Memoirs on Differential Equations and Mathematical Physics

Volume 46, 2009, 1-114
S. Kharibegashvili

BOUNDARY VALUE PROBLEMS FOR SOME CLASSES OF NONLINEAR WAVE EQUATIONS

Abstract

For some classes of nonlinear wave equations, the boundary value problems (the first Darboux problem and their multi-dimensional versions, the characteristic Cauchy problem, and so on) are considered in angular and conic domains. Depending on the exponent of nonlinearity and the spatial dimension of equations, the issues of the global and local solvability as well as of the smoothness and uniqueness of solutions of these problems are studied.

2000 Mathematics Subject Classification. 35L06, 35L20, 36L35, 35L75.

Key words and phrases. Characteristic Cauchy problem, characteristic boundary value problems, Darboux problems, nonlinear wave equations, global and local solvability, blow-up of solutions.

Introduction

In mathematical modelling of many physical processes there arise wave equations involving nonlinearities which are, in particular, represented by source terms. The Cauchy problem and the mixed problems for these equations have been studied with sufficient thoroughness (see, for e.g., [9], [11], [16], [18], [19], [21], [23], [45], [50]-[53], [60]-[62], [64], [65], [75]-[77]). But as for the boundary value problems for these equations such as, for example, the characteristic Cauchy problems, the Darboux problems in angular and conic domains, arising in mathematical modelling of: (i) small harmonic oscillations of a wedge in a supersonic flow; (ii) string oscillation in a viscous liquid (see [13], [67], [68]), they are at the initial stage of investigation.

The goal of the present work is to fill in this gap to a certain extent. The presence in equations of even weak nonlinearities may violate the correctness of the problems, which may show itself in the destruction of solutions in a finite time interval or the non-existence of solvability or uniqueness of solutions of the problems under consideration.

The work consists of five chapters. In Chapter I we investigate the first Darboux problem for a weakly nonlinear wave equation with one spatial variable when, depending on the type of nonlinearity, the problem is globally solvable in some cases and only locally solvable in other cases. Herein we consider the issues of the uniqueness and smoothness of the solution ([1], [20]).

Chapter II studies the characteristic Cauchy problem for a multidimensional nonlinear wave equation in a light cone of the future. Depending on the exponent of nonlinearity and the spatial dimension of the equation, we investigate the issues of the global and local solvability of the problem ([25]-[27], [29], [32]).

Chapter III is devoted to Sobolev's problem for a multidimensional nonlinear wave equation in a conic domain of time type, while in Chapter IV we consider multidimensional versions of the first Darboux problem ([6], [28], [30]).

Finally, the last Chapter V studies the characteristic boundary value problems for a multidimensional hyperbolic equation with power nonlinearity and the iterated wave operator in the principal part. Depending on the exponent of nonlinearity and the spatial dimension of the equation, we
investigate the issues on the existence and uniqueness of solutions of the boundary value problems ([31], [33]).

When investigating the above-mentioned problems, the use will be made of the classical methods of characteristics and integral equations, as well as the methods of the modern nonlinear analysis (the method of a priori estimates, the Schauder and Leray-Schauder fixed point principles and the principle of contracting mappings, the method of test-functions, embedding theorems, etc.).

Note that the problems we consider in the present work for linear wave equations are well-posed in the corresponding function spaces ([2]-[8], [12], [14], [17], [24], [25], [34], [54], [55], [57], [58], [63], [70], [71]).

The First Darboux Problem for a Weakly Nonlinear Wave Equation with One Spatial Variable

1. Statement of the Problem

In the plane of the variables x and t we consider a nonlinear wave equation of the type

$$
\begin{equation*}
L_{f} u:=u_{t t}-u_{x x}+f(x, t, u)=F(x, t), \tag{1.1}
\end{equation*}
$$

where $f=f(x, t, u)$ is a given nonlinear with respect to u real function, $F=F(x, t)$ is a given and $u=u(x, t)$ is an unknown real function.

By D_{T} : $-k t<x<t, 0<t<T(0<k=$ const $<1, T \leq \infty)$ we denote a triangular domain lying inside the characteristic angle $\{(x, t) \in$ $\left.\mathbb{R}^{2}: t>|x|\right\}$ and bounded by the characteristic segment $\gamma_{1, T}: x=t$, $0 \leq t \leq T$, and the segments $\gamma_{2, T}: x=-k t, 0 \leq t \leq T$ and $\gamma_{3, T}: t=T$, $-k T \leq x \leq T$ of time and spatial type, respectively.

For the equation (1.1), we consider the first Darboux problem: find in the domain D_{T} a solution $u(x, t)$ of that equation according to the boundary conditions [2, p. 228]

$$
\begin{equation*}
\left.u\right|_{\gamma_{i, T}}=\varphi_{i}, \quad i=1,2, \tag{1.2}
\end{equation*}
$$

where $\varphi_{i}, i=1,2$, are given real functions satisfying the compatibility condition $\varphi_{1}(O)=\varphi_{2}(O)$ at the common point $O=O(0,0)$.

Remark 1.1. Below it will be assumed that the functions $f: \bar{D}_{T} \times \mathbb{R} \rightarrow \mathbb{R}$ and $F: \bar{D}_{T} \rightarrow \mathbb{R}$ are continuous. Moreover, and without restriction of generality we may assume that

$$
f(x, t, 0)=0, \quad(x, t) \in \bar{D}_{T} .
$$

Definition 1.1. Let $f \in C\left(\bar{D}_{T} \times \mathbb{R}\right), F \in C\left(\bar{D}_{T}\right)$ and $\varphi_{i} \in C^{1}\left(\gamma_{i, T}\right)$, $i=1,2$. A function u is said to be a strong generalized solution of the problem (1.1), (1.2) of the class C in the domain D_{T}, if $u \in C\left(\bar{D}_{T}\right)$ and there exists a sequence of functions $u_{n} \in C^{2}\left(\bar{D}_{T}\right)$ such that $u_{n} \rightarrow u$ and $L_{f} u_{n} \rightarrow F$ in the space $C\left(\bar{D}_{T}\right)$ and $\left.u_{n}\right|_{\gamma_{i}, T} \rightarrow \varphi_{i}$ in the space $C^{1}\left(\gamma_{i, T}\right)$, $i=1,2$.

Remark 1.2. Obviously, a classical solution of the problem (1.1), (1.2) from the space $C^{2}\left(\bar{D}_{T}\right)$ is a strong generalized solution of that problem of the class C in the domain D_{T}. In its turn, if a strong generalized solution of the problem (1.1), (1.2) of the class C in the domain D_{T} belongs to the space $C^{2}\left(\bar{D}_{T}\right)$, then that solution will also be a classical solution of that problem. It should be noted that a strong generalized solution of the problem (1.1), (1.2) of the class C in the domain D_{T} satisfies the boundary conditions (1.2) in the usual classical sense.

Definition 1.2. Let $f \in C\left(\bar{D}_{\infty} \times \mathbb{R}\right), F \in C\left(\bar{D}_{\infty}\right)$ and $\varphi_{i} \in C^{1}\left(\gamma_{i, \infty}\right)$, $i=1,2$. We say that the problem (1.1), (1.2) is globally solvable in the class C if for every finite $T>0$ this problem has a strong generalized solution of the class C in the domain D_{T}.

2. An a Priori Estimate of a Solution of the Problem (1.1), (1.2)

Let

$$
\begin{equation*}
g(x, t, u)=\int_{0}^{u} f(x, t, s) d s, \quad(x, t, u) \in \bar{D}_{T} \times \mathbb{R} \tag{2.1}
\end{equation*}
$$

Consider the following conditions imposed on the function $g=g(x, t, u)$ from (2.1):

$$
\begin{align*}
g(x, t, u) & \geq-M_{1}-M_{2} u^{2}, \quad(x, t, u) \in \bar{D}_{T} \times \mathbb{R} \tag{2.2}\\
g_{t}(x, t, u) & \leq M_{3}+M_{4} u^{2}, \quad(x, t, u) \in \bar{D}_{T} \times \mathbb{R} \tag{2.3}
\end{align*}
$$

where $M_{i}=M_{i}(T)=$ const $\geq 0, i=1,2,3,4$.
Lemma 2.1. Let $f, f_{u} \in C\left(\bar{D}_{\infty} \times \mathbb{R}\right), F \in C\left(\bar{D}_{T}\right), \varphi_{i} \in C^{1}\left(\gamma_{i, T}\right)$, $i=1,2$, and the conditions (2.2) and (2.3) be fulfilled. Then for a strong generalized solution $u=u(x, t)$ of the problem (1.1), (1.2) of the class C in the domain D_{T} the a priori estimate

$$
\begin{equation*}
\|u\|_{C\left(\bar{D}_{T}\right)} \leq c_{1}\left(\|F\|_{C\left(\bar{D}_{T}\right)}+\sum_{i=1}^{2}\left\|\varphi_{i}\right\|_{C^{1}\left(\gamma_{i, T}\right)}\right)+c_{2} \tag{2.4}
\end{equation*}
$$

is valid with nonnegative constants $c_{i}=c_{i}(f, T), i=1,2$, not depending on u and $F, \varphi_{1}, \varphi_{2}$, where $c_{1}>0$.

Proof. Let u be a strong generalized solution of the problem (1.1), (1.2) of the class C in the domain D_{T}. By Definition 1.1, there exists a sequence of functions $u_{n} \in C^{2}\left(\bar{D}_{T}\right)$ such that

$$
\begin{gather*}
\lim _{n \rightarrow \infty}\left\|u_{n}-u\right\|_{C\left(\bar{D}_{T}\right)}=0, \quad \lim _{n \rightarrow \infty}\left\|L_{f} u_{n}-F\right\|_{C\left(\bar{D}_{T}\right)}=0, \tag{2.5}\\
\lim _{n \rightarrow \infty}\left\|\left.u_{n}\right|_{\gamma_{i, T}}-\varphi_{i}\right\|_{C^{1}\left(\gamma_{i}, T\right)}=0, \tag{2.6}
\end{gather*}
$$

and hence

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|f\left(x, t, u_{n}\right)-f(x, t, u)\right\|_{C\left(\bar{D}_{T}\right)}=0 \tag{2.7}
\end{equation*}
$$

Consider the function $u_{n} \in C^{2}\left(\bar{D}_{T}\right)$ as a solution of the problem

$$
\begin{align*}
L_{f} u_{n} & =F_{n}, \tag{2.8}\\
\left.u_{n}\right|_{\gamma_{i, T}} & =\varphi_{i n}, \quad i=1,2 . \tag{2.9}
\end{align*}
$$

Here

$$
\begin{equation*}
F_{n}:=L_{f} u_{n} \tag{2.10}
\end{equation*}
$$

Multiplying both parts of the equation (2.8) by $\frac{\partial u_{n}}{\partial t}$ and integrating over the domain $D_{\tau}:=\left\{(x, t) \in D_{T}: t<\tau\right\}, 0<\tau \leq T$, by virtue of (2.1) we obtain

$$
\begin{gather*}
\frac{1}{2} \int_{D_{\tau}} \frac{\partial}{\partial t}\left(\frac{\partial u_{n}}{\partial t}\right)^{2} d x d t-\int_{D_{\tau}} \frac{\partial^{2} u_{n}}{\partial x^{2}} \frac{\partial u_{n}}{\partial t} d x d t+ \\
+\int_{D_{\tau}} \frac{\partial}{\partial t}\left(g\left(x, t, u_{n}(x, t)\right) d x d t-\int_{D_{\tau}} g_{t}\left(x, t, u_{n}(x, t)\right) d x d t=\right. \\
=\int_{D_{\tau}} F_{n} \frac{\partial u_{n}}{\partial t} d x d t \tag{2.11}
\end{gather*}
$$

Let $\Omega_{\tau}:=D_{\infty} \cap\{t=\tau\}, 0<\tau \leq T$. Then, taking into account the equalities (2.9) and integrating by parts the left-hand side of the equality (2.11), we obtain

$$
\begin{gather*}
\int_{D_{\tau}} F_{n} \frac{\partial u_{n}}{\partial t} d x d t= \\
=\sum_{i=1}^{2} \int_{\gamma_{i, T}} \frac{1}{2 \nu_{t}}\left[\left(\frac{\partial u_{n}}{\partial x} \nu_{t}-\frac{\partial u_{n}}{\partial t} \nu_{x}\right)^{2}+\left(\frac{\partial u_{n}}{\partial t}\right)^{2}\left(\nu_{t}^{2}-\nu_{x}^{2}\right)\right] d s+ \\
+\frac{1}{2} \int_{\Omega_{\tau}}\left[\left(\frac{\partial u_{n}}{\partial t}\right)^{2}+\left(\frac{\partial u_{n}}{\partial x}\right)^{2}\right] d x+\int_{\Omega_{\tau}} g\left(x, \tau, u_{n}(x, \tau)\right) d x+ \\
+\sum_{i=1}^{2} \int_{\gamma_{i, T}} g\left(x, t, \varphi_{i n}(x, t)\right) \nu_{t} d s-\int_{D_{\tau}} g_{t}\left(x, t, u_{n}(x, t)\right) d x d t \tag{2.12}
\end{gather*}
$$

where $\nu=\left(\nu_{x}, \nu_{t}\right)$ is the unit vector of the outer normal to $\partial D_{\tau}, \gamma_{i, \tau}:=$ $\gamma_{i, T} \cap\{t \leq \tau\}$.

