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Abstract. For some classes of nonlinear wave equations, the bound-
ary value problems (the first Darboux problem and their multi-dimensional
versions, the characteristic Cauchy problem, and so on) are considered in
angular and conic domains. Depending on the exponent of nonlinearity
and the spatial dimension of equations, the issues of the global and local
solvability as well as of the smoothness and uniqueness of solutions of these
problems are studied.
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Introduction

In mathematical modelling of many physical processes there arise wave
equations involving nonlinearities which are, in particular, represented by
source terms. The Cauchy problem and the mixed problems for these equa-
tions have been studied with sufficient thoroughness (see, for e.g., [9], [11],
[16], [18], [19], [21], [23], [45], [50]–[53], [60]–[62], [64], [65], [75]–[77]). But as
for the boundary value problems for these equations such as, for example,
the characteristic Cauchy problems, the Darboux problems in angular and
conic domains, arising in mathematical modelling of: (i) small harmonic os-
cillations of a wedge in a supersonic flow; (ii) string oscillation in a viscous
liquid (see [13], [67], [68]), they are at the initial stage of investigation.

The goal of the present work is to fill in this gap to a certain extent. The
presence in equations of even weak nonlinearities may violate the correctness
of the problems, which may show itself in the destruction of solutions in
a finite time interval or the non-existence of solvability or uniqueness of
solutions of the problems under consideration.

The work consists of five chapters. In Chapter I we investigate the first
Darboux problem for a weakly nonlinear wave equation with one spatial
variable when, depending on the type of nonlinearity, the problem is globally
solvable in some cases and only locally solvable in other cases. Herein we
consider the issues of the uniqueness and smoothness of the solution ([1],
[20]).

Chapter II studies the characteristic Cauchy problem for a multidimen-
sional nonlinear wave equation in a light cone of the future. Depending
on the exponent of nonlinearity and the spatial dimension of the equation,
we investigate the issues of the global and local solvability of the problem
([25]–[27], [29], [32]).

Chapter III is devoted to Sobolev’s problem for a multidimensional
nonlinear wave equation in a conic domain of time type, while in Chapter
IV we consider multidimensional versions of the first Darboux problem ([6],
[28], [30]).

Finally, the last Chapter V studies the characteristic boundary value
problems for a multidimensional hyperbolic equation with power nonlinear-
ity and the iterated wave operator in the principal part. Depending on
the exponent of nonlinearity and the spatial dimension of the equation, we
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investigate the issues on the existence and uniqueness of solutions of the
boundary value problems ([31], [33]).

When investigating the above-mentioned problems, the use will be made
of the classical methods of characteristics and integral equations, as well
as the methods of the modern nonlinear analysis (the method of a priori
estimates, the Schauder and Leray–Schauder fixed point principles and the
principle of contracting mappings, the method of test-functions, embedding
theorems, etc.).

Note that the problems we consider in the present work for linear wave
equations are well-posed in the corresponding function spaces ([2]–[8], [12],
[14], [17], [24], [25], [34], [54], [55], [57], [58], [63], [70], [71]).



CHAPTER 1

The First Darboux Problem for a Weakly

Nonlinear Wave Equation with One Spatial

Variable

1. Statement of the Problem

In the plane of the variables x and t we consider a nonlinear wave
equation of the type

Lfu := utt − uxx + f(x, t, u) = F (x, t), (1.1)

where f = f(x, t, u) is a given nonlinear with respect to u real function,
F = F (x, t) is a given and u = u(x, t) is an unknown real function.

By DT : −kt < x < t, 0 < t < T (0 < k = const < 1, T ≤ ∞) we
denote a triangular domain lying inside the characteristic angle

{
(x, t) ∈

R
2 : t > |x|

}
and bounded by the characteristic segment γ1,T : x = t,

0 ≤ t ≤ T , and the segments γ2,T : x = −kt, 0 ≤ t ≤ T and γ3,T : t = T ,
−kT ≤ x ≤ T of time and spatial type, respectively.

For the equation (1.1), we consider the first Darboux problem: find in
the domain DT a solution u(x, t) of that equation according to the boundary
conditions [2, p. 228]

u
∣∣
γi,T

= ϕi, i = 1, 2, (1.2)

where ϕi, i = 1, 2, are given real functions satisfying the compatibility
condition ϕ1(O) = ϕ2(O) at the common point O = O(0, 0).

Remark 1.1. Below it will be assumed that the functions f : DT×R → R

and F : DT → R are continuous. Moreover, and without restriction of
generality we may assume that

f(x, t, 0) = 0, (x, t) ∈ DT .

Definition 1.1. Let f ∈ C(DT × R), F ∈ C(DT ) and ϕi ∈ C1(γi,T ),
i = 1, 2. A function u is said to be a strong generalized solution of the
problem (1.1), (1.2) of the class C in the domain DT , if u ∈ C(DT ) and
there exists a sequence of functions un ∈ C2(DT ) such that un → u and
Lfun → F in the space C(DT ) and un|γi,T → ϕi in the space C1(γi,T ),
i = 1, 2.
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Remark 1.2. Obviously, a classical solution of the problem (1.1), (1.2)
from the space C2(DT ) is a strong generalized solution of that problem of
the class C in the domain DT . In its turn, if a strong generalized solution
of the problem (1.1), (1.2) of the class C in the domain DT belongs to
the space C2(DT ), then that solution will also be a classical solution of
that problem. It should be noted that a strong generalized solution of the
problem (1.1), (1.2) of the class C in the domain DT satisfies the boundary
conditions (1.2) in the usual classical sense.

Definition 1.2. Let f ∈ C(D∞ × R), F ∈ C(D∞) and ϕi ∈ C1(γi,∞),
i = 1, 2. We say that the problem (1.1), (1.2) is globally solvable in the class
C if for every finite T > 0 this problem has a strong generalized solution of
the class C in the domain DT .

2. An a Priori Estimate of a Solution of the Problem (1.1), (1.2)

Let

g(x, t, u) =

u∫

0

f(x, t, s) ds, (x, t, u) ∈ DT × R. (2.1)

Consider the following conditions imposed on the function g = g(x, t, u)
from (2.1):

g(x, t, u) ≥ −M1 −M2u
2, (x, t, u) ∈ DT × R, (2.2)

gt(x, t, u) ≤M3 +M4u
2, (x, t, u) ∈ DT × R, (2.3)

where Mi = Mi(T ) = const ≥ 0, i = 1, 2, 3, 4.

Lemma 2.1. Let f, fu ∈ C(D∞ × R), F ∈ C(DT ), ϕi ∈ C1(γi,T ),
i = 1, 2, and the conditions (2.2) and (2.3) be fulfilled. Then for a strong

generalized solution u = u(x, t) of the problem (1.1), (1.2) of the class C in

the domain DT the a priori estimate

‖u‖C(DT ) ≤ c1

(
‖F‖C(DT ) +

2∑

i=1

‖ϕi‖C1(γi,T )

)
+ c2 (2.4)

is valid with nonnegative constants ci = ci(f, T ), i = 1, 2, not depending on

u and F , ϕ1, ϕ2, where c1 > 0.

Proof. Let u be a strong generalized solution of the problem (1.1), (1.2) of
the class C in the domain DT . By Definition 1.1, there exists a sequence of
functions un ∈ C2(DT ) such that

lim
n→∞

‖un − u‖C(DT ) = 0, lim
n→∞

‖Lfun − F‖C(DT ) = 0, (2.5)

lim
n→∞

∥∥un
∣∣
γi,T

− ϕi
∥∥
C1(γi,T )

= 0, (2.6)

and hence
lim
n→∞

∥∥f(x, t, un)− f(x, t, u)
∥∥
C(DT )

= 0. (2.7)
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Consider the function un ∈ C2(DT ) as a solution of the problem

Lfun = Fn, (2.8)

un
∣∣
γi,T

= ϕin, i = 1, 2. (2.9)

Here

Fn := Lfun. (2.10)

Multiplying both parts of the equation (2.8) by ∂un

∂t and integrating

over the domain Dτ :=
{
(x, t) ∈ DT : t < τ

}
, 0 < τ ≤ T , by virtue of (2.1)

we obtain

1

2

∫

Dτ

∂

∂t

(∂un
∂t

)2

dx dt−
∫

Dτ

∂2un
∂x2

∂un
∂t

dx dt+

+

∫

Dτ

∂

∂t

(
g(x, t, un(x, t)

)
dx dt−

∫

Dτ

gt
(
x, t, un(x, t)

)
dx dt =

=

∫

Dτ

Fn
∂un
∂t

dx dt. (2.11)

Let Ωτ := D∞ ∩ {t = τ}, 0 < τ ≤ T . Then, taking into account the
equalities (2.9) and integrating by parts the left-hand side of the equality
(2.11), we obtain

∫

Dτ

Fn
∂un
∂t

dx dt =

=
2∑

i=1

∫

γi,T

1

2νt

[(∂un
∂x

νt −
∂un
∂t

νx

)2

+
(∂un
∂t

)2

(ν2
t − ν2

x)

]
ds+

+
1

2

∫

Ωτ

[(∂un
∂t

)2

+
(∂un
∂x

)2
]
dx+

∫

Ωτ

g
(
x, τ, un(x, τ)

)
dx+

+
2∑

i=1

∫

γi,T

g
(
x, t, ϕin(x, t)

)
νt ds−

∫

Dτ

gt
(
x, t, un(x, t)

)
dx dt, (2.12)

where ν = (νx, νt) is the unit vector of the outer normal to ∂Dτ , γi,τ :=
γi,T ∩ {t ≤ τ}.

Since
(
νt

∂
∂x − νx

∂
∂t

)
is an inner differential operator on γi,τ , owing to

(2.9) we have

∣∣∣∣
(∂un
∂x

νt −
∂un
∂t

νx

)∣∣∣
γi,τ

∣∣∣∣ ≤ ‖ϕin‖C1(γi,τ ), i = 1, 2. (2.13)
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Taking into account thatDτ : −kt < x < t, 0 < t < τ , where 0 < k < 1,
it can be easily seen that

(νx, νt)
∣∣
γ1,τ

=
( 1√

2
,− 1√

2

)
,

(νx, νt)
∣∣
γ2,τ

=
(
− 1√

1 + k2
,− 1√

1 + k2

)
,

(2.14)

(ν2
t − ν2

x)
∣∣
γ1,τ

= 0, (ν2
t − ν2

x)
∣∣
γ2,τ

=
k2 − 1

k2 + 1
< 0,

νt
∣∣
γi,τ

< 0, i = 1, 2.
(2.15)

Due to the Cauchy inequality, by (2.2), (2.3), (2.13), (2.14) and (2.15)
it follows from (2.12) that

∫

Ωτ

[(∂un
∂t

)2

+
(∂un
∂x

)2
]
dx =

= −
2∑

i=1

∫

γi,T

1

νt

[(∂un
∂x

νt −
∂un
∂t

νx

)2

+
(∂un
∂t

)2

(ν2
t − ν2

x)

]
ds−

−2

∫

Ωτ

g
(
x, τ, un(x, τ)

)
dx− 2

2∑

i=1

∫

γi,τ

g
(
x, t, ϕin(x, t)

)
νt ds+

+2

∫

Dτ

gt
(
x, t, un(x, t)

)
dx dt+ 2

∫

Dτ

Fn
∂un
∂t

dx dt ≤

≤
√

2

∫

γ1,τ

‖ϕ1n‖2C1(γ1,T ) ds+

√
1 + k2

k

∫

γ2,τ

‖ϕ2n‖2C1(γ2,T ) ds+

+2

2∑

i=1

∫

γi,τ

(
M1 +M2ϕ

2
in(x, t)

)
ds+ 2

∫

Ωτ

(
M1 +M2u

2
n(x, τ)

)
dx+

+2

∫

Dτ

(
M3 +M4u

2
n(x, t)

)
dx dt + 2

∫

Dτ

Fn
∂un
∂t

dx dt ≤

≤M5 +M6

2∑

i=1

‖ϕin‖2C1(γi,T ) +M7

∫

Ωτ

u2
n dx+M8

∫

Dτ

u2
n dx dt+

+

∫

Dτ

(∂un
∂t

)2

dx dt+

∫

Dτ

F 2
n dx dt, (2.16)

where we have used the fact that ‖ϕin‖C(γi,T ) ≤ ‖ϕin‖C1(γi,T ).
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Here

M5 = 2M1

( 2∑

i=1

mes γi,T + mesΩT

)
+ 2M3 mesDT ,

M6 =
√

2 mes γ1,T +

√
1 + k2

k
mes γ2,T + 2M2

2∑

i=1

mes γi,T ,

M7 = 2M2, M8 = 2M4.

(2.17)

Since γ1,τ : t = x, 0 ≤ x ≤ τ and γ2,τ : t = − 1
k x, −kτ ≤ x ≤ 0, by

virtue of (2.9) and the Newton–Leibnitz formula we have

un(x, τ) = ϕ2n(x) +

τ∫

− 1
k x

∂un(x, σ)

∂t
dσ, −kτ ≤ x ≤ 0,

un(x, τ) = ϕ1n(x) +

τ∫

x

∂un(x, σ)

∂t
dσ, 0 ≤ x ≤ τ.

(2.18)

Using the Cauchy and Schwartz inequalities, from (2.18) we get

u2
n(x, τ) ≤ 2ϕ2

2n(x) + 2

( τ∫

− 1
k x

∂un(x, σ)

∂t
dσ

)2

≤

≤ 2ϕ2
2n(x) + 2

τ∫

− 1
k x

12 dσ

τ∫

− 1
k x

(∂un(x, σ)

∂t

)2

dσ ≤

≤ 2ϕ2
2n(x) + 2T

τ∫

− 1
k x

(∂un(x, σ)

∂t

)2

dσ (2.19)

for −kτ ≤ x ≤ 0. Analogously, for 0 ≤ x ≤ τ from (2.18) we have

u2
n(x, τ) ≤ 2ϕ2

1n(x) + 2T

τ∫

x

(∂un(x, σ)

∂t

)2

dσ. (2.20)

It follows from (2.19) and (2.20) that

∫

Ωτ

u2
n dx =

∫

Ωτ∩{x≤0}

u2
n dx+

∫

Ωτ∩{x>0}

u2
n dx ≤

≤
∫

Ωτ∩{x≤0}

[
2ϕ2

2n(x) + 2T

τ∫

− 1
k x

(∂un(x, σ)

∂t

)2

dσ

]
dx+
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+

∫

Ωτ∩{x>0}

[
2ϕ2

1n(x) + 2T

τ∫

x

(∂un(x, σ)

∂t

)2

dσ

]
dx ≤

≤ 2T

2∑

i=1

‖ϕin‖2C(γi,T ) + 2T

∫

Dτ

(∂un
∂t

)2

dx dt. (2.21)

By (2.21), we have

∫

Dτ

u2
n dx dt =

τ∫

0

dσ

∫

Ωσ

u2
n dx ≤

≤
τ∫

0

[
2T

2∑

i=1

‖ϕin‖2C(γi,T ) + 2T

∫

Dσ

(∂un
∂t

)2

dx dt

]
dσ ≤

≤ 2T 2

[ 2∑

i=1

‖ϕin‖2C(γi,T ) +

∫

Dτ

(∂un
∂t

)2

dx dt

]
. (2.22)

Taking into account (2.21), (2.22) and the fact that ‖ϕin‖C(γi,T ) ≤
‖ϕin‖C1(γi,T ), from (2.16) we obtain

∫

Ωτ

[(∂un
∂t

)2

+
(∂un
∂x

)2
]
dx ≤M5 +M9

2∑

i=1

‖ϕin‖2C1(γi,T )+

+M10

∫

Dτ

(∂un
∂t

)2

dx dt +

∫

Dτ

F 2
n dx dt, (2.23)

where

M9 = M6 + 2TM7 + 2T 2M8, M10 = 2TM7 + 2T 2M8 + 1. (2.24)

Putting

w(τ) =

∫

Ωτ

[(∂un
∂t

)2

+
(∂un
∂x

)2
]
dx (2.25)

and taking into account that

∫

Dτ

(∂un
∂t

)2

dx dt =

τ∫

0

dσ

∫

Ωσ

(∂un
∂t

)2

dx,

from (2.23) we have

w(τ) ≤M10

τ∫

0

w(σ) dσ +M5+
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+ (M9 + 1)

( 2∑

i=1

‖ϕin‖2C1(γi,T ) +

∫

DT

‖Fn‖2C(DT )
dx dt

)
≤

≤M10

τ∫

0

w(σ) dσ +M5+

+ (M9 + 1)
( 2∑

i=1

‖ϕin‖2C1(γi,T ) + ‖Fn‖2C(DT )
mesDT

)
≤

≤M10

τ∫

0

w(σ) dσ +M11

( 2∑

i=1

‖ϕin‖2C1(γi,T ) + ‖Fn‖2C(DT )

)
+M5, (2.26)

where

M11 = (M9 + 1) max(1,mesDT ). (2.27)

By Gronwall’s lemma [15, p. 13], from (2.26) we find that

w(τ) ≤
[
M11

( 2∑

i=1

‖ϕin‖2C1(γi,T ) + ‖Fn‖2C(DT )

)
+M5

]
expM10τ. (2.28)

If (x, t) ∈ DT , then owing to (2.9) the equality

un(x, t) = un(−kt, t) +

x∫

−kt

∂un(σ, t)

∂x
dσ = ϕ2n(t) +

x∫

−kt

∂un(σ, t)

∂x
dσ

holds, whence with regard for (2.25), (2.28) and the Cauchy and Schwartz
inequalities we obtain

|un(x, t)|2 ≤ 2ϕ2
2n(t) + 2

( x∫

−kt

∂un(σ, t)

∂x
dσ

)2

≤

≤ 2‖ϕ2n‖2C(γ2,T ) + 2

x∫

−kt

12 dσ

x∫

−kt

(∂un(σ, t)
∂x

)2

dσ ≤

≤ 2‖ϕ2n‖2C1(γ2,T ) + 2(x+ kt)

∫

Ωt

(∂un(σ, t)
∂x

)2

dσ ≤

≤ 2‖ϕ2n‖2C1(γ2,T ) + 2(1 + k)tw(t) ≤ 2‖ϕ2n‖2C1(γ2,T )+

≤2(1+k)T

[
M11

( 2∑

i=1

‖ϕin‖2C1(γi,T )+‖Fn‖2C(DT )

)
+M5

]
expM10T. (2.29)
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Taking into account (2.17), (2.24), (2.27) and using the obvious inequal-

ity
( n∑
i=1

a2
i

)1/2 ≤
n∑
i=1

|ai|, from (2.29) we find

‖un‖C(DT ) ≤ c1

(
‖Fn‖C(DT ) +

2∑

i=1

‖ϕin‖C1(γi,T )

)
+ c2 (2.30)

with nonnegative constants ci = ci(f, T ), i = 1, 2, not depending on un,
Fn, ϕ1n and ϕ2n; here c1 > 0. Finally, owing to (2.5)–(2.10) and passing
in the inequality (2.30) to limit as n → ∞, we obtain the a priori esti-
mate (2.4). �

3. Reduction of the Problem (1.1), (1.2) to a Nonlinear Integral
Equation of Volterra Type

Let P = P (x, t) be an arbitrary point of the domain DT . By Gx,t we
denote the characteristic quadrangle with the vertices at the point P (x, t)
as well as at the points P1 and P2, P3 lying, respectively, on the supports
of the data γ1,T and γ2,T of the problem (1.1), (1.2), i.e.,

P1 := P1

(k(x− t)

k + 1
,
t− x

k + 1

)
,

P2 := P2

(1

2

1− k

1 + k
(t− x),

1

2

1− k

1 + k
(t− x)

)
,

P3 := P3

(x+ t

2
,
x+ t

2

)
.

Let u ∈ C2(DT ) be a classical solution of the problem (1.1), (1.2). In-
tegrating the equality (1.1) with respect to the domain Gx,t which is the
characteristic quadrangle of that equation and using the boundary condi-
tions (1.2), we can easily get the following equality [1]; [2, p. 65]:

u(x, t) +
1

2

∫

Gx,t

f
(
x′, t′, u(x′, t′)

)
dx′ dt′ =

= ϕ2(P1) + ϕ1(P3)− ϕ1(P1) +
1

2

∫

Gx,t

F (x′, t′) dx′ dt′, (x, t) ∈ DT . (3.1)

Remark 3.1. The equality (3.1) can be considered as a nonlinear integral
equation of Volterra type which we rewrite in the form

u(x, t) +
(
L−1

0 f
∣∣
u=u(x,t)

)
(x, t) =

=
(
`−1
0 (ϕ1, ϕ2)

)
(x, t) + (L−1

0 F )(x, t), (x, t) ∈ DT . (3.2)
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Here L−1
0 and `−1

0 are the linear operators acting by the formulas

(L−1
0 v)(x, t) =

1

2

∫

Gx,t

v(x′, t′) dx′ dt′, (3.3)

(
`−1
0 (ϕ1, ϕ2)

)
(x, t) = ϕ2(P1) + ϕ1(P3)− ϕ1(P1). (3.4)

Note that L−1
0 v (`−1

0 (ϕ1, ϕ2)) from (3.3), (3.4) is a solution of the corre-
sponding to (1.1), (1.2) homogeneous linear problem, i.e., for f = 0, when
F = v, ϕ1 = ϕ2 = 0 (F = 0). Moreover, L−1

0 v ∈ Ck+1(DT ) if v ∈ Ck(DT )

and `−1
0 (ϕ1, ϕ2) ∈ Ck(DT ) for ϕi ∈ Ck(γi,T ), i = 1, 2; k = 0, 1, 2, . . . .

Lemma 3.1. Let f ∈ C1(DT × R). The function u ∈ C(DT ) is a

strong generalized solution of the problem (1.1), (1.2) of the class C in the

domain DT if and only if it is a continuous solution of the nonlinear integral

equation (3.2).

Proof. Indeed, let u ∈ C(DT ) be a solution of the equation (3.2). Since
F ∈ C(DT ) (ϕi ∈ C1(γi,T )) and the space C2(DT ) (C2(γi,T )) is dense in

C(DT ) (C1(γi,T )) [56, p. 37], there exists a sequence of functions Fn ∈
C2(DT ) (ϕin ∈ C2(γin)) such that lim

n→∞
‖Fn − F‖C(DT ) = 0 ( lim

n→∞
‖ϕin −

ϕi‖C1(γi,T ) = 0, i = 1, 2). Analogously, since u ∈ C(DT ), there exists a

sequence of functions wn ∈ C2(DT ) such that wn → u in the space C(DT ).
Assume

un = −L−1
0 f

∣∣
u=wn

+ `−1
0 (ϕ1n, ϕ2n) + L−1

0 Fn. (3.5)

Since f ∈ C1(DT ×R), according to Remark 3.1 we have un ∈ C2(DT ) and
un|γi,T = ϕin, i = 1, 2. Taking now into account that the linear operators

L−1
0 : C(DT ) → C(DT ) and `−1

0 : C1(γ1,T ) × C1(γ2,T ) → C(DT ) are
continuous and that by our assumption

lim
n→∞

‖wn − u‖C(DT ) = lim
n→∞

‖Fn − F‖C(DT ) =

= lim
n→∞

‖ϕin − ϕi‖C1(γi,T ) = 0, (3.6)

by virtue of (3.5) we have

un(x, t) −→
[
−

(
L−1

0 f
∣∣
u=u(x,t)

)
(x, t)+

(
`−1
0 (ϕ1, ϕ2)

)
(x, t)+(L−1

0 F )(x, t)
]

in the space C(DT ). But it follows from the equality (3.2) that

−
(
L−1

0 f
∣∣
u=u(x,t)

)
(x, t) +

(
`−1
0 (ϕ1, ϕ2)

)
(x, t) + (L−1

0 F )(x, t) = u(x, t).

Thus we have

lim
n→∞

‖un − u‖C(DT ) = 0. (3.7)
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On the other hand, by Remark 3.1 and (3.5), we have

L0un = −f
∣∣
u=wn

+ Fn, (3.8)

un
∣∣
γi,T

= ϕin, i = 1, 2. (3.9)

From (3.6)–(3.9) it follows lim
n→∞

‖un|γi,T − ϕi‖C1(γi,T ) = 0, i = 1, 2, and

since

Lfun = L0un + f
∣∣
u=un

= −f
∣∣
u=wn

+ Fn + f
∣∣
u=un

=

= −
(
f(· , wn)− f(· , u)

)
+

(
f(· , un)− f(· , u)

)
+ Fn,

we have Lfun → F in the space C(DT ), as n → ∞. The converse is
obvious. �

4. Global Solvability of the Problem (1.1), (1.2) in the Class
of Continuous Functions

As is mentioned above, L−1
0 from (3.3) is a linear continuous operator

acting in the space C(DT ). Let us show that this operator acts in fact lin-
early and continuously from the space C(DT ) to the space of continuously
differentiable functions C1(DT ). Towards this end, by means of the linear
non-singular transformation of independent variables t = ξ+η, x = ξ−η we
pass to the plane of the variables ξ, η. As a result, the triangular domain

DT transforms into the triangle D̃T with vertices at the points O(0, 0),
N1(T, 0), N2

(
1−k
2 T, 1+k

2 T
)
, and the characteristic quadrangle Gx,t from

the previous section transforms into the rectangle G̃x,t with the vertices

P̃
(
t+x
2 , t−x2

)
, P̃1

(
1
2

1−k
1+k (t−x), t−x2

)
, P̃2

(
1
2

1−k
1+k (t−x), 0

)
, P̃3

(
t+x
2 , 0

)
, i.e., in

the variables ξ, η: P̃ (ξ, η), P̃1

(
1−k
1+k η, η

)
, P̃2

(
1−k
1+k η, 0

)
and P̃3(ξ, 0). More-

over, the operator L−1
0 from (3.3) transforms into the operator L̃−1

0 acting

in the space C(D̃T ) by the formula

(L̃−1
0 w)(ξ, η) =

∫

G̃x,t

w(ξ′, η′) dξ′ dη′ =

=

ξ∫

1−k
1+k η

dξ′
η∫

0

w(ξ′, η′) dξ′ dη′, (ξ, η) ∈ D̃T . (4.1)

If w ∈ C(D̃T ), then it immediately follows from (4.1) that

∂

∂ξ
(L̃−1

0 w)(ξ, η) =

η∫

0

w(ξ, η′) dη′, (4.2)
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∂

∂η
(L̃−1

0 w)(ξ, η) = −1− k

1 + k

η∫

0

w
(
ξ′,

1− k

1 + k
η
)
dξ′ +

ξ∫

1−k
1+k η

w(ξ′, η′) dξ′. (4.3)

Taking now into account that for (ξ, η) ∈ D̃T we have 0 ≤ ξ ≤ T and
0 ≤ η ≤ 1+k

2 T , by virtue of (4.1), (4.2), (4.3) and the fact that 0 < k < 1
we have

‖L̃−1
0 w‖

C(D̃T )
+

∥∥∥ ∂

∂ξ
L̃−1

0 w
∥∥∥
C(D̃T )

+
∥∥∥ ∂

∂η
L̃−1

0 w
∥∥∥
C(D̃T )

≤

≤
(
ξ − 1− k

1 + k
η
)
η‖w‖

C(D̃T )
+ η‖w‖

C(D̃T )
+

1− k

1 + k
η‖w‖

C(D̃T )
+

+
(
ξ − 1− k

1 + k
η
)
‖w‖

C(D̃T )
≤ (T 2 + 3T )‖w‖

C(D̃T )
,

i.e.,

‖L̃−1
0 ‖

C(D̃T )→C1(D̃T )
≤ (T 2 + 3T ), (4.4)

which was to be demonstrated.

Further, since the space C1(D̃T ) is embedded compactly into the space

C(D̃T ) [10, p. 135], the operator L̃−1
0 : C(D̃T ) → C(D̃T ) is, by virtue of

(4.4), linear and compact. Thus getting now back from the variables ξ and
η to the variables x and t, for the operator L−1

0 from (3.3) we obtain the
validity of the following statement.

Lemma 4.1. The operator L−1
0 : C(DT ) → C(DT ) acting by the

formula (3.3) is linear and compact.

We rewrite the equation (3.2) in the form

u = Au := −
(
L−1

0 f
∣∣
u=u(x,t)

)
+ `−1

0 (ϕ1, ϕ2) + L−1
0 F, (4.5)

where the operator A : C(DT ) → C(DT ) is continuous and compact since
the nonlinear operator K : C(DT ) → C(DT ) acting by the formula
Ku := −f(x, t, u) is bounded and continuous and the linear operator L−1

0 :
C(DT ) → C(DT ) is, by Lemma 4.1, compact. We have taken here into
account that the component A1u := `−1

0 (ϕ1, ϕ2) + L−1
0 F of A from (4.5)

is a constant and hence a continuous and compact operator acting in the
space C(DT ). At the same time, by Lemmas 2.1 and 3.1 as well as by
(2.2), (2.3), (2.17), (2.24) and (2.27), for any parameter τ ∈ [0, 1] and every
solution u ∈ C(DT ) of the equation u = τAu the a priori estimate (2.4)
is valid with the same constants c1 and c2, not depending on u, F , ϕ1, ϕ2

and τ . Therefore, by Leray–Schauder’s theorem [66, p. 375] the equation
(4.5) under the conditions of Lemmas 2.1 and 3.1 has at least one solution
u ∈ C(DT ). Thus, by Lemmas 2.1 and 3.1, we proved the following [1]

Theorem 4.1. Let f ∈ C1(D∞×R) and the conditions (2.2) and (2.3)
be fulfilled for every T > 0. Then the problem (1.1), (1.2) is globally solvable
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in the class C in the sense of Definition 1.2, i.e., for every ϕi ∈ C1(γi,∞),

i = 1, 2, and F ∈ C(D∞) and for every T > 0 the problem (1.1), (1.2) has

a strong generalized solution of the class C in the domain DT in the sense

of Definition 1.1.

We now cite certain classes of functions f = f(x, t, u), frequently en-
countered in applications, for which the conditions (2.2) and (2.3) are ful-
filled:

1. f(x, t, u) = f0(x, t)ψ(u), where f0,
∂
∂t f0 ∈ C(D∞) and ψ ∈ C(R).

In this case g(x, t, u) = f0(x, t)
u∫
0

ψ(s) ds, and if the inequality |ψ(u)| ≤
d1|u|+ d2 is fulfilled, then the conditions (2.2) and (2.3) will be fulfilled.

2. f(x, t, u) = f0(x, t)|u|α sgnu, where f0,
∂
∂t f0 ∈ C(D∞), α > 1.

In this case g(x, t, u) = f0(x, t)|u|α+1, and if the inequalities f0(x, t) ≥
0, ∂

∂t f0(x, t) ≤ 0 are fulfilled, then the conditions (2.2) and (2.3) will be
fulfilled.

3. f(x, t, u) = f0(x, t)e
u, where f0,

∂
∂t f0 ∈ C(D∞).

In this case g(x, t, u) = f(x, t, u), and if the inequalities f0(x, t) ≥ 0,
∂
∂t f0(x, t) ≤ 0 are fulfilled, then the conditions (2.2) and (2.3) will be ful-
filled.

Thus, if the function f ∈ C1(D∞ × R) belongs to one of the above-
mentioned classes, then according to Theorem 4.1 the problem (1.1), (1.2)
is globally solvable in the class C in the sense of Definition 1.2.

We present here an example of a function f which is also encountered
in applications, when at least one of the conditions (2.2) or (2.3) is violated.
Such a function is

f(x, t, u) = f0(x, t)|u|α, α > 1, (4.6)

where f0,
∂
∂t f0 ∈ C(D∞) and f0 6= 0. In this case, by virtue of (4.6) we have

g(x, t, u) = f0(x, t)|u|α+1 sgnu, and since α > 1 and f0 6= 0, the condition
(2.2) is violated. If ∂

∂t f0 6= 0, then the condition (2.3) will also be violated.
Below, it will be shown that if the conditions (2.2) and (2.3) are violated,

then the problem (1.1), (1.2) fails to be globally solvable.

5. The Smoothness and Uniqueness of the Solution of the
Problem (1.1), (1.2). The Existence of a Global Solution

in D∞

According to Remark 3.1, by virtue of the equalities (3.2), (3.3) and
(3.4), if the conditions of Theorem 4.1 except possibly (2.2) and (2.3) are
fulfilled, then a strong generalized solution of the problem (1.1), (1.2) be-
longs in fact to the space C1(DT ). The same reasoning leads us to

Lemma 5.1. Let u be a strong generalized solution of the problem

(1.1), (1.2) of the class C in the domain DT in the sense of Definition 1.1.
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Then if f ∈ Ck(DT × R), F ∈ Ck(DT ) and ϕi ∈ Ck+1(γi,T ), i = 1, 2,

k ≥ 0, then we have u ∈ Ck+1(DT ).

From the above lemma it follows, in particular, that for k ≥ 1 a strong
generalized solution of the problem (1.1), (1.2) of the class C in the domain
DT is a classical solution of that problem in the sense of Definition 1.1.

It is said that a function f = f(x, t, u) satisfies the local Lipschitz
condition on the set D∞ × R if

∣∣f(x, t, u2)− f(x, t, u1)
∣∣ ≤

≤M(T,R)|u2 − u1|, (x, t) ∈ DT , |ui| ≤ R, i = 1, 2, (5.1)

where M = M(T,R) = const ≥ 0.

Lemma 5.2. If the function f ∈ C(DT × R) satisfies the condi-

tion (5.1), then the problem (1.1), (1.2) cannot have more than one strong

generalized solution of the class C in the domain DT .

