< S HD
2

La(DF) —

Lo (D+) 9
whence

[wmll o

2 _ €
W20t 50y <, T?||0? Umllg, (D3)r = Vn+l 5 (5.23)
By virtue of (5.20), passing in the inequality (5.23) to limit as m — oo,
we obtain (5.18), which proves our lemma. O

Lemma 5.2.  For any F € Lo(Dr) there exists a unique strong
generalized solution u of the problem (5.16),(5.17) of the class W3 in the
domain D for which the estimate (5.18) is valid.

Proof. Since the space C§° (DJTr ) of finitary infinitely differentiable in DJTr
functions is dense in Lo (D), for a given F' € Lo(Dr) there exists a sequence
of functions F, € C§°(D7) such that n}gnoo |1 E — F||L2(D¥) = 0. For the
fixed m, extending the function F,, by zero beyond the domain D}L and
leaving the same notation, we have F,,, € C'* (R’}rﬂ) for which the support
supp F,, C DX, where R := R0 {t > 0}. Denote by u,, the solution

of the Cauchy problem Lgu,, = F,,, W o = 0,0 <4 <3, which, as is
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known, exists, is unique and belongs to the space C'* (Ri“) 17, p. 192].

In addition, since supp F,,, C DX, %it? im0 = 0,0 <9 <3, taking into
account the geometry of the domain of dependence of a solution of the
linear equation Lou,, = F,, of hyperbolic type we find that supp u,, C DX

[17, p. 191]. Leaving for the restriction of the function u,, to the domain

Dr the same notation, we can easily see that u,, € C4(5;,ST), and by
(5.18), the inequality

Ve = bl

< e, T?||Fy, — Fell ., pz (5.24)

is valid.
Since the sequence {F,,} is fundamental in Lo(D}), owing to (5.24)

o
the sequence {u,,} is fundamental in the complete space W3(DF, St).
o
Therefore, there exists a function u € W3(D7, Sr) such that lim ||lu,, —
m—00

ugl| = 0, and since Lou,, = F,, — F in the space Lg(D;), this

W3(D,51)

function u will, by Definition 5.4, be a strong generalized solution of the

problem (5.16), (5.17) of the class W2 in the domain D7, for which the

estimate (5.18) is valid. The uniqueness of the solution follows from the
(

estimate (5.18). Thus the lemma is proved completely. O

Remark 5.3. By Lemma 5.2, for a strong generalized solution u of
the problem (5.16), (5.17) of the class W3 in the domain D} we can write

u = Ly'F, where Ly' : Ly(D}) — W2(DF,Sr) is a linear continuous
operator whose norm, by virtue of (5.18), admits the estimate

Lo | < e, T2 (5.25)

o
Ly(DF)—W2(D},S7)

Remark 5.4. The embedding operator I : V%%(D;,ST) — L,(DF) is
linear, continuous and compact for 1 < ¢ < %%l, when n > 3, and
1 < g < oo when n = 2,3 [49, p. 84]. At the same time, the Nemytski
operator N : Ly(D}) — Lo(DF) acting by the formula Nu = —\ul® is
continuous and bounded if ¢ > 2« [47, p. 349], [48, pp. 66, 67]. Thus if the
nonlinearity exponent « in the equation (5.1) satisfies the inequalities (5.4),
then putting ¢ = 2« we find that the operator

No = NI:W3(D}, Sr) — La(D7) (5.26)

o
is continuous and compact. Moreover, from u € W3 (D7, St) it follows that
lu|* € Ly(D7), and taking in Definition 5.2 into account the fact that w,, —
)
u in the space W3(DF, St), it automatically follows that |u,|* — |u|® in
the space Lo(D7), as well.
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Remark 5.5. If F € Ly(D}) and the nonlinearity exponent « satisfies
the inequalities (5.4), then according to Definition 5.2 and Remarks 5.3

and 5.4 the function u € W3(DZ, St) is a strong generalized solution of the
problem (5.1), (5.2) of the class W2 in the domain D7 if and only if u is a
solution of the functional equation

u=LiY (= Au|*+ F 5.27
0

in the space W3(DZ, Sr).
We rewrite the equation (5.27) in the form
u = Ku+ ug, (5.28)

where the the operator K := LalNo : W3(DF, Sr) — W3(D5, Sr) is, by
virtue of (5.25), (5.26) and Remark 5.4, continuous, compact and acting in

the space W2(D7., St), while ug := Ly'F € W3(DJ., St).

- 7 2 + . R <
Remark 5.6. Let B(0,Ro) := {u € W3(DF,Sr) : Hu”W%(D;,ST) <
Ry} be the closed (convex) ball in the Hilbert space W3(D3, St) of ra-
dius Ry > 0 with the center at the zero element. Since the operator

K : W3(D7, Sr) — W%(D4, Sr) is continuous and compact (provided the
inequalities (5.4) are fulfilled), by the Schauder principle for showing the
solvability of the equation (5.28) it suffices to show that the operator K3
acting by the formula Kju = Ku + ug transforms the ball B(0, Ry) into
itself for some Ry > 0 [66, p. 370]. By (5.25), analogously as in proving
Theorem 5.1 of Chapter IV, one can prove that for sufficiently small T" such
a ball B(0, Ry) does exist. Thus we have the following theorem on the local
solvability of the problem (5.1), (5.2).

Theorem 5.2. Let F € Ly ,.(DL) and F € Lyo(D5) for any T > 0.
Then if the nonlinearity exponent « in the equation (5.1) satisfies the in-
equalities (5.4), then there exists a number Ty = T1(F) > 0 such that for
T < T the problem (5.1),(5.2) has at least one strong generalized solution
of the class W3 in the domain D; in the sense of Definition 5.2, which
is also a weak generalized solution of that problem of the class W3 in the
domain D}r in the sense of Definition 5.1.

Remark 5.7. Tt follows from Theorems 5.1 and 5.2 that if F'€ La j,.(D1),
F>0,F#0, Fe¢ LQ(D;:) for any T" > 0 and the nonlinearity exponent «
satisfies the inequalities (5.4), then there exists a number T\, = T, (F) > 0
such that for T < T, there exists a strong (weak) generalized solution of
the problem (5.1), (5.2) of the class W3 in the domain Dy, while for T > T
such a solution does not exist, and in view of the estimate (5.15) we have
T, € [Tl,TQ].



Remark 5.8. In case 0 < a < 1, the problem (5.1), (5.2) may have more
than one global solution. For example, for F' = 0 the problem (5.1), (5.2) in
the domain D, has, besides the trivial solution, an infinite set of global lin-

early independent solutions u, € C? (ﬁ;, Soo) depending on the parameter
o > 0 and given by the formula

U (2, 1) = {5[(75 — o) —|z] T, t>o+]al,

0 |z <t <o+,

_ 1
where 3 = [A|7= [4k(k — 1)(n+2k — 1) (n+2k—3)] ™, k= 22—, A <0,
and for 1/2 < a < 1 the function u, € C*(Do).

Remark 5.9. Note that for n = 2 and n = 3, according to the well-
known properties [8, p. 745], [2, p. 84] of solutions of the linear characteristic
problem Ov = g in Dy, v|s, =0, if g > 0, then v > 0 as well. Therefore,
for n = 2,3, if F' > 0, then the classical solution u of the nonlinear problem
(5.1),(5.2), analogously to (5.21) satisfying also the condition Ou|s, = 0,
will likewise be nonnegative. But in this case, for a = 1, this solution will
satisfy the following linear problem:

O%u + \u = F,
ou
u = _— =
Soo T Ovlss

which is globally solvable in the corresponding functional spaces.
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