Since $\left(\nu_{t} \frac{\partial}{\partial x}-\nu_{x} \frac{\partial}{\partial t}\right)$ is an inner differential operator on $\gamma_{i, \tau}$, owing to (2.9) we have

$$
\begin{equation*}
\left.\left|\left(\frac{\partial u_{n}}{\partial x} \nu_{t}-\frac{\partial u_{n}}{\partial t} \nu_{x}\right)\right|_{\gamma_{i, \tau}} \right\rvert\, \leq\left\|\varphi_{i n}\right\|_{C^{1}\left(\gamma_{i, \tau}\right)}, \quad i=1,2 . \tag{2.13}
\end{equation*}
$$

Taking into account that $D_{\tau}:-k t<x<t, 0<t<\tau$, where $0<k<1$, it can be easily seen that

$$
\begin{gather*}
\left.\left(\nu_{x}, \nu_{t}\right)\right|_{\gamma_{1, \tau}}=\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right) \\
\left.\left(\nu_{x}, \nu_{t}\right)\right|_{\gamma_{2, \tau}}=\left(-\frac{1}{\sqrt{1+k^{2}}},-\frac{1}{\sqrt{1+k^{2}}}\right), \tag{2.14}\\
\left.\left(\nu_{t}^{2}-\nu_{x}^{2}\right)\right|_{\gamma_{1, \tau}}=0,\left.\left(\nu_{t}^{2}-\nu_{x}^{2}\right)\right|_{\gamma_{2, \tau}}=\frac{k^{2}-1}{k^{2}+1}<0 \tag{2.15}\\
\left.\nu_{t}\right|_{\gamma_{i, \tau}}<0, \quad i=1,2 .
\end{gather*}
$$

Due to the Cauchy inequality, by (2.2), (2.3), (2.13), (2.14) and (2.15) it follows from (2.12) that

$$
\begin{gather*}
\int_{\Omega_{\tau}}\left[\left(\frac{\partial u_{n}}{\partial t}\right)^{2}+\left(\frac{\partial u_{n}}{\partial x}\right)^{2}\right] d x= \\
=-\sum_{i=1}^{2} \int_{\gamma_{i, T}} \frac{1}{\nu_{t}}\left[\left(\frac{\partial u_{n}}{\partial x} \nu_{t}-\frac{\partial u_{n}}{\partial t} \nu_{x}\right)^{2}+\left(\frac{\partial u_{n}}{\partial t}\right)^{2}\left(\nu_{t}^{2}-\nu_{x}^{2}\right)\right] d s- \\
-2 \int_{\Omega_{\tau}} g\left(x, \tau, u_{n}(x, \tau)\right) d x-2 \sum_{i=1}^{2} \int_{\gamma_{i, \tau}} g\left(x, t, \varphi_{i n}(x, t)\right) \nu_{t} d s+ \\
\quad+2 \int_{D_{\tau}} g_{t}\left(x, t, u_{n}(x, t)\right) d x d t+2 \int_{D_{\tau}} F_{n} \frac{\partial u_{n}}{\partial t} d x d t \leq \\
\leq \sqrt{2} \int_{\gamma_{1, \tau}}\left\|\varphi_{1 n}\right\|_{C^{1}\left(\gamma_{1, T}\right)}^{2} d s+\frac{\sqrt{1+k^{2}}}{k} \int_{\gamma_{2, \tau}}\left\|\varphi_{2 n}\right\|_{C^{1}\left(\gamma_{2, T}\right)}^{2} d s+ \\
+2 \sum_{i=1}^{2} \int_{\gamma_{i, \tau}}\left(M_{1}+M_{2} \varphi_{i n}^{2}(x, t)\right) d s+2 \int_{\Omega_{\tau}}\left(M_{1}+M_{2} u_{n}^{2}(x, \tau)\right) d x+ \\
\quad+2 \int_{D_{\tau}}\left(M_{3}+M_{4} u_{n}^{2}(x, t)\right) d x d t+2 \int_{D_{\tau}} F_{n} \frac{\partial u_{n}}{\partial t} d x d t \leq \\
\leq M_{5}+M_{6} \sum_{i=1}^{2}\left\|\varphi_{i n}\right\|_{C^{1}\left(\gamma_{i, T}\right)}^{2}+M_{7} \int_{\Omega_{\tau}} u_{n}^{2} d x+M_{8} \int_{D_{\tau}} u_{n}^{2} d x d t+ \\
\quad+\int_{D_{\tau}}\left(\frac{\partial u_{n}}{\partial t}\right)^{2} d x d t+\int_{D_{\tau}} F_{n}^{2} d x d t, \tag{2.16}
\end{gather*}
$$

where we have used the fact that $\left\|\varphi_{i n}\right\|_{C\left(\gamma_{i, T}\right)} \leq\left\|\varphi_{i n}\right\|_{C^{1}\left(\gamma_{i, T}\right)}$.

Here

$$
\begin{gather*}
M_{5}=2 M_{1}\left(\sum_{i=1}^{2} \operatorname{mes} \gamma_{i, T}+\operatorname{mes} \Omega_{T}\right)+2 M_{3} \operatorname{mes} D_{T}, \\
M_{6}=\sqrt{2} \operatorname{mes} \gamma_{1, T}+\frac{\sqrt{1+k^{2}}}{k} \operatorname{mes} \gamma_{2, T}+2 M_{2} \sum_{i=1}^{2} \operatorname{mes} \gamma_{i, T}, \tag{2.17}\\
M_{7}=2 M_{2}, \quad M_{8}=2 M_{4} .
\end{gather*}
$$

Since $\gamma_{1, \tau}: t=x, 0 \leq x \leq \tau$ and $\gamma_{2, \tau}: t=-\frac{1}{k} x,-k \tau \leq x \leq 0$, by virtue of (2.9) and the Newton-Leibnitz formula we have

$$
\begin{align*}
& u_{n}(x, \tau)=\varphi_{2 n}(x)+\int_{-\frac{1}{k} x}^{\tau} \frac{\partial u_{n}(x, \sigma)}{\partial t} d \sigma, \quad-k \tau \leq x \leq 0 \tag{2.18}\\
& u_{n}(x, \tau)=\varphi_{1 n}(x)+\int_{x}^{\tau} \frac{\partial u_{n}(x, \sigma)}{\partial t} d \sigma, \quad 0 \leq x \leq \tau
\end{align*}
$$

Using the Cauchy and Schwartz inequalities, from (2.18) we get

$$
\begin{align*}
& u_{n}^{2}(x, \tau) \leq 2 \varphi_{2 n}^{2}(x)+2\left(\int_{-\frac{1}{k} x}^{\tau} \frac{\partial u_{n}(x, \sigma)}{\partial t} d \sigma\right)^{2} \leq \\
& \leq 2 \varphi_{2 n}^{2}(x)+2 \int_{-\frac{1}{k} x}^{\tau} 1^{2} d \sigma \int_{-\frac{1}{k} x}^{\tau}\left(\frac{\partial u_{n}(x, \sigma)}{\partial t}\right)^{2} d \sigma \leq \\
& \leq 2 \varphi_{2 n}^{2}(x)+2 T \int_{-\frac{1}{k} x}^{\tau}\left(\frac{\partial u_{n}(x, \sigma)}{\partial t}\right)^{2} d \sigma \tag{2.19}
\end{align*}
$$

for $-k \tau \leq x \leq 0$. Analogously, for $0 \leq x \leq \tau$ from (2.18) we have

$$
\begin{equation*}
u_{n}^{2}(x, \tau) \leq 2 \varphi_{1 n}^{2}(x)+2 T \int_{x}^{\tau}\left(\frac{\partial u_{n}(x, \sigma)}{\partial t}\right)^{2} d \sigma \tag{2.20}
\end{equation*}
$$

It follows from (2.19) and (2.20) that

$$
\begin{aligned}
\int_{\Omega_{\tau}} u_{n}^{2} d x & =\int_{\Omega_{\tau} \cap\{x \leq 0\}} u_{n}^{2} d x+\int_{\Omega_{\tau} \cap\{x>0\}} u_{n}^{2} d x \leq \\
& \leq \int_{\Omega_{\tau} \cap\{x \leq 0\}}\left[2 \varphi_{2 n}^{2}(x)+2 T \int_{-\frac{1}{k} x}^{\tau}\left(\frac{\partial u_{n}(x, \sigma)}{\partial t}\right)^{2} d \sigma\right] d x+
\end{aligned}
$$

$$
\begin{align*}
+\int_{\Omega_{\tau} \cap\{x>0\}} & {\left[2 \varphi_{1 n}^{2}(x)+2 T \int_{x}^{\tau}\left(\frac{\partial u_{n}(x, \sigma)}{\partial t}\right)^{2} d \sigma\right] d x \leq } \\
& \leq 2 T \sum_{i=1}^{2}\left\|\varphi_{i n}\right\|_{C\left(\gamma_{i}, T\right)}^{2}+2 T \int_{D_{\tau}}\left(\frac{\partial u_{n}}{\partial t}\right)^{2} d x d t \tag{2.21}
\end{align*}
$$

By (2.21), we have

$$
\begin{align*}
& \int_{D_{\tau}} u_{n}^{2} d x d t=\int_{0}^{\tau} d \sigma \int_{\Omega_{\sigma}} u_{n}^{2} d x \leq \\
& \leq \int_{0}^{\tau}\left[2 T \sum_{i=1}^{2}\left\|\varphi_{i n}\right\|_{C\left(\gamma_{i, T}\right)}^{2}+2 T \int_{D_{\sigma}}\left(\frac{\partial u_{n}}{\partial t}\right)^{2} d x d t\right] d \sigma \leq \\
& \quad \leq 2 T^{2}\left[\sum_{i=1}^{2}\left\|\varphi_{i n}\right\|_{C\left(\gamma_{i, T}\right)}^{2}+\int_{D_{\tau}}\left(\frac{\partial u_{n}}{\partial t}\right)^{2} d x d t\right] \tag{2.22}
\end{align*}
$$

Taking into account (2.21), (2.22) and the fact that $\left\|\varphi_{i n}\right\|_{C\left(\gamma_{i, T}\right)} \leq$ $\left\|\varphi_{i n}\right\|_{C^{1}\left(\gamma_{i, T}\right)}$, from (2.16) we obtain

$$
\begin{align*}
\int_{\Omega_{\tau}}\left[\left(\frac{\partial u_{n}}{\partial t}\right)^{2}+\left(\frac{\partial u_{n}}{\partial x}\right)^{2}\right] d x & \leq M_{5}+M_{9} \sum_{i=1}^{2}\left\|\varphi_{i n}\right\|_{C^{1}\left(\gamma_{i, T}\right)}^{2}+ \\
& +M_{10} \int_{D_{\tau}}\left(\frac{\partial u_{n}}{\partial t}\right)^{2} d x d t+\int_{D_{\tau}} F_{n}^{2} d x d t \tag{2.23}
\end{align*}
$$

where

$$
\begin{equation*}
M_{9}=M_{6}+2 T M_{7}+2 T^{2} M_{8}, \quad M_{10}=2 T M_{7}+2 T^{2} M_{8}+1 \tag{2.24}
\end{equation*}
$$

Putting

$$
\begin{equation*}
w(\tau)=\int_{\Omega_{\tau}}\left[\left(\frac{\partial u_{n}}{\partial t}\right)^{2}+\left(\frac{\partial u_{n}}{\partial x}\right)^{2}\right] d x \tag{2.25}
\end{equation*}
$$

and taking into account that

$$
\int_{D_{\tau}}\left(\frac{\partial u_{n}}{\partial t}\right)^{2} d x d t=\int_{0}^{\tau} d \sigma \int_{\Omega_{\sigma}}\left(\frac{\partial u_{n}}{\partial t}\right)^{2} d x
$$

from (2.23) we have

$$
w(\tau) \leq M_{10} \int_{0}^{\tau} w(\sigma) d \sigma+M_{5}+
$$

$$
\begin{gather*}
+\left(M_{9}+1\right)\left(\sum_{i=1}^{2}\left\|\varphi_{i n}\right\|_{C^{1}\left(\gamma_{i, T}\right)}^{2}+\int_{D_{T}}\left\|F_{n}\right\|_{C\left(\bar{D}_{T}\right)}^{2} d x d t\right) \leq \\
\leq M_{10} \int_{0}^{\tau} w(\sigma) d \sigma+M_{5}+ \\
\quad+\left(M_{9}+1\right)\left(\sum_{i=1}^{2}\left\|\varphi_{i n}\right\|_{C^{1}\left(\gamma_{i}, T\right)}^{2}+\left\|F_{n}\right\|_{C\left(\bar{D}_{T}\right)}^{2} \operatorname{mes} D_{T}\right) \leq \\
\leq M_{10} \int_{0}^{\tau} w(\sigma) d \sigma+M_{11}\left(\sum_{i=1}^{2}\left\|\varphi_{i n}\right\|_{C^{1}\left(\gamma_{i, T}\right)}^{2}+\left\|F_{n}\right\|_{C\left(\bar{D}_{T}\right)}^{2}\right)+M_{5} \tag{2.26}
\end{gather*}
$$

where

$$
\begin{equation*}
M_{11}=\left(M_{9}+1\right) \max \left(1, \operatorname{mes} D_{T}\right) \tag{2.27}
\end{equation*}
$$

By Gronwall's lemma [15, p. 13], from (2.26) we find that

$$
\begin{equation*}
w(\tau) \leq\left[M_{11}\left(\sum_{i=1}^{2}\left\|\varphi_{i n}\right\|_{C^{1}\left(\gamma_{i, T}\right)}^{2}+\left\|F_{n}\right\|_{C\left(\bar{D}_{T}\right)}^{2}\right)+M_{5}\right] \exp M_{10} \tau \tag{2.28}
\end{equation*}
$$