Proof. Indeed, assume that the problem (1.1), (1.2) has two strong general-
ized solutions u1 and u2 of the class C in the domain DT . By Definition 1.1,
there exists a sequence of functions ujn ∈ C2(DT ), j = 1, 2, such that

lim
n→∞

‖ujn − uj‖C(DT ) = lim
n→∞

‖Lfujn − F‖C(DT ) =

= lim
n→∞

∥∥ujn
∣∣
γi,n

− ϕi‖C1(γi,T ) = 0, i, j = 1, 2. (5.2)

Let ωn = u2n−u1n. It can be easily seen that the function ωn ∈ C2(DT )
is a classical solution of the problem

( ∂2

∂t2
− ∂2

∂x2

)
ωn + gn = Fn, (5.3)

ωn
∣∣
γi,T

= ϕin, i = 1, 2. (5.4)

Here

gn = f(x, t, u2n)− f(x, t, u1n), (5.5)

Fn = Lfu2n − Lfu1n, (5.6)

ϕin = (u2n − u1n)
∣∣
γi,T

, i = 1, 2. (5.7)

By virtue of (5.2), there exists a number m = const > 0, not depending
on the indices j and n, such that ‖ujn‖C(DT ) ≤ m, whence, in its turn, by

(5.1) and (5.5) it follows that

|gn| ≤M(T, 2m)|u2n − u1n|. (5.8)

The equalities (5.2), (5.6) and (5.7) imply that

lim
n→∞

‖Fn‖C(DT ) = 0, lim
n→∞

‖ϕin‖C1(γi,T ) = 0, i = 1, 2. (5.9)

Multiplying both parts of the equation (5.3) by ∂ωn

∂t and integrating

with respect to the domain Dτ :=
{
(x, t) ∈ DT : t < τ

}
, 0 < τ ≤ T , due
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to the boundary conditions (5.4), just as in obtaining the inequality (2.16),
from (2.12)–(2.15) and (5.8) we have

∫

Ωτ

[(∂ωn
∂t

)2

+
(∂ωn
∂x

)2
]
dx =

= −
2∑

i=1

∫

γi,τ

1

νt

[(∂ωn
∂x

νt −
∂ωn
∂t

νx

)2

+
(∂ωn
∂t

)2

(ν2
t − ν2

x)

]
ds+

+2

∫

Dτ

(Fn − gn)
∂ωn
∂t

dx dt ≤

≤
√

2

∫

γ1,τ

‖ϕ1n‖2C1(γ1,T ) ds+

√
1 + k2

k

∫

γ2,τ

‖ϕ2n‖2C1(γ2,T ) ds+

+

∫

Dτ

(Fn − gn)
2 dx dt+

∫

Dτ

(∂ωn
∂t

)2

dx dt ≤

≤ M̃

2∑

i=1

‖ϕin‖2C1(γi,T ) +

∫

Dτ

(∂ωn
∂t

)2

dx dt+

+2

∫

Dτ

g2
n dx dt+ 2

∫

Dτ

F 2
n dx dt ≤

≤ M̃

2∑

i=1

‖ϕin‖2C1(γi,T ) +

∫

Dτ

(∂ωn
∂t

)2

dx dt+

+2M2(T, 2m)

∫

Dτ

ω2
n dx dt+ 2

∫

Dτ

F 2
n dx dt. (5.10)

By the inequalities (2.21) and (2.22) which, with regard for (5.4), are
likewise valid for the function ωn, from (5.10) we find that

∫

Ωτ

[
ω2
n +

(∂ωn
∂t

)2

+
(∂ωn
∂x

)2
]
dx ≤

≤ 2T

2∑

i=1

‖ϕin‖2C1(γi,T ) + 2T

∫

Dτ

(∂ωn
∂t

)2

dx dt+

+M̃
2∑

i=1

‖ϕin‖2C1(γi,T ) +

∫

Dτ

(∂ωn
∂t

)2

dx dt+

+4T 2M2(T, 2m)

[ 2∑

i=1

‖ϕin‖2C1(γi,T )+

∫

Dτ

(∂ωn
∂t

)2

dx dt

]
+ 2

∫

Dτ

F 2
n dx dt ≤
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≤ M̃1

∫

Dτ

[
ω2
n +

(∂ωn
∂t

)2

+
(∂ωn
∂x

)2
]
dx dt+

+M̃2

[ 2∑

i=1

‖ϕin‖2C1(γi,T ) + ‖Fn‖2C(DT )

]
, 0 < τ ≤ T, (5.11)

where

M̃1 = 1 + 2T + 4T 2M2(T, 2m),

M̃2 = 2 mesDT + 2T + M̃ + 4T 2M2(T, 2m).

Assuming

vn(τ) =

∫

Ωτ

[
ω2
n +

(∂ωn
∂t

)2

+
(∂ωn
∂x

)2
]
dx

and taking into account the equality

∫

Ωτ

[
ω2
n +

(∂ωn
∂t

)2

+
(∂ωn
∂x

)2
]
dx dt =

τ∫

0

vn(σ) dσ,

from (5.11) we obtain that

vn(τ) ≤ M̃1

τ∫

0

vn(σ) dσ + M̃2

[ 2∑

i=1

‖ϕin‖2C1(γi,T ) + ‖Fn‖2C(DT )

]
. (5.12)

By Gronwall’s lemma, from (5.12) it follows

vn(τ) ≤ M̃2

[ 2∑

i=1

‖ϕin‖2C1(γi,T ) + ‖Fn‖2C(DT )

]
exp M̃1T, 0 < τ ≤ T. (5.13)

Since ωn = u2n − u1n, from (5.2) and (5.9) it also follows that

lim
n→∞

‖ωn‖C(DT ) = ‖u2 − u1‖C(DT ),

lim
n→∞

∥∥ωn − (u2 − u1)
∥∥
C(DT )

= 0.
(5.14)

In particular, from (5.13) for τ = T we have
∫

DT

ω2
n dx dt ≤ M̃2

[ 2∑

i=1

‖ϕin‖2C1(γi,T ) + ‖Fn‖2C(DT )

]
exp M̃1T. (5.15)

Passing now in the inequality (5.15) to limit as n→∞ and taking into
account the equalities (5.9) and (5.14) as well as the theorem on the passage
to limit under the integral sign, we obtain∫

DT

|u2 − u1|2 dx dt ≤ 0,

whence it immediately follows that u2 = u1, and hence the proof of Lem-
ma 5.2 is complete. �
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Theorem 4.1 and Lemmas 5.1 and 5.2 imply the following

Theorem 5.1. Let ϕi ∈ C2(γi,∞), i = 1, 2, F ∈ C1(D∞), f ∈
C1(D∞×R), and the conditions (2.2) and (2.3) be fulfilled. Then the prob-

lem (1.1), (1.2) has a unique global classical solution u ∈ C(D∞) in the

domain D∞.

Proof. Since the function f from the space C1(D∞ × R) satisfies the local
Lipschitz condition (5.1), according to Theorem 4.1 and Lemmas 5.1 and
5.2, in the domainDT for T = n there exists a unique classical solution un ∈
C2(DT ) of the problem (1.1), (1.2). Since un+1 is likewise a classical solution
of the problem (1.1), (1.2) in the domain Dn, by virtue of Lemma 2.5 we
have un+1|Dn = un. Therefore the function u constructed in the domain
D∞ by the rule u(x, t) = un(x, t) for n = [t] + 1, where [t] is the integer
part of the number t and (x, t) ∈ D∞, will be the unique classical solution
of the problem (1.1), (1.2) in the domain D∞ of the class C2(D∞).

Thus the proof of Theorem 5.1 is complete. �

6. The Cases of the Non-Existence of a Global Solution
of the Problem (1.1), (1.2)

Below it will be shown that in case the conditions (2.2) or (2.3) are
violated, the problem (1.1), (1.2) cannot be globally solvable in the class C
in the sense of Definition 1.2.

Lemma 6.1. Let u be a strong generalized solution of the problem

(1.1), (1.2) of the class C in the domain DT in the sense of Definition 1.1
under the homogeneous boundary conditions, i.e., for ϕi = 0, i = 1, 2. Then

the following integral equality
∫

DT

u�ϕ dx dt = −
∫

DT

f(x, t, u)ϕ dx dt+

∫

DT

Fϕ dx dt (6.1)

is valid for any function ϕ such that

ϕ ∈ C2(DT ), ϕ
∣∣
t=T

= 0, ϕt
∣∣
t=T

= 0, ϕ
∣∣
γ2,T

= 0, (6.2)

where � := ∂2

∂t2 − ∂2

∂x2 .

Proof. By the definition of a strong generalized solution u of the problem
(1.1), (1.2) of the class C in the domain DT , we have u ∈ C(DT ), and there
exists a sequence of functions un ∈ C2(DT ) such that

lim
n→∞

‖un − u‖C(DT ) = lim
n→∞

‖Lfun − F‖C(DT ) =

= lim
n→∞

∥∥un
∣∣
γi,T

− 0‖C1(γi,T ) = 0, i = 1, 2. (6.3)

Let Fn = Lfun, ϕin = un|γi,T , i = 1, 2. We multiply both parts of the
equality Lfun = Fn by the function ϕ and integrate the obtained equality
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over the domain DT . After integration of the left-hand side of the above
equality by parts, we obtain

∫

DT

u�ϕ dx dt+

∫

∂DT

∂un
∂N

ϕds−
∫

∂DT

un
∂ϕ

∂N
ds+

+

∫

DT

f(x, t, un)ϕ dx dt =

∫

DT

Fnϕ dx dt, (6.4)

where ∂
∂N = νt

∂
∂t − νx

∂
∂x is the derivative with respect to the conormal,

and ν = (νx, νt) is the unit vector of the outer normal to ∂DT .
Taking into account that the operator of differentiation with respect to

the conormal ∂
∂N is an outer differential operator on the characteristic curve

γ1,T , and hence ∂un

∂N

∣∣
γ1,T

= ∂ϕ1n

∂N , by the equalities from (6.2) we have

∫

∂DT

∂un
∂N

ϕds =

∫

γ1,T

∂ϕ1n

∂N
ϕds,

∫

∂DT

un
∂ϕ

∂N
ds =

2∑

i=1

∫

γi,T

ϕin
∂ϕ

∂N
ds.

(6.5)

Since ϕin = un|γi,T , i = 1, 2, by virtue of (6.3) we find that

lim
n→∞

∥∥∥∂ϕ1n

∂N

∥∥∥
C(γ1,T )

= 0, lim
n→∞

‖ϕin‖C(γi,T ) = 0, i = 1, 2. (6.6)

By (6.3) and (6.6), passing in the equality (6.4) to limit as n → ∞ we
obtain the equality

∫

DT

u�ϕ dx dt+

∫

DT

f(x, t, u)ϕ dx dt =

∫

DT

Fϕ dx dt.

Thus the lemma is proved. �

Consider the following condition imposed on the function f :

f(x, t, u) ≤ −λ|u|α+1, (x, t, u) ∈ D∞ × R; λ, α = const > 0. (6.7)

It can be easily verified that if the condition (6.7) is fulfilled, then the
condition (2.2) is violated.

Introduce into consideration a function ϕ0 = ϕ0(x, t) such that

ϕ0 ∈ C2(D∞), ϕ0
∣∣
DT=1

> 0, ϕ0
∣∣
γ2,∞

= 0, ϕ0
∣∣
t≥1

= 0 (6.8)

and let

κ0 =

∫

DT=1

|�ϕ0|p′

|ϕ0|p′−1
dx dt < +∞, p′ = 1 +

1

α
. (6.9)
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It is not difficult to verify that in the capacity of the function ϕ0 satis-
fying the conditions (6.8) and (6.9) we can take the function

ϕ0(x, t) =

{
(x+ kt)n(1− t)m, (x, t) ∈ DT=1,

0, t ≥ 1,

for sufficiently large positive constants n and m.
Putting ϕT (x, t) = ϕ0

(
x
T ,

t
T

)
, T > 0, by virtue of (6.8) we can see that

ϕT ∈ C2(D∞), ϕT
∣∣
DT

> 0,

ϕT
∣∣
γ2,T

= 0, ϕT
∣∣
t=T

= 0,
∂ϕT
∂t

∣∣∣
t=T

= 0.
(6.10)

Assuming the function F is fixed, we interoduce into consideration the
function of one variable T ,

ζ(T ) =

∫

DT

FϕT dx dt, T > 0. (6.11)

There takes place the following theorem on the nonexistence of global
solvability of the problem (1.1), (1.2) [1].

Theorem 6.1. Let the function f ∈ C(D∞ × R) satisfy the con-

dition (6.7), F ∈ C(D∞), F ≥ 0, and the boundary conditions (1.2) be

homogeneous , i.e., ϕi = 0, i = 1, 2. Let, moreover,

lim inf
T→+∞

ζ(T ) > 0. (6.12)

Then there exists a positive number T0 = T0(F ) such that for T > T0 the

problem (1.1), (1.2) cannot have a strong generalized solution u of the class

C in the domain DT .

Proof. Assume that under the conditions of the above theorem there exists
a strong generalized solution u of the problem (1.1), (1.2) of the class C in
the domain DT . Then, by Lemma 6.1, we have the equality (6.1) in which,
owing to (6.10), we can take in the capacity of the function ϕ the function
ϕ = ϕT , i.e.,

−
∫

DT

f(x, t, u)ϕT dx dt+

∫

DT

FϕT dx dt =

∫

DT

u�ϕT dx dt. (6.13)

Since ϕT > 0 in the domain DT , by the condition (6.7) and the desig-
nation (6.11), from (6.13) we have

λ

∫

DT

|u|pϕT dx dt ≤
∫

DT

|u| |�ϕ| dx dt− ζ(T ), p = α+ 1. (6.14)

If in Young’s inequality with parameter ε > 0,

ab ≤ ε

p
ap +

1

p′εp′−1
bp
′
; a, b ≥ 0,

1

p
+

1

p′
= 1, p = α+ 1 > 1,
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we take a = |u|ϕ1/p
T , b = |�ϕT |

ϕ
1/p
T

, then taking into account that p′/p = p′ − 1

we will obtain

|u�ϕT | = |u|ϕ1/p
T

|�ϕT |
ϕ

1/p
T

≤ ε

p
|u|pϕT +

1

p′εp′−1

|�ϕT |p
′

ϕp
′−1
T

. (6.15)

It follows from (6.14) and (6.15) that

(
λ− ε

p

) ∫

DT

|u|pϕT dx dt ≤
1

p′εp′−1

∫

DT

|�ϕT |p
′

ϕp
′−1
T

dx dt− ζ(T ),

whence for ε < λp we find that
∫

DT

|u|pϕT dx dt ≤
p

(|λ|p− ε)p′εp′−1

∫

DT

|�ϕT |p
′

ϕp
′−1
T

dx dt− p

λp− ε
ζ(T ). (6.16)

Bearing in mind that p′ = p
p−1 , p = p′

p′−1 and min
0<ε<λp

p

(λp−ε)p′εp′−1 = 1
λp ,

which is achieved for ε = λ, from (6.16) we get
∫

DT

|u|pϕT dx dt ≤
1

λp′

∫

DT

|�ϕT |p
′

ϕp
′−1
T

dx dt− p′

λ
ζ(T ). (6.17)

Since ϕT (x, t) = ϕ0
(
x
T ,

t
T

)
, by virtue of (6.8) and (6.9), after the change

of variables t = T t′, x = Tx′, we can easily verify that
∫

DT

|�ϕT |p
′

ϕp
′−1
T

dx dt =

= T−2(p′−1)

∫

DT=1

|�ϕ0|p′

(ϕ0)p′−1
dx′ dt′ = T−2(p′−1)

κ0 < +∞. (6.18)

By virtue of (6.10) and (6.18), the inequality (6.17) yields

0 ≤
∫

DT

|u|pϕT dx dt ≤
1

λp′
T−2(p′−1)

κ0 −
p′

λ
ζ(T ). (6.19)

Because of the fact that p′ = p
p−1 > 1 we have −2(p′ − 1) < 0, and by

(6.9) we get

lim
T→∞

1

λp′
T−2(p′−1)

κ0 = 0.

Therefore, by (6.12) there exists a positive number T0 = T0(F ) such
that for T > T0 the right-hand side of the inequality (6.19) is negative,
while the left-hand side of that inequality is nonnegative. This means that
if there exists a strong generalized solution u of the problem (1.1), (1.2)
of the class C in the domain DT , then necessarily T ≤ T0, which proves
Theorem 6.1. �
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Remark 6.1. It is not difficult to verify that if F ∈ C(D∞), F ≥ 0 and
F (x, t) ≥ ct−m for t ≥ 1, where c = const > 0 and 0 ≤ m = const ≤ 2, then
the condition (6.12) is fulfilled, and according to Theorem 6.1 in this case
the problem (1.1), (1.2) has no strong generalized solution u of the class C
in the domain DT for large T [1].

7. The Local Solvability of the Problem (1.1), (1.2)

Theorem 7.1. Let f ∈ C1(D∞×R), F ∈ C(D∞) and ϕi ∈ C1(γi,∞),
i = 1, 2. Then there exists a positive number T0 = T0(F, ϕ1, ϕ2) such that

for T ≤ T0 the problem (1.1), (1.2) has a unique strong generalized solution

u of the class C in the domain DT .

Proof. By Lemma 3.1, the existence of a strong generalized solution of the
problem (1.1), (1.2) of the class C in the domain DT is equivalent to that
of a continuous solution u of the nonlinear integral equation (3.2), or what
is the same thing, of the equation (4.5), i.e.,

u = Au := −
(
L−1

0 f
∣∣
u=u(x,t)

)
+ `−1

0 (ϕ1, ϕ2) + L−1
0 F, (7.1)

where A : C(DT ) → C(DT ) is a continuous and compact operator. There-
fore, to prove that the equation (7.1) is solvable, it suffices, by Schauder’s
theorem, to show that the operator A transforms some ball B(0, R) :=

{
v ∈

C(DT ) : ‖v‖C(DT ) ≤ R
}

of radius R > 0 (which is a closed and convex set

in the Banach space C(DT )) into itself for sufficiently small T .
Owing to (3.3) and (3.4), we can easily see that

‖L−1
0 ‖C(DT )→C(DT ) ≤

1

2
mesDT =

1

4
(1 + k)T 2, (7.2)

‖`−1
0 ‖C1(γ1,T )×C1(γ2,T )→C(DT ) ≤ 3. (7.3)

We fix now an arbitrary positive number T∗, and let T ≤ T∗. By (7.1),
(7.2) and (7.3), for

‖u‖C(DT ) ≤ R = 4

2∑

i=1

‖ϕi‖C1(γi,T∗ ), M∗ = sup
(x,t)∈DT∗
|u|≤R

∣∣f(x, t, u)
∣∣ (7.4)

we have

‖Au‖C(DT ) ≤ ‖L−1
0 ‖C(DT )→C(DT ) sup

(x,t)∈DT∗
|u|≤R

∣∣f(x, t, u)
∣∣+

+‖`−1
0 ‖C1(γ1,T )×C1(γ2,T )→C(DT )

[ 2∑

i=1

‖ϕi‖C1(γi,T )

]
+

+‖L−1
0 ‖C(DT )→C(DT )‖F‖C(DT ) ≤
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≤ 1

4
(1 + k)M∗T

2 +
1

4
(1 + k)T 2‖F‖C(DT∗ ) + 3

2∑

i=1

‖ϕi‖C1(γi,T ) =

=
[1

4
(1 + k)M∗ +

1

4
(1 + k)‖F‖C(DT∗ )

]
T 2 + 3

2∑

i=1

‖ϕi‖C1(γi,T∗). (7.5)

From (7.4) and (7.5), in its turn, it follows that if T ≤ T0, where

T0 :=min

[
T∗,

{(1

4
(1+k)M∗+

1

4
(1+k)‖F‖C(DT∗)

)−1 2∑

i=1

‖ϕi‖C1(γi,T∗ )

}1/2]
,

then ‖Au‖C(DT ) ≤ R for ‖u‖C(DT ) ≤ R. Thus Theorem 7.1 is proved

completely, since the uniqueness of a solution follows directly from Lem-
ma 3.1. �



CHAPTER 2

The Characteristic Cauchy Problem for a

Class of Nonlinear Wave Equations in the

Light Cone of the Future

1. Statement of the Problem

Consider the nonlinear wave equation of the type

Lfu :=
∂2u

∂t2
−∆u+ f(u) = F, (1.1)

where f and F are given real functions, f is a nonlinear function, and u is

an unknown real function, ∆ =
n∑
i=1

∂2

∂x2
i
, n ≥ 2.

For the equation (1.1) we consider the characteristic Cauchy prob-
lem: find in the frustrum of the light cone of future DT : |x| < t < T ,
x = (x1, . . . , xn), n > 1, T = const > 0, a solution u(x, t) according the
boundary condition

u
∣∣
ST

= 0, (1.2)

where ST : t = |x|, t ≤ T , is the characteristic conic surface. Considering
the case T = +∞, we assume that D∞ : t > |x| and S∞ = ∂D∞ : t = |x|.

Below we will consider the following conditions imposed on the func-
tion f :

f ∈ C(R), |f(u)| ≤M1 +M2|u|α, α = const > 0, (1.3)
u∫

0

f(s) ds ≥ −M3 −M4u
2, (1.4)

where Mi = const ≥ 0, i = 1, 2, 3, 4.

Remark 1.1. Note that in case α ≤ 1 the inequality (1.3) results in the
inequality (1.4).

Let
◦
W 1

2(DT , ST ) :=
{
u ∈ W 1

2 (DT ) : u|ST = 0
}
, where W k

2 (DT ) is the
well-known Sobolev’s space consisting of the functions u ∈ L2(DT ) whose
all generalized derivatives up to the k-th order, inclusive, also belong to the
space L2(DT ), while the equality u|ST = 0 is understood in the sense of the
trace theory [49, p. 70].

26
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Definition 1.1. Let F ∈ L2(DT ). A function u ∈
◦
W 1

2(DT , ST ) is said
to be a strong generalized solution of the problem (1.1), (1.2) of the classW 1

2

in the domain DT if there exists a sequence of functions um ∈
◦
C2(DT , ST )

such that um → u in the space
◦
W 1

2(DT , ST ) and Lfum → F in the space
L2(DT ).

Definition 1.2. Let F ∈ L2,loc(D∞) and F ∈ L2(DT ) for any T > 0.
We say that the problem (1.1), (1.2) is globally solvable in the class W 1

2 if
for every T > 0 this problem has a strong generalized solution of the class
W 1

2 in the space DT .

2. A Priori Estimate of a Solution of the Problem (1.1), (1.2)
in the Class W 1

2

Lemma 2.1. Let F ∈ L2(DT ), and let the function f ∈ C(R) sat-

isfy the condition (1.4). Then for every strong generalized solution u ∈
◦
W 1

2(DT , ST ) of the problem (1.1), (1.2) of the class W 1
2 in the domain DT

the estimate

‖u‖ ◦
W1

2(DT ,ST )
≤ c1‖F‖L2(DT ) + c2 (2.1)

is valid with nonnegative constants ci = ci(f, T ), i = 1, 2, independent of u
and F .

Proof. Let u ∈
◦
W 1

2(DT , ST ) be a strong generalized solution of the problem
(1.1), (1.2) of the classW 1

2 in the domain DT . By Definition 1.1, there exists

a sequence of functions um ∈
◦
C2(DT , ST ) such that

lim
m→∞

‖um − u‖ ◦
W1

2(DT ,ST )
= 0, lim

m→∞
‖Lfum − F‖L2(DT ) = 0. (2.2)

Consider the function um ∈
◦
C2(DT , ST ) as a solution of the problem

Lfum = Fm, (2.3)

um
∣∣
Sm

= 0. (2.4)

Here

Fm := Lfum. (2.5)

Putting

g(u) :=

u∫

0

f(s) ds (2.6)

and multiplying both parts of the equation (2.3) by ∂um

∂t , after integration
over the domain Dτ , 0 < τ ≤ T , we obtain
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1

2

∫

Dτ

∂

∂t

(∂um
∂t

)2

dx dt −
∫

Dτ

∆um
∂um
∂t

dx dt+

+

∫

Dτ

∂

∂t
g(um) dx dt =

∫

Dτ

Fm
∂um
∂t

dx dt. (2.7)

Let Ωτ := D∞ ∩ {t = τ} and denote by ν = (ν1, . . . , νn, ν0) the unit
vector of the outer normal to ST \ {(0, . . . , 0)

}
. Integrating by parts and

taking into account the equality (2.4) and ν|Ωτ = (0, . . . , 0, 1), we easily get

∫

Dτ

∂

∂t

(∂um
∂t

)2

dx dt =

=

∫

∂Dτ

(∂um
∂t

)2

ν0 ds =

∫

Ωτ

(∂um
∂t

)2

dx+

∫

Sτ

(∂um
∂t

)2

ν0 ds,

∫

Dτ

∂

∂t
g(um) dx dt =

∫

∂Dτ

g(um)ν0 ds =

∫

Ωτ

g(um) dx,

∫

Dτ

∂2um
∂x2

i

∂um
∂t

dx dt =

∫

∂Dτ

∂um
∂xi

∂um
∂t

νi ds−
1

2

∫

Dτ

∂

∂t

(∂um
∂xi

)2

dx dt =

=

∫

∂Dτ

∂um
∂xi

∂um
∂t

νi ds−
1

2

∫

∂Dτ

(∂um
∂xi

)2

ν0 ds =

=

∫

∂Dτ

∂um
∂xi

∂um
∂t

νi ds−
1

2

∫

Sτ

(∂um
∂xi

)2

ν0 ds−
1

2

∫

Ωτ

(∂um
∂xi

)2

dx,

whence by virtue of (2.7), it follows that

∫

Dτ

Fm
∂um
∂t

dx dt =

=

∫

Sτ

1

2ν0

[ n∑

i=1

(∂um
∂xi

ν0 −
∂um
∂t

νi

)2

+
(∂um
∂t

)2(
ν2
0 −

n∑

j=1

ν2
j

)]
ds+

1

2

∫

Ωτ

[(∂um
∂t

)2

+

n∑

i=1

(∂um
∂xi

)2
]
dx+

∫

Ωτ

g(um) dx. (2.8)

Since Sτ is a characteristic surface, we have

(
ν2
0 −

n∑

j=1

ν2
j

)∣∣∣∣
Sτ

= 0. (2.9)
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Taking into account the fact that
(
ν0

∂
∂xi

− νi
∂
∂t

)
, i = 1, . . . , n, is an

inner differential operator on Sτ , by virtue of (2.4) we have
(∂um
∂xi

ν0 −
∂um
∂t

νi

)∣∣∣
Sτ

= 0, i = 1, . . . , n. (2.10)

Bearing in mind (2.9) and (2.10), it follows from (2.8) that
∫

Ωτ

[(∂um
∂t

)2

+

n∑

i=1

(∂um
∂xi

)2
]
dx+ 2

∫

Ωτ

g(um) dx =

= 2

∫

Dτ

Fm
∂um
∂t

dx dt. (2.11)

By (1.4) and (2.6) as well as by the Cauchy inequality 2Fm
∂um

∂t ≤
F 2
m +

(
∂um

∂t

)2
, from (2.11) we have

∫

Ωτ

[(∂um
∂t

)2

+

n∑

i=1

(∂um
∂xi

)2
]
dx ≤

≤ 2M3 mesΩτ + 2M4

∫

Ωτ

u2
m dx+

∫

Dτ

(∂um
∂t

)2

dx dt +

∫

Dτ

F 2
m dx dt ≤

≤ 2M3 mes Ωτ + 2M4

∫

Ωτ

u2
m dx +

∫

Dτ

(∂um
∂t

)2

dx dt+

∫

Dτ

F 2
m dx dt. (2.12)

From the equalities v|ST = 0 and v(x, t) =
t∫
|x|

∂v(x,τ)
∂t dτ , (x, t) ∈ DT ,

valid for every function v ∈
◦
C2(DT , ST ), reasoning in a standard way we

obtain the following inequalities [49, p. 63]:
∫

Ωτ

v2 dx ≤ T

∫

Dτ

(∂v
∂t

)2

dx dt, 0 < τ ≤ T, (2.13)

∫

Dτ

v2 dx dt ≤ T 2

∫

Dτ

(∂v
∂t

)2

dx dt, 0 < τ ≤ T. (2.14)

By virtue of (2.13) and (2.14), from (2.12) we get
∫

Ωτ

[
u2
m +

(∂um
∂t

)2

+

n∑

i=1

(∂um
∂xi

)2
]
dx ≤ 2M3 mes Ωτ+

+(2M4 + 1)T

∫

Dτ

(∂um
∂t

)2

dx dt+

∫

Dτ

(∂um
∂t

)2

dx dt +

∫

Dτ

F 2
m dx dt ≤

≤
[
2(M4 + 1)T + 1

] ∫

Dτ

[
u2
m +

(∂um
∂t

)2

+

n∑

i=1

(∂um
∂xi

)2
]
dx+
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+2M3 mes ΩT + ‖Fm‖2L2(DT ). (2.15)

Putting

w(τ) =

∫

Ωτ

[
u2
m +

(∂um
∂t

)2

+

n∑

i=1

(∂um
∂xi

)2
]
dx (2.16)

and taking into account the equality

∫

Dτ

[
u2
m +

(∂um
∂t

)2

+
n∑

i=1

(∂um
∂xi

)2
]
dx dt =

τ∫

0

w(σ) dσ,

from (2.15) we have

w(τ) ≤M5

τ∫

0

w(σ) dσ +
(
‖Fm‖2L2(DT ) +M6

)
. (2.17)

Here

M5 = (2M4 + 1)T + 1, M6 = 2M3 mes ΩT . (2.18)

From (2.17), by Gronwall’s lemma [15, p. 13] it follows that

w(τ) ≤
(
‖Fm‖2L2(DT ) +M6

)
expM5τ ≤

≤
(
‖Fm‖2L2(DT ) +M6

)
expM5T. (2.19)

The inequality (2.19) with regard for (2.16) implies that

‖um‖2◦
W 1

2(DT ,ST )
=

∫

DT

[
u2
m +

(∂um
∂t

)2

+

n∑

i=1

(∂um
∂xi

)2
]
dx dt =

=

T∫

0

w(σ) dσ ≤ T
(
‖Fm‖2L2(DT ) +M6

)
expM5T,

that is,

‖um‖ ◦
W 1

2(DT ,ST )
≤ c1‖Fm‖L2(DT ) + c2. (2.20)

Here

c1 =
√
T exp

1

2
M5T, c2 =

√
TM6 exp

1

2
M5T. (2.21)

By (2.2) and (2.5), passing in the inequality (2.20) to limit as m→∞,
we obtain the required inequality (2.1). �
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3. The Global Solvability of the Problem (1.1), (1.2)
in the Class W 1

2

Remark 3.1. Before we proceed to considering the issue of the solvability
of the nonlinear problem (1.1), (1.2), let us consider the same issue for the
linear case in which in the equation (1.1) the function f = 0, i.e., for the
problem

L0u :=
∂2u

∂t2
−∆u = F (x, t), (x, t) ∈ DT , (3.1)

u(x, t) = 0, (x, t) ∈ ST . (3.2)

In this case, for F ∈ L2(DT ) we introduce analogously the notion of a strong

generalized solution u ∈
◦
W 1

2(DT , ST ) of the problem (3.1), (3.2) of the class
W 1

2 in the domain DT for which there exists a sequence of functions um ∈
◦
C2(DT , ST ) such that lim

m→∞
‖um−u‖W 1

2 (DT ) = 0, lim
m→∞

‖L0um−F‖L2(DT ) =

0. It should be noted that as is seen from the proof of Lemma 2.1, for the
solution of the problem (3.1), (3.2) the a priori estimate (2.1) is also valid
in which, by virtue of (1.3), (1.4) for Mi = 0, i = 1, 2, 3, 4, the constant M6

from (2.18) is equal to zero, and hence c2, by virtue of (2.21), is also equal
to zero. Thus for a strong generalized solution u of the problem (3.1), (3.2)
of the class W 1

2 in the domain DT the estimate

‖u‖ ◦
W1

2(DT ,ST )
≤ c1‖F‖L2(DT ), c1 =

√
T exp

1

2
M5T (3.3)

holds by virtue of (2.20).
The constant M5 here is defined from (2.18), and since for f = 0 in the

inequality (1.4) the constant M4 = 0, therefore M5 = T + 1, and hence

c1 =
√
T exp

1

2
T (1 + T ). (3.4)

As far as the space C∞0 (DT ) of finitary infinitely differentiable in DT

functions is dense in L2(DT ), for a given F ∈ L2(DT ) there exists a sequence
of functions Fm ∈ C∞0 (DT ) such that lim

m→∞
‖Fm−F‖L2(DT ) = 0. For a fixed

m, extending the values of the function Fm by zero beyond the domain DT

and leaving the same notation, we will have Fm ∈ C∞(Rn+1
+ ) for which the

support suppFm ⊂ D∞, where R
n+1
+ = R

n+1 ∩ {t ≥ 0}. Denote by um the

solution of the Cauchy problem: L0um = Fm, um|t=0 = 0, ∂um

∂t

∣∣
t=0

= 0,

which, as is known, exists, is unique and belongs to the space C∞(Rn+1
+ )

[17, p. 192]. Moreover, since suppFm ⊂ D∞, um|t=0 = 0 and ∂um

∂t

∣∣
t=0

= 0,
taking into account the geometry of the domain of dependence of a solution
of the linear wave equation we will have suppum ⊂ D∞ [17, p. 191]. Leaving
for the restriction of the function um to the domain DT the same notation,
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we can easily see that um ∈
◦
C2(DT , ST ), and in view of (3.3) the inequality

‖um − uk‖ ◦
W 1

2(DT ,ST )
≤ c1‖Fm − Fk‖L2(DT ) (3.5)

holds.
Since the sequence {Fm} is fundamental in L2(DT ), the sequence {um}

is likewise fundamental in the entire space
◦
W 1

2(DT , ST ). Therefore there

exists a function u ∈
◦
W 1

2(DT , ST ) such that lim
m→∞

‖um − u‖ ◦
W1

2(DT ,ST )
= 0,

and since L0um = Fm → F in the space L2(DT ), this function is, according
to Remark 3.1, a strong generalized solution of the problem (3.1), (3.2).

The uniqueness of this solution in the space
◦
W 1

2(DT , ST ) follows from the
estimate (3.3). Thus for the solution u of the problem (3.1), (3.2) we can

write u = L−1
0 F , where L−1

0 : L2(DT ) →
◦
W 1

2(DT , ST ) is a linear continuous
operator whose norm admits, by virtue of (3.3) and (3.4), the estimate

‖L−1
0 ‖

L2(DT )→
◦
W 1

2(DT ,ST )
≤
√
T exp

1

2
T (1 + T ). (3.6)

Remark 3.2. The embedding operator I :
◦
W 1

2(DT , ST ) → Lq(DT ) is

linear continuous and compact for 1 < q < 2(n+1)
n−1 , when n ≥ 2 [49, p. 81].

At the same time, the Nemytski operator K : Lq(DT ) → L2(DT ), acting
by the formula Ku = f(u), where the function f satisfies the condition
(1.3), is continuous and bounded if q ≥ 2α [47, p. 349], [48, pp. 66, 57].

Thus if α < n+1
n−1 , i.e., 2α < 2(n+1)

n−1 , then there exists a number q such that

1 < q < 2(n+1)
n−1 and q ≥ 2α. Therefore, in this case the operator

K0 = KI :
◦
W 1

2(DT , ST ) −→ L2(DT ) (3.7)

will be continuous and compact. Moreover, from u ∈
◦
W 1

2(DT , ST ) it fol-

lows that f(u) ∈ L2(DT ), and if um → u in the space
◦
W 1

2(DT , ST ), then
f(um) → f(u) in the space L2(DT ).