If $(x, t) \in \bar{D}_{T}$, then owing to (2.9) the equality

$$
u_{n}(x, t)=u_{n}(-k t, t)+\int_{-k t}^{x} \frac{\partial u_{n}(\sigma, t)}{\partial x} d \sigma=\varphi_{2 n}(t)+\int_{-k t}^{x} \frac{\partial u_{n}(\sigma, t)}{\partial x} d \sigma
$$

holds, whence with regard for (2.25), (2.28) and the Cauchy and Schwartz inequalities we obtain

$$
\begin{gather*}
\left|u_{n}(x, t)\right|^{2} \leq 2 \varphi_{2 n}^{2}(t)+2\left(\int_{-k t}^{x} \frac{\partial u_{n}(\sigma, t)}{\partial x} d \sigma\right)^{2} \leq \\
\leq 2\left\|\varphi_{2 n}\right\|_{C\left(\gamma_{2, T}\right)}^{2}+2 \int_{-k t}^{x} 1^{2} d \sigma \int_{-k t}^{x}\left(\frac{\partial u_{n}(\sigma, t)}{\partial x}\right)^{2} d \sigma \leq \\
\leq 2\left\|\varphi_{2 n}\right\|_{C^{1}\left(\gamma_{2, T}\right)}^{2}+2(x+k t) \int_{\Omega_{t}}\left(\frac{\partial u_{n}(\sigma, t)}{\partial x}\right)^{2} d \sigma \leq \\
\leq 2\left\|\varphi_{2 n}\right\|_{C^{1}\left(\gamma_{2, T}\right)}^{2}+2(1+k) t w(t) \leq 2\left\|\varphi_{2 n}\right\|_{C^{1}\left(\gamma_{2, T}\right)}^{2}+ \\
\leq 2(1+k) T\left[M_{11}\left(\sum_{i=1}^{2}\left\|\varphi_{i n}\right\|_{C^{1}\left(\gamma_{i, T}\right)}^{2}+\left\|F_{n}\right\|_{C\left(\bar{D}_{T}\right)}^{2}\right)+M_{5}\right] \exp M_{10} T . \tag{2.29}
\end{gather*}
$$

Taking into account (2.17), (2.24), (2.27) and using the obvious inequality $\left(\sum_{i=1}^{n} a_{i}^{2}\right)^{1 / 2} \leq \sum_{i=1}^{n}\left|a_{i}\right|$, from (2.29) we find

$$
\begin{equation*}
\left\|u_{n}\right\|_{C\left(\bar{D}_{T}\right)} \leq c_{1}\left(\left\|F_{n}\right\|_{C\left(\bar{D}_{T}\right)}+\sum_{i=1}^{2}\left\|\varphi_{i n}\right\|_{C^{1}\left(\gamma_{i, T}\right)}\right)+c_{2} \tag{2.30}
\end{equation*}
$$

with nonnegative constants $c_{i}=c_{i}(f, T), i=1,2$, not depending on u_{n}, $F_{n}, \varphi_{1 n}$ and $\varphi_{2 n}$; here $c_{1}>0$. Finally, owing to (2.5)-(2.10) and passing in the inequality (2.30) to limit as $n \rightarrow \infty$, we obtain the a priori estimate (2.4).

3. Reduction of the Problem (1.1), (1.2) to a Nonlinear Integral Equation of Volterra Type

Let $P=P(x, t)$ be an arbitrary point of the domain D_{T}. By $G_{x, t}$ we denote the characteristic quadrangle with the vertices at the point $P(x, t)$ as well as at the points P_{1} and P_{2}, P_{3} lying, respectively, on the supports of the data $\gamma_{1, T}$ and $\gamma_{2, T}$ of the problem (1.1), (1.2), i.e.,

$$
\begin{aligned}
& P_{1}:=P_{1}\left(\frac{k(x-t)}{k+1}, \frac{t-x}{k+1}\right), \\
& P_{2}:=P_{2}\left(\frac{1}{2} \frac{1-k}{1+k}(t-x), \frac{1}{2} \frac{1-k}{1+k}(t-x)\right), \\
& P_{3}:=P_{3}\left(\frac{x+t}{2}, \frac{x+t}{2}\right) .
\end{aligned}
$$

Let $u \in C^{2}\left(\bar{D}_{T}\right)$ be a classical solution of the problem (1.1), (1.2). Integrating the equality (1.1) with respect to the domain $G_{x, t}$ which is the characteristic quadrangle of that equation and using the boundary conditions (1.2), we can easily get the following equality $[\mathbf{1}] ;[\mathbf{2}, \mathrm{p} .65]$:

$$
\begin{gather*}
u(x, t)+\frac{1}{2} \int_{G_{x, t}} f\left(x^{\prime}, t^{\prime}, u\left(x^{\prime}, t^{\prime}\right)\right) d x^{\prime} d t^{\prime}= \\
=\varphi_{2}\left(P_{1}\right)+\varphi_{1}\left(P_{3}\right)-\varphi_{1}\left(P_{1}\right)+\frac{1}{2} \int_{G_{x, t}} F\left(x^{\prime}, t^{\prime}\right) d x^{\prime} d t^{\prime}, \quad(x, t) \in D_{T} \tag{3.1}
\end{gather*}
$$

Remark 3.1. The equality (3.1) can be considered as a nonlinear integral equation of Volterra type which we rewrite in the form

$$
\begin{gather*}
u(x, t)+\left(\left.L_{0}^{-1} f\right|_{u=u(x, t)}\right)(x, t)= \\
=\left(\ell_{0}^{-1}\left(\varphi_{1}, \varphi_{2}\right)\right)(x, t)+\left(L_{0}^{-1} F\right)(x, t), \quad(x, t) \in D_{T} \tag{3.2}
\end{gather*}
$$

Here L_{0}^{-1} and ℓ_{0}^{-1} are the linear operators acting by the formulas

$$
\begin{align*}
\left(L_{0}^{-1} v\right)(x, t) & =\frac{1}{2} \int_{G_{x, t}} v\left(x^{\prime}, t^{\prime}\right) d x^{\prime} d t^{\prime} \tag{3.3}\\
\left(\ell_{0}^{-1}\left(\varphi_{1}, \varphi_{2}\right)\right)(x, t) & =\varphi_{2}\left(P_{1}\right)+\varphi_{1}\left(P_{3}\right)-\varphi_{1}\left(P_{1}\right) \tag{3.4}
\end{align*}
$$

Note that $L_{0}^{-1} v\left(\ell_{0}^{-1}\left(\varphi_{1}, \varphi_{2}\right)\right)$ from (3.3), (3.4) is a solution of the corresponding to (1.1), (1.2) homogeneous linear problem, i.e., for $f=0$, when $F=v, \varphi_{1}=\varphi_{2}=0(F=0)$. Moreover, $L_{0}^{-1} v \in C^{k+1}\left(\bar{D}_{T}\right)$ if $v \in C^{k}\left(\bar{D}_{T}\right)$ and $\ell_{0}^{-1}\left(\varphi_{1}, \varphi_{2}\right) \in C^{k}\left(\bar{D}_{T}\right)$ for $\varphi_{i} \in C^{k}\left(\gamma_{i, T}\right), i=1,2 ; k=0,1,2, \ldots$.

Lemma 3.1. Let $f \in C^{1}\left(\bar{D}_{T} \times \mathbb{R}\right)$. The function $u \in C\left(\bar{D}_{T}\right)$ is a strong generalized solution of the problem (1.1), (1.2) of the class C in the domain D_{T} if and only if it is a continuous solution of the nonlinear integral equation (3.2).

Proof. Indeed, let $u \in C\left(\bar{D}_{T}\right)$ be a solution of the equation (3.2). Since $F \in C\left(\bar{D}_{T}\right)\left(\varphi_{i} \in C^{1}\left(\gamma_{i, T}\right)\right)$ and the space $C^{2}\left(\bar{D}_{T}\right)\left(C^{2}\left(\gamma_{i, T}\right)\right)$ is dense in $C\left(\bar{D}_{T}\right)\left(C^{1}\left(\gamma_{i, T}\right)\right)[\mathbf{5 6}, \mathrm{p} .37]$, there exists a sequence of functions $F_{n} \in$ $C^{2}\left(\bar{D}_{T}\right)\left(\varphi_{i n} \in C^{2}\left(\gamma_{i n}\right)\right)$ such that $\lim _{n \rightarrow \infty}\left\|F_{n}-F\right\|_{C\left(\bar{D}_{T}\right)}=0\left(\lim _{n \rightarrow \infty} \| \varphi_{i n}-\right.$ $\left.\varphi_{i} \|_{C^{1}\left(\gamma_{i}, T\right)}=0, i=1,2\right)$. Analogously, since $u \in C\left(\bar{D}_{T}\right)$, there exists a sequence of functions $w_{n} \in C^{2}\left(\bar{D}_{T}\right)$ such that $w_{n} \rightarrow u$ in the space $C\left(\bar{D}_{T}\right)$. Assume

$$
\begin{equation*}
u_{n}=-\left.L_{0}^{-1} f\right|_{u=w_{n}}+\ell_{0}^{-1}\left(\varphi_{1 n}, \varphi_{2 n}\right)+L_{0}^{-1} F_{n} . \tag{3.5}
\end{equation*}
$$

Since $f \in C^{1}\left(\bar{D}_{T} \times \mathbb{R}\right)$, according to Remark 3.1 we have $u_{n} \in C^{2}\left(\bar{D}_{T}\right)$ and $\left.u_{n}\right|_{\gamma_{i, T}}=\varphi_{i n}, i=1,2$. Taking now into account that the linear operators $L_{0}^{-1}: C\left(\bar{D}_{T}\right) \rightarrow C\left(\bar{D}_{T}\right)$ and $\ell_{0}^{-1}: C^{1}\left(\gamma_{1, T}\right) \times C^{1}\left(\gamma_{2, T}\right) \rightarrow C\left(\bar{D}_{T}\right)$ are continuous and that by our assumption

$$
\begin{align*}
\lim _{n \rightarrow \infty}\left\|w_{n}-u\right\|_{C\left(\bar{D}_{T}\right)}=\lim _{n \rightarrow \infty} & \left\|F_{n}-F\right\|_{C\left(\bar{D}_{T}\right)}= \\
& =\lim _{n \rightarrow \infty}\left\|\varphi_{i n}-\varphi_{i}\right\|_{C^{1}\left(\gamma_{i, T}\right)}=0 \tag{3.6}
\end{align*}
$$

by virtue of (3.5) we have

$$
u_{n}(x, t) \longrightarrow\left[-\left(\left.L_{0}^{-1} f\right|_{u=u(x, t)}\right)(x, t)+\left(\ell_{0}^{-1}\left(\varphi_{1}, \varphi_{2}\right)\right)(x, t)+\left(L_{0}^{-1} F\right)(x, t)\right]
$$

in the space $C\left(\bar{D}_{T}\right)$. But it follows from the equality (3.2) that

$$
-\left(\left.L_{0}^{-1} f\right|_{u=u(x, t)}\right)(x, t)+\left(\ell_{0}^{-1}\left(\varphi_{1}, \varphi_{2}\right)\right)(x, t)+\left(L_{0}^{-1} F\right)(x, t)=u(x, t)
$$

Thus we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{n}-u\right\|_{C\left(\bar{D}_{T}\right)}=0 . \tag{3.7}
\end{equation*}
$$

On the other hand, by Remark 3.1 and (3.5), we have

$$
\begin{align*}
L_{0} u_{n} & =-\left.f\right|_{u=w_{n}}+F_{n} \tag{3.8}\\
\left.u_{n}\right|_{\gamma_{i, T}} & =\varphi_{i n}, \quad i=1,2 \tag{3.9}
\end{align*}
$$

From (3.6)-(3.9) it follows $\lim _{n \rightarrow \infty}\left\|\left.u_{n}\right|_{\gamma_{i, T}}-\varphi_{i}\right\|_{C^{1}\left(\gamma_{i, T}\right)}=0, i=1,2$, and since

$$
\begin{aligned}
& L_{f} u_{n}=L_{0} u_{n}+\left.f\right|_{u=u_{n}}=-\left.f\right|_{u=w_{n}}+F_{n}+\left.f\right|_{u=u_{n}}= \\
&=-\left(f\left(\cdot, w_{n}\right)-f(\cdot, u)\right)+\left(f\left(\cdot, u_{n}\right)-f(\cdot, u)\right)+F_{n}
\end{aligned}
$$

we have $L_{f} u_{n} \rightarrow F$ in the space $C\left(\bar{D}_{T}\right)$, as $n \rightarrow \infty$. The converse is obvious.

4. Global Solvability of the Problem (1.1), (1.2) in the Class of Continuous Functions

As is mentioned above, L_{0}^{-1} from (3.3) is a linear continuous operator acting in the space $C\left(\bar{D}_{T}\right)$. Let us show that this operator acts in fact linearly and continuously from the space $C\left(\bar{D}_{T}\right)$ to the space of continuously differentiable functions $C^{1}\left(\bar{D}_{T}\right)$. Towards this end, by means of the linear non-singular transformation of independent variables $t=\xi+\eta, x=\xi-\eta$ we pass to the plane of the variables ξ, η. As a result, the triangular domain D_{T} transforms into the triangle \widetilde{D}_{T} with vertices at the points $O(0,0)$, $N_{1}(T, 0), N_{2}\left(\frac{1-k}{2} T, \frac{1+k}{2} T\right)$, and the characteristic quadrangle $G_{x, t}$ from the previous section transforms into the rectangle $\widetilde{G}_{x, t}$ with the vertices $\widetilde{P}\left(\frac{t+x}{2}, \frac{t-x}{2}\right), \widetilde{P}_{1}\left(\frac{1}{2} \frac{1-k}{1+k}(t-x), \frac{t-x}{2}\right), \widetilde{P}_{2}\left(\frac{1}{2} \frac{1-k}{\widetilde{\sim}+k}(t-x), 0\right), \widetilde{P}_{3}\left(\frac{t+x}{2}, 0\right)$, i.e., in the variables $\xi, \eta: \widetilde{P}(\xi, \eta), \widetilde{P}_{1}\left(\frac{1-k}{1+k} \eta, \eta\right), \widetilde{P}_{2}\left(\frac{1-k}{1+k} \eta, 0\right)$ and $\widetilde{P}_{3}(\xi, 0)$. Moreover, the operator L_{0}^{-1} from (3.3) transforms into the operator \widetilde{L}_{0}^{-1} acting in the space $C\left(\overline{\widetilde{D}}_{T}\right)$ by the formula

$$
\begin{align*}
\left(\widetilde{L}_{0}^{-1} w\right)(\xi, \eta)= & \int_{\widetilde{G}_{x, t}} w\left(\xi^{\prime}, \eta^{\prime}\right) d \xi^{\prime} d \eta^{\prime}= \\
& =\int_{\frac{1-k}{1+k} \eta}^{\xi} d \xi^{\prime} \int_{0}^{\eta} w\left(\xi^{\prime}, \eta^{\prime}\right) d \xi^{\prime} d \eta^{\prime}, \quad(\xi, \eta) \in \widetilde{D}_{T} \tag{4.1}
\end{align*}
$$

If $w \in C\left(\widetilde{\widetilde{D}}_{T}\right)$, then it immediately follows from (4.1) that

$$
\begin{equation*}
\frac{\partial}{\partial \xi}\left(\widetilde{L}_{0}^{-1} w\right)(\xi, \eta)=\int_{0}^{\eta} w\left(\xi, \eta^{\prime}\right) d \eta^{\prime} \tag{4.2}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial}{\partial \eta}\left(\widetilde{L}_{0}^{-1} w\right)(\xi, \eta)=-\frac{1-k}{1+k} \int_{0}^{\eta} w\left(\xi^{\prime}, \frac{1-k}{1+k} \eta\right) d \xi^{\prime}+\int_{\frac{1-k}{1+k} \eta}^{\xi} w\left(\xi^{\prime}, \eta^{\prime}\right) d \xi^{\prime} \tag{4.3}
\end{equation*}
$$

Taking now into account that for $(\xi, \eta) \in \widetilde{D}_{T}$ we have $0 \leq \xi \leq T$ and $0 \leq \eta \leq \frac{1+k}{2} T$, by virtue of (4.1), (4.2), (4.3) and the fact that $0<k<1$ we have

$$
\begin{aligned}
& \left\|\widetilde{L}_{0}^{-1} w\right\|_{C\left(\bar{D}_{T}\right)}+\left\|\frac{\partial}{\partial \xi} \widetilde{L}_{0}^{-1} w\right\|_{C\left(\widetilde{\widetilde{D}}_{T}\right)}+\left\|\frac{\partial}{\partial \eta} \widetilde{L}_{0}^{-1} w\right\|_{C\left(\widetilde{\widetilde{D}}_{T}\right)} \leq \\
& \leq\left(\xi-\frac{1-k}{1+k} \eta\right) \eta\|w\|_{C\left(\widetilde{D}_{T}\right)}+\eta\|w\|_{C\left(\widetilde{D}_{T}\right)}+\frac{1-k}{1+k} \eta\|w\|_{C\left(\widetilde{D}_{T}\right)}+ \\
& \quad+\left(\xi-\frac{1-k}{1+k} \eta\right)\|w\|_{C\left(\widetilde{\widetilde{D}}_{T}\right)} \leq\left(T^{2}+3 T\right)\|w\|_{C\left(\widetilde{\widetilde{D}}_{T}\right)}
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\left\|\widetilde{L}_{0}^{-1}\right\|_{C\left(\overline{\widetilde{D}}_{T}\right) \rightarrow C^{1}\left(\overline{\widetilde{D}}_{T}\right)} \leq\left(T^{2}+3 T\right) \tag{4.4}
\end{equation*}
$$

which was to be demonstrated.
Further, since the space $C^{1}\left(\widetilde{D}_{T}\right)$ is embedded compactly into the space $C\left(\widetilde{D}_{T}\right)\left[\mathbf{1 0}\right.$, p. 135], the operator $\widetilde{L}_{0}^{-1}: C\left(\widetilde{D}_{T}\right) \rightarrow C\left(\widetilde{D}_{T}\right)$ is, by virtue of (4.4), linear and compact. Thus getting now back from the variables ξ and η to the variables x and t, for the operator L_{0}^{-1} from (3.3) we obtain the validity of the following statement.

Lemma 4.1. The operator $L_{0}^{-1}: C\left(D_{T}\right) \rightarrow C\left(D_{T}\right)$ acting by the formula (3.3) is linear and compact.

We rewrite the equation (3.2) in the form

$$
\begin{equation*}
u=A u:=-\left(\left.L_{0}^{-1} f\right|_{u=u(x, t)}\right)+\ell_{0}^{-1}\left(\varphi_{1}, \varphi_{2}\right)+L_{0}^{-1} F, \tag{4.5}
\end{equation*}
$$

where the operator $A: C\left(\bar{D}_{T}\right) \rightarrow C\left(\bar{D}_{T}\right)$ is continuous and compact since the nonlinear operator $K: C\left(\bar{D}_{T}\right) \rightarrow C\left(\bar{D}_{T}\right)$ acting by the formula $K u:=-f(x, t, u)$ is bounded and continuous and the linear operator L_{0}^{-1} : $C\left(\bar{D}_{T}\right) \rightarrow C\left(\bar{D}_{T}\right)$ is, by Lemma 4.1, compact. We have taken here into account that the component $A_{1} u:=\ell_{0}^{-1}\left(\varphi_{1}, \varphi_{2}\right)+L_{0}^{-1} F$ of A from (4.5) is a constant and hence a continuous and compact operator acting in the space $C\left(\bar{D}_{T}\right)$. At the same time, by Lemmas 2.1 and 3.1 as well as by (2.2), (2.3), (2.17), (2.24) and (2.27), for any parameter $\tau \in[0,1]$ and every solution $u \in C\left(\bar{D}_{T}\right)$ of the equation $u=\tau A u$ the a priori estimate (2.4) is valid with the same constants c_{1} and c_{2}, not depending on $u, F, \varphi_{1}, \varphi_{2}$ and τ. Therefore, by Leray-Schauder's theorem [66, p. 375] the equation (4.5) under the conditions of Lemmas 2.1 and 3.1 has at least one solution $u \in C\left(\bar{D}_{T}\right)$. Thus, by Lemmas 2.1 and 3.1, we proved the following [1]

Theorem 4.1. Let $f \in C^{1}\left(\bar{D}_{\infty} \times \mathbb{R}\right)$ and the conditions (2.2) and (2.3) be fulfilled for every $T>0$. Then the problem (1.1), (1.2) is globally solvable
in the class C in the sense of Definition 1.2, i.e., for every $\varphi_{i} \in C^{1}\left(\gamma_{i, \infty}\right)$, $i=1,2$, and $F \in C\left(\bar{D}_{\infty}\right)$ and for every $T>0$ the problem (1.1), (1.2) has a strong generalized solution of the class C in the domain D_{T} in the sense of Definition 1.1.

We now cite certain classes of functions $f=f(x, t, u)$, frequently encountered in applications, for which the conditions (2.2) and (2.3) are fulfilled:

1. $f(x, t, u)=f_{0}(x, t) \psi(u)$, where $f_{0}, \frac{\partial}{\partial t} f_{0} \in C\left(\bar{D}_{\infty}\right)$ and $\psi \in C(\mathbb{R})$.

In this case $g(x, t, u)=f_{0}(x, t) \int_{0}^{u} \psi(s) d s$, and if the inequality $|\psi(u)| \leq$ $d_{1}|u|+d_{2}$ is fulfilled, then the conditions (2.2) and (2.3) will be fulfilled.
2. $f(x, t, u)=f_{0}(x, t)|u|^{\alpha} \operatorname{sgn} u$, where $f_{0}, \frac{\partial}{\partial t} f_{0} \in C\left(\bar{D}_{\infty}\right), \alpha>1$.

In this case $g(x, t, u)=f_{0}(x, t)|u|^{\alpha+1}$, and if the inequalities $f_{0}(x, t) \geq$ $0, \frac{\partial}{\partial t} f_{0}(x, t) \leq 0$ are fulfilled, then the conditions (2.2) and (2.3) will be fulfilled.
3. $f(x, t, u)=f_{0}(x, t) e^{u}$, where $f_{0}, \frac{\partial}{\partial t} f_{0} \in C\left(\bar{D}_{\infty}\right)$.

In this case $g(x, t, u)=f(x, t, u)$, and if the inequalities $f_{0}(x, t) \geq 0$, $\frac{\partial}{\partial t} f_{0}(x, t) \leq 0$ are fulfilled, then the conditions (2.2) and (2.3) will be fulfilled.

Thus, if the function $f \in C^{1}\left(\bar{D}_{\infty} \times \mathbb{R}\right)$ belongs to one of the abovementioned classes, then according to Theorem 4.1 the problem (1.1), (1.2) is globally solvable in the class C in the sense of Definition 1.2.

We present here an example of a function f which is also encountered in applications, when at least one of the conditions (2.2) or (2.3) is violated. Such a function is

$$
\begin{equation*}
f(x, t, u)=f_{0}(x, t)|u|^{\alpha}, \quad \alpha>1 \tag{4.6}
\end{equation*}
$$

where $f_{0}, \frac{\partial}{\partial t} f_{0} \in C\left(\bar{D}_{\infty}\right)$ and $f_{0} \neq 0$. In this case, by virtue of (4.6) we have $g(x, t, u)=f_{0}(x, t)|u|^{\alpha+1} \operatorname{sgn} u$, and since $\alpha>1$ and $f_{0} \neq 0$, the condition (2.2) is violated. If $\frac{\partial}{\partial t} f_{0} \neq 0$, then the condition (2.3) will also be violated.

Below, it will be shown that if the conditions (2.2) and (2.3) are violated, then the problem (1.1), (1.2) fails to be globally solvable.

5. The Smoothness and Uniqueness of the Solution of the Problem (1.1), (1.2). The Existence of a Global Solution in D_{∞}

According to Remark 3.1, by virtue of the equalities (3.2), (3.3) and (3.4), if the conditions of Theorem 4.1 except possibly (2.2) and (2.3) are fulfilled, then a strong generalized solution of the problem (1.1), (1.2) belongs in fact to the space $C^{1}\left(\bar{D}_{T}\right)$. The same reasoning leads us to

Lemma 5.1. Let u be a strong generalized solution of the problem (1.1), (1.2) of the class C in the domain D_{T} in the sense of Definition 1.1.

Then if $f \in C^{k}\left(\bar{D}_{T} \times \mathbb{R}\right), F \in C^{k}\left(\bar{D}_{T}\right)$ and $\varphi_{i} \in C^{k+1}\left(\gamma_{i, T}\right), i=1,2$, $k \geq 0$, then we have $u \in C^{k+1}\left(\bar{D}_{T}\right)$.

From the above lemma it follows, in particular, that for $k \geq 1$ a strong generalized solution of the problem (1.1), (1.2) of the class C in the domain D_{T} is a classical solution of that problem in the sense of Definition 1.1.

It is said that a function $f=f(x, t, u)$ satisfies the local Lipschitz condition on the set $\bar{D}_{\infty} \times \mathbb{R}$ if

$$
\begin{align*}
& \mid f\left(x, t, u_{2}\right)- f\left(x, t, u_{1}\right) \mid \leq \\
& \leq M(T, R)\left|u_{2}-u_{1}\right|, \quad(x, t) \in \bar{D}_{T}, \quad\left|u_{i}\right| \leq R, \quad i=1,2 \tag{5.1}
\end{align*}
$$

where $M=M(T, R)=$ const ≥ 0.
Lemma 5.2. If the function $f \in C\left(\bar{D}_{T} \times \mathbb{R}\right)$ satisfies the condition (5.1), then the problem (1.1), (1.2) cannot have more than one strong generalized solution of the class C in the domain D_{T}.