By Remarks 3.1 and 3.2, for F ∈ L2(DT ) and α < n+1
n−1 the function

u ∈
◦
W 1

2(DT , ST ) is a strong generalized solution of the problem (1.1), (1.2)
of the class W 1

2 in the domain DT if and only if u is a solution of the
following functional equation

u = L−1
0

(
− f(u) + F

)

or, what is the same thing, of the equation

u = Au := L−1
0 (−K0u+ F ) (3.8)

in the space
◦
W 1

2(DT , ST ). Since the operator K0 :
◦
W 1

2(DT , ST ) → L2(DT )
from (3.7) is, by Remark 3.2, continuous and compact, the operator A :
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◦
W 1

2(DT , ST ) →
◦
W 1

2(DT , ST ) is, owing to (3.6), likewise continuous and
compact. At the same time, by Lemma 2.1 and (1.4), (2.18), (2.20), for any

parameter τ ∈ [0, 1] and every solution u ∈
◦
W 1

2(DT , ST ) of the equation
u = τAu with the parameter τ , the a priori estimate (2.1) is valid with
the same nonnegative constants c1 and c2 not depending on u, F and the
parameter τ . Therefore, by the Leray–Schauder theorem [66, p. 375] the
equation (3.8), and hence the problem (1.1), (1.2), has at least one solution

u ∈
◦
W 1

2(DT , ST ).
Thus the following theorem is valid.

Theorem 3.1. Let F ∈ L2,loc(D∞) and F ∈ L2(DT ) for any T > 0.
Let 0 < α < n+1

n−1 and the function f satisfy the inequality (1.3). Moreover,

in case α > 1, let the function f satisfy also the condition (1.4). Then

the problem (1.1), (1.2) is globally solvable in the class W 1
2 in the sense of

Definition 1.2, i.e., for any T > 0 this problem has at least one strong

generalized solution of the class W 1
2 in the domain DT .

Remark 3.3. Note that under the conditions of Theorem 3.1 the problem
(1.1), (1.2) may have more than one solution. Indeed, if F = 0 and f(u) =
−|u|α, where 0 < α < 1, then the conditions of Theorem 3.1 are fulfilled
and the problem (1.1), (1.2) has, besides a trivial solution, an infinite set
of global solutions uσ(x, t) in the domain D∞ depending on the parameter
σ ≥ 0 and given by the formula

uσ(x, t) =

{
β
[
(t− σ)2 − |x|2

] 1
1−α , t > σ + |x|,

0, |x| ≤ t ≤ σ + |x|,
where

β = λ
1

1−α

[ 4α

(1− α)2
+

2(n+ 1)

1− α

]− 1
1−α

.

It can be easily seen that uσ(x, t) ∈
◦
W 1

2(DT , ST ) for any T > 0. Moreover,
uσ(x, t) ∈ C1(D∞), and for 1/2 < α < 1 the function uσ(x, t) belongs to
the space C2(D).

4. The Local Solvability of the Problem (1.1), (1.2) in the Class
W 1

2 in Case the Condition (1.4) is Violated

As it will be shown, when the condition (1.4) is violated the problem
(1.1), (1.2) is unable to be globally solvable in the sense of Definition 1.2,
although, as we will see below, there takes place the local solvability.

We restrict ourselves to the consideration of the case

1 < α <
n+ 1

n− 1
, (4.1)

since for α ≤ 1 from (1.3) it follows (1.4).
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In [27] it is shown that if the condition (4.1) is fulfilled, then we have
the inequality

‖u‖L2α(DT ) ≤ c0`α,nT
δα,n‖u‖ ◦

W1
2(DT ,ST )

∀u ∈
◦
W 1

2(DT , ST ), (4.2)

where

`α,n =
( ωn
n+ 1

) δα,n
n+1

, δα,n =
( 1

2α
+

1

n+ 1
− 1

2

)
(n+ 1),

a positive constant c0 does not depend on u and T , and, as is easily seen,
the condition δα,n > 0 is equivalent to the condition α < n+1

n−1 ; ωn is the
volume of the unit ball in R

n.

Remark 4.1. Let B(0, R) :=
{
u ∈

◦
W 1

2(DT , ST ) : ‖u‖ ◦
W1

2(DT ,ST )
≤ R

}

be a closed (convex) ball in the Hilbert space
◦
W 1

2(DT , ST ) with radius R > 0
and center in the zero element. Since the problem (1.1), (1.2) is equivalent

to the equation (3.8) in the class
◦
W 1

2(DT , ST ) and by Remark 3.2 the oper-

ator A :
◦
W 1

2(DT , ST ) →
◦
W 1

2(DT , ST ) from (3.8) is (if the condition (4.1) is
fulfilled) continuous and compact, according to the Schauder’s principle to
prove the solvability of the equation (3.8) it suffices to prove that the oper-
ator A transforms the ball B(0, R) into itself [66, p. 370]. Towards this end,
on the basis of the inequality (4.2) we estimate the value ‖Au‖ ◦

W1
2(DT ,ST )

.

For the operator K0 from (3.7), by means of (1.3) and (4.2), we have

‖K0u‖L2(DT ) = ‖f(u)‖L2(DT ) ≤
∥∥(M1 +M2|u|α)

∥∥
L2(DT )

≤
≤M1(mesDT )1/2 +M2

∥∥|u|α
∥∥
L2(DT )

=

= M1(mesDT )1/2 +M2‖u‖αL2α(DT ) ≤
≤M1(mesDT )1/2 +M2c0`α,nT

δα,n‖u‖ ◦
W1

2(DT ,ST )
(4.3)

for any u ∈
◦
W 1

2(DT , ST ).
Next, for the operator A from (3.8) by virtue of (3.6) and (4.3) we have

‖Au‖ ◦
W 1

2(DT ,ST )
≤

≤ ‖L−1
0 ‖

L2(DT )→
◦
W 1

2(DT ,ST )

[
‖K0u‖L2(DT ) + ‖F‖L2(DT )

]
≤

≤
√
T

(
exp

1

2
T (1 + T )

)
×

×
[
M1(mesDT )1/2 +M2c0`α,nT

δα,n‖u‖ ◦
W1

2(DT ,ST )
+ ‖F‖L2(DT )

]
(4.4)

for any u ∈
◦
W 1

2(DT , ST ).
Fix the numbers R > 0 and T0 > 0, and let T ≤ T0. Then for ∀u ∈

B(0, R), by virtue of (4.4) and the fact that δα,n > 0, if the condition (4.1)
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is fulfilled, then we have

‖Au‖ ◦
W1

2(DT ,ST )
≤

√
T0

(
exp

1

2
T0(1 + T0)

)
×

×
[
M1(mesDT0)

1/2 +M2c0`α,nT
δα,n

0 R + ‖F‖L2(DT0 )

]
,

whence it follows that for sufficiently small T0 > 0

‖Au‖ ◦
W 1

2(DT ,ST )
≤ R ∀u ∈ B(0, R), T ≤ T0. (4.5)

From (4.5), by Remark 4.1, we find that the problem (1.1), (1.2) is
locally solvable in the class W 1

2 .
Thus the following theorem is valid.

Theorem 4.1. Let F ∈ L2,loc(D∞) and F ∈ L2(DT ) for any T > 0.
Let 1 < α < n+1

n−1 . For the function f let the condition (1.3) be fulfilled but

the condition (1.4) may be violated. Then the problem (1.1), (1.2) is locally

solvable in the class W 1
2 , i.e., there exists a number T0 = T0(F ) > 0 such

that for T ≤ T0 this problem has at leat one strong generalized solution of

the class W 1
2 in the domain DT .

5. The Non-Existence of the Global Solvability of the Problem
(1.1), (1.2) in the Class W 1

2 in Case the Condition (1.4)
is Violated

We restrict ourselves to the consideration of the case where

1 < α <
n+ 1

n− 1
(5.1)

and

f(u) ≤ −λ|u|α, λ = const > 0. (5.2)

It can be easily verified that if the conditions (5.1) and (5.2) are fulfilled,
then the condition (1.4) is violated. It will be shown that if for the function
F the condition

F ∈ L2,loc(D∞), F ∈ L2(DT ) ∀T > 0, F > 0 (5.3)

is fulfilled, then the problem (1.1), (1.2) fails to be globally solvable in the
class W 1

2 .
Assume that if the conditions (5.1), (5.2) and (5.3) are fulfilled, then

the problem (1.1), (1.2) is globally solvable in the class W 1
2 , i.e., for any

T > 0 this problem has a strong generalized solution u of the class W 1
2 in

the domain DT . By Definition 1.1, this means that u ∈
◦
W 1

2(DT , ST ) and

there exists a sequence of functions um ∈
◦
C2(DT , ST ) such that

lim
m→∞

‖um − u‖ ◦
W 1

2(DT )
= 0, lim

m→∞
‖Lfum − F‖L2(DT ) = 0. (5.4)
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We use here the method of test functions [53, pp. 10–12]. Let the
function ϕ be such that

ϕ ∈ C2(DT ), ϕ
∣∣
t=T

= 0,
∂ϕ

∂t

∣∣∣
t=T

= 0, ϕ
∣∣
DT

> 0. (5.5)

Then putting Fm := Lfum and integrating the integral equality
∫

DT

(Lfum)ϕ dx dt =

∫

DT

Fmϕ dx dt

by parts, we obtain

∫

DT

um�ϕ dx dt+

∫

ST

[∂um
∂N

ϕ− ∂ϕ

∂N
um

]
ds+

+

∫

DT

f(um)ϕ dx dt =

∫

DT

Fmϕ dx dt, (5.6)

where � := ∂2

∂t2 −∆, ∂
∂N = ν0

∂
∂t −

∑n
i=1 νi

∂
∂xi

is the derivative with respect

to the conormal, and ν = (ν1, . . . , ν0, ν0) is the unit vector of the outer
normal to ∂DT .

Since on the characteristic conic surface ST the derivative with respect
to the conormal ∂

∂N is an inner differential operator, by virtue of the fact

that um|ST = 0 we have ∂um

∂N

∣∣
ST

= 0.

Therefore the equality (5.6) takes the form
∫

DT

um�ϕ dx dt+

∫

DT

f(um)ϕ dx dt =

∫

DT

Fmϕ dx dt. (5.7)

Further, by (5.4), passing in the equality (5.7) to limit as m → ∞, we
obtain ∫

DT

um�ϕ dx dt+

∫

DT

f(u)ϕ dx dt =

∫

DT

Fϕ dx dt. (5.8)

Assuming

γ(T ) =

∫

DT

Fϕ dx dt, (5.9)

by (5.2) and (5.5) we get from (5.8) that

λ

∫

DT

|u|αϕ dx dt ≤
∫

DT

u�ϕ dx dt− γ(T ). (5.10)

If in Young’s inequality

ab ≤ ε

α
aα +

1

α′εα′−1
bα

′
, a, b ≥ 0, α′ =

α

α− 1
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with the parameter ε > 0 we take a = |u|ϕ1/α and b = |�ϕ|
ϕ1/α , then taking

into account that α′

α = α′ − 1 we have

|u�ϕ| = |u|ϕ1/α · |�ϕ|
ϕ1/α

≤ ε

α
|u|αϕ+

1

α′εα′−1

|�ϕ|α′

ϕα′−1
. (5.11)

By virtue of (5.11), from (5.10) it follows the inequality

(
λ− ε

α

) ∫

DT

|u|αϕ dx dt ≤ 1

α′εα′−1

∫

DT

|�ϕ|α′

ϕα′−1
dx dt− γ(T ),

whence for ε < λα we find that
∫

DT

|u|αϕ dx dt ≤ α

(λα− ε)α′εα′−1

∫

DT

|�ϕ|α′

ϕα′−1
dx dt− γ(T ). (5.12)

Taking into account the equalities

α′ =
α

α− 1
, α =

α′

α′ − 1
and min

0<ε<λα

α

(λα− ε)α′εα′−1
=

1

λα′

which is achieved for ε = λ, we obtain from (5.11) that

∫

DT

|u|αϕ dx dt ≤ 1

λα′

∫

DT

|�ϕ|α′

ϕα′−1
dx dt− α′

λ
γ(T ). (5.13)

In the capacity of the test function ϕ we take now the function ϕ(x, t) =
ϕ0

[
2
T 2 (t2 + |x|2)

]
, where the function ϕ0 = ϕ0(σ) of one variable σ is such

that [53, p. 22]

ϕ0 ∈ C2(R), ϕ0 ≥ 0, ϕ′0 ≤ 0;

ϕ0

∣∣
[0,1]

= 1, ϕ0

∣∣
[2,∞)

= 0, ϕ0

∣∣
(1,2)

> 0.
(5.14)

By (5.14), the test function ϕ(x, t) = ϕ0

[
2
T 2 (t2 + |x|2)

]
= 0 for r =

(t2 + |x|2)1/2 ≥ T . Therefore, after the change of variables t = 1√
2
Tξ0 and

x = 1√
2
Tξ it is not difficult to verify that

∫

DT

|�ϕ|α′

ϕα′−1
dx dt=

∫

r=(t2+|x|2)<T,
t>|x|

|�ϕ|α′

ϕα′−1
dx dt=

( 1√
2
T

)n+1−2α′

κ0, (5.15)

where

κ0 =

∫

1<|ξ0|2+|ξ|2<2,
ξ0>|ξ|

|2(1− n)ϕ′0 + 4(ξ20 − |ξ|2)ϕ′′0 |α
′

ϕα
′−1

0

dξ dξ0 < +∞.
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Due to (5.15), from the inequality (5.13) with regard for the fact that
ϕ0(σ) = 1 for 0 ≤ σ ≤ 1 we obtain the inequality

∫

r≤ 1√
2
T

|u|α dx dt≤
∫

DT

|u|αϕ dx dt≤ 1

λα′

( 1√
2
T

)n+1−2α′

κ0−
α′

λ
γ(T ). (5.16)

In case α < n+1
n−1 , i.e., for n+ 1− 2α′ < 0, the equation

g(T ) =
1

λα′

( 1√
2
T

)n+1−2α′

κ0 −
α′

λ
γ(T ) = 0 (5.17)

has a unique positive root T = T0 > 0 because

g1(T ) =
1

λα′

( 1√
2
T

)n+1−2α′

κ0

is a positive, continuous, strictly decreasing function on the interval (0,+∞)
satisfying lim

T→0
g1(T ) = +∞ and lim

T→+∞
g1(T ) = 0, and the function γ(T ),

T > 0, is, by virtue of (5.9), (5.14) and the fact that F |D∞ > 0, positive,
continuous and decreasing with lim

T→+∞
γ(T ) > 0. Moreover, g(T ) < 0 for

T > T0, and g(T ) > 0 for 0 < T < T0. Consequently, for T > T0, the
right-hand side of (5.16) is negative, but this is impossible. The obtained
contradiction proves that if the conditions (5.1), (5.2) and (5.3) are fulfilled,
the problem (1.1), (1.2) is not globally solvable in the classW 1

2 . Incidentally,
we have obtained an estimate of T when the problem (1.1), (1.2) (which is,
as shown in the previous section, locally solvable) has a strong generalized
solution of the class W 1

2 in the domain DT . The estimate is T ≤ T0, where
T0 is the unique positive root of the equation (5.17).

6. The Global Solvability of the Problem (1.1), (1.2)
in the Class W 2

2

Below, in considering the problem (1.1), (1.2) we will restrict ourselves
to the case of three spatial variables, i.e., n = 3. The increase of the
smoothness of the solution of the problem (1.1), (1.2) allows us to widen the
interval (5.1) in which the exponent α varies.

Instead of the conditions (1.3) and (1.4) imposed on the function f , we
consider the following conditions:

f ∈ C1(R), f(0) = 0, |f ′(u)| ≤M(1 + |u|2), u ∈ R, (6.1)

g(u) =

u∫

0

f(τ) dτ, inf
u∈R

g(u) > −∞, g(u) ≥ −M∗u
2, u ∈ R, (6.2)

where M,M∗ = const > 0.
Obviously, the function f(u) = m2u + u3 satisfies the conditions (6.1)

and (6.2) [58]. At the same time, for n = 3, the interval of variation (5.1)
of the exponent α is 1 < α < 2.
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Assume
◦
W k

2(DT , ST ) :=
{
W ∗

2 (DT ) : u|ST = 0
}
, where W k

2 (DT ) is the
well-known Sobolev’s space [49, p. 56] consisting of the elements L2(DT )
having generalized derivatives up to the order k, inclusive, from L2(DT ),
while the equality u|ST = 0 is understood in the sense of the trace theory
[49, p. 70].

Definition 6.1. Let F ∈
◦
W 1

2(DT , ST ). A function u = u(x, t) is said to
be a solution of the problem (1.1), (1.2) of the class W 2

2 in the domain DT , if

u ∈
◦
W 2

2(DT , ST ) and it satisfies both the equation (1.1) almost everywhere
in the domain DT and the boundary condition (1.2) in the sense of the trace

theory (and hence u ∈
◦
W 1

2(DT , ST )).

Definition 6.2. Let F ∈
◦
W 1

2(DT , ST ). The function u ∈
◦
W 2

2(DT , ST )
is said to be a strong generalized solution of the problem (1.1), (1.2) of the
class W 2

2 in the domain DT if there exists a sequence of functions un ∈
C∞(DT ) satisfying the boundary condition (1.2) and

lim
n→∞

‖un − u‖W 2
2 (DT ) = 0, lim

n→∞
‖Fn − F‖W 1

2 (DT ) = 0, (6.3)

where

Fn = Lfun and suppFn ∩ ST = ∅. (6.4)

Since f(0) = 0, it is evident that Fn ∈
◦
W 1

2(DT , ST ).

Remark 6.1. A strong generalized solution of the problem (1.1), (1.2)
of the class W 2

2 in the sense of Definition 6.2 is likewise a solution of the
problem (1.1), (1.2) of the class W 2

2 since, as it will be shown below, the
first equality of (6.3) implies that f(un) → f(u) in L2(DT ). On the other
hand, we will show the solvability of the problem (1.1), (1.2) in the sense of
Definition 6.2 and the uniqueness of the solution of the problem in the sense
of Definition 6.1. Obviously, this implies the uniqueness of the solution of
the problem in the sense of Definition 6.2, and hence the equivalence of
these definitions.

Definition 6.3. Let F ∈ L2,loc(D∞) and F ∈
◦
W 1

2(DT , ST ) for any
T > 0. We say that the problem (1.1), (1.2) is globally solvable in the class
W 2

2 if for any T > 0 this problem has a solution of the class W 2
2 in the

domain DT in the sense of Definition 6.1.

Lemma 6.1. Let n = 3 and the conditions (6.1), (6.2) and F ∈
◦
W 1

2(DT , ST ) be fulfilled. Then for every strong generalized solution u of

the problem (1.1), (1.2) of the class W 2
2 in the domain DT in the sense of

Definition 6.2 the a priori estimate

‖u‖W 2
2 (DT ) ≤
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≤ c
[
1 + ‖F‖L2(DT ) + ‖F‖3

L2(DT ) + ‖F‖W 1
2 (DT ) exp

(
c‖F‖2L2(DT )

)]
(6.5)

is valid with a positive constant c not depending on u and F .

Proof. By Definition 6.2 of a strong generalized solution u of the problem
(1.1), (1.2) of the class W 2

2 in the domain DT , there exists a sequence of
functions un ∈ C∞(DT ) satisfying the conditions (1.2), (6.3) and (6.4) and,
hence,

Lfun = Fn, un ∈ C∞(DT ), (6.6)

un
∣∣
ST

= 0. (6.7)

The proof of the above lemma runs in a few steps.
10. Putting Ωτ := D∞ ∩ {t = τ}, we first show the validity of the a

priori estimate
∫

Ωt

[
u2
n+

(∂un
∂t

)2

+
3∑

i=1

(∂un
∂xi

)2
]
dx≤c1

(
1+

∫

Dt

F 2
n dx dt

)
, 0<t≤T, (6.8)

with a positive constant c1 not depending on un and Fn. Indeed, multiplying
both parts of the equation (6.6) by ∂un

∂t and integrating over the domain
Dτ , 0 < τ ≤ T , with regard for (6.2) we obtain

1

2

∫

Dτ

∂

∂t

(∂un
∂t

)2

dx dt−
∫

Dτ

∆un
∂un
∂t

dx dt+

∫

Dτ

∂

∂t
g(un) dx dt =

=

∫

Dτ

Fn
∂un
∂t

dx dt

(
∆ =

3∑

i=1

∂2

∂x2
i

)
. (6.9)

Denote by ν = (ν1, ν2, ν3, ν0) the unit vector of the outer normal to ST \
{(0, 0, 0, 0)}. The integration by parts, with regard for g(0) = 0 from (6.2),
the inequality (2.7) and ν|Ωτ = (0, 0, 0, 1), provides us with

∫

Dτ

∂

∂t

(∂un
∂t

)2

dx dt =

=

∫

∂Dτ

(∂un
∂t

)2

ν0 ds =

∫

Ωτ

(∂un
∂t

)2

dx+

∫

Sτ

(∂un
∂t

)2

ν0 ds,

∫

Dτ

∂

∂t
(u2
n) dx dt =

∫

∂Dτ

u2
nν0 ds =

∫

Ωτ

u2
n dx,

∫

Dτ

∂

∂t
g(un) dx dt =

∫

∂Dτ

g(un)ν0 ds =

∫

Ωτ

g(un) dx,

∫

Dτ

∂2un
∂x2

i

∂un
∂t

dx dt =

∫

∂Dτ

∂un
∂xi

∂un
∂t

νi ds−
1

2

∫

Dτ

∂

∂t

(∂un
∂xi

)2

dx dt =
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=

∫

∂Dτ

∂un
∂xi

∂un
∂t

νi ds−
1

2

∫

∂Dτ

(∂un
∂xi

)2

ν0 ds =

=

∫

∂Dτ

∂un
∂xi

∂un
∂t

νi ds−
1

2

∫

Sτ

(∂un
∂xi

)2

ν0 ds−
1

2

∫

Ωτ

(∂un
∂xi

)2

dx, i = 1, 2, 3,

whence by virtue of (6.9) we have
∫

Dτ

Fn
∂un
∂t

dx dt =

=

∫

Sτ

1

2ν0

[ 3∑

i=1

(∂un
∂xi

ν0 −
∂un
∂t

νi

)2

+
(∂un
∂t

)2(
ν2
0 −

3∑

j=1

ν2
j

)]
ds+

1

2

∫

Ωτ

[(∂un
∂t

)2

+

3∑

i=1

(∂un
∂xi

)2
]
dx+

∫

Ωτ

g(un) dx. (6.10)

Since Sτ is a characteristic surface, we have

(
ν2
0 −

3∑

j=1

ν2
j

)∣∣∣∣
Sτ

= 0. (6.11)

Taking into account that
(
ν0

∂
∂xi

− νi
∂
∂t

)
, i = 1, 2, 3, is an inner differ-

ential operator on Sτ , by virtue of (6.7) we get
(∂un
∂xi

ν0 −
∂un
∂t

νi

)∣∣∣∣
Sτ

= 0, i = 1, 2, 3. (6.12)

Bearing in mind (6.11) and (6.12), we rewrite the equality (6.10) in the
form

∫

Ωτ

[(∂un
∂t

)2

+

3∑

i=1

(∂un
∂xi

)2
]
dx+ 2

∫

Ωτ

g(un) dx =

= 2

∫

Dτ

Fn
∂un
∂t

dx dt. (6.13)

By (6.2), there exists a number M0 = const ≥ 0 such that

g(u) ≥ −M0, u ∈ R. (6.14)

Using (6.14) and the Cauchy inequality 2Fn
∂un

∂t ≤ F 2
n +

(
∂un

∂t

)2
, from

(6.13) we find that
∫

Ωτ

[(∂un
∂t

)2

+

3∑

i=1

(∂un
∂xi

)2
]
dx ≤

≤ 2M0 mes Ωτ +

∫

Dτ

(∂un
∂t

)2

dx dt+

∫

Dτ

F 2
n dx dt. (6.15)
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From the equalities un|Sτ = 0 and un(x, τ) =
τ∫
|x|

∂un(x,t)
∂t dt, x ∈ Ωτ ,

0 < τ ≤ T , in a standard way we obtain the inequality [49, p. 63]
∫

Ωτ

u2
n dx ≤ T

∫

Dτ

(∂un
∂t

)2

dx dt, 0 < τ ≤ T. (6.16)

Summing the inequalities (6.15) and (6.16), we get

∫

Ωτ

[
u2
n +

(∂un
∂t

)2

+

3∑

i=1

(∂un
∂xi

)2
]
dx ≤

≤ 8

3
πτ3M0 + (1 + T )

∫

Dτ

(∂un
∂t

)2

dx dt+

∫

Dτ

F 2
n dx dt. (6.17)

Introduce the notation

w(δ) :=

∫

Ωδ

[
u2
n +

(∂un
∂t

)2

+
3∑

i=1

(∂un
∂xi

)2
]
dx.

Then by virtue of (6.17) we have

w(δ) ≤ (1 + T )

∫

Ωδ

[
u2
n +

(∂un
∂t

)2

+

3∑

i=1

(∂un
∂xi

)2
]
dx dt+

+
8

3
πT 3M0 +

∫

Ωδ

F 2
n dx dt =

= (1 + T )

δ∫

0

w(σ) dσ +
8

3
πT 3M0 + ‖Fn‖2L2(Dδ), 0 < δ ≤ T. (6.18)

From (6.18), taking into account that ‖Fn‖2L2(Dδ) as a function of δ is

nondecreasing, by Gronwall’s lemma [15, p. 13] we obtain

w(δ) ≤
[8

3
π T 3M0 + ‖Fn‖2L2(Dδ)

]
exp(1 + T )δ ≤ c1

(
1 + ‖Fn‖2L2(DT )

)
,

whence for t = T it follows the inequality (6.8) with the constant

c1 = max
(8

3
π T 3M0 exp(1 + T )T, exp(1 + T )T

)
.

20. By (6.4), we have suppFn ∩ ST = ∅. Therefore there exists a
positive number δn < T such that

suppFn ⊂ DT,δn :=
{

(x, t) ∈ DT : t > |x|+ δn

}
. (6.19)

At this step we will show that

un
∣∣
DT \DT,δn

= 0. (6.20)
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Indeed, let (x0, t0) ∈ DT \ DT,δn . Introduce into consideration the
domain Dx0,t0 :=

{
(x, t) ∈ R

4 : |x| < t < t0 − |x − x0|
}

which is bounded

from below by the surface ST and from above by the boundary S−x0,t0 :={
(x, t) ∈ R

4 : t = t0 − |x − x0|
}

of the light cone of the past G−x0,t0 :={
(x, t) ∈ R

4 : t < t0 − |x − x0|
}

with the vertex at the point (x0, t0). By
(6.19), we have

Fn
∣∣
Dx0,t0

= 0, (x0, t0) ∈ DT \DT,δn . (6.21)

Let Dx0,t0,τ := Dx0,t0 ∩ {t < τ} and Ωx0,t0,τ := Dx0,t0 ∩ {t = τ}, 0 <
τ < t0. We have ∂Dx0,t0,τ = S1,τ ∪S2,τ ∪S3,τ , where S1,τ = ∂Dx0,t0,τ ∩S∞,

S2,τ = ∂Dx0,t0,τ ∩ S−x0,t0 , S3,τ = ∂Dx0,t0,τ ∩ Ωx0,t0,τ .

In the same way as in obtaining the equality (6.10), multiplying both

parts of the equality (6.6) by ∂un

∂t , integrating over the domain Dx0,t0,τ ,

0 < τ < t0 and taking into account (6.7) and (6.21), we obtain

0 =

∫

S1,τ∪S2,τ

1

2ν0

[ 3∑

i=1

(∂un
∂xi

ν0−
∂un
∂t

νi

)2

+
(∂un
∂t

)2(
ν2
0−

3∑

j=1

ν2
j

)]
ds+

+

∫

S2,τ∪S3,τ

g(un)ν0 ds+
1

2

∫

S3,τ

[(∂un
∂t

)2

+

3∑

j=1

(∂un
∂xi

)2
]
dx. (6.22)

By (6.7) and (6.11), bearing in mind that the surface S2,τ is, just like

S1,τ , a characteristic one and hence
(
ν2
0 −

∑3
j=1 ν

2
j

)∣∣
S1,τ∪S2,τ

= 0, and

ν0
∣∣
S1,τ

= − 1√
2
< 0, ν0

∣∣
S2,τ

=
1√
2
> 0, ν0

∣∣
S3,τ

= 1,

(∂un
∂xi

ν0 −
∂un
∂t

νi

)∣∣∣∣
S1,τ

= 0,
(∂un
∂xi

ν0 −
∂un
∂t

νi

)2
∣∣∣∣
S2,τ

≥ 0, i = 1, 2, 3,

we have
∫

S1,τ∪S2,τ

1

2ν0

[ 3∑

i=1

(∂un
∂xi

ν0−
∂un
∂t

νi

)2

+
(∂un
∂t

)2(
ν2
0−

3∑

j=1

ν2
j

)]
ds≥0. (6.23)

Taking into account (6.2) and (6.23), the equality (6.11) yields

∫

S3,τ

[(∂un
∂t

)2

+

3∑

i=1

(∂un
∂xi

)2
]
dx ≤M1

∫

S2,τ∪S3,τ

u2
n ds, 0 < τ < t0. (6.24)

Since un ∈ C∞(DT ), ν0|S2,τ∪S3,τ ≥ 0, |ν0| ≤ 1, by virtue of (6.2) we can
define a nonnegative constant M1 independent of the parameter τ by the
equality

M1 = 2M∗ = const > 0. (6.25)
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Since un|ST = 0, where ST : t = |x|, t ≤ T , we have

un(x, t) =

t∫

|x|

∂un(x, σ)

∂t
dσ, (x, t) ∈ S2,τ ∪ S3,τ . (6.26)

Reasoning in a standard way [49, p. 63], we get from (6.26) that
∫

S2,τ∪S3,τ

u2
n ds ≤ 2t0

∫

Dx0,t0,τ

(∂un
∂t

)2

dx dt, 0 < τ ≤ t0. (6.27)

Putting v(τ) =
∫
S3,τ

[(
∂un

∂t

)2
+

3∑
i=1

(
∂un

∂xi

)2]
dx, from (6.24) and (6.27) we

easily obtain

v(τ) ≤ 2t0M1

τ∫

0

v(δ) dδ, 0 < τ ≤ t0,

whence by (6.25) and Gronwall’s lemma it immediately follows that v(τ) =
0, 0 < τ ≤ t0, and hence ∂un

∂t = ∂un

∂x1
= ∂un

∂x2
= ∂un

∂x3
= 0 in the domain Dx0,t0 .

Therefore un|Dx0,t0
= const, and taking into account the homogeneous

boundary condition (6.7), we find that un|Dx0,t0
= 0 ∀ (x0, t0) ∈ DT \DT,δn .

Thus we have proved the equality (6.20).
30. We will now proceed directly to proving the a priori estimate (6.5).

By (6.20), extending the values of the function un from the domain DT into
the layer ΣT :=

{
(x, t) ∈ R

4 : x ∈ R
3, 0 < t < T

}
by zero and preserving

the notation, we obtain

un ∈ C∞(ΣT ), un
∣∣
ΣT \DT,δn

= 0. (6.28)

In particular, it follows from (6.28) that un = 0 for |x| ≥ T .
Differentiating the equality (6.6) with respect to the variable xi, we

have

�un,xi = −f ′(un)un,xi + Fn,xi , i = 1, 2, 3, (6.29)

where

un,xi =
∂un
∂xi

, Fn,xi =
∂Fn
∂xi

, � :=
∂2

∂t2
−

3∑

i=1

∂2

∂x2
i

.

Let

E(τ) :=
1

2

3∑

i=1

∫

Ωτ

(
u2
n,xit +

3∑

k=1

u2
n,xixk

)
dx, Ωτ = D∞ ∩ {t = τ}. (6.30)

By virtue of (6.28), in the right-hand side of (6.30) we can replace the
domain Ωτ by the three-dimensional ball Bτ (0, T ) : |x| < T in the plane
t = τ . Therefore, differentiating the equality (6.30) with respect to the
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variable τ and then integrating by parts, with regard for (6.6), (6.28) and
(6.29) we obtain

E′(τ) =
3∑

i=1

∫

Bτ (0,T )

(
un,xitun,xitt +

3∑

k=1

un,xixk
un,xixkt

)
dx =

=

3∑

i=1

∫

Bτ (0,T )

(
un,xittun,xit −

3∑

k=1

un,xixkxk
un,xit

)
dx =

=
3∑

i=1

∫

Bτ (0,T )

(�un,xi)un,xit dx =

=

3∑

i=1

∫

Bτ (0,T )

[
− f ′(un)un,xi + Fn,xi

]
un,xit dx, (6.31)

where Bτ (0, T ) : |x| < T, t = τ .
By (6.1) and Gronwall’s inequality [22, p. 134]

∣∣∣∣
∫
f1f2f3 dx

∣∣∣∣ ≤ ‖f1‖Lp1
‖f2‖Lp2

‖f3‖Lp3

for p1 = 3, p2 = 6, p3 = 2, 1
p1

+ 1
p2

+ 1
p3

= 1, as well as by the Cauchy

inequality, for the right-hand side (6.31) we have the estimate

I =

∣∣∣∣
3∑

i=1

∫

Bτ (0,T )

[
− f ′(un)un,xi + Fn,xi

]
un,xit dx

∣∣∣∣ ≤

≤ 1

2

3∑

i=1

∫

Bτ (0,T )

F 2
n,xi

dx+
1

2

3∑

i=1

∫

Bτ (0,T )

u2
n,xi

dx+

+
3∑

i=1

∫

Bτ (0,T )

∣∣f ′(un)un,xiun,xit

∣∣ dx ≤

≤ 1

2

3∑

i=1

∫

Bτ (0,T )

u2
n,xi

dx+
1

2

3∑

i=1

∫

Bτ (0,T )

F 2
n,xi

dx+

+M
3∑

i=1

∥∥(1 + u2
n)

∥∥
L3(Bτ (0,T ))

‖un,xi‖L6(Bτ (0,T ))‖un,xi‖L2(Bτ (0,T )). (6.32)

According to the theorem of embedding of the spaceW `
m(Ω) into Lp(Ω),

for dim Ω = 3, m = 2, ` = 1, p = 6 [49, p. 84], [48, p. 111] there takes place
the estimate

‖v‖L6((|x|<T )) ≤ c2‖v‖ ◦
W 1

2((|x|<T ))
∀ v ∈

◦
W 1

2

(
(|x| < T )

)
(6.33)
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with a positive constant c2 not depending on v.
There also takes place [49, p. 117]

3∑

i=1

∫

|x|<T

v2
xi
dx ≤ c3

3∑

i,j=1

∫

|x|<T

v2
xixj

dx ∀ v ∈
◦
W 2

2((|x| < T )) (6.34)

with a positive constant c3 not depending on v.
Applying the inequality (6.33) to the functions un and un,xi which,

owing to (6.28), belong to the space
◦
W 1

2((|x| < T )) for fixed t = τ , we
obtain

‖un‖L6(Bτ (0,T )) ≤ c2‖un‖ ◦
W1

2(Bτ (0,T ))
,

‖un,xi‖L6(Bτ (0,T )) ≤ c2‖un,xi‖ ◦
W 1

2(Bτ (0,T ))
.