Proof. Indeed, assume that the problem (1.1), (1.2) has two strong generalized solutions u_{1} and u_{2} of the class C in the domain D_{T}. By Definition 1.1, there exists a sequence of functions $u_{j n} \in C^{2}\left(\bar{D}_{T}\right), j=1,2$, such that

$$
\begin{align*}
\lim _{n \rightarrow \infty}\left\|u_{j n}-u_{j}\right\|_{C\left(\bar{D}_{T}\right)}=\lim _{n \rightarrow \infty}\left\|L_{f} u_{j n}-F\right\|_{C\left(\bar{D}_{T}\right)} & = \\
=\lim _{n \rightarrow \infty}\left\|\left.u_{j n}\right|_{\gamma_{i, n}}-\varphi_{i}\right\|_{C^{1}\left(\gamma_{i, T}\right)} & =0, \quad i, j=1,2 \tag{5.2}
\end{align*}
$$

Let $\omega_{n}=u_{2 n}-u_{1 n}$. It can be easily seen that the function $\omega_{n} \in C^{2}\left(\bar{D}_{T}\right)$ is a classical solution of the problem

$$
\begin{gather*}
\left(\frac{\partial^{2}}{\partial t^{2}}-\frac{\partial^{2}}{\partial x^{2}}\right) \omega_{n}+g_{n}=F_{n} \tag{5.3}\\
\left.\omega_{n}\right|_{\gamma_{i}, T}=\varphi_{i n}, \quad i=1,2 \tag{5.4}
\end{gather*}
$$

Here

$$
\begin{align*}
g_{n} & =f\left(x, t, u_{2 n}\right)-f\left(x, t, u_{1 n}\right) \tag{5.5}\\
F_{n} & =L_{f} u_{2 n}-L_{f} u_{1 n}, \tag{5.6}\\
\varphi_{i n} & =\left.\left(u_{2 n}-u_{1 n}\right)\right|_{\gamma_{i, T}}, \quad i=1,2 \tag{5.7}
\end{align*}
$$

By virtue of (5.2), there exists a number $m=$ const >0, not depending on the indices j and n, such that $\left\|u_{j n}\right\|_{C\left(\bar{D}_{T}\right)} \leq m$, whence, in its turn, by (5.1) and (5.5) it follows that

$$
\begin{equation*}
\left|g_{n}\right| \leq M(T, 2 m)\left|u_{2 n}-u_{1 n}\right| . \tag{5.8}
\end{equation*}
$$

The equalities (5.2), (5.6) and (5.7) imply that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|F_{n}\right\|_{C\left(\bar{D}_{T}\right)}=0, \quad \lim _{n \rightarrow \infty}\left\|\varphi_{i n}\right\|_{C^{1}\left(\gamma_{i, T}\right)}=0, \quad i=1,2 \tag{5.9}
\end{equation*}
$$

Multiplying both parts of the equation (5.3) by $\frac{\partial \omega_{n}}{\partial t}$ and integrating with respect to the domain $D_{\tau}:=\left\{(x, t) \in D_{T}: t<\tau\right\}, 0<\tau \leq T$, due
to the boundary conditions (5.4), just as in obtaining the inequality (2.16), from (2.12)-(2.15) and (5.8) we have

$$
\begin{gather*}
\int_{\Omega_{\tau}}\left[\left(\frac{\partial \omega_{n}}{\partial t}\right)^{2}+\left(\frac{\partial \omega_{n}}{\partial x}\right)^{2}\right] d x= \\
=-\sum_{i=1}^{2} \int_{\gamma_{i, \tau}} \frac{1}{\nu_{t}}\left[\left(\frac{\partial \omega_{n}}{\partial x} \nu_{t}-\frac{\partial \omega_{n}}{\partial t} \nu_{x}\right)^{2}+\left(\frac{\partial \omega_{n}}{\partial t}\right)^{2}\left(\nu_{t}^{2}-\nu_{x}^{2}\right)\right] d s+ \\
+2 \int_{D_{\tau}}\left(F_{n}-g_{n}\right) \frac{\partial \omega_{n}}{\partial t} d x d t \leq \\
\leq \sqrt{2} \int_{\gamma_{1, \tau}}\left\|\varphi_{1 n}\right\|_{C^{1}\left(\gamma_{1, T}\right)}^{2} d s+\frac{\sqrt{1+k^{2}}}{k} \int_{\gamma_{2, \tau}}\left\|\varphi_{2 n}\right\|_{C^{1}\left(\gamma_{2, T}\right)}^{2} d s+ \\
+\int_{D_{\tau}}\left(F_{n}-g_{n}\right)^{2} d x d t+\int_{D_{\tau}}\left(\frac{\partial \omega_{n}}{\partial t}\right)^{2} d x d t \leq \\
\leq \widetilde{M} \sum_{i=1}^{2}\left\|\varphi_{i n}\right\|_{C^{1}\left(\gamma_{i, T}\right)}^{2}+\int_{D_{\tau}}\left(\frac{\partial \omega_{n}}{\partial t}\right)^{2} d x d t+ \\
+2 \int_{D_{n}}^{2} d x d t+2 \int_{D_{\tau}} F_{n}^{2} d x d t \leq \\
\leq \widetilde{M} \sum_{i=1}^{2}\left\|\varphi_{i n}\right\|_{C^{1}\left(\gamma_{i, T}\right)}^{2}+\int_{D_{\tau}}\left(\frac{\partial \omega_{n}}{\partial t}\right)^{2} d x d t+ \\
+2 M^{2}(T, 2 m) \int \omega_{n}^{2} d x d t+2 \int F_{n}^{2} d x d t . \tag{5.10}
\end{gather*}
$$

By the inequalities (2.21) and (2.22) which, with regard for (5.4), are likewise valid for the function ω_{n}, from (5.10) we find that

$$
\begin{gathered}
\int_{\Omega_{\tau}}\left[\omega_{n}^{2}+\left(\frac{\partial \omega_{n}}{\partial t}\right)^{2}+\left(\frac{\partial \omega_{n}}{\partial x}\right)^{2}\right] d x \leq \\
\leq 2 T \sum_{i=1}^{2}\left\|\varphi_{i n}\right\|_{C^{1}\left(\gamma_{i, T}\right)}^{2}+2 T \int_{D_{\tau}}\left(\frac{\partial \omega_{n}}{\partial t}\right)^{2} d x d t+ \\
+\widetilde{M} \sum_{i=1}^{2}\left\|\varphi_{i n}\right\|_{C^{1}\left(\gamma_{i, T}\right)}^{2}+\int_{D_{\tau}}\left(\frac{\partial \omega_{n}}{\partial t}\right)^{2} d x d t+ \\
+4 T^{2} M^{2}(T, 2 m)\left[\sum_{i=1}^{2}\left\|\varphi_{i n}\right\|_{C^{1}\left(\gamma_{i, T}\right)}^{2}+\int_{D_{\tau}}\left(\frac{\partial \omega_{n}}{\partial t}\right)^{2} d x d t\right]+2 \int_{D_{\tau}} F_{n}^{2} d x d t \leq
\end{gathered}
$$

$$
\begin{gather*}
\leq \widetilde{M}_{1} \int_{D_{\tau}}\left[\omega_{n}^{2}+\left(\frac{\partial \omega_{n}}{\partial t}\right)^{2}+\left(\frac{\partial \omega_{n}}{\partial x}\right)^{2}\right] d x d t+ \\
+\widetilde{M}_{2}\left[\sum_{i=1}^{2}\left\|\varphi_{i n}\right\|_{C^{1}\left(\gamma_{i, T}\right)}^{2}+\left\|F_{n}\right\|_{C\left(\bar{D}_{T}\right)}^{2}\right], \quad 0<\tau \leq T \tag{5.11}
\end{gather*}
$$

where

$$
\begin{aligned}
& \widetilde{M}_{1}=1+2 T+4 T^{2} M^{2}(T, 2 m) \\
& \widetilde{M}_{2}=2 \operatorname{mes} D_{T}+2 T+\widetilde{M}+4 T^{2} M^{2}(T, 2 m)
\end{aligned}
$$

Assuming

$$
v_{n}(\tau)=\int_{\Omega_{\tau}}\left[\omega_{n}^{2}+\left(\frac{\partial \omega_{n}}{\partial t}\right)^{2}+\left(\frac{\partial \omega_{n}}{\partial x}\right)^{2}\right] d x
$$

and taking into account the equality

$$
\int_{\Omega_{\tau}}\left[\omega_{n}^{2}+\left(\frac{\partial \omega_{n}}{\partial t}\right)^{2}+\left(\frac{\partial \omega_{n}}{\partial x}\right)^{2}\right] d x d t=\int_{0}^{\tau} v_{n}(\sigma) d \sigma
$$

from (5.11) we obtain that

$$
\begin{equation*}
v_{n}(\tau) \leq \widetilde{M}_{1} \int_{0}^{\tau} v_{n}(\sigma) d \sigma+\widetilde{M}_{2}\left[\sum_{i=1}^{2}\left\|\varphi_{i n}\right\|_{C^{1}\left(\gamma_{i, T}\right)}^{2}+\left\|F_{n}\right\|_{C\left(\bar{D}_{T}\right)}^{2}\right] \tag{5.12}
\end{equation*}
$$

By Gronwall's lemma, from (5.12) it follows

$$
\begin{equation*}
v_{n}(\tau) \leq \widetilde{M}_{2}\left[\sum_{i=1}^{2}\left\|\varphi_{i n}\right\|_{C^{1}\left(\gamma_{i, T}\right)}^{2}+\left\|F_{n}\right\|_{C\left(\bar{D}_{T}\right)}^{2}\right] \exp \widetilde{M}_{1} T, \quad 0<\tau \leq T \tag{5.13}
\end{equation*}
$$

Since $\omega_{n}=u_{2 n}-u_{1 n}$, from (5.2) and (5.9) it also follows that

$$
\begin{gather*}
\lim _{n \rightarrow \infty}\left\|\omega_{n}\right\|_{C\left(\bar{D}_{T}\right)}=\left\|u_{2}-u_{1}\right\|_{C\left(\bar{D}_{T}\right)}, \\
\lim _{n \rightarrow \infty}\left\|\omega_{n}-\left(u_{2}-u_{1}\right)\right\|_{C\left(\bar{D}_{T}\right)}=0 . \tag{5.14}
\end{gather*}
$$

In particular, from (5.13) for $\tau=T$ we have

$$
\begin{equation*}
\int_{D_{T}} \omega_{n}^{2} d x d t \leq \widetilde{M}_{2}\left[\sum_{i=1}^{2}\left\|\varphi_{i n}\right\|_{C^{1}\left(\gamma_{i, T}\right)}^{2}+\left\|F_{n}\right\|_{C\left(\bar{D}_{T}\right)}^{2}\right] \exp \widetilde{M}_{1} T . \tag{5.15}
\end{equation*}
$$

Passing now in the inequality (5.15) to limit as $n \rightarrow \infty$ and taking into account the equalities (5.9) and (5.14) as well as the theorem on the passage to limit under the integral sign, we obtain

$$
\int_{D_{T}}\left|u_{2}-u_{1}\right|^{2} d x d t \leq 0
$$

whence it immediately follows that $u_{2}=u_{1}$, and hence the proof of Lemma 5.2 is complete.

Theorem 4.1 and Lemmas 5.1 and 5.2 imply the following
Theorem 5.1. Let $\varphi_{i} \in C^{2}\left(\gamma_{i, \infty}\right), i=1,2, F \in C^{1}\left(\bar{D}_{\infty}\right), f \in$ $C^{1}\left(\bar{D}_{\infty} \times \mathbb{R}\right)$, and the conditions (2.2) and (2.3) be fulfilled. Then the problem (1.1), (1.2) has a unique global classical solution $u \in C\left(\bar{D}_{\infty}\right)$ in the domain D_{∞}.

Proof. Since the function f from the space $C^{1}\left(\bar{D}_{\infty} \times \mathbb{R}\right)$ satisfies the local Lipschitz condition (5.1), according to Theorem 4.1 and Lemmas 5.1 and 5.2, in the domain D_{T} for $T=n$ there exists a unique classical solution $u_{n} \in$ $C^{2}\left(\bar{D}_{T}\right)$ of the problem (1.1), (1.2). Since u_{n+1} is likewise a classical solution of the problem (1.1), (1.2) in the domain D_{n}, by virtue of Lemma 2.5 we have $\left.u_{n+1}\right|_{D_{n}}=u_{n}$. Therefore the function u constructed in the domain D_{∞} by the rule $u(x, t)=u_{n}(x, t)$ for $n=[t]+1$, where $[t]$ is the integer part of the number t and $(x, t) \in \bar{D}_{\infty}$, will be the unique classical solution of the problem (1.1), (1.2) in the domain D_{∞} of the class $C^{2}\left(\bar{D}_{\infty}\right)$.

Thus the proof of Theorem 5.1 is complete.

6. The Cases of the Non-Existence of a Global Solution of the Problem (1.1), (1.2)

Below it will be shown that in case the conditions (2.2) or (2.3) are violated, the problem (1.1), (1.2) cannot be globally solvable in the class C in the sense of Definition 1.2.

Lemma 6.1. Let u be a strong generalized solution of the problem (1.1), (1.2) of the class C in the domain D_{T} in the sense of Definition 1.1 under the homogeneous boundary conditions, i.e., for $\varphi_{i}=0, i=1,2$. Then the following integral equality

$$
\begin{equation*}
\int_{D_{T}} u \square \varphi d x d t=-\int_{D_{T}} f(x, t, u) \varphi d x d t+\int_{D_{T}} F \varphi d x d t \tag{6.1}
\end{equation*}
$$

is valid for any function φ such that

$$
\begin{equation*}
\varphi \in C^{2}\left(\bar{D}_{T}\right),\left.\varphi\right|_{t=T}=0,\left.\quad \varphi_{t}\right|_{t=T}=0,\left.\quad \varphi\right|_{\gamma_{2, T}}=0 \tag{6.2}
\end{equation*}
$$

where $\square:=\frac{\partial^{2}}{\partial t^{2}}-\frac{\partial^{2}}{\partial x^{2}}$.
Proof. By the definition of a strong generalized solution u of the problem (1.1), (1.2) of the class C in the domain D_{T}, we have $u \in C\left(\bar{D}_{T}\right)$, and there exists a sequence of functions $u_{n} \in C^{2}\left(\bar{D}_{T}\right)$ such that

$$
\begin{align*}
\lim _{n \rightarrow \infty}\left\|u_{n}-u\right\|_{C\left(\bar{D}_{T}\right)}= & \lim _{n \rightarrow \infty}\left\|L_{f} u_{n}-F\right\|_{C\left(\bar{D}_{T}\right)}= \\
& =\lim _{n \rightarrow \infty}\left\|\left.u_{n}\right|_{\gamma_{i}, T}-0\right\|_{C^{1}\left(\gamma_{i, T}\right)}=0, \quad i=1,2 \tag{6.3}
\end{align*}
$$

Let $F_{n}=L_{f} u_{n}, \varphi_{i n}=\left.u_{n}\right|_{\gamma_{i, T}}, i=1,2$. We multiply both parts of the equality $L_{f} u_{n}=F_{n}$ by the function φ and integrate the obtained equality
over the domain D_{T}. After integration of the left-hand side of the above equality by parts, we obtain

$$
\begin{align*}
\int_{D_{T}} u \square \varphi d x d t+\int_{\partial D_{T}} \frac{\partial u_{n}}{\partial N} \varphi d s & -\int_{\partial D_{T}} u_{n} \frac{\partial \varphi}{\partial N} d s+ \\
& +\int_{D_{T}} f\left(x, t, u_{n}\right) \varphi d x d t=\int_{D_{T}} F_{n} \varphi d x d t \tag{6.4}
\end{align*}
$$

where $\frac{\partial}{\partial N}=\nu_{t} \frac{\partial}{\partial t}-\nu_{x} \frac{\partial}{\partial x}$ is the derivative with respect to the conormal, and $\nu=\left(\nu_{x}, \nu_{t}\right)$ is the unit vector of the outer normal to ∂D_{T}.