(6.35)

By (6.8), (6.30) and (6.35), we have
∥∥(1 + u2

n)
∥∥
L3(Bτ (0,T ))

‖un,xi‖L6(Bτ (0,T ))‖un,xit‖L2(Bτ (0,T )) ≤

≤
(

3

√
4

3
π T + ‖un‖2L6(Bτ (0,T ))

)
c2‖un‖ ◦

W 1
2(Bτ (0,T ))

[2E(τ)]1/2 ≤

≤
[

3

√
4

3
π T + c22c1

(
1 + ‖Fn‖2L2(DT )

)]
c2[2E(τ)]1/2[2E(τ)]1/2 ≤

≤ c4
(
1 + ‖Fn‖2L2(DT )

)
E(τ), (6.36)

where

c4 = 2c2
3

√
4

3
π T + 2c32c1.

It follows from (6.8), (6.32), (6.34) and (6.36) that

I ≤ c3E(τ) +
1

2
‖Fn‖2W 1

2 (Bτ (0,T )) + 3c4M
(
1 + ‖F‖2

L2(DT )

)
E(τ). (6.37)

By (6.31) and (6.37), we have

E′(τ) ≤ α(τ)E(τ) + β(τ) ≤ α(τ)E(τ) + β(τ), τ ≤ T. (6.38)

Here
α(τ) = c3 + 3c4M

(
1 + ‖Fn‖2L2(DT )

)
,

β(τ) =
1

2
‖Fn‖2W 1

2 (Bτ (0,T )).
(6.39)

From (6.28) we have E(0) = 0. Therefore, multiplying both parts of
the inequality (6.38) by exp[−α(T )τ ] and integrating, in a standard way we
obtain

E(τ) ≤ eα(T )τ

τ∫

0

e−α(T )σβ(σ) dσ ≤ eα(T )τ

τ∫

0

β(σ) dσ =

=
1

2
eα(T )τ

τ∫

0

‖Fn‖2W 1
2 (Bτ (0,T )) dσ ≤

1

2
eα(T )τ‖Fn‖2W 1

2 (Dτ ) ≤
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≤ 1

2
eα(T )T ‖Fn‖2W 1

2 (DT ), 0 ≤ τ ≤ T. (6.40)

By virtue of (6.6), we have

un,tt = ∆un − f(un) + Fn. (6.41)

It follows from (6.1) that

|f(un)| =
∣∣∣∣

un∫

0

f ′(σ) dσ

∣∣∣∣ ≤M
(
|un|+

1

3
|un|3

)
. (6.42)

Squaring both parts of the equality (6.41) and using (6.42) and the

inequality
( n∑
i=1

ai
)2 ≤ n

n∑
i=1

a2
i , we obtain

∫

Ωτ

u2
n,tt dx ≤

8

9
M2

∫

Bτ (0,T )

|un|6 dx+ 4

∫

Bτ (0,T )

[
(∆un)

2 + 2M2u2
n + F 2

n

]
dx,

whence by virtue of (6.8), (6.35) and the facts that (∆vn)2 ≤ 3
3∑
i=1

u2
n,xixi

and (a+ b)6 ≤ 25(a6 + b6), we find that
∫

Ωτ

u2
n,tt dx ≤

≤M2c62‖uk‖6◦
W1

2(Bτ (0,T ))
+ 24E(τ) + 8M2c1

(
1 + ‖Fn‖2L2(Dτ )

)
+

+4‖Fn‖2L2(Bτ (0,T )) ≤M2c622
5c31

[
1 + ‖Fn‖6L2(Dτ )

]
+

+8c1M
2
(
1 + ‖Fn‖2L2(Dτ )

)
+ 4‖Fn‖2L2(Bτ (0,T )) + 24E(τ). (6.43)

By (6.40), from (6.43) it follows that

∫

DT

u2
n,tt dx dt =

T∫

0

dτ

∫

Ωτ

u2
n,tt dx ≤

≤M2c622
5c31T

[
1 + ‖Fn‖6L2(DT )

]
+ 8c1M

2T
(
1 + ‖Fn‖2L2(DT )

)
+

+4‖Fn‖2L2(DT ) + 12Teα(T )T‖Fn‖2W 1
2 (DT ) ≤

≤ c5 + c6‖Fn‖2L2(DT ) + c7‖Fn‖2L2(DT ) + c8‖Fn‖2W 1
2 (DT ). (6.44)

Here
c5 = M2c622

5c31T + 8c1M
2T, c6 = 8c1M

2T + 4,

c7 = M2c622
5c31T, c8 = 12Teα(T )T .

(6.45)

From (6.8), (6.30), (6.40) and (6.44), we have

‖un‖W 2
2 (DT ) =

T∫

0

dτ×
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×
∫

Ωτ

[
u2
n+

(∂un
∂t

)2

+

3∑

i=1

(∂un
∂xi

)2

+u2
n,tt+

3∑

i=1

u2
n,xit+

3∑

i,k=1

u2
n,xixk

]
dx ≤

≤
T∫

0

c1
(
1 + ‖Fn‖2L2(Dτ )

)
dτ +

∫

Dτ

u2
n,tt dx dt+

T∫

0

2E(τ) dτ ≤

≤ c1T + c1T‖F‖2L2(DT ) + c5 + c6‖Fn‖2L2(DT )+

+c7‖Fn‖6L2(DT ) + c8‖Fn‖2W 1
2 (DT ) + Teα(T )T‖Fn‖2W 1

2 (DT ) ≤
≤ c9 + c10‖Fn‖2L2(DT ) + c11‖Fn‖6L2(DT ) + c12‖Fn‖2W 1

2 (DT ). (6.46)

By (6.45) we obtain

c9 = c1T +M2c622
5c31T + 8c1M

2T, c10 = c1T + 8c1M
2T + 4,

c11 = M2c622
5c31T, c12 = 13Teα(T )T .

(6.47)

Taking into account the obvious inequality
( n∑
i=1

|ai|
)1/2 ≤

n∑
i=1

|ai|1/2

along with (6.39) and (6.47), from (6.46) we get

‖un‖W 2
2 (DT ) ≤ c

[
1 + ‖Fn‖L2(DT ) + ‖Fn‖3L2(DT )+

+ ‖F‖W 1
2 (DT ) exp

(
c‖Fn‖2L2(DT )

)]
, (6.48)

where the positive constant c does not depend on un and Fn. By virtue of
(6.3), passing in the inequality (6.48) to limit as n → ∞, we obtain the a
priori estimate (6.5).

Thus Lemma 6.1 is proved completely. �

Remark 6.2. Note that when deducing the a priori estimate (6.5), we
have used essentially the fact that the spatial dimension of the equation (1.1)
was assumed to be three (see, e.g., the equation (6.33)). Moreover, the same
fact will be used below in proving the compactness of the corresponding to
f(u) nonlinear Nemytski operator.

Remark 6.3. Before we proceed to proving the global solvability of the
nonlinear problem (1.1), (1.2) in the class W 2

2 on the basis of the a priori
estimate (6.5), we will consider the same issue in the linear case, when f = 0,
i.e., for the problem

L0u(x, t) = F (x, t), (x, t) ∈ DT

(
L := �

)
, (6.49)

u(x, t) = 0, (x, t) ∈ ST . (6.50)

In this case, for F ∈
◦
W 1

2(DT , ST ) we introduce the notion of a strong

generalized solution u ∈
◦
W 2

2(DT , ST ) of the problem (6.49), (6.50) of the
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class W 2
2 in the domain DT for which there exists a sequence of functions

un ∈ C∞(DT ) satisfying the condition (6.50) and

lim
n→∞

‖un − u‖W 2
2 (DT ) = 0, lim

n→∞
‖L0un − F‖W 1

2 (DT ) = 0. (6.51)

Remark 6.4. Following the proof of the a priori estimate (6.5), it is not
difficult to see that for f = 0, i.e., for a strong generalized solution of the
linear problem (6.49), (6.50) of the class W 2

2 in the domain DT the estimate

‖u‖W 2
2 (DT ) ≤ c0‖F‖W 1

2 (DT ) (6.52)

is valid with a positive constant c0 independent of u and F .

Since the space C∞0 (DT , ST ) :=
{
F ∈ C∞(DT ) : suppF ∩ ST = ∅

}

of infinitely differentiable in DT functions vanishing in some neighborhood

(its own for each such function) of the set ST is dense in
◦
W 1

2(DT , ST ),

for a function F ∈
◦
W 1

2(DT , ST ) there exists a sequence of functions Fn ∈
C∞0 (DT , ST ) such that lim

n→∞
‖Fn − F‖W 1

2 (DT ) = 0. For fixed n, extending

the function Fn from the domain DT into the layer ΣT :=
{
(x, t) ∈ R

4 :

0 < t < T
}

by zero and leaving the same notation, we have Fn ∈ C∞(ΣT ),
for which the support suppFn ⊂ D∞ : t > |x|. Denote by un a solution of

the following linear Cauchy problem: L0un = Fn, un|t=0 = 0, ∂un

∂t

∣∣
t=0

= 0
in the layer ΣT which, as is known, exists, is unique and belongs to the
space C∞(ΣT ) [17, p. 192]. Note that since suppFn ⊂ D∞ and un|t=0 =
∂un

∂t

∣∣
t=0

= 0, taking into account the geometry of the domain of dependence
of solution of the linear wave equation, we have suppun ⊂ D∞ [17, p. 191].
Leaving for the restriction of the function un to the domain DT the same
notation, it can be easily seen that un ∈ C∞(DT ), un|ST = 0, and owing to
the estimate (6.52) we have

‖un − u‖W 2
2 (DT ) ≤ c0‖Fn − F‖W 1

2 (DT ). (6.53)

Since the sequence {Fn} is fundamental in
◦
W 1

2(DT , ST ), by virtue of
(6.53) the sequence {un} will be fundamental in the complete space

◦
W 2

2(DT , ST ) :=
{
u ∈ W 2

2 (DT ) : u
∣∣
ST

= 0
}
.

Therefore there exists a function u ∈
◦
W 2

2(DT , ST ) such that lim
n→∞

‖un −
u‖W 2

2 (DT ) = 0, and hence, due to the fact that L0un = Fn → F in the space

W 1
2 (DT ), the function u will, by Remark 6.3, be a strong generalized solu-

tion of the problem (6.49), (6.50) of the classW 2
2 in the spaceDT . According

to what has been said, for the solution u of the problem (6.49), (6.50) we

can write u = L−1
0 F , where L−1

0 :
◦
W 1

2(DT , ST ) →
◦
W 2

2(DT , ST ) is a linear
continuous operator whose norm admits, by virtue of (6.52), the estimate

‖L−1
0 ‖ ◦

W 1
2(DT ,ST )→

◦
W 2

2(DT ,ST )
≤ c0. (6.54)
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Remark 6.4. If the condition (6.1) is fulfilled, the Nemytski opera-

tor N :
◦
W 2

2(DT , ST ) →
◦
W 1

2(DT , ST ) acting by the formula Nu = −f(u)
is continuous and compact. This assertion is a consequence of the fol-
lowing facts: (1) owing to DT ⊂ R

4 for n = 4, the embedding operator

I1 :
◦
W 2

2(DT , ST ) → Lq(DT ) is continuous and compact for every q ≥ 1 [49,

p. 84]; (2) the embedding operator I2 :
◦
W 1

2(DT , ST ) → Lp(DT ) is continu-
ous for 1 < p < 4 [49, p. 83]; (3) the nonlinear Nemytski operator H acting
by the formula Hu = h(x, u), where the function h = h(x, ξ) possesses the
Carathéodory property, is continuous from the space Lp(DT ) into Lr(DT ),

p ≥ 1, r ≥ 1, if and only if |h(x, ξ)| ≤ d(x) + δ|ξ|p/r ∀ ξ ∈ (−∞,∞), where
d ∈ Lr(DT ), and δ = const ≥ 0 [48, p. 66]; (4) according to the condition
(6.1), the inequality

|f(u)| ≤M + 2M |u|3, u ∈ R,

holds, and hence according to the above-said, if un → u in the space
◦
W 1

2(DT , ST ), then f(un) → f(u) in the space L2(DT ) and f ′(un) → f ′(u)

in the space L6(DT ); (5) if u ∈
◦
W 2

2(DT , ST ), then f ′(u) ∈ Lq(DT ) for

q ≥ 1, and since ∂u
∂xi

∈ W 1
2 (DT ), therefore ∂u

∂xi
∈ Lp(DT ) for 1 < p < 4,

and, in particular, ∂u
∂xi

∈ L3(DT ); (6) if fi ∈ Lpi(DT ), i = 1, 2, 1
p1

+ 1
p2

= 1
r ,

pi > 1, r > 1, then f1f2 ∈ Lr(DT ) [58, p. 45]; in particular, for p1 = 6,

p2 = 3, r = 2 (1/6 + 1/3 = 1/2), f1 = f ′(u), f2 = ∂u
∂xi

, u ∈
◦
W 2

2(DT , ST ),

we obtain ∂Nu
xi

= −f ′(u) ∂u
∂xi

∈ L2(DT ), i = 1, 2, 3; analogously, we have

∂Nu
∂t ∈ L2(DT ), and hence Nu ∈ W 1

2 (DT ) if u ∈
◦
W 2

2(DT , ST ). We will

show below that in fact Nu ∈
◦
W 1

2(DT , ST ).

Indeed, let X be some bounded subset of the space
◦
W 2

2(DT , ST ), and
let {un} be an arbitrary subset of elements from X . Since the space
◦
W 2

2(DT , ST ) is compactly embedded into the space
◦
W 1

2(DT , ST ) [48, p. 183],

there exist a subsequence {unk
} and a function u ∈

◦
W 1

2(DT , ST ) such that

lim
k→∞

‖unk
− u‖L2(DT ) = lim

k→∞

∥∥∥unk

∂t
− ∂u

∂t

∥∥∥
L2(DT )

=

= lim
k→∞

∥∥∥∂unk

∂xi
− ∂u

∂xi

∥∥∥
L2(DT )

= 0. (6.55)

On the other hand, according to what has been said there exists a subse-
quence of the sequence {unk

} (with the same notation) such that
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lim
k→∞

∥∥f ′(unk
)− v0

∥∥
L6(DT )

= 0, lim
k→∞

∥∥∥∂unk

∂xi
− vi

∥∥∥
L2(DT )

= 0,

i = 1, 2, 3,

lim
k→∞

∥∥f(unk
)− v

∥∥
L2(DT )

= 0, lim
k→∞

∥∥∥∂unk

∂t
− v4

∥∥∥
L3(DT )

= 0,

(6.56)

where v0, v, vi, i = 1, . . . , 4, are some functions respectively from the spaces
L6(DT ), L2(DT ) for v0, v, and L3(DT ) for vi. Using the definition of
generalized derivatives due to Sobolev, from (6.55) and (6.56), reasoning in
a standard way, we obtain

v0 = f ′(u), v = f(u), vi =
∂u

∂xi
, i = 1, 2, 3, v4 =

∂u

∂t
. (6.57)

Let now show that

lim
k→∞

∥∥∥∂Nunk

∂xi
− ∂Nu

∂xi

∥∥∥
L2(DT )

= 0, i = 1, 2, 3,

lim
k→∞

∥∥∥∂Nunk

∂t
− ∂Nu

∂t

∥∥∥
L2(DT )

= 0.

(6.58)

Indeed, using Hölder’s inequality for p = 3, q = 3/2 (1/p + 1/q = 1),
we will have ∥∥∥∂Nunk

∂xi
− ∂Nu

∂xi

∥∥∥
L2(DT )

=

=

∫

DT

(
f ′(unk

)
∂unk

∂xi
− f ′(u)

∂u

∂xi

)2

dx dt =

=

∫

DT

[(
f ′(unk

)− f ′(u)
) ∂unk

∂xi
+ f ′(u)

(∂unk

∂xi
− ∂u

∂xi

)]2

dx dt ≤

≤ 2

∫

DT

(
f ′(unk

)− f ′(u)
)2

(∂unk

∂xi

)2

dx dt+

+2

∫

DT

(
f ′(u)

)2
(∂unk

∂xi
− ∂u

∂xi

)2

dx dt ≤

≤ 2
∥∥∥
(
f ′(unk

)− f ′(u)
)2

∥∥∥
L3(DT )

∥∥∥
(∂unk

∂xi

)2∥∥∥
L3/2(DT )

+

+2
∥∥(f ′(u))2

∥∥
L3(DT )

∥∥∥
(∂unk

∂xi
− ∂u

∂xi

)2∥∥∥
L3/2(DT )

=

= 2
∥∥f ′(unk

)− f ′(u)
∥∥2

L6(DT )

∥∥∥∂unk

∂xi

∥∥∥
2

L3(DT )
+

+2
∥∥(f ′(u))

∥∥2

L6(DT )

∥∥∥∂unk

∂xi
− ∂u

∂xi

∥∥∥
2

L3(DT )
. (6.59)

By virtue of (6.56), the sequence
{∥∥∂unk

∂xi

∥∥2

L3(DT )

}
is bounded. There-

fore from (6.59), in view of (6.56) and (6.57), there follow the first three
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equalities from (6.58) for i = 1, 2, 3. The last equality from (6.58) is proved
analogously. Thus the fact that Nunk

→ Nu in the space W 1
2 (DT ) follows

directly from (6.56), (6.57) and (6.58). So we have proved that the oper-

ator N from Remark 6.4 is compact, acting from the space
◦
W 2

2(DT , ST )
to the space W 1

2 (DT ). This implies that this operator is also continuous
since the above-mentioned spaces, being the Hilbert ones, are reflexive [48,

p. 182]). Finally, the fact that the image N (
◦
W 2

2(DT , ST )) is actually a

subspace of the space
◦
W 2

2(DT , ST ) follows from the following reasoning. If

u ∈
◦
W 2

2(DT , ST ), then there exists a sequence un ∈
◦
C2(DT , ST ) :=

{
u ∈

C2(DT ) : u|ST = 0
}

such that un → u in the space
◦
W 2

2(DT , ST ). But,

according to the above-said, Nun → Nu in the space W 1
2 (DT ), and since

Nun = −f(un) ∈
◦
C2(DT , ST ) ⊂

◦
W 1

2(DT , ST ) (recall that f(0) = 0 by the

condition (6.1)), therefore taking into account that the space
◦
W 1

2(DT , ST )

is complete, we obtain N (
◦
W 2

2(DT , ST )) ⊂
◦
W 1

2(DT , ST ), and hence the op-

erator N :
◦
W 2

2(DT , ST ) →
◦
W 1

2(DT , ST ) is continuous and compact.

Remark 6.5. As is mentioned in Remark 6.1, from the first equality
(6.3) it follows that lim

n→∞
‖f(un) − f(u)‖L2(DT ) = 0. The latter is a direct

consequence of the assertion we formulated in Remark 6.4. From this rea-

soning it immediately follows that if F ∈
◦
W 2

2(DT , ST ), then the function

u ∈
◦
W 2

2(DT , ST ) is, by virtue of (6.54), a strong generalized solution of the
problem (1.1), (1.2) of the class W 2

2 if and only if this function is a solution
of the functional equation

u = L−1
0

(
− f(u) + F

)
(6.60)

in the space
◦
W 2

2(DT , ST ).

We rewrite the equation (6.60) in the form

u = Au := L−1
0 (Nu+ F ), (6.61)

where the operator N :
◦
W 2

2(DT , ST ) →
◦
W 1

2(DT , ST ) is, by Remark 6.5,
continuous and compact, and consequently, owing to (6.54), the operator

A :
◦
W 2

2(DT , ST ) →
◦
W 1

2(DT , ST ) is likewise continuous and compact. At
the same time, by Lemma 6.1, for any parameter τ ∈ [0, 1] and every solu-

tion u ∈
◦
W 2

2(DT , ST ) of the equation u = τAu with the parameter τ the
following a priori estimate is valid:

‖u‖W 2
2 (DT ) ≤

≤ c
[
1+τ‖F‖L2(DT )+τ

3‖F‖3L2(DT )+τ‖F‖W 1
2 (DT ) exp

(
cτ2‖F‖2L2(DT )

)]
≤
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≤ c
[
1 + ‖F‖L2(DT ) + ‖F‖3

L2(DT ) + ‖F‖W 1
2 (DT ) exp

(
c‖F‖2L2(DT )

)]
=

= C0(c, F ),

where C0 = C0(c, F ) is a positive constant not depending on u and the
parameter τ .

Therefore, by the Leray–Schauder theorem [66, p. 375] the equation
(6.61) and hence the problem (1.1), (1.2) has at least one strong generalized
solution of the class W 2

2 in the domain DT . Thus, by Remark 6.1 and
Definitions 6.1, 6.2 and 6.3, the following theorem is valid.

Theorem 6.1. Let n = 3, F ∈ L2,loc(D∞) and F ∈
◦
W 1

2(DT , ST ) for

any T > 0. Then the problem (1.1), (1.2) is globally solvable in the class

W 2
2 , i.e., for any T > 0 this problem has a solution of the class W 2

2 in the

domain DT in the sense of Definition 6.1.

Assume

◦
W k

2,loc(D∞, S∞) =
{
v ∈ L2,loc(D∞) : v

∣∣
DT

∈
◦
W k

2(DT , ST ) ∀T > 0
}
.

In the next section we will prove the uniqueness of solution of the prob-
lem (1.1), (1.2) of the class W 2

2 in the sense of Definition 6.1. This circum-
stance along with Theorem 6.1 allows us to conclude that the theorem below
is valid.

Theorem 6.2. Let n = 3, F ∈
◦
W 1

2,loc(D∞, S∞). Then the problem

(1.1), (1.2) has in the light cone D∞ of future a global solution u from the

space
◦
W 1

2,loc(DT , ST ) which satisfies the equation (1.1) almost everywhere

in the domain D∞ as well as the boundary condition (1.2) in the sense of

the trace theory.

7. The Uniqueness of a Solution of the Problem (1.1), (1.2)
in the Class W 2

2

Lemma 7.1. Let n = 3 and the condition (6.1) be fulfilled. Then the

problem (1.1), (1.2) cannot have more than one solution of the class W 2
2 in

the domain DT in the sense of Definition 1.1.

Proof. Let u1 and u2 be two solutions of the problem (1.1), (1.2) of the class
W 2

2 in the domain DT in the sense of Definition 6.1. Then for the difference
u = u2 − u1 we have

∂2u

∂t2
−∆u = −

(
f(u2)− f(u1)

)
, (7.1)

u, u1, u2 ∈
◦
W 2

2(DT , ST ). (7.2)
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Multiplying both parts of the equality (7.1) by ut and integrating over
the domain Dτ , just as in obtaining (6.13) we have

∫

Ωτ

[
u2
t +

3∑

i=1

u2
xi

]
dx = −2

∫

Dτ

(
f(u2)− f(u1)

)
ut dx dt, 0 < τ ≤ T. (7.3)

We estimate the right-hand side of the equality (7.3). By (6.1) we have

∣∣∣∣− 2

∫

Dτ

(
f(u2)− f(u1)

)
ut dx dt

∣∣∣∣ =

= 2

∣∣∣∣
∫

Dτ

[
(u2 − u1)

1∫

0

f ′
(
u1 + s(u2 − u1)

)
ds

]
ut dx dt

∣∣∣∣ ≤

≤ 2M

∫

Dτ

|u2 − u1|
(
1 + 2|u1|2 + 2|u2|2

)
|ut| dx dt =

= 4M

∫

Dτ

(
|u1|2 + |u2|2

)
|u| |ut| dx dt + 2M

∫

Dτ

|u| |ut| dx dt =

= 4M

τ∫

0

dσ

∫

Ωσ

(
|u1|2 + |u2|2

)
|u| |ut| dx+ 2M

τ∫

0

dσ

∫

Ωσ

|u| |ut| dx. (7.4)

Using Hölder’s inequality for p1 = 3, p2 = 6, p3 = 2 (1/3+1/6+1/2 = 1)
and the Schwarz inequality, we obtain

∫

Ωσ

(
|u1|2 + |u2|2

)
|u| |ut| dx ≤

≤
(
‖u2

1‖L3(Ωσ) + ‖u2
2‖L3(Ωσ)

)
‖u‖L6(Ωσ)‖ut‖L2(Ωσ) =

=
(
‖u1‖2L6(Ωσ) + ‖u2‖2L6(Ωσ)

)
‖u‖L6(Ωσ)‖ut‖L2(Ωσ), 0 < σ ≤ T, (7.5)

∫

Ωσ

|u| |ut| dx ≤ ‖u‖L2(Ωσ) + ‖ut‖L2(Ωσ). (7.6)

By the embedding theorems [49, pp. 69, 78], we have

∥∥v
∣∣
Ωσ

∥∥ ◦
W 1

2(Ωσ)
≤ C(T )‖v‖W 2

2 (DT )

(
dim Ωσ = 3, dimDT = 4

)
,

∥∥v
∣∣
Ωσ

∥∥
L6(Ωσ)

≤ β
∥∥v

∣∣
Ωσ

∥∥ ◦
W 1

2(Ωσ)
≤ βC(T )‖v‖W 2

2 (DT ),
∥∥vt

∣∣Ωσ
∥∥
L2(Ωσ)

≤ C1(T )‖v‖W 2
2 (DT ),

(7.7)

where the positive constants C(T ), C1(T ) and β do not depend on the
parameter σ ∈ (0, T ] and the function v.
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Due to (7.2), from (7.5), (7.6) and (7.7) it follows that
∫

Ωσ

(
|u1|2 + |u2|2

)
|u| |ut| dx ≤ 2M4‖u‖ ◦

W1
2(Ωσ)

‖ut‖L2(Ωσ) ≤

≤M4

(
‖u‖2◦

W1
2(Ωσ)

+ ‖ut‖2L2(Ωσ)

)
= M4

∫

Ωσ

[
u2
t +

3∑

i=1

u2
xi

]
dx, (7.8)

∫

Ωσ

|u| |ut| dx ≤
1

2

(
‖u‖2L2(Ωσ) + ‖ut‖2L2(Ωσ)

)
≤

≤ 1

2

∫

Ωσ

[u2 + u2
t ] dx ≤M5

∫

Ωσ

[
u2
t +

3∑

i=1

u2
xi

]
dx, (7.9)

where

M4 = β3C(T ) max
(
‖u1‖2W 2

2 (DT ), ‖u2‖2W 2
2 (DT )

)
< +∞, M5 = const > 0;

here we have used the fact that in the space
◦
W 1

2(Ωσ) the norm

‖u‖ ◦
W1

2(Ωσ)
=

{ ∫

Ωσ

[
u2 +

3∑

i=1

u2
xi

]
dx

}1/2

is equivalent to the norm [49, p. 62]

‖u‖ =

{ ∫

Ωσ

[ 3∑

i=1

u2
xi

]
dx

}1/2

.

Assuming w(τ) =
∫

Ωσ

[
u2
t +

∑3
i=1 u

2
xi

]
dx and taking into account (7.3),

(7.4), (7.8) and (7.9), we obtain

w(τ) ≤M6

τ∫

0

w(σ) dσ, M6 = const > 0,

whence by Gronwall’s lemma we find that w = 0, i.e., ut = uxi = 0,
i = 1, 2, 3. Consequently, u = const, and since u|ST = 0, therefore u = 0,
i.e., u2 = u1, which proves our lemma. �



CHAPTER 3

Sobolev’s Problem for Multi-Dimensional

Nonlinear Wave Equations in a Conic Domain

of Time Type

1. Statement of the Problem

Consider the nonlinear wave equation of the type

Lλu :=
∂2u

∂t2
−∆u+ λ|u|pu = F, (1.1)

where λ 6= 0 and p > 0 are given real numbers, F = F (x, t) is a given and

u is an unknown real function, ∆ =
n∑
i=1

∂2

∂x2
i
, n ≥ 2.

Let D be a conic domain in the space R
n+1 of the variables x =

(x1, . . . , xn) and t, i.e., D contains, along with the point (x, t) ∈ D, the
whole ray ` : (τx, τt), 0 < τ < ∞. By S we denote the conic surface
∂D. D is assumed to be homeomorphic to the conic domain ω : t > |x|,
and S \ O is a connected n-dimensional manifold of the class C∞, where
O = (0, . . . , 0, 0) is the vertex of S. Assume also that D lies in the half-space
t > 0, and DT :=

{
(x, t) ∈ D : t < T

}
, ST :=

{
(x, t) ∈ S : t ≤ T

}
, T > 0.

In case T = ∞, it is obvious that D∞ = D and S∞ = S.
For the equation (1.1), we consider the problem: find in the domain DT

a solution u(x, t) of that equation according to the boundary condition

u
∣∣
ST

= g, (1.2)

where g is a given real function on ST .
In case the conic manifold S = ∂D is time-oriented, i.e.,

(
ν2
0 −

n∑

i=1

ν2
i

)∣∣∣
S
< 0, ν0

∣∣
S
< 0, (1.3)

where ν = (ν1, . . . , νn, ν0) is the unit vector of the outer normal to S \ O,
and the equation is linear, i.e., for λ = 0, the problem (1.1), (1.2) has been
formulated and investigated by S. L. Sobolev in [63]. Note that in the
case (1.3), the problem (1.1), (1.2) can be considered as a multi-dimensional
version of the second Darboux problem [2, pp. 228, 233] for the nonlinear
equation (1.1).

Below, the condition (1.3) will be assumed to be fulfilled.

56
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Remark 1.1. The embedding operator I : W 1
2 (DT ) → Lq(DT ) is linear,

continuous and compact for 1 < q < 2(n+1)
n−1 , when n > 1 [49, p. 81]. At

the same time, the Nemytski operator K : Lq(DT ) → L2(QT ) acting by
the formula Ku := λ|u|pu is continuous and bounded if q ≥ 2(p + 1) [47,

pp. 349], [48, pp. 66, 67]. Thus if p < 2
n−1 , i.e., 2(p + 1) < 2(n+1)

n−1 , then

there exists a number q such that 1 < 2(p+ 1) ≤ q < 2(n+1)
n−1 and hence the

operator

K0 = KI : W 1
2 (DT ) → L2(DT ) (1.4)

is continuous and compact. In addition, from u ∈ W 1
2 (DT ) it follows that

u ∈ Lp+1(DT ).

As mentioned above, it is assumed that here and in the sequel p > 0.

Definition 1.1. Let F ∈ L2(DT ), g ∈ W 1
2 (ST ) and 0 < p < 2

n−1 . The

function u ∈W 1
2 (DT ) is said to be a strong generalized solution of the prob-

lem (1.1), (1.2) of the classW 1
2 in the domainDT if there exists a sequence of

functions uk ∈ C2(DT ) such that uk → u in the space W 1
2 (DT ), Lλuk → F

in the space L2(DT ), and uk|ST → g in the space W 1
2 (ST ). Besides, the

convergence of the sequence {λ|uk|puk} to the function λ|u|pu in the space
L2(DT ) as uk → u in the space W 1

2 (DT ) follows from Remark 1.1. Note
that since |u|p+1 ∈ L2(DT ) and the domain DT is bounded, the function
u ∈ Lp+1(DT ).

Definition 1.2. Let 0 < p < 2
n−1 , F ∈ L2,loc(D), g ∈ W 1

2,loc(S),

and F ∈ L2(DT ), g ∈ W 1
2 (ST ) for any T > 0. We say that the problem

(1.1), (1.2) is globally solvable in the class W 1
2 if for any T > 0 this problem

has a strong generalized solution of the class W 1
2 in the domain DT .

2. A Priori Estimate of a Solution of the Problem (1.1), (1.2)
in the Class W 1

2

Lemma 2.1. Let λ > 0, 0 < p < 2
n−1 , F ∈ L2(DT ), and g ∈ W 1

2 (ST ).

Then for every strong generalized solution u of the problem (1.1), (1.2) of

the class W 1
2 in the domain DT the a priori estimate

‖u‖W 1
2 (DT ) ≤ c

(
‖F‖L2(DT ) + ‖g‖W 1

2 (ST )

)
(2.1)

is valid with a positive constant c not depending on u and F .

Proof. Let u ∈ W 1
2 (DT ) be a strong generalized solution of the problem

(1.1), (1.2) of the class W 1
2 in the domain DT . Then by Definition 1.1 there

exists a sequence of function uk ∈ C2(DT ) such that

lim
k→∞

‖uk − u‖W 1
2 (DT ) = 0, lim

k→∞
‖Lλuk − F‖L2(DT ) = 0, (2.2)

lim
k→∞

∥∥uk
∣∣
ST
− g‖W 1

2 (ST ) = 0. (2.3)
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Consider the function uk ∈ C2(DT ) as a solution of the problem

Lλuk = Fk, (2.4)

uk
∣∣
ST

= gk. (2.5)

Here

Fk := Lλuk, gk := uk
∣∣
ST
. (2.6)

Multiplying both parts of the equation (2.7) by ∂uk

∂t and integrating

over the domain Dτ :=
{
(x, t) ∈ D : t < τ

}
, 0 < τ ≤ T , we obtain

1

2

∫

Dτ

∂

∂t

(∂uk
∂t

)2

dx dt−
∫

Dτ

∆uk
∂uk
∂t

dx dt+

+
λ

p+ 2

∫

Dτ

∂

∂t
|uk|p+2 dx dt =

∫

Dτ

Fk
∂uk
∂t

dx dt. (2.7)

Assume Ωτ := D ∩ {t = τ}. Clearly, Ωτ = Dτ ∩ {t = τ} for 0 < τ < T .
Then taking into account the equality (2.5) and our reasoning in Chapter
II for (2.8), we integrate the left-hand side (2.7) by parts and obtain

∫

Dτ

Fk
∂uk
∂t

dx dt =

=

∫

Sτ

1

2ν0

[ n∑

i=1

(∂uk
∂xi

ν0 −
∂uk
∂t

νi

)2

+
(∂uk
∂t

)2(
ν2
0 −

n∑

j=1

ν2
j

)]
ds+

+
1

2

∫

Ωτ

[(∂uk
∂t

)2

+
n∑

i=1

(∂uk
∂xi

)2
]
dx+

+
λ

p+ 2

∫

ST

|gk|p+2ν0 ds+
λ

p+ 2

∫

Ωτ

|uk|p+2 dx, (2.8)

where ν = (ν1, . . . , νn, ν0) is the unit vector of the outer normal to ∂Dτ .
By virtue of λ > 0 and (1.3), it follows from (2.8) that

1

2

∫

Ωτ

[(∂uk
∂t

)2

+
n∑

i=1

(∂uk
∂xi

)2
]
dx ≤

≤
∫

Sτ

1

2|ν0|

[ n∑

i=1

(∂uk
∂xi

ν0 −
∂uk
∂t

νi

)2
]
ds+

+
λ

p+ 2

∫

ST

|gk|p+2ν0 ds+

∫

Dτ

Fk
∂uk
∂t

dx dt. (2.9)

Since S is a conic manifold, sup
S\O

|ν0|−1 = sup
S∩{t=1}

|ν0|−1. At the same

time, S \ O is a smooth manifold and S ∩ {t = 1} = ∂Ωτ=1 is compact.
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Therefore, taking into account that ν0 is a continuous function on S \O, we
have

M0 := sup
S\O

|ν0|−1 = sup
S∩{t=1}

|ν0|−1 < +∞, |ν0| ≤ |ν| = 1. (2.10)

Noticing that
(
ν0

∂
∂xi

− νi
∂
∂t

)
, i = 1, . . . , n, is an inner differential op-

erator on ST , by virtue of (2.5) we can easily see that
∫

Sτ

[ n∑

i=1

(∂uk
∂xi

ν0 −
∂uk
∂t

νi

)2
]
ds ≤

∥∥uk
∣∣
ST

∥∥2

W 1
2 (ST )

= ‖gk‖2W 1
2 (ST ). (2.11)

It follows from (2.10) and (2.11) that
∫

Sτ

1

2|ν0|

[ n∑

i=1

(∂uk
∂xi

ν0 −
∂uk
∂t

νi

)2
]
ds ≤ 1

2
M0‖gk‖2W 1

2 (ST ). (2.12)

Taking into account the Cauchy inequality 2Fk
∂uk

∂t ≤ |Fk|2 +
(
∂uk

∂t

)2
,

by virtue of (2.12) from (2.9) we find that
∫

Ωτ

[(∂uk
∂t

)2

+
n∑

i=1

(∂uk
∂xi

)2
]
dx ≤

≤M0‖gk‖2W 1
2 (ST ) +

2

p+ 2

∫

ST

|gk|p+2 ds+

∫

Dτ

(∂uk
∂t

)2

dx dt+

∫

Dτ

F 2
k dx dt.

(2.13)

If t = γ(x) is the equation of the conic surface S, then by (2.5) we have

uk(x, τ) = uk(x, γ(x)) +

τ∫

γ(x)

∂

∂t
uk(x, s) ds =

= gk(x) +

τ∫

γ(x)

∂

∂t
uk(x, s) ds, (x, τ) ∈ Ωτ .

Squaring both parts of the obtained equality, integrating over the do-
main Ωτ and using the Schwarz inequality, we obtain

∫

Ωτ

u2
k dx ≤ 2

∫

Ωτ

g2
k(x, γ(x)) dx + 2

∫

Ωτ

( τ∫

γ(x)

∂

∂t
uk(x, s) ds

)2

dx ≤

≤ 2

∫

Sτ

g2
k ds+ 2

∫

Ωτ

(τ − γ(x))

[ τ∫

γ(x)

(∂uk
∂t

)2

ds

]
dx ≤

≤ 2

∫

Sτ

g2
k ds+ 2T

∫

Ωτ

[ τ∫

γ(x)

(∂uk
∂t

)2

ds

]
dx =
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= 2

∫

Sτ

g2
k ds+ 2T

∫

Dτ

(∂uk
∂t

)2

dx dt. (2.14)

Adding the inequalities (2.13) and (2.14), we get

∫

Ωτ

[
u2
k +

(∂uk
∂t

)2

+

n∑

i=1

(∂uk
∂xi

)2
]
dx ≤

≤ (2T + 1)

∫

Dτ

(∂uk
∂t

)2

dx dt+
λ

p+ 2

∫

ST

|gk|p+2 ds+

+

∫

Dτ

F 2
k dx dt+ (M0 + 2)‖gk‖2W 1

2 (ST ) ≤

≤ (2T + 1)

∫

Dτ

[
u2
k +

(∂uk
∂t

)2

+

n∑

i=1

(∂uk
∂xi

)2
]
dx dt+

+
λ

p+ 2

∫

ST

|gk|p+2 ds+ (M0 + 2)

[ ∫

Dτ

F 2
k dx dt+ ‖gk‖2W 1

2 (ST )

]
. (2.15)

It follows from (2.3), (2.6) and our reasoning in Remark 1.1 that

lim
k→∞

|gk|p+2 ds =

∫

ST

|g|p+2 ds,

and also
∫
ST

|g|p+2 ds ≤ C1‖g‖2W 1
2 (ST )

with a positive constant C1 not de-

pending on g ∈ W 1
2 (ST ). Therefore, putting

w(τ) :=

∫

Ωτ

[
u2
k +

(∂uk
∂t

)2

+

n∑

i=1

(∂uk
∂xi

)2
]
dx (2.16)

from (2.15) we find

w(τ) ≤ (2T+1)

τ∫

0

w(s) ds+
(
M0+

λ

p+ 2
C1+2

)[
‖Fk‖2L2(DT )+‖gk‖2W 1

2 (ST )

]
,

whence by Gronwall’s lemma it follows that

w(τ) ≤
(
M0 +

λ

p+ 2
C1 + 2

)[
‖Fk‖2L2(DT ) + ‖gk‖2W 1

2 (ST )

]
exp(2T + 1)τ.

(2.17)
Owing to (2.16) and (2.17), we have

‖uk‖2W 1
2 (ST ) =

T∫

0

w(τ) dτ ≤
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≤
(
M0 +

λ

p+ 2
C1 + 2

)
T

(
exp(2T + 1)T

)[
‖Fk‖2L2(DT )

+ ‖gk‖2W 1
2 (ST )

]
. (2.18)

From (2.18) we get

‖uk‖W 1
2 (DT ) ≤ c

(
‖Fk‖L2(DT ) + ‖gk‖W 1

2 (ST )

)
. (2.19)

Here

c =

√(
M0 +

λ

p+ 2
C1 + 2

)
T exp

1

2
(2T + T )T. (2.20)

By (2.2) and (2.3), passing in (2.19) to limit as k → ∞, we obtain the
estimate (2.1) with the constant c defined from (2.20) which by virtue of
(2.10) does not depend on u, g and F . �

3. The Global Solvability of the Problem (1.1), (1.2)
in the Class W 1

2

First of all, let us consider the issue of the solvability of the correspond-
ing to (1.1), (1.2) linear problem, when in the equation the parameter λ = 0,
i.e., for the problem

L0u(x, t) = F (x, t), (x, t) ∈ DT , (3.1)

u(x, t) = g(x, t), (x, t) ∈ ST . (3.2)

In this case, for F ∈ L2(DT ), g ∈ W 1
2 (ST ) we introduce analogously

the notion of a strong generalized solution u ∈ W 1
2 (DT ) of the problem

(3.1), (3.2) of the class W 1
2 in the domain DT for which there exists a se-

quence of functions uk ∈ C2(DT ) such that uk → u in the space W 1
2 (DT ),

L0uk → F in the space L2(DT ) and uk|ST → g in the space W 1
2 (ST ). Note

here that as is seen from the proof of Lemma 2.1, the a priori estimate (2.1)
is likewise valid for a strong generalized solution of the problem (3.1), (3.2).

Introduce into consideration the weighted Sobolev space W k
2,α(D), 0 <

α < ∞, k = 1, 2, . . ., consisting of the functions belonging to the class
W k

2,loc(D) and for which the norm ([46])

‖u‖2Wk
2,α(D) =

k∑

i=0

∫

D

r−2α−2(k−1)
∣∣∣ ∂iu

∂xi′∂ti0

∣∣∣
2

dx dt,

where

r=
( n∑

j=1

x2
j + t2

)1/2

,
∂2u

∂xi′∂ti0
=

∂iu

∂xi11 · · · ∂xinn ∂ti0
, i= i1 + · · ·+ in + i0,

is finite.
Analogously, we introduce the space W k

2,α(S), S = ∂D.
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Along with the problem (3.1), (3.2), we consider an analogous problem
in the infinite cone D. The problem is posed as follows:

L0u(x, t) = F (x, t), (x, t) ∈ D, (3.3)

u(x, t) = g(x, t), (x, t) ∈ S. (3.4)

By (1.3), according to a result obtained in [24, p. 114], there exists a
sequence α0 = α0(k) > 1 such that for α ≥ α0 the problem (3.3), (3.4) has a

unique solution u ∈W k
2,α(D) for every F ∈W k−1

2,α−1(D) and g ∈W k
2,α− 1

2

(S).

Since the space C∞0 (DT ) of finitary, infinitely differentiable in DT func-
tions is dense in L2(DT ), for a given F ∈ L2(DT ) there exists a sequence
of functions F` ∈ C∞0 (DT ) such that lim

`→∞
‖F` − F‖L2(DT ) = 0. For the

fixed `, extending the function F` by zero beyond the domain DT and
leaving the same as above notation, we have F` ∈ C∞0 (D). Obviously,

F` ∈ W k−1
2,α−1(D) for any k ≥ 1 and α > 1, and hence for α ≥ α0 = α0(k).

If g ∈ W 1
2 (ST ), then, as is known, there exists a function g̃ ∈ W 1

2 (S)
such that g = g̃|ST and diam supp g̃ < +∞. At the same time, the space
C∞∗ (S) :=

{
g ∈ C∞(S) : diam supp g < +∞, 0 6∈ supp g

}
is dense in

W 1
2 (S). Therefore there exists a sequence of functions g` ∈ C∞∗ (S) such

that lim
`→∞

‖g` − g̃‖W 1
2 (S) = 0. It can be easily seen that g` ∈ W k

2,α− 1
2

(S)

for any k ≥ 2 and α > 1, and hence for α ≥ α0 = α0(k), as well. Ac-
cording to what has been said, there exists a solution ũ` ∈ W k

2,α(D) of
the problem (3.3), (3.4) for F = F` and g = g`. Assume u` = ũ`|DT . Since
u` ∈ W k

2 (DT ), when the number k is sufficiently large, namely, k > n+1
2 +2,

by the embedding theorem [49, p. 84] the function u` ∈ C2(DT ). As far as
the a priori estimate (2.1) is likewise valid for a strong generalized solution
of the problem (3.1), (3.2) of the class W 1

2 in the domain DT , we have

‖u` − u`′‖W 1
2 (DT ) ≤ c

(
‖F` − F`′‖L2(DT ) + ‖g` − g`′‖W 1

2 (ST )

)
. (3.5)

Since the sequences {F`} and {g`} are fundamental respectively in the
spaces L2(DT ) andW 1

2 (DT ), owing to (3.5) the sequence {u`} will be funda-
mental in the space W 1

2 (DT ). Therefore because the space W 1
2 (DT ) is com-

plete, there exists a function u ∈W 1
2 (DT ) such that lim

`→∞
‖u`−u‖W 1

2 (DT ) =

0, and since L0u` = F` → F in the space L2(DT ) and g` = u`|ST → g in the
space W 1

2 (ST ), this function is a strong generalized solution of the problem
(3.1), (3.2) of the classW 1

2 in the domainDT . The uniqueness of the solution
of the problem (3.1), (3.2) of the class W 1

2 in the domain DT follows from
the a priori estimate (2.1). Consequently, for a solution u of the problem
(3.1), (3.2) we can write u = L−1

0 (F, g), where L−1
0 : L2(DT ) ×W 1

2 (ST ) →
W 1

2 (DT ) is a linear continuous operator whose norm, by virtue of (2.1),
admits the estimate

‖L−1
0 ‖L2(DT )×W 1

2 (ST )→W 1
2 (DT ) ≤ c, (3.6)

where the constant c is defined from (2.20).
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Since the operator L−1
0 : L2(DT )×W 1

2 (ST ) →W 1
2 (DT ) is linear, there

takes place the representation

L−1
0 (F, g) = L−1

01 (F ) + L−1
02 (g), (3.7)

where L−1
01 : L2(DT ) → W 1

2 (DT ) and L−1
02 : W 1

2 (ST ) → W 1
2 (DT ) are linear

continuous operators, and by (3.6)

‖L−1
01 ‖L2(DT )→W 1

2 (DT ) ≤ c, ‖L−1
02 ‖W 1

2 (ST )→W 1
2 (DT ) ≤ c. (3.8)

Remark 3.1. Note that for F ∈ L2(DT ), g ∈ W 1
2 (ST ), 0 < p < 2

n−1 ,

by virtue of (3.6), (3.7), (3.8) and Remark 1.1 the function u ∈ W 1
2 (DT ) is

a strong generalized solution of the problem (1.1), (1.2) of the class W 1
2 in

the domain DT if and only if u is a solution of the functional equation

u = L−1
01 (−λ|u|pu) + L−1

01 (F ) + L−1
02 (g) (3.9)

in the space W 1
2 (DT ).

We rewrite the equation (3.9) in the form

u := Au = −L−1
01 (K0u) + L−1

01 (F ) + L−1
02 (g), (3.10)

where the operator K0 : W 1
2 (DT ) → L2(DT ) from (1.4) is, by Remark 1.1,

continuous and compact. Consequently, by (3.8) the operator A : W 1
2 (DT )

→ W 1
2 (DT ) is continuous and compact, as well. At the same time, by

Lemma 2.1 and (2.10), (2.20) for any parameter τ ∈ [0, 1] and every solution
of the equation u = τAu with the parameter τ the same a priori estimate
(2.1) is valid with a positive constant c not depending on u, F , g and τ .
Therefore by the Leray–Schauder theorem [66, p. 375] the equation (3.10)
and hence by Remark 3.1 the problem (1.1), (1.2) has at least one solution
u ∈ W 1

2 (DT ).
Thus we have proved the following theorem.

Theorem 3.1. Let λ > 0, 0 < p < 2
n−1 , F ∈ L2,loc(D), g ∈ W 1

2,loc(S)

and F ∈ L2(DT ), g ∈ W 1
2 (ST ) for any T > 0. Then the problem (1.1), (1.2)

is globally solvable in the class W 1
2 , i.e., for any T > 0 this problem has a

strong generalized solution of the class W 1
2 in the domain DT .

4. The Non-Existence of the Global Solvability of the Problem
(1.1), (1.2)

Below we will restrict ourselves to the case where the boundary condi-
tion (1.2) is homogeneous, i.e.,

u
∣∣
ST

= 0. (4.1)

For (x0, t0) ∈ DT , we introduce into consideration the domain Dx0,t0

which is bounded from below by the conic surface S and from above by the
light cone of the past S−x0,t0 : t = t0 − |x− x0| with the vertex at the point

(x0, t0).
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Lemma 4.1. Let F ∈ C(DT ) and u ∈ C2(DT ) be a classical solution

of the problem (1.1), (4.1). Then if for some point (x0, t0) ∈ DT the function

F |Dx0,t0
= 0, then u|Dx0,t0

= 0 as well.

Proof. Since the proof of the above lemma is, to a certain extent, analogous
to that of Lemma 2.1, we cite only the main points of that proof.

Assume Dx0,t0,τ := Dx0,t0 ∩ {t < τ}, Ωx0,t0,τ := Dx0,t0 ∩ {t = τ},
0 < t < τ . Then ∂Dx0,t0,τ = S1,τ ∪ S2,τ ∪ S3,τ , where S1,τ = ∂Dx0,t0,τ ∩ S,

S2,τ = ∂Dx0,t0,τ ∩ S−x0,t0 , S3,τ = ∂Dx0,t0,τ ∩ Ωx0,t0,τ . Just in the same way

as in obtaining the equality (2.8), multiplying both parts of the equality
(1.1) by ∂u

∂t , integrating over the domain Dx0,t0,τ , 0 < τ < t0, and taking
into account (1.1) and the fact that F |Dx0,t0

= 0, we obtain

0 =

∫

S1,τ∪S2,τ

1

2ν0

[ n∑

i=1

( ∂u
∂xi

ν0 −
∂u

∂t
νi

)2

+
(∂u
∂t

)2(
ν2
0 −

n∑

j=1

ν2
j

)]
ds+

+

∫

S2,τ∪S3,τ

λ

p+ 2
|u|p+2ν0 ds+

∫

S3,τ

[(∂u
∂t

)2

+

n∑

i=1

( ∂u
∂xi

)2
]
dx. (4.2)

By (1.3) and (4.1), bearing in mind that

(
ν2
0 −

n∑

i=1

ν2
i

)∣∣∣
S1,τ

< 0, ν0
∣∣
S1,τ

< 0,

(
ν2
0 −

n∑

i=1

ν2
i

)∣∣∣
S2,τ

= 0, ν0
∣∣
S2,τ

=
1√
2
> 0,

( ∂u
∂xi

ν0 −
∂u

∂t
νi

)∣∣∣
S1,τ

= 0,
( ∂u
∂xi

ν0 −
∂u

∂t
νi

)2∣∣∣
S2,τ

≥ 0, i = 1, . . . , n,

we find that

∫

S1,τ∪S2,τ

1

2ν0

[ n∑

i=1

( ∂u
∂xi

ν0−
∂u

∂t
νi

)2

+
(∂u
∂t

)2(
ν2
0 −

n∑

j=1

ν2
j

)]
ds ≥ 0. (4.3)

In view of (4.3), from (4.2) we get

∫

S3,τ

[(∂u
∂t

)2

+
n∑

i=1

( ∂u
∂xi

)2
]
dx ≤M

∫

S2,τ∪S3,τ

u2 ds, 0 < τ < t0. (4.4)

Here, since u ∈ C2(DT ) and |ν0| ≤ 1, in the capacity of the nonnegative
constant M independent of the parameter τ we can take

M =
|λ|
p+ 2

‖u‖p
C(DT )

< +∞. (4.5)
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By (4.1), reasoning as in proving the inequality (2.14) we obtain
∫

S2,τ∪S3,τ

u2 ds ≤ 2t0
∫

Dx0,t0,τ

(∂u
∂t

)2

dx, 0 < τ < t0. (4.6)

Putting

w(τ) :=

∫

S3,τ

[(∂u
∂t

)2

+

n∑

i=1

( ∂u
∂xi

)2
]
dx,

from (4.4) and (4.6) we easily find that

w(τ) ≤ 2t0M

τ∫

0

w(δ) dδ, 0 < τ < t0,

whence by (4.5) and Gronwall’s lemma it immediately follows that w(τ) = 0,
0 < τ < t0, and hence ∂u

∂t = ∂u
∂x1

= · · · = ∂u
∂xn

= 0 in the domain

Dx0,t0 . Therefore u|Dx0,t0
= const, and taking into account the homoge-

neous boundary condition (4.1), we finally obtain that u|Dx0,t0
= 0. Thus

the lemma is proved. �

Below we will restrict ourselves to the consideration of the case where
the equation (1.1) involves a parameter λ < 0 and the spatial dimension
n = 2. For simplicity of our exposition, we assume that

S : t = k0|x|, k0 = const > 1. (4.7)

Obviously, for the conic surface S given by the equality (4.7) the con-
dition (1.3) is fulfilled. In this case, DT =

{
(x, t) ∈ R

3 : k0|x| < t < T
}
.

Let Ga : t > |x| + a be the light cone of future with the vertex at the
point (0, 0, a), where a = const > 0. By (4.7), it is evident that D \ Ga ={
(x, t) ∈ R

3 : k0|x| < t < |x|+ a, |x| < a
k0−1

}
and

D \Ga ⊂
{
(x, t) ∈ R

3 : 0 < t < b
}
, b =

ak0

k0 − 1
. (4.8)

Lemma 4.2. Let n = 2, λ < 0, F ∈ C(DT ), T ≥ b = ak0
k0−1 ,

suppF ⊂ Ga and F ≥ 0. Then if u ∈ C2(DT ) is a classical solution of the

problem (1.1), (4.1), then u|Db
≥ 0.

Proof. First, let us show that u|D\Ga
= 0. Indeed, let (x0, t0) ∈ D \ Ga.

Then since suppF ⊂ Ga, we have that F |Dx0,t0
= 0, and according to

Lemma 4.1 the equality u|Dx0,t0
= 0 holds. Therefore taking into account

(4.8), extending the functions u and F by zero beyound Db into the strip
Σb :=

{
(x, t) ∈ R

3 : 0 < t < b
}
, and leaving the same as above notation,
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we obtain that u ∈ C2(Σb) is a classical solution of the Cauchy problem

∂2u

∂t2
−∆u = −λ|u|pu+ F,

u
∣∣
t=0

= 0,
∂u

∂t

∣∣∣
t=0

= 0

(4.9)

in the strip Σb. As is known, for the solution u ∈ C2(Σb) of the problem
(4.9) the integral representation [69, pp. 213–216]

u(x, t) = − λ

2π

∫

Ωx,t

|u|pu√
(t− τ)2 − |x− ξ|2

dξ dτ + F0(x, t), (x, t) ∈ Σb,

(4.10)
is valid.

Here

F0(x, t) =
1

2π

∫

Ωx,t

F (ξ, τ)√
(t− τ)2 − |x− ξ|2

dξ dτ, (4.11)

where Ωx,t :=
{
(ξ, τ) ∈ R

3 : |ξ − x| < t, 0 < τ < t − |ξ − x|
}

is a circular
cone with the vertex at the point (x, t); its base is the circle d : |ξ − x| < t,
τ = 0 in the plane τ = 0 of the variables ξ1 and ξ2, ξ = (ξ1, ξ2).

Let (x0, t0) ∈ Db and ψ̃0 = ψ̃0(x, t) ∈ C(Ωx0,t0). Then the linear

operator Ψ : C(Ωx0,t0) → C(Ωx0,t0) acting by the formula

Ψv(x, t) =
1

2π

∫

Ωx,t

ψ̃0(ξ, τ)v(ξ, τ)√
(t− τ)2 − |x− ξ|2

dξ dτ, (x, t) ∈ Ωx0,t0 ,

is continuous, and for its norm the estimate [69, p. 215]

‖Ψ‖C(Ωx0,t0 )→C(Ωx0,t0 ) ≤
(t0)

2

2
‖ψ̃0‖C(Ωx0,t0 ) ≤

T 2

2
‖ψ̃0‖C(Ωx0,t0 )

is valid.
Consider the integral equation

v(x, t) =

∫

Ωx,t

ψ0(ξ, τ)v(ξ, τ)√
(t− τ)2 − |x− ξ|2

dξ dτ + F0(x, t), (x, t) ∈ Ωx0,t0 , (4.12)

with respect to the unknown function v. Here

ψ0(ξ, τ) = − λ

2π
|u(ξ, τ)|p ∈ C(Ωx0,t0), (4.13)

where u is the classical solution of the problem (1.1), (4.1) appearing in
Lemma 4.2. Since ψ0, F0 ∈ C(Ωx0,t0), and the operator in the right-hand
side (4.12) is an integral operator of Volterra type (with respect to the
variable t) with a weak singularity, the equation (4.12) is uniquely solvable
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in the space C(Ωx0,t0). In addition, the solution v of the equation (4.12)
can be obtained by the Picard method of successive approximations:

v0 = 0, vk+1(x, t) =

∫

Ωx,t

ψ0(ξ, τ)vk(ξ, τ)√
(t− τ)2 − |x− ξ|2

dξ dτ + F0(x, t), (4.14)

k = 1, 2, . . . .

Indeed, let ωτ = Ωx0,t0 ∩ {t = τ}, wm|Ωx0,t0
= vm+1 − vm (w0|Ωx0,t0

=

F0), λm(t) = max
xωωt

|wm(x, t)|, m = 0, 1, . . .; δ =
∫

|η|<1

dη1 dη2√
1−|η|2

‖ψ0‖C(Ωx0,t0 ) =

2π‖ψ0‖C(Ωx0,t0 ). Then denoting Bβϕ(t) = δ
t∫
0

(t− τ)β−1ϕ(τ) dτ , β > 0, and

taking onto account the equality [15, p. 206]

Bmβ ϕ(t) =
1

Γ(mβ)

t∫

0

(δΓ(β))m(t− τ)mβ−1ϕ(τ) dτ,

owing to (4.14) we have

|wm(x, t)| =
∣∣∣∣

∫

Ωx,t

ψ0wm−1√
(t− τ)2 − |x− ξ|2

dξ dτ

∣∣∣∣ ≤

≤
t∫

0

dτ

∫

|x−ξ|<t−τ

|ψ0| |wm−1|√
(t− τ)2 − |x− ξ|2

dξ ≤

≤ ‖ψ0‖C(Ωx0,t0 )

t∫

0

dτ

∫

|x−ξ|<t−τ

λm−1(τ)√
(t− τ)2 − |x− ξ|2

dξ =

= ‖ψ0‖C(Ωx0,t0 )

t∫

0

(t− τ)λm−1(τ) dτ

∫

|η|<1

dη1 dη2√
1− |η|2

=

= B2λm−1(t), (x, t) ∈ Ωx0,t0 ,

whence

λm(t) ≤ B2λm−1(t) ≤ · · · ≤ Bm2 λ0(t) =

=
1

Γ(2m)

t∫

0

(δΓ(2))m(t− τ)2m−1λ0(τ) dτ ≤

≤ δm

Γ(2m)

t∫

0

(t− τ)2m−1‖w0‖C(Ωx0,t0 ) dτ =

=
(δT 2)m

Γ(2m)2m
‖F‖C(Ωx0,t0 ) =

(δT 2)m

(2m)!
‖F0‖C(Ωx0,t0 ),
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and consequently,

‖wm‖C(Ωx0,t0 ) = ‖λm‖C([0,t0]) ≤
(δT 2)m

(2m)!
‖F0‖C(Ωx0,t0 ).

Therefore the series v = lim
m→∞

vm = v0 +
∞∑
m=0

wm converges in the class

C(Ωx0,t0), and its sum is a solution of the equation (4.12). The uniqueness of

solution of the equation (4.12) in the space C(Ωx0,t0) is proved analogously.

Since λ < 0, by virtue of (4.13) the function ψ0(ξ, τ) = − λ
2π |u(ξ, τ)|p ≥

0, and according to the equality (4.11) the function F0(x, t) ≥ 0, as well,
because, by the condition, F (x, t) ≥ 0. Therefore the successive approxi-
mations from (4.14) are nonnegative, and since lim

k→∞
‖vk − v‖C(Ωx0,t0 ) = 0,

therefore the solution v ≥ 0 in the closed domain Ωx0,t0 . It remains only
to note that due to (4.10), (4.12) and (4.13), the function u is likewise a
solution of the equation (4.12), and owing to the unique solvability of the
equation, we have u = v ≥ 0 in Ωx0,t0 . Thus u(x0, t0) ≥ 0 for any point
(x0, t0) ∈ Db, which was to be demonstrated. �

Let cR and ϕR be, respectively, the first characteristic value and eigen-
function of the Dirichlet problem in the circle ωR : x2

1 + x2
2 < R2. Conse-

quently,

(∆ϕR + cRϕR)
∣∣
ωR

= 0, ϕR
∣∣
∂ωR

= 0. (4.15)

As is known, cR > 0, and changing the sign and performing the correspond-
ing normalization, we may assume [59, p. 25] that

ϕR
∣∣
ωR

> 0,

∫

ωR

ϕR dx = 1. (4.16)

Below, the conditions of Lemma 4.2 will be assumed to be fulfilled. As
is shown in proving this lemma, extending the functions u and F by zero
beyond Db into the strip Σb =

{
(x, t) ∈ R

3 : 0 < t < b
}

and leaving the

same notation, we find that u ∈ C2(Σb) is a classical solution of the Cauchy
problem (4.9) in the strip Σb.

Remark 4.1. In the equation (1.1), without restriction of generality we
may assume that λ = −1, since the case λ < 0, λ 6= −1, by virtue of p > 0
reduces to the case λ = −1 after we introduce a new unknown function
v = |λ|1/pu. Therefore the function v will satisfy the equation

vtt −∆u = vp+1 + |λ|1/pF (x, t), (x, t) ∈ Σb.
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According to the above remark, instead of (4.9) we consider the follow-
ing Cauchy problem:

∂2u

∂t2
−∆u = up+1 + F (x, t), (x, t) ∈ Σb,

u
∣∣
t=0

= 0,
∂u

∂t

∣∣∣
t=0

= 0,

(4.17)

where u|Σb
≥ 0 and u ∈ C2(Σb). In addition, as is shown in proving

Lemma 4.2, we have

u
∣∣
Σb\Ga

= 0. (4.18)

Take R ≥ b > a
k0−1 , where the number a

k0−1 is the radius of the circle

obtained by intersection of the domain D : t > k0|x| and the plane t = b.
Introduce into consideration the functions

E(t)=

∫

ωR

u(x, t)ϕR(x) dx, fR(x)=

∫

ωR

F (x, t)ϕR(x) dx, 0≤ t≤b. (4.19)

Since U |Σb
≥ 0, u ∈ C2(Σb) and F ∈ C(Σb), we have E ≥ 0, E ∈

C2([0, b]) and fR ∈ C([0, R]).
By (4.15), (4.18) and (4.19), the integration by parts results in

∫

ωR

∆uϕR dx =

∫

ωR

u∆ϕR dx = −cR
∫

ωR

uϕR dx = −cRE. (4.20)

By virtue of (4.16) and the fact that p > 0 and u|Σb
≥ 0, using Jensen’s

[59, p. 26] inequality we obtain
∫

ωR

up+1ϕR dx ≥
( ∫

ωR

uϕR dx

)p+1

= Ep+1. (4.21)

It immediately follows from (4.17)–(4.21) that

E′′ + cRE ≥ Ep+1 + fR, 0 ≤ t ≤ b, (4.22)

E(0) = 0, E′(0) = 0. (4.23)

To investigate the problem (4.22), (4.23), we make use of the method of
test functions [53, pp. 10–12]. Towards this end, we take b1, 0 < b1 < b2,
and consider a nonnegative test function ψ ∈ C2([0, b]) such that

0 ≤ ψ ≤ 1, ψ(t) = 1, 0 ≤ t ≤ b; ψ(i)(b) = 0, i = 0, 1, 2. (4.24)

It follows from (4.22)–(4.24) that

b∫

0

Ep+1(t)ψ(t) dt ≤
b∫

0

E(t)
[
ψ′′(t) + cRψ(t)

]
dt−

b∫

0

fR(t)ψ(t) dt. (4.25)

If in the Young inequality with the parameter ε > 0

yz ≤ ε

α
yα +

1

α′εα′−1
zα

′
, y, z ≥ 0, α′ =

α

α− 1
,
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we take α = p+ 1, α′ = p+1
p , y = Eψ

1
p+1 , z = |ψ′′+cRψ|

ψ
1

p+1
and bear in mind

that α′

α = 1
α−1 = α′ − 1, then we will obtain

E|ψ′′ + cRψ| = Eψ1/α |ψ′′ + cRψ|
ψ1/α

≤

≤ ε

α
Eαψ +

1

α′εα′−1

|ψ′′ + cRψ|α
′

ψα′−1
. (4.26)

By (4.26), from (4.25) we have

(
1− ε

α

) b∫

0

Eαψ dt ≤ 1

α′εα′−1

b∫

0

|ψ′′ + cRψ|α
′

ψα′−1
dt−

b∫

0

fR(t)ψ(t) dt. (4.27)

Taking into consideration that inf
0<ε<α

[
α−1
α−ε

1
εα′−1

]
= 1 which is achieved

for ε = 1, from (4.27) with regard for (4.24) we obtain

b1∫

0

Eαψ dt ≤
b∫

0

|ψ′′ + cRψ|α
′

ψα′−1
dt− α′

b∫

0

fR(t)ψ(t) dt. (4.28)

We take now in the capacity of the test function ψ the function of the
type

ψ(t) = ψ0(τ), τ =
t

b1
, 0 ≤ τ ≤ τ1 =

b

b1
. (4.29)

Here

ψ0 ∈ C2([0, τ1]), 0 ≤ ψ0 ≤ 1, ψ0(τ) = 1, 0 ≤ τ ≤ 1,

ψ
(i)
0 (τ1) = 0, i = 0, 1, 2.

(4.30)

It is not difficult to see that

cR =
c1
R2

≤ c1
b2
≤ c1
b21
, ϕR(x) =

1

R2
ϕ1

( x
R

)
. (4.31)

In view of (4.29), (4.30) and (4.31), taking into account that ψ′′(t) = 0
for 0 ≤ t ≤ b1 and fR ≥ 0 because F ≥ 0 as well as the known inequality
|y + z|α′ ≤ 2α

′−1
(
|y|α′ + |z|α′

)
, from (4.28) we get

b1∫

0

Eα dt ≤

≤
b1∫

0

cα
′
R ψ

α′

ψα′−1
dt+

b∫

b1

|ψ′′ + cRψ|α
′

ψα′−1
dt− α′

b∫

0

fR(t)ψ(t) dt ≤

≤ cα
′
R

b1∫

0

ψ dt+ b1

r1∫

1

∣∣ 1
b21
ψ′′0 (τ) + cRψ0(τ)

∣∣α′

(ψ0(τ))α
′−1

dτ − α′
b1∫

0

fR(t) dt ≤
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≤ cα
′
R b1 +

2α
′−1

b2α
′−1

1

r1∫

1

|ψ′′0 (τ)|α′

(ψ0(τ))α
′−1

dτ+

+b12
α′−1cα

′
R

r1∫

1

ψ0(τ) dτ − α′
b1∫

0

fR(t) dt ≤

≤ cα
′

1

b2α
′−1

1

+
2α

′−1

b2α
′−1

1

r1∫

1

|ψ′′0 (τ)|α′

(ψ0(τ))α
′−1

dτ+

+
2α

′−1cα
′

1

b2α
′−1

1

(τ1 − 1)− α′
b1∫

0

fR(t) dt. (4.32)

Assuming now that R = b = ak0
k0−1 and the number τ1 > 1 is such that

b1 =
b

τ1
= a+ 2

b− a

3
=
a+ 2b

3
=
a

3

(3k0 − 1

k0 − 1

)
, (4.33)

from (4.32) we find

b1∫

0

Eα dt ≤ b1−2α′

1

[
cα

′
1

(
1 + 2α

′−1(τ1 − 1)
)

+ 2α
′−1

r1∫

1

|ψ′′0 (τ)|α′

(ψ0(τ))α
′−1

dτ−

−α′b2α′−1
1

b1∫

0

fb(t) dt

]
, 2α′ − 1 =

p+ 2

p
. (4.34)

As is known, the function ψ0 with the property (4.30) for which the
integral

d(ψ0) =

r1∫

1

|ψ′′0 (τ)|α′

(ψ0(τ))α
′−1

dτ < +∞ (4.35)

is finite does exist [53, p. 11].
Bearing in mind (4.19) and (4.31), we have

J(b) =

b1∫

0

fb(t) dt =

b1∫

0

dt

∫

ωb

F (x, t)ϕb(x) dx =

=

b1∫

0

dt

∫

ωb

F (x, t)
1

b2
ϕ1

(x
b

)
dx =

b1∫

0

dt

∫

ω1

F (bξ, t)ϕ1(ξ) dξ. (4.36)

By virtue of (4.35), the value

κ0 = κ0(c1, α
′, ψ0) =

τ2α′−1
1

α′

[
cα

′
1

(
1 + 2α

′−1(τ1 − 1)
)
+ 2α

′−1d(ψ0)
]

(4.37)

is likewise finite.
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From the above reasoning we have the following

Theorem 4.1. Let n = 2, λ = −1, F ∈ C(D), F ≥ 0 and suppF ⊂
Ga : t ≥ |x|+ a, a = const > 0. If the condition

b
p+2

p

1
r1
b∫

0

dt

∫

ω1

F (bξ, t)ϕ1(ξ) dξ > κ0, b =
ak0

k0 − 1
, τ1 =

3k0

3k0 − 1
, (4.38)

is fulfilled, then for T ≥ b the problem (1.1), (4.1) fails to have a classical

solution u ∈ C2(DT ) in the domain DT .