Taking into account that the operator of differentiation with respect to the conormal $\frac{\partial}{\partial N}$ is an outer differential operator on the characteristic curve $\gamma_{1, T}$, and hence $\left.\frac{\partial u_{n}}{\partial N}\right|_{\gamma_{1, T}}=\frac{\partial \varphi_{1 n}}{\partial N}$, by the equalities from (6.2) we have

$$
\begin{align*}
\int_{\partial D_{T}} \frac{\partial u_{n}}{\partial N} \varphi d s & =\int_{\gamma_{1, T}} \frac{\partial \varphi_{1 n}}{\partial N} \varphi d s \\
\int_{\partial D_{T}} u_{n} \frac{\partial \varphi}{\partial N} d s & =\sum_{i=1}^{2} \int_{\gamma_{i, T}} \varphi_{i n} \frac{\partial \varphi}{\partial N} d s \tag{6.5}
\end{align*}
$$

Since $\varphi_{i n}=\left.u_{n}\right|_{\gamma_{i, T}}, i=1,2$, by virtue of (6.3) we find that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\frac{\partial \varphi_{1 n}}{\partial N}\right\|_{C\left(\gamma_{1, T}\right)}=0, \quad \lim _{n \rightarrow \infty}\left\|\varphi_{i n}\right\|_{C\left(\gamma_{i, T}\right)}=0, \quad i=1,2 . \tag{6.6}
\end{equation*}
$$

By (6.3) and (6.6), passing in the equality (6.4) to limit as $n \rightarrow \infty$ we obtain the equality

$$
\int_{D_{T}} u \square \varphi d x d t+\int_{D_{T}} f(x, t, u) \varphi d x d t=\int_{D_{T}} F \varphi d x d t
$$

Thus the lemma is proved.
Consider the following condition imposed on the function f :

$$
\begin{equation*}
f(x, t, u) \leq-\lambda|u|^{\alpha+1}, \quad(x, t, u) \in \bar{D}_{\infty} \times \mathbb{R} ; \quad \lambda, \alpha=\text { const }>0 . \tag{6.7}
\end{equation*}
$$

It can be easily verified that if the condition (6.7) is fulfilled, then the condition (2.2) is violated.

Introduce into consideration a function $\varphi^{0}=\varphi^{0}(x, t)$ such that

$$
\begin{equation*}
\varphi^{0} \in C^{2}\left(\bar{D}_{\infty}\right),\left.\quad \varphi^{0}\right|_{D_{T=1}}>0,\left.\quad \varphi^{0}\right|_{\gamma_{2, \infty}}=0,\left.\quad \varphi^{0}\right|_{t \geq 1}=0 \tag{6.8}
\end{equation*}
$$

and let

$$
\begin{equation*}
\varkappa_{0}=\int_{D_{T=1}} \frac{\left|\square \varphi^{0}\right|^{p^{\prime}}}{\left|\varphi^{0}\right|^{p^{\prime}-1}} d x d t<+\infty, \quad p^{\prime}=1+\frac{1}{\alpha} . \tag{6.9}
\end{equation*}
$$

It is not difficult to verify that in the capacity of the function φ_{0} satisfying the conditions (6.8) and (6.9) we can take the function

$$
\varphi^{0}(x, t)= \begin{cases}(x+k t)^{n}(1-t)^{m}, & (x, t) \in D_{T=1} \\ 0, & t \geq 1\end{cases}
$$

for sufficiently large positive constants n and m.
Putting $\varphi_{T}(x, t)=\varphi^{0}\left(\frac{x}{T}, \frac{t}{T}\right), T>0$, by virtue of (6.8) we can see that

$$
\begin{gather*}
\varphi_{T} \in C^{2}\left(\bar{D}_{\infty}\right),\left.\quad \varphi_{T}\right|_{D_{T}}>0 \\
\left.\varphi_{T}\right|_{\gamma_{2, T}}=0,\left.\quad \varphi_{T}\right|_{t=T}=0,\left.\quad \frac{\partial \varphi_{T}}{\partial t}\right|_{t=T}=0 \tag{6.10}
\end{gather*}
$$

Assuming the function F is fixed, we interoduce into consideration the function of one variable T,

$$
\begin{equation*}
\zeta(T)=\int_{D_{T}} F \varphi_{T} d x d t, \quad T>0 \tag{6.11}
\end{equation*}
$$

There takes place the following theorem on the nonexistence of global solvability of the problem (1.1), (1.2) [1].

Theorem 6.1. Let the function $f \in C\left(\bar{D}_{\infty} \times \mathbb{R}\right)$ satisfy the condition (6.7), $F \in C\left(\bar{D}_{\infty}\right), F \geq 0$, and the boundary conditions (1.2) be homogeneous, i.e., $\varphi_{i}=0, i=1,2$. Let, moreover,

$$
\begin{equation*}
\liminf _{T \rightarrow+\infty} \zeta(T)>0 \tag{6.12}
\end{equation*}
$$

Then there exists a positive number $T_{0}=T_{0}(F)$ such that for $T>T_{0}$ the problem (1.1), (1.2) cannot have a strong generalized solution u of the class C in the domain D_{T}.

Proof. Assume that under the conditions of the above theorem there exists a strong generalized solution u of the problem (1.1), (1.2) of the class C in the domain D_{T}. Then, by Lemma 6.1, we have the equality (6.1) in which, owing to (6.10), we can take in the capacity of the function φ the function $\varphi=\varphi_{T}$, i.e.,

$$
\begin{equation*}
-\int_{D_{T}} f(x, t, u) \varphi_{T} d x d t+\int_{D_{T}} F \varphi_{T} d x d t=\int_{D_{T}} u \square \varphi_{T} d x d t \tag{6.13}
\end{equation*}
$$

Since $\varphi_{T}>0$ in the domain D_{T}, by the condition (6.7) and the designation (6.11), from (6.13) we have

$$
\begin{equation*}
\lambda \int_{D_{T}}|u|^{p} \varphi_{T} d x d t \leq \int_{D_{T}}|u||\square \varphi| d x d t-\zeta(T), \quad p=\alpha+1 \tag{6.14}
\end{equation*}
$$

If in Young's inequality with parameter $\varepsilon>0$,

$$
a b \leq \frac{\varepsilon}{p} a^{p}+\frac{1}{p^{\prime} \varepsilon^{p^{\prime}-1}} b^{p^{\prime}} ; \quad a, b \geq 0, \quad \frac{1}{p}+\frac{1}{p^{\prime}}=1, \quad p=\alpha+1>1
$$

we take $a=|u| \varphi_{T}^{1 / p}, b=\frac{\left|\square \varphi_{T}\right|}{\varphi_{T}^{1 / p}}$, then taking into account that $p^{\prime} / p=p^{\prime}-1$ we will obtain

$$
\begin{equation*}
\left|u \square \varphi_{T}\right|=|u| \varphi_{T}^{1 / p} \frac{\left|\square \varphi_{T}\right|}{\varphi_{T}^{1 / p}} \leq \frac{\varepsilon}{p}|u|^{p} \varphi_{T}+\frac{1}{p^{\prime} \varepsilon^{p^{\prime}-1}} \frac{\left|\square \varphi_{T}\right|^{p^{\prime}}}{\varphi_{T}^{p^{\prime}-1}} \tag{6.15}
\end{equation*}
$$

It follows from (6.14) and (6.15) that

$$
\left(\lambda-\frac{\varepsilon}{p}\right) \int_{D_{T}}|u|^{p} \varphi_{T} d x d t \leq \frac{1}{p^{\prime} \varepsilon^{p^{\prime}-1}} \int_{D_{T}} \frac{\left|\square \varphi_{T}\right|^{p^{\prime}}}{\varphi_{T}^{p^{\prime}-1}} d x d t-\zeta(T),
$$

whence for $\varepsilon<\lambda p$ we find that

$$
\begin{equation*}
\int_{D_{T}}|u|^{p} \varphi_{T} d x d t \leq \frac{p}{(|\lambda| p-\varepsilon) p^{\prime} \varepsilon^{p^{\prime}-1}} \int_{D_{T}} \frac{\left.\left|\square \varphi_{T}\right|\right|^{p^{\prime}}}{\varphi_{T}^{p^{\prime}-1}} d x d t-\frac{p}{\lambda p-\varepsilon} \zeta(T) \tag{6.16}
\end{equation*}
$$

Bearing in mind that $p^{\prime}=\frac{p}{p-1}, p=\frac{p^{\prime}}{p^{\prime}-1}$ and $\min _{0<\varepsilon<\lambda p} \frac{p}{(\lambda p-\varepsilon) p^{\prime} \varepsilon^{p^{\prime}-1}}=\frac{1}{\lambda^{p}}$, which is achieved for $\varepsilon=\lambda$, from (6.16) we get

$$
\begin{equation*}
\int_{D_{T}}|u|^{p} \varphi_{T} d x d t \leq \frac{1}{\lambda^{p^{\prime}}} \int_{D_{T}} \frac{\left|\square \varphi_{T}\right|^{p^{\prime}}}{\varphi_{T}^{p^{\prime}-1}} d x d t-\frac{p^{\prime}}{\lambda} \zeta(T) \tag{6.17}
\end{equation*}
$$

Since $\varphi_{T}(x, t)=\varphi^{0}\left(\frac{x}{T}, \frac{t}{T}\right)$, by virtue of (6.8) and (6.9), after the change of variables $t=T t^{\prime}, x=T x^{\prime}$, we can easily verify that

$$
\begin{gather*}
\int_{D_{T}} \frac{\left|\square \varphi_{T}\right|^{p^{\prime}}}{\varphi_{T}^{p^{\prime}-1}} d x d t= \\
=T^{-2\left(p^{\prime}-1\right)} \int_{D_{T=1}} \frac{\left|\square \varphi^{0}\right|^{p^{\prime}}}{\left(\varphi^{0}\right)^{p^{\prime}-1}} d x^{\prime} d t^{\prime}=T^{-2\left(p^{\prime}-1\right)} \varkappa_{0}<+\infty . \tag{6.18}
\end{gather*}
$$

By virtue of (6.10) and (6.18), the inequality (6.17) yields

$$
\begin{equation*}
0 \leq \int_{D_{T}}|u|^{p} \varphi_{T} d x d t \leq \frac{1}{\lambda^{p^{\prime}}} T^{-2\left(p^{\prime}-1\right)} \varkappa_{0}-\frac{p^{\prime}}{\lambda} \zeta(T) \tag{6.19}
\end{equation*}
$$

Because of the fact that $p^{\prime}=\frac{p}{p-1}>1$ we have $-2\left(p^{\prime}-1\right)<0$, and by (6.9) we get

$$
\lim _{T \rightarrow \infty} \frac{1}{\lambda^{p^{\prime}}} T^{-2\left(p^{\prime}-1\right)} \varkappa_{0}=0
$$

Therefore, by (6.12) there exists a positive number $T_{0}=T_{0}(F)$ such that for $T>T_{0}$ the right-hand side of the inequality (6.19) is negative, while the left-hand side of that inequality is nonnegative. This means that if there exists a strong generalized solution u of the problem (1.1), (1.2) of the class C in the domain D_{T}, then necessarily $T \leq T_{0}$, which proves Theorem 6.1.

Remark 6.1. It is not difficult to verify that if $F \in C\left(\bar{D}_{\infty}\right), F \geq 0$ and $F(x, t) \geq c t^{-m}$ for $t \geq 1$, where $c=$ const >0 and $0 \leq m=$ const ≤ 2, then the condition (6.12) is fulfilled, and according to Theorem 6.1 in this case the problem (1.1), (1.2) has no strong generalized solution u of the class C in the domain D_{T} for large $T[\mathbf{1}]$.

7. The Local Solvability of the Problem (1.1), (1.2)

Theorem 7.1. Let $f \in C^{1}\left(\bar{D}_{\infty} \times \mathbb{R}\right), F \in C\left(\bar{D}_{\infty}\right)$ and $\varphi_{i} \in C^{1}\left(\gamma_{i, \infty}\right)$, $i=1,2$. Then there exists a positive number $T_{0}=T_{0}\left(F, \varphi_{1}, \varphi_{2}\right)$ such that for $T \leq T_{0}$ the problem (1.1), (1.2) has a unique strong generalized solution u of the class C in the domain D_{T}.

Proof. By Lemma 3.1, the existence of a strong generalized solution of the problem (1.1), (1.2) of the class C in the domain D_{T} is equivalent to that of a continuous solution u of the nonlinear integral equation (3.2), or what is the same thing, of the equation (4.5), i.e.,

$$
\begin{equation*}
u=A u:=-\left(\left.L_{0}^{-1} f\right|_{u=u(x, t)}\right)+\ell_{0}^{-1}\left(\varphi_{1}, \varphi_{2}\right)+L_{0}^{-1} F \tag{7.1}
\end{equation*}
$$

where $A: C\left(\bar{D}_{T}\right) \rightarrow C\left(\bar{D}_{T}\right)$ is a continuous and compact operator. Therefore, to prove that the equation (7.1) is solvable, it suffices, by Schauder's theorem, to show that the operator A transforms some ball $B(0, R):=\{v \in$ $\left.C\left(\bar{D}_{T}\right):\|v\|_{C\left(\bar{D}_{T}\right)} \leq R\right\}$ of radius $R>0$ (which is a closed and convex set in the Banach space $C\left(\bar{D}_{T}\right)$) into itself for sufficiently small T.

Owing to (3.3) and (3.4), we can easily see that

$$
\begin{gather*}
\left\|L_{0}^{-1}\right\|_{C\left(\bar{D}_{T}\right) \rightarrow C\left(\bar{D}_{T}\right)} \leq \frac{1}{2} \operatorname{mes} D_{T}=\frac{1}{4}(1+k) T^{2} \tag{7.2}\\
\left\|\ell_{0}^{-1}\right\|_{C^{1}\left(\gamma_{1, T}\right) \times C^{1}\left(\gamma_{2, T}\right) \rightarrow C\left(\bar{D}_{T}\right)} \leq 3 \tag{7.3}
\end{gather*}
$$

We fix now an arbitrary positive number T_{*}, and let $T \leq T_{*}$. By (7.1), (7.2) and (7.3), for

$$
\begin{equation*}
\|u\|_{C\left(\bar{D}_{T}\right)} \leq R=4 \sum_{i=1}^{2}\left\|\varphi_{i}\right\|_{C^{1}\left(\gamma_{i}, T_{*}\right)}, \quad M_{*}=\sup _{\substack{(x, t) \in \bar{D}_{T_{*}} \\|u| \leq R}}|f(x, t, u)| \tag{7.4}
\end{equation*}
$$

we have

$$
\begin{aligned}
& \|A u\|_{C\left(\bar{D}_{T}\right)} \leq\left\|L_{0}^{-1}\right\|_{C\left(\bar{D}_{T}\right) \rightarrow C\left(\bar{D}_{T}\right)} \sup _{\substack{(x, t) \in \bar{D}_{T_{*}} \\
|u| \leq R}}|f(x, t, u)|+ \\
& +\left\|\ell_{0}^{-1}\right\|_{C^{1}\left(\gamma_{1}, T\right) \times C^{1}\left(\gamma_{2}, T\right) \rightarrow C\left(\bar{D}_{T}\right)}\left[\sum_{i=1}^{2}\left\|\varphi_{i}\right\|_{C^{1}\left(\gamma_{i, T}\right)}\right]+ \\
& \quad+\left\|L_{0}^{-1}\right\|_{C\left(\bar{D}_{T}\right) \rightarrow C\left(\bar{D}_{T}\right)}\|F\|_{C\left(\bar{D}_{T}\right)} \leq
\end{aligned}
$$

$$
\begin{align*}
& \leq \frac{1}{4}(1+k) M_{*} T^{2}+\frac{1}{4}(1+k) T^{2}\|F\|_{C\left(\bar{D}_{T_{*}}\right)}+3 \sum_{i=1}^{2}\left\|\varphi_{i}\right\|_{C^{1}\left(\gamma_{i, T}\right)}= \\
= & {\left[\frac{1}{4}(1+k) M_{*}+\frac{1}{4}(1+k)\|F\|_{C\left(\bar{D}_{T_{*}}\right)}\right] T^{2}+3 \sum_{i=1}^{2}\left\|\varphi_{i}\right\|_{C^{1}\left(\gamma_{i}, T_{*}\right)} . } \tag{7.5}
\end{align*}
$$

From (7.4) and (7.5), in its turn, it follows that if $T \leq T_{0}$, where $T_{0}:=\min \left[T_{*},\left\{\left(\frac{1}{4}(1+k) M_{*}+\frac{1}{4}(1+k)\|F\|_{C\left(\bar{D}_{T_{*}}\right)}\right)^{-1} \sum_{i=1}^{2}\left\|\varphi_{i}\right\|_{C^{1}\left(\gamma_{i}, T_{*}\right)}\right\}^{1 / 2}\right]$, then $\|A u\|_{C\left(\bar{D}_{T}\right)} \leq R$ for $\|u\|_{C\left(\bar{D}_{T}\right)} \leq R$. Thus Theorem 7.1 is proved completely, since the uniqueness of a solution follows directly from Lemma 3.1.

The Characteristic Cauchy Problem for a Class of Nonlinear Wave Equations in the Light Cone of the Future

1. Statement of the Problem

Consider the nonlinear wave equation of the type

$$
\begin{equation*}
L_{f} u:=\frac{\partial^{2} u}{\partial t^{2}}-\Delta u+f(u)=F \tag{1.1}
\end{equation*}
$$

where f and F are given real functions, f is a nonlinear function, and u is an unknown real function, $\Delta=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}, n \geq 2$.

For the equation (1.1) we consider the characteristic Cauchy problem: find in the frustrum of the light cone of future $D_{T}:|x|<t<T$, $x=\left(x_{1}, \ldots, x_{n}\right), n>1, T=$ const >0, a solution $u(x, t)$ according the boundary condition

$$
\begin{equation*}
\left.u\right|_{S_{T}}=0 \tag{1.2}
\end{equation*}
$$

where $S_{T}: t=|x|, t \leq T$, is the characteristic conic surface. Considering the case $T=+\infty$, we assume that $D_{\infty}: t>|x|$ and $S_{\infty}=\partial D_{\infty}: t=|x|$.

Below we will consider the following conditions imposed on the function f :

$$
\begin{gather*}
f \in C(\mathbb{R}), \quad|f(u)| \leq M_{1}+M_{2}|u|^{\alpha}, \quad \alpha=\text { const }>0, \tag{1.3}\\
\int_{0}^{u} f(s) d s \geq-M_{3}-M_{4} u^{2}, \tag{1.4}
\end{gather*}
$$

where $M_{i}=$ const $\geq 0, i=1,2,3,4$.
Remark 1.1. Note that in case $\alpha \leq 1$ the inequality (1.3) results in the inequality (1.4).

Let $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right):=\left\{u \in W_{2}^{1}\left(D_{T}\right):\left.u\right|_{S_{T}}=0\right\}$, where $W_{2}^{k}\left(D_{T}\right)$ is the well-known Sobolev's space consisting of the functions $u \in L_{2}\left(D_{T}\right)$ whose all generalized derivatives up to the k-th order, inclusive, also belong to the space $L_{2}\left(D_{T}\right)$, while the equality $\left.u\right|_{S_{T}}=0$ is understood in the sense of the trace theory [49, p. 70].

Definition 1.1. Let $F \in L_{2}\left(D_{T}\right)$. A function $u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ is said to be a strong generalized solution of the problem (1.1), (1.2) of the class W_{2}^{1} in the domain D_{T} if there exists a sequence of functions $u_{m} \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, S_{T}\right)$ such that $u_{m} \rightarrow u$ in the space $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ and $L_{f} u_{m} \rightarrow F$ in the space $L_{2}\left(D_{T}\right)$.

Definition 1.2. Let $F \in L_{2, l o c}\left(D_{\infty}\right)$ and $F \in L_{2}\left(D_{T}\right)$ for any $T>0$. We say that the problem $(1.1),(1.2)$ is globally solvable in the class W_{2}^{1} if for every $T>0$ this problem has a strong generalized solution of the class W_{2}^{1} in the space D_{T}.

2. A Priori Estimate of a Solution of the Problem (1.1), (1.2) in the Class W_{2}^{1}

Lemma 2.1. Let $F \in L_{2}\left(D_{T}\right)$, and let the function $f \in C(\mathbb{R})$ satisfy the condition (1.4). Then for every strong generalized solution $u \in$ $\stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, S_{T}\right)$ of the problem (1.1), (1.2) of the class W_{2}^{1} in the domain D_{T} the estimate

$$
\begin{equation*}
\|u\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)} \leq c_{1}\|F\|_{L_{2}\left(D_{T}\right)}+c_{2} \tag{2.1}
\end{equation*}
$$

is valid with nonnegative constants $c_{i}=c_{i}(f, T), i=1,2$, independent of u and F.

Proof. Let $u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ be a strong generalized solution of the problem (1.1), (1.2) of the class W_{2}^{1} in the domain D_{T}. By Definition 1.1, there exists a sequence of functions $u_{m} \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, S_{T}\right)$ such that

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|u_{m}-u\right\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}=0, \quad \lim _{m \rightarrow \infty}\left\|L_{f} u_{m}-F\right\|_{L_{2}\left(D_{T}\right)}=0 . \tag{2.2}
\end{equation*}
$$

Consider the function $u_{m} \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, S_{T}\right)$ as a solution of the problem

$$
\begin{align*}
L_{f} u_{m} & =F_{m} \tag{2.3}\\
\left.u_{m}\right|_{S_{m}} & =0 \tag{2.4}
\end{align*}
$$

Here

$$
\begin{equation*}
F_{m}:=L_{f} u_{m} \tag{2.5}
\end{equation*}
$$

Putting

$$
\begin{equation*}
g(u):=\int_{0}^{u} f(s) d s \tag{2.6}
\end{equation*}
$$

and multiplying both parts of the equation (2.3) by $\frac{\partial u_{m}}{\partial t}$, after integration over the domain $D_{\tau}, 0<\tau \leq T$, we obtain

$$
\begin{align*}
\frac{1}{2} \int_{D_{\tau}} \frac{\partial}{\partial t}\left(\frac{\partial u_{m}}{\partial t}\right)^{2} d x d t- & \int_{D_{\tau}} \Delta u_{m} \frac{\partial u_{m}}{\partial t} d x d t+ \\
& +\int_{D_{\tau}} \frac{\partial}{\partial t} g\left(u_{m}\right) d x d t=\int_{D_{\tau}} F_{m} \frac{\partial u_{m}}{\partial t} d x d t \tag{2.7}
\end{align*}
$$

Let $\Omega_{\tau}:=D_{\infty} \cap\{t=\tau\}$ and denote by $\nu=\left(\nu_{1}, \ldots, \nu_{n}, \nu_{0}\right)$ the unit vector of the outer normal to $S_{T} \backslash\{(0, \ldots, 0)\}$. Integrating by parts and taking into account the equality (2.4) and $\left.\nu\right|_{\Omega_{\tau}}=(0, \ldots, 0,1)$, we easily get

$$
\begin{gathered}
\int_{D_{\tau}} \frac{\partial}{\partial t}\left(\frac{\partial u_{m}}{\partial t}\right)^{2} d x d t= \\
=\int_{\partial D_{\tau}}\left(\frac{\partial u_{m}}{\partial t}\right)^{2} \nu_{0} d s=\int_{\Omega_{\tau}}\left(\frac{\partial u_{m}}{\partial t}\right)^{2} d x+\int_{S_{\tau}}\left(\frac{\partial u_{m}}{\partial t}\right)^{2} \nu_{0} d s, \\
\int_{D_{\tau}} \frac{\partial}{\partial t} g\left(u_{m}\right) d x d t=\int_{\partial D_{\tau}} g\left(u_{m}\right) \nu_{0} d s=\int_{\Omega_{\tau}} g\left(u_{m}\right) d x \\
\int_{D_{\tau}} \frac{\partial^{2} u_{m}}{\partial x_{i}^{2}} \frac{\partial u_{m}}{\partial t} d x d t=\int_{\partial D_{\tau}} \frac{\partial u_{m}}{\partial x_{i}} \frac{\partial u_{m}}{\partial t} \nu_{i} d s-\frac{1}{2} \int_{D_{\tau}} \frac{\partial}{\partial t}\left(\frac{\partial u_{m}}{\partial x_{i}}\right)^{2} d x d t= \\
=\int_{\partial D_{\tau}} \frac{\partial u_{m}}{\partial x_{i}} \frac{\partial u_{m}}{\partial t} \nu_{i} d s-\frac{1}{2} \int_{\partial D_{\tau}}\left(\frac{\partial u_{m}}{\partial x_{i}}\right)^{2} \nu_{0} d s= \\
=\int_{\partial D_{\tau}} \frac{\partial u_{m}}{\partial x_{i}} \frac{\partial u_{m}}{\partial t} \nu_{i} d s-\frac{1}{2} \int_{S_{\tau}}\left(\frac{\partial u_{m}}{\partial x_{i}}\right)^{2} \nu_{0} d s-\frac{1}{2} \int_{\Omega_{\tau}}\left(\frac{\partial u_{m}}{\partial x_{i}}\right)^{2} d x,
\end{gathered}
$$

whence by virtue of (2.7), it follows that

$$
\begin{gather*}
\int_{D_{\tau}} F_{m} \frac{\partial u_{m}}{\partial t} d x d t= \\
=\int_{S_{\tau}} \frac{1}{2 \nu_{0}}\left[\sum_{i=1}^{n}\left(\frac{\partial u_{m}}{\partial x_{i}} \nu_{0}-\frac{\partial u_{m}}{\partial t} \nu_{i}\right)^{2}+\left(\frac{\partial u_{m}}{\partial t}\right)^{2}\left(\nu_{0}^{2}-\sum_{j=1}^{n} \nu_{j}^{2}\right)\right] d s+ \\
\frac{1}{2} \int_{\Omega_{\tau}}\left[\left(\frac{\partial u_{m}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u_{m}}{\partial x_{i}}\right)^{2}\right] d x+\int_{\Omega_{\tau}} g\left(u_{m}\right) d x \tag{2.8}
\end{gather*}
$$