Proof. Indeed, by (4.33) and (4.36)–(4.38) the right-hand side of the inequal-
ity (4.34) is negative, but this is impossible because the left-hand side of
this inequality is nonnegative. Therefore for T ≥ b the problem (1.1), (4.1)
cannot have a classical solution u ∈ C2(DT ) in the domain DT . Thus the
theorem is proved. �

Remark 4.2. As we can see from the proof, if the conditions of Theo-
rem 4.1 are fulfilled and a solution u ∈ C2(DT ) of the problem (1.1), (4.1)
exists in the domain DT , then T is contained in the interval (0, b), i.e.,
0 < T < b = ak0

k0−1 .

Remark 4.3. In Theorem 4.1, it is assumed that λ = −1. Taking into
account Remark 4.1, we can conclude that Theorem 4.1 remains also valid
in case λ < 0, provided in the right-hand side of the inequality (4.38) instead

of κ0 we write |λ|− 1
p κ0.

Corollary 4.1. Let n = 2, λ < 0, F = µF0, where µ = const > 0,
F0 ∈ C(D), F0 ≥ 0, suppF0 ⊂ Ga and F0|Db

6≡ 0. Then there exists a

positive number µ0 such that if µ > µ0, then the problem (1.1), (4.1) cannot

have a classical solution u ∈ C2(DT ) for T ≥ b.



CHAPTER 4

Some Multi-Dimensional Versions of the First

Darboux Problem for Nonlinear Wave

Equations

1. Statement of the Problems

In the Euclidean space R
n+1 of the variables t, x1, . . . , xn, n ≥ 2, we

consider the nonlinear wave equation of the type

Lλu :=
∂2u

∂t2
−∆u+ λf(u) = F, (1.1)

where f and F are given real functions, f ∈ C(R) is a nonlinear function,

f(0) = 0, and u is an unknown real function, ∆ =
n∑
i=1

∂2

∂x2
i
, λ 6= 0 is a given

real number.
By D : t > |x|, xn > 0 we denote one half of the light cone of future

which is bounded by the part S0 = D ∩ {xn = 0} of the hyperplane xn = 0
and by the half S : t = |x|, xn ≥ 0 of the characteristic conoid C : t = |x|
of the equation (1.1). Assume DT :=

{
(x, t) ∈ D : t < T

}
, S0

T :=
{
(x, t) ∈

S0 : t ≤ T
}
, ST :=

{
(x, t) ∈ S : t ≤ T

}
, T > 0. In case T = ∞, it is

obvious that D∞ = D, S0
∞ = S0 and S∞ = S.

For the equation (1.1), we consider the following problem: find in the
domain DT a solution u(x, t) of that equation satisfying one of the following
boundary conditions:

∂u

∂xn

∣∣∣
S0

T

= 0, u
∣∣
ST

= 0 (1.2)

or

u
∣∣
S0

T

= 0, u
∣∣
ST

= 0. (1.3)

The problems (1.1), (1.2) and (1.1), (1.3) are multi-dimensional versions
of the first Darboux problem for the equation (1.1), when one part of the
data support is a characteristic manifold and another part is of time type
[2, pp. 228, 233].

Let f ∈ C(R). If u ∈ C2(DT ) is a classical solution of the problem
(1.1), (1.2), then multiplying both parts of the equation (1.1) by an arbitrary
function ϕ ∈ C2(DT ) satisfying the condition ϕ|t=T = 0, after integration

73
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by parts we obtain

∫

S0
T∪ST

∂u

∂N
ϕds−

∫

DT

utϕt dx dt +

∫

DT

∇xu∇xϕ dx dt+

λ

∫

DT

f(u)ϕ dx dt =

∫

DT

Fϕ dx dt, (1.4)

where ∂
∂N = ν0

∂
∂t −

n∑
i=1

νi
∂
∂xi

is the derivative with respect to the conor-

mal, ν = (ν1, . . . , νn, ν0) is the unit vector of the outer normal to ∂DT ,
∇x =

(
∂
∂x1

, . . . , ∂
∂xn

)
. Taking into account that ∂u

∂N

∣∣
S0

T

= ∂u
∂xn

and ST is

a characteristic manifold in which ∂
∂N is an inner differential operator, by

virtue of (1.2) we have ∂u
∂N

∣∣
S0

T∪ST
= 0. Therefore the equality (1.4) takes

the form

−
∫

DT

utϕt dx dt+

∫

DT

∇xu∇xϕ dx dt+ λ

∫

DT

f(u)ϕ dx dt =

=

∫

DT

Fϕ dx dt. (1.5)

The equality (1.5) can be considered as a basis of the definition of a
weak generalized solution of the problem (1.1), (1.2) of the class W 1

2 in the
domain DT .

Suppose
◦
W 1

2(DT , ST ) :=
{
u ∈ W 1

2 (DT ) : u|ST = 0
}
, where W 1

2 (DT ) is
the well-known Sobolev’s space, and the equality u|ST = 0 is understood in
the sense of the trace theory [49, p. 70].

Definition 1.1. Let F ∈ L2(DT ). The function u ∈
◦
W 1

2(DT , ST ) is
said to be a weak generalized solution of the problem (1.1), (1.2) of the class
W 1

2 in the domainDT , if f(u) ∈ L2(DT ) and for every function ϕ ∈W 1
2 (DT )

such that ϕ|t=T = 0 the equality (1.5) is fulfilled.

Remark 1.1. In a standard way [49, p. 113] it is proved that if a weak
solution u of the problem (1.1), (1.2) belongs to the space W 1

2 (DT ), then for
that solution the homogeneous boundary conditions (1.2) will be fulfilled in
the sense of the trace theory.

Assume
◦
C2(DT , S

0
T , ST ) :=

{
u ∈ C2(DT ) : ∂u

∂xn

∣∣
S0

T

= 0, u|ST = 0
}
.

Definition 1.2. Let F ∈ L2(DT ). The function u ∈
◦
W 1

2(DT , ST )
is said to be a strong generalized solution of the problem (1.1), (1.2) of
the class W 1

2 in the domain DT , if there exists a sequence of functions
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uk ∈
◦
C2(DT , S

0
T , ST ) such that uk → u in the space

◦
W 1

2(DT , ST ) and
Lλuk → F in the space L2(DT ).

Remark 1.2. It can be easily verified that if u ∈
◦
W 1

2(DT , ST ) is a strong
generalized solution of the problem (1.1), (1.2) of the class W 1

2 , then this
solution will automatically be a weak generalized solution of that problem

if the nonlinear Nemytski operator K :
◦
W 1

2(DT , ST ) → L2(DT ) acting by
the formula Ku = f(u) is continuous. Therefore, if it is additionally known
that u ∈ W 2

2 (DT ), then the boundary conditions (1.2) for that solution will
be fulfilled in the sense of the trace theory. Below we will distinguish the

cases where the operator K is continuous from the space
◦
W 1

2(DT , ST ) to
L2(DT ).

Definition 1.3. Let F ∈ L2,loc(D) and F ∈ L2(DT ) for any T > 0.
We say that the problem (1.1), (1.2) is globally solvable in the class W 1

2 if
for every T > 0 this problem has a strong generalized solution of the class
W 1

2 in the domain DT .

Remark 1.3. We can define analogously a weak generalized solution
of the problem (1.1), (1.3) of the class W 1

2 in the domain DT as a func-

tion u ∈
◦
W 1

2(DT , S
0
T ∪ ST ) :=

{
v ∈ W 1

2 (DT ) : v|S0
T∪ST

= 0
}

for which

f(u) ∈ L2(DT ) and the integral equality (1.5) is valid for every function
ϕ ∈ W 1

2 (DT ) such that ϕ|t=T = 0, where F ∈ L2(DT ). The function

u ∈
◦
W 1

2(DT , S
0
T ∪ ST ) is said to be a strong generalized solution of the

problem (1.1), (1.3) of the class W 1
2 in the domain DT if there exists a se-

quence of functions uk ∈
◦
C2(DT , S

0
T ∪ST ) :=

{
v ∈ C2(DT ) : v|S0

T∪ST
= 0

}

such that uk → u in the space
◦
W 1

2(DT , S
0
T ∪ ST ) and Lλuk → F in the

space L2(DT ). Analogously, we say that the problem (1.1), (1.3) is glob-
ally solvable in the class W 1

2 if for every T > 0 this problem has a strong
generalized solution of the class W 1

2 in the domain DT .

Below we will distinguish particular cases for the nonlinear function
f = f(u), when the problem (1.1), (1.3) is globally solvable in the class W 1

2

in one case, and such solvability does not take place in the other case.

2. A Priori Estimates

Lemma 2.1. Let λ ≥ 0, f(u) = |u|pu, p > 0 and F ∈ L2(DT ).

Then for every strong generalized solution u ∈
◦
W 1

2(DT , ST ) of the problem

(1.1), (1.2) of the class W 1
2 in the domain DT the a priori estimate

‖u‖ ◦
W1

2(DT ,ST )
≤

√
e

2
T‖F‖L2(DT ) (2.1)
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is valid.

Proof. Let u ∈
◦
W 1

2(DT , ST ) be a strong generalized solution of the problem
(1.1), (1.2) of the classW 1

2 in the domain DT . By Definition 1.2, there exists

a sequence of functions uk ∈
◦
C2(DT , S

0
T , ST ) such that

lim
k→∞

‖uk − u‖ ◦
W1

2(DT ,ST )
= 0, lim

k→∞
‖Lλuk − F‖L2(DT ) = 0. (2.2)

Consider the function uk ∈
◦
C2(DT , S

0
T , ST ) as a solution of the problem

Lλuk = Fk, (2.3)

∂uk
∂xn

∣∣∣
S0

T

= 0, uk
∣∣
Sk

= 0. (2.4)

Here

Fk := Lλuk. (2.5)

Multiplying both parts of the equation (2.3) by ∂uk

∂t and integrating
over the domain Dτ , 0 < τ ≤ T , we get

1

2

∫

Dτ

∂

∂t

(∂uk
∂t

)2

dx dt−
∫

Dτ

∆uk
∂uk
∂t

dx dt+
λ

p+ 2

∫

Dτ

∂

∂t
|uk|p+2 dx dt =

=

∫

Dτ

Fk
∂uk
∂t

dx dt. (2.6)

Assume Ωτ := DT ∩{t = τ}, 0 < τ < T . Obviously, ∂Dτ = S0
τ∪Sτ∪Ωτ .

Taking into account (2.4) and the equalities ν|Ωτ = (0, . . . , 0, 1), ν|S0
T

=

(0, . . . ,−1, 0), by integration by parts we obtain
∫

Dτ

∂

∂t

(∂uk
∂t

)2

dx dt =

∫

∂Dτ

(∂uk
∂t

)2

ν0 dx dt =

=

∫

Ωτ

(∂uk
∂t

)2

dx+

∫

Sτ

(∂uk
∂t

)2

ν0 ds,

∫

Dτ

∂

∂t
(uk)

2 dx dt =

∫

∂Dτ

u2
kν0 ds =

∫

Ωτ

u2
k dx,

∫

Dτ

∂

∂t
|uk|p+2 dx dt =

∫

∂Dτ

|uk|p+2ν0 ds =

∫

Ωτ

|uk|p+2 dx,

∫

Dτ

∂2uk
∂x2

i

∂uk
∂t

dx dt =

∫

∂Dτ

∂uk
∂xi

∂uk
∂t

νi ds−
1

2

∫

Dτ

∂

∂t

(∂uk
∂xi

)2

dx dt =

=

∫

∂Dτ

∂uk
∂xi

∂uk
∂t

νi ds−
1

2

∫

∂Dτ

(∂uk
∂xi

)2

ν0 ds =
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=

∫

Sτ

∂uk
∂xi

∂uk
∂t

νi ds−
1

2

∫

Sτ

(∂uk
∂xi

)2

ν0 ds−
1

2

∫

Ωτ

(∂uk
∂xi

)2

dx,

whence by virtue of (2.6) we get
∫

Dτ

Fk
∂uk
∂t

dx dt =

=

∫

Sτ

1

2ν0

[ n∑

i=1

(∂uk
∂xi

ν0 −
∂uk
∂t

νi

)2

+
(∂uk
∂t

)2(
ν2
0 −

n∑

j=1

ν2
j

)]
ds+

+
1

2

∫

Ωτ

[(∂uk
∂t

)2

+
n∑

i=1

(∂uk
∂xi

)2
]
dx+

λ

p+ 2

∫

Ωτ

|uk|p+2 dx. (2.7)

Since Sτ is a characteristic manifold, we have

(
ν2
0 −

n∑

j=1

ν2
j

)∣∣∣
Sτ

= 0. (2.8)

Taking into account that
(
ν2
0

∂
∂xi

− νi
∂
∂t

)
, i = 1, . . . , n, is an inner

differential operator on Sτ , by (2.4) we find that
(∂uk
∂xi

ν0 −
∂uk
∂t

νi

)∣∣∣
Sτ

= 0, i = 1, . . . , n. (2.9)

Owing to (2.8), (2.9), from (2.7) it follows
∫

Ωτ

[(∂uk
∂t

)2

+
n∑

i=1

(∂uk
∂xi

)2
]
dx+

2λ

p+ 2

∫

Ωτ

|uk|p+2 dx =

= 2

∫

Dτ

Fk
∂uk
∂t

dx dt,

whence in view of λ ≥ 0, it follows that
∫

Ωτ

[(∂uk
∂t

)2

+

n∑

i=1

(∂uk
∂xi

)2
]
dx ≤ 2

∫

Dτ

Fk
∂uk
∂t

dx dt. (2.10)

Putting

w(δ) :=

∫

Ωδ

[(∂uk
∂t

)2

+
n∑

i=1

(∂uk
∂xi

)2
]
dx

and taking into account the inequality 2Fk
∂uk

∂t ≤ ε
(
∂uk

∂t

)2
+ 1

ε F
2
k which is

valid for any ε = const > 0, from (2.10) we obtain

w(δ) ≤ ε

δ∫

0

w(σ) dσ +
1

ε
‖Fk‖2L2(Dδ), 0 < δ ≤ T. (2.11)
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From (2.11), bearing in mind that ‖Fk‖2L2(Dδ) as a function of δ is

nondecreasing, by Gronwall’s lemma we get

w(δ) ≤ 1

ε
‖Fk‖2L2(Dδ) exp δε,

whence with regard for the fact that inf
ε>0

exp δε
ε = eδ which is achieved for

ε = 1/δ, we obtain

w(δ) ≤ eδ‖Fk‖2L2(Dδ), 0 < δ ≤ T. (2.12)

From (2.12) it in its turn follows that

‖uk‖2◦
W1

2(DT ,ST )
=

∫

DT

[(∂uk
∂t

)2

+

n∑

i=1

(∂uk
∂xi

)2
]
dx dt =

=

T∫

0

w(δ) dδ ≤ e

2
T 2‖Fk‖2L2(DT ). (2.13)

Here we have used the fact that in the space
◦
W 1

2(DT , ST ) one of the
equivalent norms is given by means of the expression

{ ∫

DT

[(∂u
∂t

)2

+

n∑

i=1

( ∂u
∂xi

)2
]
dx dt

}1/2

.

Indeed, from the equalities u|ST = 0 and u(x, t) =
t∫

ψ(x)

∂u(x,τ)
∂t dτ , (x, t) ∈

DT , where t−ψ(x) = 0 is the equation of the conic manifold ST , standard
reasoning results in the inequality

∫

DT

u2 dx dt ≤ T 2

∫

DT

(∂u
∂t

)2

dx dt.

Now, due to (2.2) and (2.5), passing in the inequality (2.13) to limit as
k →∞, we obtain (2.1), which proves the above lemma. �

An a priori estimate for the solution of the problem (1.1), (1.3) is proved
analogously.

Lemma 2.2. Let λ ≥ 0, f(u) = |u|pu, p > 0 and F ∈ L2(DT ). Then

for any strong generalized solution u ∈
◦
W 1

2(DT , S
0
T ∪ ST ) of the problem

(1.1), (1.3) of the class W 1
2 in the domain DT the a priori estimate

‖u‖ ◦
W1

2(DT ,S0
T∪ST )

≤
√
e

2
T‖F‖L2(DT ) (2.14)

holds.
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3. The Global Solvability

First, let us consider the issue of the solvability of the corresponding to
(1.1), (1.2) linear problem, when in the equation (1.2) the parameter λ = 0,
i.e., for the problem

L0u(x, t) = F (x, t), (x, t) ∈ DT , (3.1)

∂u

∂xn

∣∣∣
S0

T

= 0, u
∣∣
ST

= 0. (3.2)

In this case, for F ∈ L2(DT ) we introduce analogously the notion of

a strong generalized solution u ∈
◦
W 1

2(DT , ST ) of the problem (3.1), (3.2)
of the class W 1

2 in the domain DT for which there exists a sequence of

functions uk ∈
◦
C1

2(DT , S
0
T , ST ) such that lim

k→∞
‖uk − u‖W 1

2 (DT ,ST ) = 0,

lim
k→∞

‖L0uk−F‖L2(DT ) = 0. It should be noted that in view of Lemma 2.1,

for λ = 0, the a priori estimate (2.1) is likewise valid for a strong generalized
solution of the problem (3.1), (3.2) of the class W 1

2 in the domain DT .
Since the space C∞0 (DT ) of finitary infinitely differentiable in DT func-

tions is dense in L2(DT ), for a given F ∈ L2(DT ) there exists a sequence
of functions Fk ∈ C∞0 (DT ) such that lim

k→∞
‖Fk − F‖L2(DT ) = 0. For a fixed

k, extending the function Fk evenly with respect to the variable xn into
the domain D−

T :=
{
(x, t) ∈ R

n+1 : xn < 0, |x| < t < T
}

and then by

zero beyond the domain DT ∪D−
T , and leaving the same as above notation,

we have Fk ∈ C∞(Rn+1) with the support suppFk ⊂ D∞ ∪ D−
∞, where

R
n+1
+ := R

n+1 ∩ {t ≥ 0}. Denote by uk the solution of the Cauchy problem

L0uk = Fk, uk
∣∣
t=0

= 0,
∂uk
∂t

∣∣∣
t=0

= 0, (3.3)

which, as is known, exists, is unique and belongs to the space C∞(Rn+1
+ ) [17,

p. 192]. In addition, since suppFk ⊂ D∞ ∪D−
∞ ⊂

{
(x, t) ∈ R

n+1 : t > |x|
}

and uk|t=0 = 0, ∂uk

∂t

∣∣
t=0

= 0, taking into account the geometry of the
domain of dependence of a solution of the linear wave equation L0u =
F , we have suppuk ⊂

{
(x, t) ∈ R

n+1 : t > |x|
}

[17, p. 191], and, in
particular, uk|ST = 0. On the other hand, the function ũk(x1, . . . , xn, t) =
uk(x1, . . . ,−xn, t) is likewise a solution of the same Cauchy problem (3.3),
since Fk is an even function with respect to the variable xn. Therefore,
owing to the uniqueness of the solution of the Cauchy problem, we have
ũk = uk, i.e., uk(x1, . . . ,−xn, t) = uk(x1, . . . , xn, t), and hence the function
uk is likewise even with respect to the variable xn. This, in turn, implies
that ∂uk

∂xn

∣∣
xn=0

= 0, which along with the condition uk|ST = 0 means that if

we leave for the restriction of the function uk to the domain DT the same

notation, then uk ∈
◦
C2(DT , S

0
T , ST ). Further, by (2.1) and (3.3) there takes
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place the inequality

‖uk − ul‖ ◦
W 1

2(DT ,ST )
≤

√
e

2
T‖Fk − Fl‖L2(DT ) (3.4)

since the a priori estimate (2.1) is valid for a strong generalized solution of
the problem (3.1), (3.2) of the class W 1

2 in the domain DT , as well.
Since the sequence {Fk} is fundamental in L2(DT ), therefore by virtue

of (3.4) the sequence {uk} is also fundamental in the space
◦
W 1

2(DT , ST )

which is complete. Therefore, there exists a function u ∈
◦
W 1

2(DT , ST )
such that lim

k→∞
‖uk − u‖ ◦

W 1
2(DT ,ST )

= 0, and since L0uk = Fk → F in the

space L2(DT ), this function will, by the definition, be a strong generalized
solution of the problem (3.1), (3.2). The uniqueness of solution from the

space
◦
W 1

2(DT , ST ) follows from the a priori estimate (2.1). Consequently,
for the solution u of the problem (3.1), (3.2) we can write u = L−1

0 F , where

L−1
0 : L2(DT ) →

◦
W 1

2(DT , ST ) is a linear continuous operator whose norm,
owing to (2.1), admits the estimate

‖L−1
0 ‖

L2(DT )→
◦
W 1

2(DT ,ST )
≤

√
e

2
T. (3.5)

Remark 3.1. The embedding operator I :
◦
W 1

2(DT , ST ) → Lq(DT ) is

linear, continuous and compact for 1 < q < 2(n+1)
n−1 , when n > 1 [49, p. 81].

At the same time, Nemytski’s operator K : Lq(DT ) → L2(DT ) acting by
the formula Ku := −λ|u|pu is continuous and bounded if q ≥ 2(p+ 1) [47,

p. 349], [48, pp. 66, 67]. Thus if p < 2
n−1 , i.e., 2(p + 1) ≤ 2(n+1)

n−1 , then

there exists a number q such that 1 < 2(p+1) ≤ q < 2(n+1)
n−1 , and hence the

operator

K0 = KI :
◦
W 1

2(DT , ST ) → L2(DT ) (3.6)

is continuous and compact. In addition, from uk → u in the space
◦
W 1

2(DT , ST ) it follows that K0uk → K0u in the space L2(DT ). There-
fore, according to Remark 1.2, a strong generalized solution of the problem
(1.1), (1.2) of the class W 1

2 in the domain DT will also be a weak generalized
solution of that problem of the class W 1

2 in the domain DT .

Remark 3.2. For F ∈ L2(DT ), 0 < p < 2
n−1 , by virtue of (3.5) and

Remark 3.1 a function u ∈
◦
W 1

2(DT , ST ) is a strong generalized solution of
the problem (1.1), (1.2) of the class W 1

2 in the domain DT if and only if u
is a solution of the functional equation

u = L−1
0

(
− λ|u|pu+ F

)
(3.7)

in the space
◦
W 1

2(DT , ST ).
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We rewrite the equation (3.7) as follows:

u = Au := L−1
0 (K0u+ F ), (3.8)

where the operator K0 :
◦
W 1

2(DT , ST ) → L2(DT ) from (3.6) is, by Re-
mark 3.1, continuous and compact. Consequently, by (3.5) the operator

A :
◦
W 1

2(DT , ST ) →
◦
W 1

2(DT , ST ) is likewise continuous and compact. At
the same time, by Lemma 2.1 for any parameter τ ∈ [0, 1] and every solu-
tion of the equation u = τAu with the parameter τ the a priori estimate
‖u‖ ◦

W1
2(DT ,ST )

≤ c‖F‖L2(DT ) is valid with a positive constant c independent

of u, F and τ . Therefore, according to the Leray–Schauder theorem [66,
p. 375] the equation (3.8), and hence the problem (1.1), (1.2) has at least
one strong generalized solution of the class W 1

2 in the domain DT . Thus we
have proved the following

Theorem 3.1. Let λ > 0, f(u) = |u|pu, 0 < p < 2
n−1 , F ∈ L2,loc(D)

and F ∈ L2(DT ) for any T > 0. Then the problem (1.1), (1.2) is glob-

ally solvable in the class W 1
2 , i.e., for any T > 0 this problem has a weak

generalized solution of the class W 1
2 in the domain DT .

Reasoning analogously, we can prove that the statement of Theorem 3.1
is likewise valid for the problem (1.1), (1.3).

4. The Non-Existence of the Global Solvability

Below we will consider the case where in the equation (1.1) the function
f(u) = −|u|p+1, p > 0, i.e., the equation

Lλu :=
∂2u

∂t2
−∆u− λ|u|p+1 = F, (4.1)

as well as the more general than (1.2) boundary condition

∂u

∂xn

∣∣∣
S0

T

= 0, u
∣∣
ST

= g, (4.2)

where g is a given real function on ST .

Remark 4.1. Under the assumption that F ∈ L2(DT ), g ∈W 1
2 (ST ) and

0 < p < 2
n−1 , similarly to Definitions 1.1 and 1.2 concerning a weak and a

strong generalized solution of the problem (1.1), (1.2) of the class W 1
2 in the

domain DT , with regard for Remark 3.1 we introduce the notions of a weak
and a strong generalized solution of the problem (4.1), (4.2) of the class W 1

2

in the domain DT :

(i) a function u ∈ W 1
2 (DT ) is said to be a weak generalized solution

of the problem (4.1), (4.2) of the class W 1
2 in the domain DT if

for every function ϕ ∈ W 1
2 (DT ) such that ϕ|t=T = 0 the integral
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equation

−
∫

DT

utϕt dx dt+

∫

DT

∇xu∇xϕ dx dt =

= λ

∫

DT

|u|p+1ϕ dx dt+

∫

DT

Fϕ dx dt−
∫

ST

∂g

∂N
ϕds (4.3)

holds, where ∂
∂N = ν0

∂
∂t −

n∑
i=1

νi
∂
∂xi

is the derivative with respect

to the conormal being an inner differential operator on ST since
the conic manifold ST is characteristic, and ν = (ν1, . . . , νn, ν0) is
the unit vector of the outer normal to ∂DT , ∇x :=

(
∂
∂x1

, . . . , ∂
∂xn

)
;

(ii) a function u ∈ W 1
2 (DT ) is said to be a strong generalized solution

of the problem (4.1), (4.2) of the class W 1
2 in the domain DT , if

there exists a sequence of functions uk ∈
◦
C2
∗(DT , ST ) :=

{
u ∈

C2(DT ) : ∂u
∂xn

∣∣
S0

T

= 0
}

such that uk → u in the space W 1
2 (DT ),

Lλuk → F in the space L2(DT ) and uk|ST → g in the space
W 1

2 (ST ).

Note also that according to Remarks 1.2 and 3.1 a strong generalized
solution of the problem (4.1), (4.2) of the class W 1

2 in the domain DT is
likewise a weak generalized solution of that problem of the class W 1

2 in the
domain DT .

Analogously, we introduce the notion of the global solvability of the
problem (4.1), (4.2) of the class W 1

2 .

Remark 4.2. Below we will use the fact that the derivative with respect
to the conormal ∂

∂N , being an inner differential operator on the character-

istic conic manifold S, coincides with the derivative ∂
∂r with respect to the

spherical variable r = (t2 + |x|2)1/2 with minus sign.

We have the following theorem on the non-existence of the global solv-
ability of the problem (4.1), (4.2).

Theorem 4.1. Let F ∈ L2,loc(D), g ∈ W 1
2,loc(S) and F ∈ L2(DT ),

g ∈ W 1
2 (ST ) for any T > 0. Then if λ > 0, 0 < p < 2

n−1 and

F
∣∣
D
≥ 0, g

∣∣
S
≥ 0,

∂g

∂r

∣∣∣
S
≥ 0, (4.4)

then there exists a positive number T0 = T0(F, g) such that for T > T0 the

problem (4.1), (4.2) cannot have a weak generalized solution of the class W 1
2

(for F = 0 and g = 0, nontrivial) in the domain DT .

Proof. Let GT : |x| < t < T , G−T := GT ∩ {xn < 0}, S−T : t = |x|, xn ≤ 0,

t ≤ T . Obviously, DT = G+
T := GT ∩ {xn > 0} and GT = G−T ∪ S0

T ∪DT ,
where S0

T = ∂DT ∩ {xn = 0}. We extend the functions u, F and g evenly
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with respect to the variable xn into G−T and S−T , respectively. For the sake

of simplicity, for the extended functions defined in GT and S−T ∪ST we leave
the same notation u, F and g. Then if u ∈ W 1

2 (DT ) is a weak generalized
solution of the problem (4.1), (4.2) of the class W 1

2 in the domain DT , then
for every function ψ ∈ W 1

2 (GT ) such that ψ|t=T = 0 the equality

−
∫

GT

utψt dx dt+

∫

GT

∇xu∇xψ dx dt =

= λ

∫

GT

|u|p+1ψ dx dt +

∫

GT

Fψ dx dt−
∫

S−T ∪ST

∂g

∂N
ψ ds (4.5)

holds.
Indeed, if ψ ∈ W 1

2 (GT ) and ψ|t=T = 0, then, obviously, ψ|DT ∈
W 1

2 (DT ) and ψ̃ ∈ W 1
2 (DT ), where, by definition, ψ̃(x1, . . . , xn, t) =

ψ(x1, . . . ,−xn, t), (x1, . . . , xn, t) ∈ DT , and ψ̃|t=T = 0. Therefore, by the
equality (4.3) we have

−
∫

DT

utψt dx dt+

∫

DT

∇xu∇xψ dx dt =

= λ

∫

DT

|u|p+1ψ dx dt+

∫

DT

Fψ dx dt−
∫

ST

∂g

∂N
ψ ds, (4.6)

−
∫

DT

utψ̃t dx dt+

∫

DT

∇xu∇xψ̃ dx dt =

= λ

∫

DT

|u|p+1ψ̃ dx dt+

∫

DT

F ψ̃ dx dt−
∫

ST

∂g

∂N
ψ̃ ds. (4.7)

Taking now into account that u, F and g are even functions with respect
to the variable xn, as well as the equality

ψ̃(x1, . . . , xn, t) = ψ(x1, . . . ,−xn, t), (x1, . . . , xn, t) ∈ DT ,

we find that

−
∫

DT

utψ̃t dx dt+

∫

DT

∇xu∇xψ̃ dx dt =

= −
∫

G−T

utψt dx dt+

∫

G−T

∇xu∇xψ dx dt, (4.8)

λ

∫

DT

|u|p+1ψ̃ dx dt+

∫

DT

F ψ̃ dx dt−
∫

ST

∂g

∂N
ψ̃ ds =

= λ

∫

DT

|u|p+1ψ dx dt+

∫

G−T

Fψ dx dt −
∫

ST

∂g

∂N
ψ ds. (4.9)
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From (4.7), (4.8) and (4.9) it follows that

−
∫

G−T

utψt dx dt+

∫

G−T

∇xu∇xψ dx dt =

= λ

∫

G−T

|u|p+1ψ dx dt+

∫

G−T

Fψ dx dt −
∫

S−T

∂g

∂N
ψ ds. (4.10)

Finally, adding the equalities (4.6) and (4.10) we obtain (4.5).

Note that the inequality ∂g
∂r

∣∣
S
≥ 0 in the condition (4.4) is understood

in the generalized sense, i.e., by the assumption g ∈ W 1
2,loc(S) there exists

the generalized derivative ∂g
∂r ∈ L2,loc(S) which is nonnegative, and hence,

for every function β ∈ C(S) finitary with respect to the variable r, β ≥ 0,
the inequality ∫

S

∂g

∂r
β ds ≥ 0 (4.11)

holds.
Here we will use the method of test functions [53, pp. 10–12]. In the

capacity of a test function in the equality (4.5) we take ψ(x, t) = ψ0

[
2
T 2 (t2+

|x|2)
]
, where ψ0 ∈ C2((−∞,+∞)), ψ0 ≥ 0, ψ′0 ≤ 0, ψ0(σ) = 1 for 0 ≤ σ ≤ 1

and ψ0(σ) = 0 for σ ≥ 2 [53, p. 22]. Obviously, ψ|t=T = 0 and ψ ∈ C2(GT ),
and all the more, ψ ∈ W 1

2 (GT ).
Integrating the left-hand side (4.5) by parts, we obtain

∫

GT

u�ψ dx dt = λ

∫

GT

|u|p+1ψ dx dt+

+

∫

GT

Fψ dx dt+

∫

S−T ∪ST

g
∂ψ

∂N
ds−

∫

S−T ∪ST

∂g

∂N
ψ ds. (4.12)

Taking into account Remark 4.1, (4.4) and (4.11), we have
∫

DT

Fψ dx dt ≥ 0,

∫

S−T ∪ST

g
∂ψ

∂N
ds ≥ 0,

∫

S−T ∪ST

∂g

∂N
ψ ds ≤ 0, (4.13)

where ψ is the above-introduced test function.
Assuming that the functions F , g and ψ are fixed, we introduce into

consideration the function of one variable T ,

γ(T ) =

∫

GT

Fψ dx dt+

∫

S−T ∪ST

g
∂ψ

∂N
ds−

∫

S−T ∪ST

∂g

∂N
ψ ds, T > 0. (4.14)

Owing to the absolute continuity of the integral and the inequalities
(4.9), the function γ(T ) from (4.10) is nonnegative, continuous and nonde-
creasing. Note that lim

T→∞
γ(T ) = 0.
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Taking into account (4.10), we rewrite the equality (4.8) in the form

λ

∫

GT

|u|p+1ψ dx dt =

∫

GT

u�ψ dx dt− γ(T ).

The rest of our reasoning allowing for proving Theorem 4.1 word by
word repeats that of Section 5 in Chapter II for α = p+ 1. �

Remark 4.3. The conclusion of Theorem 4.1 remains valid for the lim-
iting case p = 2

n−1 as well, if we take advantage of the reasoning pre-

sented in [53, p. 23]. The conclusion of that theorem ceases to be valid if
the condition p > 2

n−1 and the second condition of (4.4), i.e., the condi-

tion g|S ≥ 0, are violated simultaneously. Indeed, the function u(x, t) =
−ε(1 + t2 − |x|2)−1/p, ε = const > 0, is a global classical, and hence, gen-

eralized solution of the problem (4.1), (4.2) for g = −ε
(
∂g
∂r |S = 0

)
and

F =
[
2ε n+1

p − 4ε p+1
p2

t2−|x|2
1+t2−|x|2 − λεp+1

]
(1 + t2− |x|2) p+1

p ; in addition, as it

can be easily verified, F |D ≥ 0 if p > 2
n−1 and 0 < ε ≤

{
2
λ

[n+1− 2(p+1)
p

p

]}1/p
.

Note that the inequality n+ 1− 2(p+1)
p > 0 is equivalent to p > 2

n−1 .

Remark 4.4. The conclusion of Theorem 4.1 also ceases to be valid
if only the third condition of (4.4) is violated, i.e., the condition ∂g

∂r

∣∣
S
≥

0. Indeed, the function u(x, t) = c0
[
(t0 + 1)2 − |x|2

]−1/p
, where c0 =

λ−1/p
[ 4(p+1)

p2 − 2(n+1)
p

]−1/p
, is a global classical solution of the problem

(4.1), (4.2) for F = 0 and g = u|S = c0
[
(t+ 1)2 − t2

]−1/p
> 0.

Remark 4.5. In case −1 < p < 0, the problem (4.1), (4.2) may have
more than one global solution. For example, for F = 0 and g = 0, the con-
ditions (4.4) are fulfilled, but the problem (4.1), (4.2) has, besides the trivial
solution, an infinite set of global linearly independent solutions uα(x, t) de-
pending on the parameter α ≥ 0 and given by the formula

uα(x, t) =

{
c0

[
(t− α)2 − |x|2

]−1/p
, t > α+ |x|,

0, |x| ≤ t ≤ α+ |x|,

where c0 = λ−1/p
[ 4(p+1)

p2 − 2(n+1)
p

]−1/p
. It is not difficult to see that uα ∈

C1(D) for p < 0, while for −1/2 < p < 0 the function uα ∈ C2(D).

5. The Local Solvability

Remark 5.1. Just as is mentioned in Remarks 3.1 and 3.2, for 0 < p <
2

n−1 the operator

K1 :
◦
W 1

2(DT , ST ) → L2(DT )
(
K1u = λ|u|p+1

)
(5.1)
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is continuous and compact, and the problem (4.1), (4.2) for g = 0 is equiv-
alent to the functional equation

u = A1u+ u0 (5.2)

in the space
◦
W 1

2(DT , ST ), where

A1 = L−1
0 K1, u0 = L−1

0 F ∈
◦
W 1

2(DT , ST ) (5.3)

with regard for (5.1). Here L−1
0 : L2(DT ) →

◦
W 1

2(DT , ST ) is a linear contin-
uous operator whose norm admits the estimate (3.5).

Remark 5.2. Let B(0, d) :=
{
u ∈

◦
W 1

2(DT , ST ) : ‖u‖ ◦
W1

2(DT ,ST )
≤ d

}
be

the closed (convex) sphere in the Hilbert space
◦
W 1

2(DT , ST ) of radius d > 0
with the center at the zero element. Since by the above Remark 5.1 the

operator A1 :
◦
W 1

2(DT , ST ) →
◦
W 1

2(DT , ST ) for 0 < p < 2
n−1 is continuous

and compact, according to the Schauder principle for showing the solvability
of the equation (5.2) it suffices to prove that the operator A2 acting by the
formula A2u = A1u + u0 transforms the ball B(0, d) into itself for some
d > 0 [66, p. 379]. Towards this end, we will give here the needed estimate
for ‖Au‖ ◦

W1
2(DT ,ST )

.

If u ∈
◦
W 1

2(DT , ST ), we denote by ũ the function which is, in fact, the
extension of the function u evenly through the planes xn = 0 and t = T .

Obviously ũ ∈
◦
W 1

2(D
∗
T ), where D∗

T : |x| < t < 2T − |x|.
Using the inequality [72, p. 258]

∫

Ω

|v| dΩ ≤ (mes Ω)1−
1
q ‖v‖q,Ω, q ≥ 1,

and taking into account the equalities

‖ũ‖qLq(D∗T ) = 4‖u‖qLq(DT ), ‖ũ‖2◦
W 1

2(D
∗
T )

= 4‖u‖2
◦
W1

2(DT ,ST )
,

from the well-known multiplicative inequality [49, p. 78]

‖v‖q,Ω ≤ β‖∇v‖α̃m,Ω‖v‖1−α̃r,Ω ∀ v ∈
◦
W 1

2(Ω), Ω ⊂ R
n+1,

α̃ =
(1

r
− 1

q

)(1

r
− 1

m̃

)−1

, m̃ =
(n+ 1)m

n+ 1−m
,

for Ω = D∗
T ⊂ R

n+1, v = ũ, r = 1, m = 2 and 1 < q ≤ 2(n+1)
n−1 , where β =

const > 0 does not depend on v and T , we obtain the following inequality:

‖u‖Lq(DT ) ≤ c0(mesDT )
1
q + 1

n+1− 1
2 ‖u‖ ◦

W1
2(DT ,ST )

∀u ∈
◦
W 1

2(DT , ST ), (5.4)

where c0 = const > 0 does not depend on u.
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Taking into account that mesDT = ωn

2(n+1) T
n+1, where ωn is the vol-

ume of the unit ball in R
n, for q = 2(p+ 1) (5.4) yields

‖u‖L2(p+1)(DT ) ≤

≤ c0 ˜̀p,nT (n+1)
(

1
2(p+1)

+ 1
n+1− 1

2

)
‖u‖ ◦

W1
2(DT ,ST )

∀u ∈
◦
W 1

2(DT , ST ), (5.5)

where ˜̀
p,n =

(
ωn

2(n+1)

)( 1
2(p+1)

+ 1
n+1− 1

2

)
.

For the value ‖K1u‖L2(DT ), where u ∈
◦
W 1

2(DT , ST ) and the operator
K1 acts by the equality from (5.1), by virtue of (5.5) the estimate

‖K1u‖L2(DT ) ≤ λ

[ ∫

DT

|u|2(p+1) dx dt

]1/2

= λ‖u‖p+1
L2(p+1)(DT ) ≤

≤ λ`p,nT
(p+1)(n+1)

(
1

2(p+1)
+ 1

n+1− 1
2

)
‖u‖p+1

◦
W1

2(DT ,ST )
(5.6)

holds, where `p,n = [c0 ˜̀
p,n]

p+1.
Now from (3.5) and (5.6), for ‖A1u‖ ◦

W1
2(DT ,ST )

, where by virtue of (5.3)

A1u = L−1
0 K1u, the estimate

‖A1u‖ ◦
W1

2(DT ,ST )
≤ ‖L−1

0 ‖
L2(DT )→

◦
W 1

2(DT ,ST )
‖K1u‖L2(DT ) ≤

≤
√
e

2
λ`p,nT

1+(p+1)(n+1)
(

1
2(p+1)

+ 1
n+1− 1

2

)
‖u‖p+1

◦
W1

2(DT ,ST )
(5.7)

∀u ∈
◦
W 1

2(DT , ST )

is valid.
Note that 1

2(p+1) + 1
n+1 − 1

2 > 0 for p < 2
n−1 .

Consider the equation

azp+1 + b = z (5.8)

with respect to the unknown function z, where

a =

√
e

2
λ`p,nT

1+(p+1)(n+1)
(

1
2(p+1)

+ 1
n+1− 1

2

)
, b =

√
e

2
T‖F‖L2(DT ). (5.9)

For T > 0, it is evident that a > 0 and b ≥ 0. A simple analysis similar
to that which for p = 2 is performed in [66, pp. 373, 374] shows that:

(1) if b = 0, the equation (5.8) along with the zero root z1 = 0 has the
unique positive root z2 = a−1/p;

(2) if b > 0, then for 0 < b < b0, where

b0 =
[
(p+ 1)−

1
p − (p+ 1)−

p+1
p

]
a−

1
p , (5.10)
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the equation (5.8) has two positive roots z1 and z2, 0 < z1 < z2,
which for b = b0 merge into one positive root

z1 = z2 = z0 =
[
(p+ 1)a

]− 1
p ;

(3) if b > b0, then the equation (5.8) has no nonnegative root.

Note that for 0 < b < b0 there take place the inequalities

z1 < z0 =
[
(p+ 1)a

]− 1
p < z2.

Owing to (5.9) and (5.10), the condition b ≤ b0 is equivalent to the
condition √

e

2
T‖F‖L2(DT ) ≤

≤
[√

e

2
λ`p,nT

1+(p+1)(n+1)
(

1
2(p+1)

+ 1
n+1− 1

2

)]− 1
p [

(p+1)−
1
p −(p+1)−

p+1
p

]

or
‖F‖L2(DT ) ≤ γn,λ,pT

−αn , αn > 0, (5.11)

where

γn,λ,p =
[
(p+ 1)−

1
p − (p+ 1)−

p+1
p

]
(λ`p,n)

− 1
p exp

[
− 1

2

(
1 +

1

p

)]
,

αn = 1 +
1

p

[
1 + (p+ 1)(n+ 1)

( 1

2(p+ 1)
+

1

n+ 1
− 1

2

)]
.

Bearing in mind that the Lebesgue integral is absolutely continuous, we
have lim

T→0
‖F‖L2(DT ) = 0. At the same time, lim

T→0
T−αn = +∞. Therefore,

there exists a number T1 = T1(F ), 0 < T1 < +∞ such that inequality (5.11)
holds for

0 < T ≤ T1(F ). (5.12)

Let us now show that if the condition (5.12) is fulfilled, then the operator

A2 :
◦
W 1

2(DT , ST ) →
◦
W 1

2(DT , ST ) acting by the formula A2 = A1u + u0

transforms the ball B(0, z2) mentioned in Remark 5.2 into itself, where z2
is the maximal positive root of the equation (3.8). Indeed, if u ∈ B(0, z2),
then by (5.7), (5.8) and (5.9) we have

‖A2u‖ ◦
W 1

2(DT ,ST )
≤ a‖u‖p+1

◦
W1

2(DT ,ST )
+ b ≤ azp+1

2 + b = z2.

Therefore, according to Remarks 5.1 and 5.2 the following theorem is
valid.

Theorem 5.1. Let 0 < p < 2
n−1 , g = 0, F ∈ L2,loc(D) and F ∈

L2(DT ) for any T > 0. Then the problem (4.1), (4.2) in the domain DT

has at least one strong generalized solution of the class W 1
2 if T satisfies the

inequality (5.12).

Note that analogous results are valid for the problem (4.1), (4.3) as well.



CHAPTER 5

Characteristic Boundary Value Problems for

Nonlinear Equations with the Iterated Wave

Operator in the Principal Part

1. Statement of the First Characteristic Boundary Value
Problem

In the Euclidean space R
n+1 of the variables x1, . . . , xn, t, we consider

the nonlinear equation of the type

Lλu := �
2u+ λf(u) = F, (1.1)

where λ is a given real constant, f : R → R is a given continuous nonlinear
function, f(0) = 0, F is a given and u is an unknown real function, � :=

∂2

∂t2 −
n∑
i=1

∂2

∂x2
i

, n ≥ 2.

ByDT : |x| < t < T−|x| we denote the domain which is the intersection
of the light cone of future K+

0 : t > |x| with the vertex at the origin
O(0, . . . , 0) and the light cone of past K−

A : t < T − |x| with the vertex at
the point A(0, . . . , 0, T ), T = const > 0.

For the equation (1.1), we consider the characteristic boundary value
problem: find in the domain DT a solution u(x1, . . . , xn, t) of that equation
according to the boundary condition

u
∣∣
∂DT

= 0. (1.2)

Assume
◦
Ck(DT , ∂DT ) :=

{
u ∈ Ck(DT ) : u|∂DT = 0

}
, k ≥ 1. Let u ∈

◦
C4(DT , ∂DT ) be a classical solution of the problem (1.1), (1.2). Multiplying

both parts of the equation (1.1) by an arbitrary function ϕ ∈
◦
C2(DT , ∂DT )

and integrating the obtained equality by parts over the domain DT , we
obtain ∫

DT

�u�ϕ dx dt+ λ

∫

DT

f(u)ϕ dx dt =

∫

DT

Fϕ dx dt. (1.3)

When deducing (1.3), we have used the equality
∫

DT

�u�ϕ dx dt =

∫

∂DT

∂ϕ

∂N
�ϕds−

∫

∂DT

ϕ
∂

∂N
�u ds+

∫

DT

ϕ�
2u dx dt

89
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and the fact that since ∂DT is a characteristic manifold, the derivative with

respect to the conormal ∂
∂N =νn+1

∂
∂t−

n∑
i=1

νi
∂
∂xi

, where ν=(ν1, . . . , νn, νn+1)

is the unit vector of the outer normal to ∂DT , is an inner differential operator

on the characteristic manifold ∂DT , and hence if v ∈
◦
C1(DT , ∂DT ), then

∂v
∂N

∣∣
∂DT

= 0.

Introduce the Hilbert space
◦
W 1

2,�(DT ) as the completion with respect
to the norm

‖u‖2◦
W1

2,�
(DT )

=

∫

DT

[
u2 +

(∂u
∂t

)2

+

n∑

i=1

( ∂u
∂xi

)2

+ (�u)2
]
dx dt (1.4)

of the classical space
◦
C2(DT , ∂DT ). It follows from (1.4) that if u ∈

◦
W 1

2,�(DT ), then u ∈
◦
W 1

2(DT ) and �u ∈ L2(DT ). Here W 1
2 (DT ) is the

well-known Sobolev space [49, p. 56] consisting of the elements L2(DT )

having the first order generalized derivatives from L2(DT ), and
◦
W 1

2(DT ) ={
u ∈ W 1

2 (DT ) : u|∂DT = 0
}
, where the equality u|∂DT = 0 is understood

in the sense of the trace theory [30, p. 70].
We take the equality (1.3) as a basis for our definition of the generalized

solution of the problem (1.1), (1.2).

Definition 1.1. Let F ∈ L2(DT ). The function u ∈
◦
W 1

2,�(DT ) is

said to be a weak generalized solution of the problem (1.1), (1.2), if f(u) ∈
L2(DT ) and for any function ϕ ∈

◦
W 1

2,�(DT ) the integral equality (1.3) is

valid, i.e.,
∫

DT

�u�ϕ dx dt + λ

∫

DT

f(u)ϕ dx dt =

∫

DT

Fϕ dx dt ∀ϕ ∈
◦
W 1

2,�(DT ). (1.5)

It is not difficult to verify that if a solution u of the problem (1.1), (1.2)
belongs, in the sense of Definition 1.1, to the class C4(DT ), then it will also
be a classical solution of that problem.

2. The Solvability of the Problem (1.1), (1.2) in Case of the
Nonlinearity of the Type f(u) = |u|α sgnu

Let a nonlinear function f in the equation (1.1) be of the form

f(u) = |u|α sgnu, α = const > 0, α 6= 1. (2.1)

Then according to (2.1) the equation (1.1) and the integral equality (1.5)
take the form

Lλu := �
2u+ λ|u|α sgnu = F (2.2)
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and
∫

DT

�u�ϕ dx dt+ λ

∫

DT

ϕ|u|α sgnu dx dt =

=

∫

DT

Fϕ dx dt ∀ϕ ∈
◦
W 1

2,�(DT ). (2.3)

Lemma 2.1. The inequality

‖u‖ ◦
W1

2,�
(DT )

≤ c‖�u‖L2(DT ) ∀u ∈
◦
W 1

2,�(DT ) (2.4)

holds, where the norm of the space
◦
W 1

2,�(DT ) is given by the equality (1.4)

and the positive constant c does not depend on u.

Proof. Since the space
◦
C2(DT , ∂DT ) is a dense subspace of the space

◦
W 1

2,�(DT ), it suffices to prove that ∀u ∈
◦
C2(DT , ∂DT )

‖u‖2◦
W1

2,�
(D+

T/2
)
≤c2‖�u‖2

L2(D
+
T/2

)
, ‖u‖2◦

W1
2,�

(D−
T/2

)
≤c2‖�u‖2

L2(D
−
T/2

)
, (2.5)

where D+
T/2 = DT ∩ {t < T/2}, D−

T/2 = DT ∩ {t > T/2} and the norm

‖ · ‖ ◦
W 1

2,�
(D±

T/2
)
is given by the equality (1.4) in which instead of DT we have

to take D±
T/2.

We restrict ourselves to the proof of the first inequality (2.5) since the
second one is word by word proved analogously.

Assume Ωτ := D
±
T/2 ∩ {t = τ}, D+

τ := D+
T/2 ∩ {t < τ}, S+

τ :=
{
(x, t) ∈

∂D+
τ : t = |x|

}
, 0 < τ ≤ T/2, and let ν = (ν1, . . . , νn, νn+1) be the unit

vector of the outer normal to ∂D+
τ . For u ∈

◦
C2(DT , ∂DT ), in view of the

equalities u|+Sτ
= 0, Ωτ = ∂D+

τ ∩ {t = τ} and ν|Ωτ = (0, . . . , 0, 1), the
integration by parts provides us with

∫

D+
τ

∂2u

∂t2
∂u

∂t
dx dt =

1

2

∫

D+
τ

∂

∂t

(∂u
∂t

)2

dx dt =
1

2

∫

D+
τ

(∂u
∂t

)2

νn+1 ds =

=
1

2

∫

Ωτ

(∂u
∂t

)2

dx+
1

2

∫

S+
τ

(∂u
∂t

)2

νn+1 ds, τ ≤ T

2
, (2.6)

∫

D+
τ

∂2u

∂x2
i

∂u

∂t
dx dt =

∫

∂D+
τ

∂u

∂xi

∂u

∂t
νi ds−

1

2

∫

D+
τ

∂

∂t

( ∂u
∂xi

)2

dx dt =

=

∫

∂D+
τ

∂u

∂xi

∂u

∂t
νi ds−

1

2

∫

∂D+
τ

( ∂u
∂xi

)2

νn+1 ds =
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=

∫

∂D+
τ

∂u

∂xi

∂u

∂t
νi ds−

1

2

∫

S+
τ

( ∂u
∂xi

)2

νn+1 ds−
1

2

∫

Ωτ

( ∂u
∂xi

)2

dx, τ≤ T

2
. (2.7)

It follows from (2.6) and (2.7) that
∫

D+
τ

�u
∂u

∂t
dx dt =

=

∫

S+
τ

1

2νn+1

[ n∑

i=1

( ∂u
∂xi

νn+1 −
∂u

∂t
νi

)2

+
(∂u
∂t

)2(
ν2
n+1 −

n∑

j=1

ν2
j

)]
ds+

+
1

2

∫

Ωτ

[(∂u
∂t

)2

+

n∑

i=1

( ∂u
∂xi

)2
]
dx, τ ≤ T

2
. (2.8)

Since u|S+
τ

= 0 and
(
νn+1

∂
∂xi

−νi ∂∂t
)
, 1 ≤ i ≤ n, is an inner differential

operator on S+
τ , there take place the following equalities:

( ∂u
∂xi

νn+1 −
∂u

∂t
νi

)∣∣∣
S+

τ

= 0, i = 1, . . . , n. (2.9)

Therefore, taking into account that ν2
n+1−

n∑
j=1

ν2
j = 0 on the character-

istic manifold S+
τ , by virtue of (2.8) and (2.9) we have

∫

Ωτ

[(∂u
∂t

)2

+

n∑

i=1

( ∂u
∂xi

)2
]
dx = 2

∫

D+
τ

�u
∂u

∂t
dx dt, τ ≤ T

2
. (2.10)

Putting

w(δ) :=

∫

Ωδ

[(∂u
∂t

)2

+

n∑

i=1

( ∂u
∂xi

)2
]
dx

and using the equality

2�u
∂u

∂t
≤ ε

(∂u
∂t

)2

+
1

ε
|�u|2

which is valid for every ε = const > 0, from (2.10) we obtain

w(δ) ≤ ε

δ∫

0

w(σ) dσ +
1

ε
‖�u‖2

L2(D
+
δ

)
, 0 < δ ≤ T

2
. (2.11)

From (2.11), taking into account that ‖�u‖2
L2(D

+
δ )

as a function of δ is

nondecreasing, by Gronwall’s lemma [15, p. 13] we find that

w(δ) ≤ 1

ε
‖�u‖2

L2(D
+
δ )

exp δε,
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whence bearing in mind that inf
ε>0

1
ε exp δε = eδ is achieved for ε = 1/δ, we

obtain

w(δ) ≤ eδ‖�u‖2
L2(D

+
δ

)
, 0 < δ ≤ T

2
. (2.12)

In its turn, from (2.12) it follows that

∫

D+
T/2

[(∂u
∂t

)2

+
n∑

i=1

( ∂u
∂xi

)2
]
dx dt=

T/2∫

0

w(δ) dδ≤ e

8
T 2‖�u‖2

L2(D
+
T/2

)
. (2.13)

Using the equalities u|ST/2
= 0 and u(x, t) =

t∫
|x|

∂u(x,τ)
∂t dτ , (x, t) ∈

D
+

T/2, which are valid for every function u ∈
◦
C2(DT , ∂DT ), and reasoning

in a standard way [49, p. 69], it is not difficult to get the inequality
∫

D+
T/2

u2(x, t) dx dt ≤ T 2

4

∫

D+
T/2

(∂u
∂t

)2

dx dt. (2.14)

Owing to (2.13) and (2.14), we have

‖u‖2◦
W1

2,�
(D+

T/2
)
=

∫

D+
T/2

[
u2 +

(∂u
∂t

)2

+

n∑

i=1

( ∂u
∂xi

)2

+ (�u)2
]
dx dt ≤

≤
(
1 +

e

8
T 2 +

e

32
T 4

)
‖�u‖2

L2(D
+
T/2

)
,

whence we obtain the first inequality from (2.5) with the constant c2 =
1 + e

8 T
2 + e

32 T
4. Thus we have proved the lemma. �

Lemma 2.2. Let F ∈ L2(DT ), 0 < α < 1, and in the case α > 1
we additionally require that λ > 0. Then for a weak generalized solution

u ∈
◦
W 1

2,�(DT ) of the problem (1.1), (1.2) with nonlinearity of the type (2.1),

i.e., of the problem (2.2), (1.2) in the sense of the integral equality (2.3) for

|u|α ∈ L2(DT ), the a priori estimate

‖u‖ ◦
W1

2,�
(DT )

≤ c1‖F‖L2(DT ) + c2 (2.15)

is valid with nonnegative constants ci(T, α, λ), i = 1, 2, independent of u
and F and c1 > 0.

Proof. First, let α > 1 and λ > 0. Putting ϕ = u ∈
◦
W 1

2,�(DT ) in the

equality (2.3) and taking into account (1.4) for any ε > 0, we obtain

‖�u‖2L2(DT ) =

∫

DT

(�u)2 dx dt = −λ
∫

DT

|u|α+1 dx dt+

∫

DT

Fu dx dt ≤
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≤
∫

DT

Fu dx dt ≤ 1

4ε

∫

DT

F 2 dx dt+ ε‖u‖2
L2(DT ) ≤

≤ 1

4ε
‖F‖2L2(DT ) + ε‖u‖2

◦
W1

2,�
(DT )

. (2.16)

By virtue of (2.4) and (2.16), we have

‖u‖2◦
W1

2,�
(DT )

≤ c2‖�u‖2L2(DT ) ≤
c2

4ε
‖F‖2L2(DT ) + c2ε‖u‖2◦

W1
2,�

(DT )
,

whence for ε = 1
2c2 <

1
c2 we obtain

‖u‖2◦
W1

2,�
(DT )

≤ c2

4ε(1− εc2)
‖F‖2L2(DT ) = c4‖F‖2L2(DT ). (2.17)

In case α > 1 and λ > 0, from (2.17) it follows the inequality (2.15)
with c1 = c2 and c2 = 0.

Let now 0 < α < 1. Using the well-known inequality ab ≤ εap

p + bq

qεq−1

with the parameter ε > 0 for a = |u|α+1, b = 1, p = 2
α+1 > 1, q = 2

a−α ,
1
p + 1

q = 1, analogously as when deducing the inequality (2.16) we have

‖�u‖2L2(DT ) =

∫

DT

(�u)2 dx dt = −λ
∫

DT

|u|α+1 dx dt+

∫

DT

Fu dx dt ≤

≤ |λ|
∫

DT

[
ε

1 + α

2
|u|2 +

1− α

2εq−1

]
dx dt +

1

4ε

∫

DT

F 2 dx dt+ ε

∫

DT

u2 dx dt =

≤ 1

4ε
‖F‖2L2(DT ) + ε

(
|λ| 1 + α

2
+ 1

)
‖u‖2L2(DT ) + |λ| 1− α

2εq−1
mesDT . (2.18)

By virtue of (1.4) and (2.4), it follows from (2.18) that

‖u‖2◦
W1

2,�
(DT )

≤ c2‖�u‖2L2(DT ) ≤

≤ c2

4ε
‖F‖2L2(DT )+εc

2
(
|λ| 1+α

2
+1

)
‖u‖2◦

W1
2,�

(DT )
+c2|λ| 1−α

2εq−1
mesDT ,

q =
2

1− α
,

whence for ε = 1
2 c

−2
(
|λ| 1+α

2 + 1
)−1

we obtain

‖u‖2◦
W1

2,�
(DT )

≤

≤
[
1− εc2

(
|λ| 1 + α

2
+ 1

)]−1( c2
4ε
‖F‖L2(DT ) + c2|λ| 1− α

2εq−1
mesDT

)
=

= c4
(
|λ| 1 + α

2
+ 1

)
‖F‖2L2(DT ) + 2c2|λ| 1− α

2εq−1
mesDT . (2.19)
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From (2.19), in case 0 < α < 1 it follows the inequality (2.15) with

c1 = c2
(
|λ| 1+α

2 + 1
)1/2

and c2 = c
(
2|λ| 1−α

2εq−1 mesDT

)1/2
, where q = 1

1−α .
Thus the lemma is proved completely. �

Remark 2.1. It follows from the proof of Lemma 2.2 that the constants
c1 and c2 in the estimate (2.15) are equal to:

(1) α > 1, λ > 0: c1 = c2, c2 = 0; (2.20)
(2) 0 < α < 1, −∞ < λ < +∞:

c1 = c2
(
|λ| 1 + α

2
+ 1

)1/2

, c2 = c
(
2|λ| 1− α

2εq−1
mesDT

)1/2

, (2.21)

where the constant c =
(
1 + e

8 T
2 + e

32 T
4
)1/2

is taken from the estimate

(2.4) and q = 1
1−α .

Remark 2.2. Below we will first consider the linear problem corre-
sponding to (1.1), (1.2), i.e., the case where λ = 0. In this case, for
F ∈ L2(DT ) we introduce analogously the notion of a weak generalized

solution u ∈
◦
W 1

2,�(DT ) of that problem when the integral equality

(u, ϕ)� :=

∫

DT

�u�ϕ dx dt =

∫

DT

Fϕ dx dt ∀ϕ ∈
◦
W 1

2,�(DT ) (2.22)

holds.

Remark 2.3. By (1.4) and (2.4), taking into account that

∣∣(�u,�ϕ)L2(DT )

∣∣ =

∣∣∣∣
∫

DT

�u�ϕ dx dt

∣∣∣∣ ≤

≤ ‖�u‖L2(DT )‖�ϕ‖L2(DT ) ≤ ‖�u‖ ◦
W1

2,�
(DT )

‖�ϕ‖ ◦
W1

2,�
(DT )

,

we can take the bilinear form (u, ϕ)� :=
∫
DT

�u�ϕ dx dt from (2.22) as a

scalar product in the Hilbert space
◦
W 1

2,�(DT ). Therefore, for F ∈ L2(DT )
∣∣∣∣
∫

DT

Fϕ dx dt

∣∣∣∣ ≤ ‖F‖L2(DT )‖ϕ‖L2(DT ) ≤ ‖F‖L2(DT )‖ϕ‖ ◦
W 1

2,�
(DT )

,

and by the Riesz theorem [10, p. 83] there exists a unique function u

from the space
◦
W 1

2,�(DT ) which satisfies the equality (2.22) for every ϕ ∈
◦
W 1

2,�(DT ) and for its norm the estimate

‖u‖ ◦
W1

2,�
(DT )

≤ ‖F‖L2(DT ) (2.23)

is valid. Thus introducing the notation u = L−1
0 F , we find that to the linear

problem corresponding to (1.1), (1.2), i.e., for λ = 0, there corresponds the
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linear bounded operator L−1
0 : L2(DT ) →

◦
W 1

2,�(DT ) and for its norm the
estimate

‖L−1
0 ‖

L2(DT )→
◦
W 1

2,�
(DT )

≤ ‖F‖L2(DT ) (2.24)

holds by virtue of (2.23).

Taking into account Definition 1.1 and Remark 2.3, we can rewrite the
equality (2.3), equivalent to the problem (2.2), (1.2), in the form

u = L−1
0

[
− λ|u|α sgnu+ F

]
(2.25)

in the Hilbert space
◦
W 1

2,�(DT ).

Remark 2.4. The embedding operator I :
◦
W 1

2(DT ) → Lq(DT ) is linear,

continuous and compact for 1 < q < 2(n+1)
n−1 , when n ≥ 2 [49, p. 81]. At

the same time, the Nemytski operator N : Lq(DT ) → L2(DT ) acting by the
formula Nu = −λ|u|α sgnu, α > 1, is continuous and bounded if q ≥ 2α
[47, p. 349], [48, pp. 66, 67]. Thus if 1 < α < n+1

n−1 , then there exists a

number q such that 1 < 2α ≤ q < 2(n+1)
n−1 and hence the operator

N1 = NI :
◦
W 1

2(DT ) → L2(DT ) (2.26)

is continuous and compact. In addition, from u ∈
◦
W 1

2(DT ) there follows

f(u) = |u|α sgnu ∈ L2(DT ). Next, since due to (1.4) the space
◦
W 1

2,�(DT )

is continuously embedded into the space
◦
W 1

2(DT ), bearing in mind (2.26)
we will see that the operator

N2 = NII1 :
◦
W 1

2,�(DT ) → L2(DT ), (2.27)

where I1 :
◦
W 1

2,�(DT ) →
◦
W 1

2(DT ) is the embedding operator, is likewise

continuous and compact for 1 < α < n+1
n−1 . For 0 < α < 1 the operator

(2.27) is also continuous and compact since, by Rellikh’s theorem [49, p. 64],

the space
◦
W 1

2(DT ) is continuously and compactly embedded into L2(DT ),
and the space L2(DT ) is, in its turn, continuously embedded into Lp(DT )
for 0 < p < 2.

We rewrite the equation (2.25) as follows:

u = Au := L−1
0 (N2u+ F ), (2.28)

where the operator N2 :
◦
W 1

2,�(DT ) → L2(DT ), by Remark 2.4, for 0 <

α < n+1
n−1 , α 6= 1, is continuous and compact. Then, taking into account

(2.24) we conclude that the operator A :
◦
W 1

2,�(DT ) →
◦
W 1

2,�(DT ) from

(2.28) is likewise continuous and compact. At the same time, according to
the a priori estimate (2.15) of Lemma 2.2 in which the constants c1 and c2
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are given by the equalities (2.20) and (2.21), for any parameter τ ∈ [0, 1]

and for every solution u ∈
◦
W 1

2,�(DT ) of the equation u = τAu with the

above-mentioned parameter the a priori estimate (2.15) is valid with positive
constants c1 > 0 and c2 ≥ 0 independent of u, F and τ . Therefore, by the
Leray–Schauder theorem [66, p. 375] the equation (2.28) and hence the
problem (2.2), (1.2) has at least one weak generalized solution u from the

space
◦
W 1

2,�(DT ). Thus the following theorem is valid.

Theorem 2.1. Let 0 < α < n+1
n−1 , α 6= 1, λ 6= 0 and λ > 0 for α > 1.

Then for any F ∈ L2(DT ) the problem (2.2), (1.2) has at least one weak

generalized solution u ∈
◦
W 1

2,�(DT ).

3. The Uniqueness of a Solution of the Problem (1.1), (1.2) in
Case of the Nonlinearity of the Type f(u) = |u|α sgnu

Let F ∈ L2(DT ), and moreover, let u1 and u2 be two weak general-

ized solutions of the problem (2.2), (1.2) from the space
◦
W 1

2,�(DT ), i.e.,

according to (2.3) the equalities
∫

DT

�ui�ϕ dx dt =

= −λ
∫

DT

ϕ|ui|α sgnui dx dt+

∫

DT

Fϕ dx dt ∀ϕ ∈
◦
W 1

2,�(DT ) (3.1)

are valid and |ui|α ∈ L2(DT ), i = 1, 2.
From (3.1), for the difference v = u2 − u1 we have

∫

DT

�v�ϕ dx dt =

= −λ
∫

DT

ϕ
(
|u2|α sgnu2 − |u1|α sgnu1

)
dx dt ∀ϕ ∈

◦
W 1

2,�(DT ). (3.2)

Putting ϕ = v ∈
◦
W 1

2,�(DT ) in the equality (3.2), we obtain
∫

DT

(�v)2 dx dt = −λ
∫

DT

(
|u2|α sgnu2 − |u1|α sgnu1

)
(u2 − u1) dx dt. (3.3)

Note that for the finite values u1 and u2, for α > 0 the inequality
(
|u2|α sgnu2 − |u1|α sgnu1

)
(u2 − u1) ≥ 0 (3.4)

holds.
From (3.3) and the equality (3.4) which is fulfilled for almost all points

(x, t) ∈ DT for ui ∈
◦
W 1

2,�(DT ), i = 1, 2, in case α > 0 and λ > 0 it follows
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that ∫

DT

(�v)2 dx dt ≤ 0

whence, owing to (2.4), we find that v = 0, i.e. u2 = u1.
Thus the following theorem is valid.

Theorem 3.1. Let α > 0, α 6= 1 and λ > 0. Then for any

F ∈ L2(DT ) the problem (2.2), (1.2) cannot have more than one general-

ized solution in the space
◦
W 1

2,�(DT ).

From Theorems 2.1 and 3.1 it in its turn follows

Theorem 3.2. Let 0 < α < n+1
n−1 , α 6= 1 and λ > 0. Then for any

F ∈ L2(DT ) the problem (2.2), (1.2) has a unique weak generalized solution

in the space
◦
W 1

2,�(DT ).

4. The Non-Existence of a Solution of the Problem (1.1), (1.2) in
the Case of the Nonlinearity of the Type f(u) = |u|α

Let now in the equation (1.1), and hence in the integral equality (1.2),
the function f(u) = |u|α, α > 1.

Theorem 4.1. Let F 0 ∈ L2(DT ), ‖F 0‖L2(DT )) 6= 0, F 0 ≥ 0, and

F = µF 0, µ = const > 0. Then in case f(u) = |u|α, α > 1, for λ < 0
there exists a number µ0 = µ0(F

0, µ, α) > 0 such that for µ > µ0 the

problem (1.1), (1.2) cannot have a weak generalized solution from the space
◦
W 1

2,�(DT ).

Proof. Assume that the conditions of the theorem are fulfilled and the

solution u ∈
◦
W 1

2,�(DT ) of the problem (1.1), (1.2) does exist for any fixed

µ > 0. Then the equality (1.5) takes the form
∫

DT

�u�ϕ dx dt =

= −λ
∫

DT

|u|αϕ dx dt + µ

∫

DT

F 0ϕ dx dt ∀ϕ ∈
◦
W 1

2,�(DT ). (4.1)

It can be easily verified that
∫

DT

�u�ϕ dx dt =

∫

DT

u�2ϕ dx dt ∀ϕ ∈
◦
C4(DT , ∂DT ), (4.2)

where
◦
C4(DT , ∂DT ) :=

{
u ∈ C4(DT ) : u|∂DT = 0

}
⊂

◦
W 1

2,�(DT ). Indeed,

since u ∈
◦
W 1

2,�(DT ) and the space
◦
C2(DT , ∂DT ) is dense in

◦
W 1

2,�(DT ),
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there exists a sequence uk ∈
◦
C2(DT , ∂DT ) such that

lim
k→∞

‖uk − u‖ ◦
W1

2,�
(DT )

= 0. (4.3)

Taking into account that
∫

DT

�uk�ϕ dx dt =

=

∫

∂DT

∂uk
∂N

�ϕds−
∫

∂DT

uk
∂

∂N
�ϕds+

∫

DT

uk�
2ϕ dx dt, (4.4)

where the derivative with respect to the conormal ∂
∂N = νn+1

∂
∂t −

n∑
i=1

νi
∂
∂xi

is an inner differential operator on the characteristic manifold ∂DT , and
hence ∂uk

∂N

∣∣
∂DT

= 0 since uk|∂DT = 0, from (4.4) we obtain
∫

DT

�uk�ϕ dx dt =

∫

DT

uk�
2ϕ dx dt, (4.5)

where ν = (ν1, . . . , νn, νn+1) is the unit vector of the outer normal to ∂DT .
Passing in (4.5) to limit as k → ∞, by virtue of (1.4) and (4.3) we obtain
(4.2).

In view of (4.2), we rewrite the equality (4.1) as follows:

−λ
∫

DT

|u|αϕ dx dt =

=

∫

DT

u�2ϕ dx dt− µ

∫

DT

F 0ϕ dx dt ∀ϕ ∈
◦
C4(DT , ∂DT ). (4.6)

Below we will use the method of test functions [53, pp. 10–12]. As a

test function we take ϕ ∈
◦
C4(DT , ∂DT ) such that ϕ|DT > 0. If in Young’s

inequality with the parameter ε > 0

ab ≤ ε

α
aα +

1

α′εα′−1
bα

′
; a, b ≥ 0, α′ =

α

α− 1

we take a = |u|ϕ1/α, b = |�2ϕ|/ϕ1/α, then taking into account that α′/α =
α′ − 1 we will have

|u�2ϕ| = |u|ϕ1/α |�2ϕ|
ϕ1/α

≤ ε

α
|u|αϕ+

1

α′εα′−1

|�2ϕ|α′

ϕα′−1
. (4.7)

By virtue of (4.7) and the fact that −λ = |λ|, from (4.6) there follows
the inequality

(
|λ| − ε

α

) ∫

DT

|u|αϕ dx dt ≤ 1

α′εα′−1

∫

DT

|�2ϕ|α′

ϕα′−1
dx dt− µ

∫

DT

F 0ϕ dx dt,
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whence for ε < |λ|α we get

∫

DT

|u|αϕ dx dt ≤

≤ α

(|λ|α− ε)α′εα′−1

∫

DT

|�2ϕ|α′

ϕα′−1
dx dt− αµ

|λ|α− ε

∫

DT

F 0ϕ dx dt. (4.8)

Taking into account the equalities α′ = α
α−1 , α = α′

α′−1 and

min
0<ε<|λ|α

α
(|λ|α−ε)α′εα′−1 = 1

|λ|α′ which is achieved for ε = |λ|, from (4.8)

we find that

∫

DT

|u|αϕ dx dt ≤ 1

|λ|α′
∫

DT

|�2ϕ|α′

ϕα′−1
dx dt − α′µ

|λ|

∫

DT

F 0ϕ dx dt. (4.9)

Note that it is not difficult to show the existence of a test function ϕ
such that

ϕ ∈
◦
C4(DT , ∂DT ), ϕ

∣∣
DT

> 0, κ0 =

∫

DT

|�2ϕ|α′

ϕα′−1
dx dt < +∞. (4.10)

Indeed, it can be easily verified that the function

ϕ(x, t) =
[
(t2 − |x|2)

(
(T − t)2 − |x|2

)]m

for a sufficiently large positive m satisfies the conditions (4.10).
Since by the condition of the theorem F 0 ∈ L2(DT ), ‖F 0‖L2(DT ) 6= 0,

F 0 ≥ 0, and mesDT < +∞, due to the fact that ϕ|DT > 0 we will have

0 < κ1 =

∫

DT

F 0ϕ dx dt < +∞. (4.11)

Denote by g(µ) the left-hand side of the inequality (4.9) which is a linear
function with respect to µ, and by (4.10) and (4.11) we will have

g(µ) < 0 for µ > µ0 and g(µ) > 0 for µ < µ0, (4.12)

where

g(µ) =
κ0

|λ|α′ −
α′µ
|λ| κ1, µ0 =

|λ|
α′|λ|α′ ·

κ0

κ1
> 0.

Owing to (4.12) for µ > µ0, the right-hand side of the inequality (4.9) is
negative, whereas the left-hand side of that inequality is nonnegative. The
obtained contradiction proves the theorem. �
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5. The Characteristic Cauchy Problem

For the nonlinear equation (1.1) with f(u) = |u|α, α = const > 0, i.e.,
for the equation

Lλ := �
2u+ λ|u|α = F, λ = const < 0, (5.1)

we consider the characteristic Cauchy problem: find in the frustrum of the
cone of future D+

T : |x| < t < T a solution u(x, t) of that equation according
the boundary conditions

u
∣∣
ST

= 0,
∂u

∂ν

∣∣∣
ST

= 0, (5.2)

where ST : t = |x|, t ≤ T is the characteristic manifold being a conic portion
of the boundary D+

T , and ∂
∂ν is the derivative with respect to the outer

normal to ∂D+
T . Considering the case T = +∞, we assume D+

∞ : t > |x|
and S∞ = ∂D+

∞ : t = |x|.
Below it will be shown that under certain conditions imposed on the

nonlinearity exponent α and on the function F , the problem (5.1), (5.2) has
no global solution, although, as it will be proved, this problem is locally
solvable.

Let
◦
W 2

2(D
+
T , ST ) :=

{
u ∈ W 2

2 (D+
T ) : u|ST = 0, ∂u∂ν

∣∣
ST

= 0
}
, where

W 2
2 (D+

T ) is the well-known Sobolev’s space [49, p. 56] consisting of the

elements L2(D
+
T ) having generalized derivatives up to the second order,

inclusive, from L2(D
+
T ), and the conditions (5.2) are understood in the

sense of the trace theory [49, p. 70].

Definition 5.1. Let F ∈ L2(D
+
T ). The function u is said to be a

weak generalized solution of the problem (5.1), (5.2) of the class W 2
2 in the

domain D+
T if u ∈

◦
W 2

2(D
+
T , ST ), |u|α ∈ L2(D

+
T ), and for every function

ϕ ∈W 2
2 (D+

T ) such that ϕ|t=T = 0, ∂ϕ∂t
∣∣
t=T

= 0, the integral equality
∫

D+
T

�u�ϕ dx dt + λ

∫

D+
T

|u|αϕ dx dt =

∫

D+
T

Fϕ dx dt (5.3)

is valid.

The integration by parts allows us to verify that the classical solution

u ∈
◦
C4(D

+

T , ST ) :=
{
u ∈ C4(DT ) : u|ST = 0, ∂u

∂ν

∣∣
ST

= 0
}

of the problem

(5.1), (5.2) is also a weak generalized solution of that problem of the class
W 2

2 in the sense of Definition 5.1. Conversely, if a weak generalized solution

of the problem (5.1), (5.2) of the class W 2
2 belongs to the space C4(D

+

T ),
then this solution will also be classical. Here we have used the fact that
if u ∈ C4(D

+

T ) and the conditions (5.2) are fulfilled, then as far as ST
is a characteristic manifold, the equality �u|ST = 0 is true. In addition,

since the derivative with respect to the conormal ∂
∂N = νn+1

∂
∂t −

n∑
i=1

νi
∂
∂xi
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(ν = (ν1, . . . , νn, νn+1)) is an inner differential operator on the characteristic
manifold ST , therefore ∂

∂N �u
∣∣
ST

=0, and also ∂u
∂N

∣∣
ST

=0 because u|ST =0.

Definition 5.2. Let F ∈ L2(D
+
T ). The function u is said to be a

strong generalized solution of the problem (5.1), (5.2) of the class W 2
2 in the

domain D+
T if u ∈

◦
W 2

2(D
+
T , ST ), |u|α ∈ L2(DT ) and there exists a sequence

of functions um ∈
◦
C4(D

+

T , ST ) such that um → u in the space
◦
W 2

2(D
+
T , ST )

and |um|α → |u|α, Lλum → F in the space L2(D
+
T ).

Obviously, the classical solution of the problem (5.1), (5.2) from the

space
◦
C4(D

+

T , ST ) is a strong generalized solution of that problem of the
classW 2

2 . In its turn, a strong generalized solution of the problem (5.1), (5.2)
of the class W 2

2 is a weak generalized solution of that problem of the
class W 2

2 .

Definition 5.3. Let F ∈ L2,loc(D
+
∞) and F ∈ L2(D

+
T ) for any T > 0.

We say that the problem (5.1), (5.2) is globally solvable in the weak (strong)
sense in the class W 2

2 if for any T > 0 this problem has a weak (strong)
generalized solution of the class W 2

2 in the domain D+
T .

Remark 5.1. It can be easily seen that if the problem (5.1), (5.2) is not
globally solvable in the weak sense, then it will not be globally solvable in
the strong sense in the class W 2

2 . Obviously, the global solvability of the
problem (5.1), (5.2) in the strong sense implies the global solvability of that
problem in the weak sense in the class W 2

2 .

Theorem 5.1. Let F ∈ L2,loc(D
+
∞), F ≥ 0, F 6≡ 0 and F ∈ L2(D

+
T )

for any T > 0. Then if the nonlinearity exponent α in the equation (5.1)
satisfies the inequalities




1 < α <
n+ 1

n− 2
, n > 3,

1 < α <∞, n = 2, 3,
(5.4)

and in the limiting case α = n+1
n−3 for n > 3 the function F satisfies the

condition

lim
T→∞

∫

DT

F dx dt = ∞, (5.5)

then the problem (5.1), (5.2) is not globally solvable in the weak sense in the

class W 2
2 , i.e., there exists a number T0 = T0(F ) > 0, such that for T > T0

the problem (5.1), (5.2) fails to have a weak generalized solution of the class

W 2
2 in the domain D+

T .

Proof. Assume that u is a weak generalized solution of the problem (5.1),
(5.2) of the class W 2

2 in the domain D+
T , i.e., the integral equality (5.3)

is valid for any function ϕ ∈ W 2
2 (D+

T ) such that ϕ|t=T = 0, ∂ϕ
∂t

∣∣
t=T

= 0.
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Integrating the left-hand side of the equality (5.3) by parts, we obtain
∫

D+
T

�u�ϕ dx dt =

∫

∂D+
T

∂u

∂N
�ϕds−

∫

∂D+
T

∂u

∂t

∂

∂t
�ϕ dx dt +

∫

D+
T

∇xu∇x(�ϕ) dx dt =

=

∫

∂D+
T

∂u

∂N
�ϕds−

∫

∂D+
T

u
∂

∂N
�ϕds+

∫

D+
T

u�2ϕ dx dt, (5.6)

where ∂
∂N is the derivative with respect to the conormal.

Let the function ϕ0 = ϕ0(σ) of one real variable σ be such that

ϕ0 ∈ C4((−∞,+∞)), ϕ0 ≥ 0, ϕ′0 ≤ 0, ϕ0(σ) =

{
1, 0 ≤ σ ≤ 1,

0, σ ≥ 2.
(5.7)

We use here the method of test functions [53, pp. 10–12]. In the capacity
of the test function in the equality (5.3) we take the function ϕ(x, t) =
ϕ0

[
2
T 2 (t2 + |x|2)

]
. Taking into account that u|ST = 0 and hence ∂u

∂N

∣∣
ST

= 0,

since ∂
∂N = νn+1

∂
∂t−

n∑
i=1

νi
∂
∂xi

is an inner differential operator on ST as well

as by virtue of (5.7) and the equalities ∂iϕ
∂ti

∣∣
t=T

= 0, 0 ≤ i ≤ 4, �ϕ|t=T =
∂
∂N �ϕ

∣∣
t=T

= 0, it follows from (5.6) that
∫

D+
T

�u�ϕ dx dt =
∫

D+
T

u�2ϕ dx dt.

Thus we can rewrite the equality (5.3) in the form

−λ
∫

D+
T

|u|αϕ dx dt =

∫

D+
T

u�2ϕ dx dt−
∫

D+
T

Fϕ dx dt. (5.8)

If in Young’s inequality with the parameter ε > 0

ab ≤ ε

α
aα +

1

α′εα′−1
bα

′
, a, b ≥ 0, α′ =

α

α− 1

we take a = |u|ϕ1/α, b = |�2ϕ|/ϕ1/α, then in view of the fact that α′/α =
α′ − 1 we will have

|u�2ϕ| = |u|ϕ1/α |�2ϕ|
ϕ1/α

≤ ε

α
|u|αϕ+

1

α′εα′−1

|�2ϕ|α′

ϕα′−1
. (5.9)

Owing to (5.9) and |λ| = −λ, from (5.8) it follows the inequality

(
|λ| − ε

α

) ∫

D+
T

|u|αϕ dx dt ≤ 1

α′εα′−1

∫

D+
T

|�2ϕ|α′

ϕα′−1
dx dt −

∫

DT

Fϕ dx dt,
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whence for ε < |λ|α we get
∫

D+
T

|u|αϕ dx dt ≤

≤ α

(|λ|α − ε)α′εα′−1

∫

D+
T

|�2ϕ|α′

ϕα′−1
dx dt − α

|λ|α− ε

∫

D+
T

Fϕ dx dt. (5.10)

Bearing in mind the equalities α′ = α
α−1 , α = α′

α′−1 and

min
0<ε<|λ|α

α
(|λ|α−ε)α′εα′−1 = 1

λα′ which is achieved for ε = |λ|, it follows from

(5.10) that

∫

D+
T

|u|αϕ dx dt ≤ 1

|λ|α′
∫

D+
T

|�2ϕ|α′

ϕα′−1
dx dt− α′

|λ|

∫

D+
T

Fϕ dx dt. (5.11)

According to the properties (5.7) of the function ϕ0, the test function
ϕ(x, t) = ϕ0

[
2
T 2 (t2 + |x|2)

]
= 0 for r = (t2 + |x|2)1/2 ≥ T . Therefore, after

the change of variables t = Tξ0 and x = Tξ we have
∫

D+
T

|�2ϕ|α′

ϕα′−1
dx dt =

=

∫

r=(t2+|x|2)1/2<T

∣∣c1T−4ϕ′′0 +(c2t
2+c3|x|2)T−6ϕ′′′0 +c4T

−8(t2−|x|2)2ϕ′′′′0

∣∣α′

ϕα′−1
dx dt=

= Tn+1−4α′
∫

1<2(ξ20+|ξ|2)<2,
ξ0>|ξ|

∣∣c1ϕ′′0 +(c2ξ
2
0 +c3|ξ|2)ϕ′′′0 +c4(ξ

2
0−|ξ|2)2ϕ′′′′0

∣∣α′

ϕα
′−1

0

dx dt, (5.12)

where ci = ci(n), i = 1, . . . , 4, are certain integers.
As is known, the test function ϕ(x, t) = ϕ0

[
2
T 2 (t2 + |x|2)

]
with the

above-mentioned properties for which the integrals in the right-hand sides
of (5.11) and (5.12) are finite does exist [53, p. 28].

Due to (5.12), from the inequality (5.11) and the fact that ϕ0(σ) = 1
for 0 ≤ σ ≤ 1 we obtain the inequality

∫

r=(t2+|x|2)1/2< T√
2
,

t>|x|

|u|α dx dt ≤

≤
∫

D+
T

|u|αϕ dx dt ≤ Tn+1−4α′

|λ|α′ κ0 −
α′

|λ| γ(T ), (5.13)



Boundary Value Problems for Some Classes of Nonlinear Wave Equations 105

where

γ(T ) =

∫

D+
T

Fϕ dx dt,

κ0 =

∫

1<2(ξ20+|ξ|2)<2,
ξ0>|ξ|

∣∣c1ϕ′′0 +(c2ξ
2
0 +c3|ξ|2)ϕ′′′0 +c4(ξ

2
0−|ξ|2)2ϕ′′′′0

∣∣α′

ϕα
′−1

0

dξ0 dξ < +∞.

Consider first the case q = n + 1 − 4α′ < 0 which according to the
condition (5.4) implies that α < n+1

n−3 for n > 3 and α <∞ for n = 2, 3. In
this case, the equation

g(T ) =
Tn+1−4α′

|λ|α′ κ0 −
α′

|λ| γ(T ) = 0 (5.14)

has a unique positive root T =T0>0 since the function g1(T )= Tn+1−4α′

|λ|α′ κ0

is positive, continuous, strictly decreasing on the interval (0,+∞) with
lim
T→0

g1(T )=+∞ and lim
T→+∞

g1(T )=0, and the function γ(T )=
∫

D+
T

Fϕ dx dt

is, by virtue of F ≥ 0 and (5.7), nonnegative and nondecreasing and is, be-
cause of the absolute continuity of the integral, also continuous. Moreover,

lim
T→+∞

γ(T ) > 0, since F ≥ 0 and F 6≡ 0, i.e., F 6= 0 on some set of the

positive Lebesgue measure. Thus g(T ) < 0 for T > T0 and g(T ) > 0 for
0 < T < T0. Consequently, for T > T0 the right-hand side of the inequality
(5.13) is negative, but this is impossible.

Consider now the limiting case q = n+ 1− 4α′ = 0, i.e., when α = n+1
n−3

for n > 3. In this case, the equation (5.14) takes the form 1
|λ|α′ κ0 −

α′

|λ| γ(T ) = 0 and likewise has, owing to the obvious equality lim
T→0

γ(T ) = 0

and the conditions (5.5) and (5.7), a unique positive root T = T0 > 0. For
T > T0, the right-hand side of the inequality (5.13) is negative, and this
again leads to a contradiction. Thus the theorem is proved completely. �

Remark 5.2. It follows from the proof of Theorem 5.2 that if the condi-
tions of the theorem are fulfilled and there exists a weak generalized solution
of the problem (5.1), (5.2) of the class W 2

2 in the domain D+
T , then the es-

timate

T ≤ T0 (5.15)

is valid, where T0 is a unique positive root of the equation (5.14).

Below we will prove the local solvability of the problem (5.1), (5.2). First
we will consider the linear case when in the equation (5.1) the parameter
λ = 0, i.e., we consider the problem

L0u(x, t) = F (x, t), (x, t) ∈ D+
T , (5.16)
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u|ST = 0,
∂u

∂ν

∣∣∣
ST

= 0, (5.17)

where L0 = �
2.

Definition 5.4. Let F ∈ L2(D
+
T ). The function u is said to be a

strong generalized solution of the problem (5.16), (5.17) of the class W 2
2 in

the domain D+
T if u ∈

◦
W 2

2(D
+
T , ST ) and there exists a sequence of functions

um ∈
◦
C4(D

+

T , ST ) such that um → u in the space
◦
W 2

2(D
+
T , ST ) and L0um →

F in the space L2(D
+
T ).

Obviously, the classical solution u ∈
◦
C4(D

+

T , ST ) of the problem (5.16),
(5.17) is a strong generalized solution of the problem of the class W 2

2 in the
domain DT .

Lemma 5.1. For a strong generalized solution u of the problem (5.16),
(5.17) of the class W 2

2 in the domain D+
T the estimate

‖u‖ ◦
W2

2(D
+
T ,ST )

≤ cnT
2‖F‖L2(D

+
T ) (5.18)

holds, where the positive constant cn does not depend on u, F and T .

Proof. The same reasoning as when deducing the inequality (2.13) allows
us to prove the inequality

‖v‖ ◦
W 1

2(D+
T ,ST )

≤
√
e

2
T‖�v‖L2(D

+
T ) ∀ v ∈

◦
C2(D

+

T , ST ), (5.19)

where
◦
C2(D

+

T , ST ) :=
{
v ∈ C2(D

+

T ) : v|ST = 0
}

and in the space
◦
W 1

2(D
+
T , ST ) :=

{
v ∈ W 1

2 (D+
T ) : v|ST = 0

}
we take, by virtue of (2.14), the

norm

‖v‖2◦
W 1

2(D
+
T ,ST )

=

∫

D+
T

[(∂u
∂t

)2

+

n∑

i=1

( ∂u
∂xi

)2]
dx dt.

By the definition, if u is a strong generalized solution of the problem
(5.16), (5.17) of the classW 2

2 in the domain D+
T , then there exists a sequence

of functions um ∈
◦
C4(D

+

T , ST ) :=
{
u ∈ C4(D

+

T ) : u|ST = 0, ∂u
∂ν

∣∣
ST

= 0
}

such that

lim
m→∞

‖um − u‖ ◦
W 2

2(D
+
T ,ST )

= 0, lim
m→∞

‖�2um − F‖L2(D
+
T ) = 0. (5.20)

Since um ∈
◦
C4(D

+

T , ST ) satisfies the homogeneous boundary conditions
(5.17) and ST is a characteristic manifold corresponding to the operator �,
therefore, as is known [8, p. 546],

�um
∣∣
ST

= 0. (5.21)
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Owing to (5.11), the function v = �um ∈
◦
C2(D

+

T , ST ), due to (5.19),
satisfies the inequalities

‖�um‖2L2(D
+
T )
≤ e

2
T 2‖�2um‖2L2(D

+
T )
,

∥∥∥�
∂um
∂t

∥∥∥
2

L2(D
+
T )
≤ e

2
T 2‖�2um‖2L2(D

+
T )
,

∥∥∥�
∂um
∂xi

∥∥∥
2

L2(D
+
T )
≤ e

2
T 2‖�2um‖2L2(D

+
T )
, i = 1, . . . , n.

(5.22)

Since ∂um

∂t , ∂um

∂xi
∈

◦
C2(DT , ST ), by (5.19) and (5.22) we have

‖um‖ ◦
W 2

2(D
+
T ,ST )

=

=

∫

D+
T

[(∂um
∂t

)2

+

n∑

i=1

(∂um
∂xi

)2

+
(∂2um
∂t2

)2

+

+

n∑

i=1

(∂2um
∂t∂xi

)2

+

n∑

i,j=1

( ∂2um
∂xi∂xj

)2
]
dx dt ≤

≤
∥∥∥∂um
∂t

∥∥∥
2

◦
W 1

2(D
+
T ,ST )

+

n∑

i=1

∥∥∥∂um
∂xi

∥∥∥
2

◦
W 1

2(D+
T ,ST )

≤

≤ e

2
T 2

∥∥∥�
∂um
∂t

∥∥∥
2

L2(D
+
T )

+
e

2
T 2

n∑

i=1

∥∥∥�
∂um
∂xi

∥∥∥
2

L2(D
+
T )
≤

≤
(e

2

)2

(n+ 1)T 4‖�2um‖2L2(D
+
T )
,

whence

‖um‖ ◦
W 2

2(D+
T ,ST )

≤ cnT
2‖�2um‖L2(D

+
T ), cn =

√
n+ 1

e

2
. (5.23)

By virtue of (5.20), passing in the inequality (5.23) to limit as m→∞,
we obtain (5.18), which proves our lemma. �

Lemma 5.2. For any F ∈ L2(DT ) there exists a unique strong

generalized solution u of the problem (5.16), (5.17) of the class W 2
2 in the

domain D+
T for which the estimate (5.18) is valid.

Proof. Since the space C∞0 (D+
T ) of finitary infinitely differentiable in D+

T

functions is dense in L2(D
+
T ), for a given F ∈ L2(DT ) there exists a sequence

of functions Fm ∈ C∞0 (D+
T ) such that lim

m→∞
‖Fm − F‖L2(D

+
T ) = 0. For the

fixed m, extending the function Fm by zero beyond the domain D+
T and

leaving the same notation, we have Fm ∈ C∞(Rn+1
+ ) for which the support

suppFm ⊂ D+
∞, where R

n+1
+ := R

n+1 ∩{t ≥ 0}. Denote by um the solution

of the Cauchy problem L0um = Fm, ∂iu
∂ti

∣∣
t=0

= 0, 0 ≤ i ≤ 3, which, as is
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known, exists, is unique and belongs to the space C∞(Rn+1
+ ) [17, p. 192].

In addition, since suppFm ⊂ D+
∞, ∂iu

∂ti

∣∣
t=0

= 0, 0 ≤ i ≤ 3, taking into
account the geometry of the domain of dependence of a solution of the
linear equation L0um = Fm of hyperbolic type we find that suppum ⊂ D+

∞
[17, p. 191]. Leaving for the restriction of the function um to the domain

DT the same notation, we can easily see that um ∈
◦
C4(D

+

T , ST ), and by
(5.18), the inequality

‖um − uk‖ ◦
W 2

2(D
+
T ,ST )

≤ cnT
2‖Fm − Fk‖L2(D

+
T ) (5.24)

is valid.
Since the sequence {Fm} is fundamental in L2(D

+
T ), owing to (5.24)

the sequence {um} is fundamental in the complete space
◦
W 2

2(D
+
T , ST ).

Therefore, there exists a function u ∈
◦
W 2

2(D
+
T , ST ) such that lim

m→∞
‖um −

uk‖ ◦
W 2

2(D
+
T ,ST )

= 0, and since L0um = Fm → F in the space L2(D
+
T ), this

function u will, by Definition 5.4, be a strong generalized solution of the
problem (5.16), (5.17) of the class W 2

2 in the domain D+
T , for which the

estimate (5.18) is valid. The uniqueness of the solution follows from the
estimate (5.18). Thus the lemma is proved completely. �

Remark 5.3. By Lemma 5.2, for a strong generalized solution u of
the problem (5.16), (5.17) of the class W 2

2 in the domain D+
T we can write

u = L−1
0 F , where L−1

0 : L2(D
+
T ) →

◦
W 2

2(D
+
T , ST ) is a linear continuous

operator whose norm, by virtue of (5.18), admits the estimate

‖L−1
0 ‖

L2(D
+
T )→

◦
W 2

2(D+
T ,ST )

≤ cnT
2. (5.25)

Remark 5.4. The embedding operator I :
◦
W 2

2(D
+
T , ST ) → Lq(D

+
T ) is

linear, continuous and compact for 1 < q < 2(n+1)
n−3 , when n > 3, and

1 < q < ∞ when n = 2, 3 [49, p. 84]. At the same time, the Nemytski
operator N : Lq(D

+
T ) → L2(D

+
T ) acting by the formula Nu = −λ|u|α is

continuous and bounded if q ≥ 2α [47, p. 349], [48, pp. 66, 67]. Thus if the
nonlinearity exponent α in the equation (5.1) satisfies the inequalities (5.4),
then putting q = 2α we find that the operator

N0 = NI :
◦
W 2

2(D
+
T , ST ) → L2(D

+
T ) (5.26)

is continuous and compact. Moreover, from u ∈
◦
W 2

2(D
+
T , ST ) it follows that

|u|α ∈ L2(D
+
T ), and taking in Definition 5.2 into account the fact that um →

u in the space
◦
W 2

2(D
+
T , ST ), it automatically follows that |um|α → |u|α in

the space L2(D
+
T ), as well.
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Remark 5.5. If F ∈ L2(D
+
T ) and the nonlinearity exponent α satisfies

the inequalities (5.4), then according to Definition 5.2 and Remarks 5.3

and 5.4 the function u ∈
◦
W 2

2(D
+
T , ST ) is a strong generalized solution of the

problem (5.1), (5.2) of the class W 2
2 in the domain D+

T if and only if u is a
solution of the functional equation

u = L−1
0

(
− λ|u|α + F

)
(5.27)

in the space
◦
W 2

2(D
+
T , ST ).

We rewrite the equation (5.27) in the form

u = Ku+ u0, (5.28)

where the the operator K := L−1
0 N0 :

◦
W 2

2(D
+
T , ST ) →

◦
W 2

2(D
+
T , ST ) is, by

virtue of (5.25), (5.26) and Remark 5.4, continuous, compact and acting in

the space
◦
W 2

2(D
+
T , ST ), while u0 := L−1

0 F ∈
◦
W 2

2(D
+
T , ST ).

Remark 5.6. Let B(0, R0) :=
{
u ∈

◦
W 2

2(D
+
T , ST ) : ‖u‖ ◦

W2
2(D+

T ,ST )
≤

R0

}
be the closed (convex) ball in the Hilbert space

◦
W 2

2(D
+
T , ST ) of ra-

dius R0 > 0 with the center at the zero element. Since the operator

K :
◦
W 2

2(D
+
T , ST ) →

◦
W 2

2(D
+
T , ST ) is continuous and compact (provided the

inequalities (5.4) are fulfilled), by the Schauder principle for showing the
solvability of the equation (5.28) it suffices to show that the operator K1

acting by the formula K1u = Ku + u0 transforms the ball B(0, R0) into
itself for some R0 > 0 [66, p. 370]. By (5.25), analogously as in proving
Theorem 5.1 of Chapter IV, one can prove that for sufficiently small T such
a ball B(0, R0) does exist. Thus we have the following theorem on the local
solvability of the problem (5.1), (5.2).

Theorem 5.2. Let F ∈L2,loc(D
+
∞) and F ∈L2(D

+
T ) for any T > 0.

Then if the nonlinearity exponent α in the equation (5.1) satisfies the in-

equalities (5.4), then there exists a number T1 = T1(F ) > 0 such that for

T ≤ T1 the problem (5.1), (5.2) has at least one strong generalized solution

of the class W 2
2 in the domain D+

T in the sense of Definition 5.2, which

is also a weak generalized solution of that problem of the class W 2
2 in the

domain D+
T in the sense of Definition 5.1.

Remark 5.7. It follows from Theorems 5.1 and 5.2 that if F ∈L2,loc(D
+
∞),

F ≥ 0, F 6≡ 0, F ∈ L2(D
+
T ) for any T > 0 and the nonlinearity exponent α

satisfies the inequalities (5.4), then there exists a number T∗ = T∗(F ) > 0
such that for T < T∗ there exists a strong (weak) generalized solution of
the problem (5.1), (5.2) of the class W 2

2 in the domain DT , while for T > T∗
such a solution does not exist, and in view of the estimate (5.15) we have
T∗ ∈ [T1, T0].



Remark 5.8. In case 0 < α < 1, the problem (5.1), (5.2) may have more
than one global solution. For example, for F = 0 the problem (5.1), (5.2) in
the domain D∞ has, besides the trivial solution, an infinite set of global lin-

early independent solutions uσ ∈
◦
C2(D

+

∞, S∞) depending on the parameter
σ ≥ 0 and given by the formula

uσ(x, t) =

{
β
[
(t− σ)2 − |x|2

] 2
1−α , t > σ + |x|,

0 |x| ≤ t ≤ σ + |x|,

where β = |λ| 1
1−α

[
4k(k− 1)(n+ 2k− 1)(n+ 2k− 3)

]− 1
1−α , k = 2

1−α , λ < 0,

and for 1/2 < α < 1 the function uσ ∈ C4(D∞).

Remark 5.9. Note that for n = 2 and n = 3, according to the well-
known properties [8, p. 745], [2, p. 84] of solutions of the linear characteristic
problem �v = g in D∞, v|S∞ = 0, if g ≥ 0, then v ≥ 0 as well. Therefore,
for n = 2, 3, if F ≥ 0, then the classical solution u of the nonlinear problem
(5.1), (5.2), analogously to (5.21) satisfying also the condition �u|S∞ = 0,
will likewise be nonnegative. But in this case, for α = 1, this solution will
satisfy the following linear problem:

�
2u+ λu = F,

u
∣∣
S∞

= 0,
∂u

∂ν

∣∣∣
S∞

= 0

which is globally solvable in the corresponding functional spaces.
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Appl. (4) 104 (1975), 355–393.

8. R. Courant, Partial differential equations. (Russian) Mir, Moscow, 1964.
9. V. Georgiev, H. Lindblad, and C. D. Sogge, Weighted Strichartz estimates and

global existence for semilinear wave equations. Amer. J. Math. 119 (1997), No. 6,
1291–1319.

10. D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second
order. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamen-
tal Principles of Mathematical Sciences], 224. Springer-Verlag, Berlin, 1983 Russian
transl.: Nauka, Moscow, 1989.

11. J. Ginibre, A. Soffer, and G. Velo, The global Cauchy problem for the critical
nonlinear wave equation. J. Funct. Anal. 110 (1992), No. 1, 96–130.

12. J. Gvazava and S. Kharibegashvili, To the theory of boundary value problems for

hyperbolic type equations and systems. Mem. Differential Equations Math. Phys. 12
(1997), 68–75.

13. O. G. Goman, Equation of the reflected wave. Vestn. Mosk. Univ., Ser. I 23 (1968),
No. 2, 84–87.

14. J. Hadamard, Lectures on Cauchy’s Problem in Partial Differential Equations. Yale
University Press, New Haven, 1923.

15. D. Henry, Geometrical theory of semi-linear parabolic equations. (Translated into
Russian) Mir, Moscow, 1985; English original: Lecture Notes in Mathematics, 840.
Springer-Verlag, Berlin-New York, 1981.
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