Since S_{τ} is a characteristic surface, we have

$$
\begin{equation*}
\left.\left(\nu_{0}^{2}-\sum_{j=1}^{n} \nu_{j}^{2}\right)\right|_{S_{\tau}}=0 \tag{2.9}
\end{equation*}
$$

Taking into account the fact that $\left(\nu_{0} \frac{\partial}{\partial x_{i}}-\nu_{i} \frac{\partial}{\partial t}\right), i=1, \ldots, n$, is an inner differential operator on S_{τ}, by virtue of (2.4) we have

$$
\begin{equation*}
\left.\left(\frac{\partial u_{m}}{\partial x_{i}} \nu_{0}-\frac{\partial u_{m}}{\partial t} \nu_{i}\right)\right|_{S_{\tau}}=0, \quad i=1, \ldots, n \tag{2.10}
\end{equation*}
$$

Bearing in mind (2.9) and (2.10), it follows from (2.8) that

$$
\begin{align*}
\int_{\Omega_{\tau}}\left[\left(\frac{\partial u_{m}}{\partial t}\right)^{2}\right. & \left.+\sum_{i=1}^{n}\left(\frac{\partial u_{m}}{\partial x_{i}}\right)^{2}\right] d x+2 \int_{\Omega_{\tau}} g\left(u_{m}\right) d x= \\
& =2 \int_{D_{\tau}} F_{m} \frac{\partial u_{m}}{\partial t} d x d t \tag{2.11}
\end{align*}
$$

By (1.4) and (2.6) as well as by the Cauchy inequality $2 F_{m} \frac{\partial u_{m}}{\partial t} \leq$ $F_{m}^{2}+\left(\frac{\partial u_{m}}{\partial t}\right)^{2}$, from (2.11) we have

$$
\begin{gather*}
\int_{\Omega_{\tau}}\left[\left(\frac{\partial u_{m}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u_{m}}{\partial x_{i}}\right)^{2}\right] d x \leq \\
\leq 2 M_{3} \operatorname{mes} \Omega_{\tau}+2 M_{4} \int_{\Omega_{\tau}} u_{m}^{2} d x+\int_{D_{\tau}}\left(\frac{\partial u_{m}}{\partial t}\right)^{2} d x d t+\int_{D_{\tau}} F_{m}^{2} d x d t \leq \\
\leq 2 M_{3} \operatorname{mes} \Omega_{\tau}+2 M_{4} \int_{\Omega_{\tau}} u_{m}^{2} d x+\int_{D_{\tau}}\left(\frac{\partial u_{m}}{\partial t}\right)^{2} d x d t+\int_{D_{\tau}} F_{m}^{2} d x d t . \tag{2.12}
\end{gather*}
$$

From the equalities $\left.v\right|_{S_{T}}=0$ and $v(x, t)=\int_{|x|}^{t} \frac{\partial v(x, \tau)}{\partial t} d \tau,(x, t) \in \bar{D}_{T}$, valid for every function $v \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, S_{T}\right)$, reasoning in a standard way we obtain the following inequalities [49, p. 63]:

$$
\begin{gather*}
\int_{\Omega_{\tau}} v^{2} d x \leq T \int_{D_{\tau}}\left(\frac{\partial v}{\partial t}\right)^{2} d x d t, \quad 0<\tau \leq T \tag{2.13}\\
\int_{D_{\tau}} v^{2} d x d t \leq T^{2} \int_{D_{\tau}}\left(\frac{\partial v}{\partial t}\right)^{2} d x d t, \quad 0<\tau \leq T \tag{2.14}
\end{gather*}
$$

By virtue of (2.13) and (2.14), from (2.12) we get

$$
\begin{gathered}
\int_{\Omega_{\tau}}\left[u_{m}^{2}+\left(\frac{\partial u_{m}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u_{m}}{\partial x_{i}}\right)^{2}\right] d x \leq 2 M_{3} \operatorname{mes} \Omega_{\tau}+ \\
+\left(2 M_{4}+1\right) T \int_{D_{\tau}}\left(\frac{\partial u_{m}}{\partial t}\right)^{2} d x d t+\int_{D_{\tau}}\left(\frac{\partial u_{m}}{\partial t}\right)^{2} d x d t+\int_{D_{\tau}} F_{m}^{2} d x d t \leq \\
\leq\left[2\left(M_{4}+1\right) T+1\right] \int_{D_{\tau}}\left[u_{m}^{2}+\left(\frac{\partial u_{m}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u_{m}}{\partial x_{i}}\right)^{2}\right] d x+
\end{gathered}
$$

$$
\begin{equation*}
+2 M_{3} \operatorname{mes} \Omega_{T}+\left\|F_{m}\right\|_{L_{2}\left(D_{T}\right)}^{2} \tag{2.15}
\end{equation*}
$$

Putting

$$
\begin{equation*}
w(\tau)=\int_{\Omega_{\tau}}\left[u_{m}^{2}+\left(\frac{\partial u_{m}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u_{m}}{\partial x_{i}}\right)^{2}\right] d x \tag{2.16}
\end{equation*}
$$

and taking into account the equality

$$
\int_{D_{\tau}}\left[u_{m}^{2}+\left(\frac{\partial u_{m}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u_{m}}{\partial x_{i}}\right)^{2}\right] d x d t=\int_{0}^{\tau} w(\sigma) d \sigma
$$

from (2.15) we have

$$
\begin{equation*}
w(\tau) \leq M_{5} \int_{0}^{\tau} w(\sigma) d \sigma+\left(\left\|F_{m}\right\|_{L_{2}\left(D_{T}\right)}^{2}+M_{6}\right) \tag{2.17}
\end{equation*}
$$

Here

$$
\begin{equation*}
M_{5}=\left(2 M_{4}+1\right) T+1, \quad M_{6}=2 M_{3} \operatorname{mes} \Omega_{T} \tag{2.18}
\end{equation*}
$$

From (2.17), by Gronwall's lemma [15, p. 13] it follows that

$$
\begin{align*}
w(\tau) \leq\left(\left\|F_{m}\right\|_{L_{2}\left(D_{T}\right)}^{2}+M_{6}\right) & \exp M_{5} \tau \leq \\
\leq & \left(\left\|F_{m}\right\|_{L_{2}\left(D_{T}\right)}^{2}+M_{6}\right) \exp M_{5} T \tag{2.19}
\end{align*}
$$

The inequality (2.19) with regard for (2.16) implies that

$$
\begin{aligned}
\left\|u_{m}\right\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}^{2}= & \int_{D_{T}}\left[u_{m}^{2}+\left(\frac{\partial u_{m}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u_{m}}{\partial x_{i}}\right)^{2}\right] d x d t= \\
& =\int_{0}^{T} w(\sigma) d \sigma \leq T\left(\left\|F_{m}\right\|_{L_{2}\left(D_{T}\right)}^{2}+M_{6}\right) \exp M_{5} T
\end{aligned}
$$

that is,

$$
\begin{equation*}
\left\|u_{m}\right\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)} \leq c_{1}\left\|F_{m}\right\|_{L_{2}\left(D_{T}\right)}+c_{2} \tag{2.20}
\end{equation*}
$$

Here

$$
\begin{equation*}
c_{1}=\sqrt{T} \exp \frac{1}{2} M_{5} T, \quad c_{2}=\sqrt{T M_{6}} \exp \frac{1}{2} M_{5} T . \tag{2.21}
\end{equation*}
$$

By (2.2) and (2.5), passing in the inequality (2.20) to limit as $m \rightarrow \infty$, we obtain the required inequality (2.1).

3. The Global Solvability of the Problem (1.1), (1.2) in the Class W_{2}^{1}

Remark 3.1. Before we proceed to considering the issue of the solvability of the nonlinear problem (1.1), (1.2), let us consider the same issue for the linear case in which in the equation (1.1) the function $f=0$, i.e., for the problem

$$
\begin{gather*}
L_{0} u:=\frac{\partial^{2} u}{\partial t^{2}}-\Delta u=F(x, t), \quad(x, t) \in D_{T}, \tag{3.1}\\
u(x, t)=0, \quad(x, t) \in S_{T} . \tag{3.2}
\end{gather*}
$$

In this case, for $F \in L_{2}\left(D_{T}\right)$ we introduce analogously the notion of a strong generalized solution $u \in \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, S_{T}\right)$ of the problem (3.1), (3.2) of the class W_{2}^{1} in the domain \bar{D}_{T} for which there exists a sequence of functions $u_{m} \in$ $\stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, S_{T}\right)$ such that $\lim _{m \rightarrow \infty}\left\|u_{m}-u\right\|_{W_{2}^{1}\left(D_{T}\right)}=0, \lim _{m \rightarrow \infty}\left\|L_{0} u_{m}-F\right\|_{L_{2}\left(D_{T}\right)}=$ 0 . It should be noted that as is seen from the proof of Lemma 2.1, for the solution of the problem (3.1), (3.2) the a priori estimate (2.1) is also valid in which, by virtue of $(1.3),(1.4)$ for $M_{i}=0, i=1,2,3,4$, the constant M_{6} from (2.18) is equal to zero, and hence c_{2}, by virtue of (2.21), is also equal to zero. Thus for a strong generalized solution u of the problem (3.1), (3.2) of the class W_{2}^{1} in the domain D_{T} the estimate

$$
\begin{equation*}
\|u\|_{\stackrel{W}{2}_{1}^{1}\left(D_{T}, S_{T}\right)} \leq c_{1}\|F\|_{L_{2}\left(D_{T}\right)}, \quad c_{1}=\sqrt{T} \exp \frac{1}{2} M_{5} T \tag{3.3}
\end{equation*}
$$

holds by virtue of (2.20).
The constant M_{5} here is defined from (2.18), and since for $f=0$ in the inequality (1.4) the constant $M_{4}=0$, therefore $M_{5}=T+1$, and hence

$$
\begin{equation*}
c_{1}=\sqrt{T} \exp \frac{1}{2} T(1+T) \tag{3.4}
\end{equation*}
$$

As far as the space $C_{0}^{\infty}\left(D_{T}\right)$ of finitary infinitely differentiable in D_{T} functions is dense in $L_{2}\left(D_{T}\right)$, for a given $F \in L_{2}\left(D_{T}\right)$ there exists a sequence of functions $F_{m} \in C_{0}^{\infty}\left(D_{T}\right)$ such that $\lim _{m \rightarrow \infty}\left\|F_{m}-F\right\|_{L_{2}\left(D_{T}\right)}=0$. For a fixed m, extending the values of the function F_{m} by zero beyond the domain D_{T} and leaving the same notation, we will have $F_{m} \in C^{\infty}\left(\mathbb{R}_{+}^{n+1}\right)$ for which the support supp $F_{m} \subset D_{\infty}$, where $\mathbb{R}_{+}^{n+1}=\mathbb{R}^{n+1} \cap\{t \geq 0\}$. Denote by u_{m} the solution of the Cauchy problem: $L_{0} u_{m}=F_{m},\left.u_{m}\right|_{t=0}=0,\left.\frac{\partial u_{m}}{\partial t}\right|_{t=0}=0$, which, as is known, exists, is unique and belongs to the space $C^{\infty}\left(\mathbb{R}_{+}^{n+1}\right)$ $\left[\mathbf{1 7}\right.$, p. 192]. Moreover, since $\operatorname{supp} F_{m} \subset D_{\infty},\left.u_{m}\right|_{t=0}=0$ and $\left.\frac{\partial u_{m}}{\partial t}\right|_{t=0}=0$, taking into account the geometry of the domain of dependence of a solution of the linear wave equation we will have $\operatorname{supp} u_{m} \subset D_{\infty}$ [17, p. 191]. Leaving for the restriction of the function u_{m} to the domain D_{T} the same notation,
we can easily see that $u_{m} \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, S_{T}\right)$, and in view of (3.3) the inequality

$$
\begin{equation*}
\left\|u_{m}-u_{k}\right\|_{\dot{W}_{2}^{1}\left(D_{T}, S_{T}\right)} \leq c_{1}\left\|F_{m}-F_{k}\right\|_{L_{2}\left(D_{T}\right)} \tag{3.5}
\end{equation*}
$$

holds.
Since the sequence $\left\{F_{m}\right\}$ is fundamental in $L_{2}\left(D_{T}\right)$, the sequence $\left\{u_{m}\right\}$ is likewise fundamental in the entire space $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$. Therefore there exists a function $u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ such that $\lim _{m \rightarrow \infty}\left\|u_{m}-u\right\|_{\dot{W}_{2}^{1}\left(D_{T}, S_{T}\right)}=0$, and since $L_{0} u_{m}=F_{m} \rightarrow F$ in the space $L_{2}\left(D_{T}\right)$, this function is, according to Remark 3.1, a strong generalized solution of the problem (3.1), (3.2). The uniqueness of this solution in the space $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ follows from the estimate (3.3). Thus for the solution u of the problem (3.1), (3.2) we can write $u=L_{0}^{-1} F$, where $L_{0}^{-1}: L_{2}\left(D_{T}\right) \rightarrow \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ is a linear continuous operator whose norm admits, by virtue of (3.3) and (3.4), the estimate

$$
\begin{equation*}
\left\|L_{0}^{-1}\right\|_{L_{2}\left(D_{T}\right) \rightarrow \stackrel{\circ}{W_{2}^{1}\left(D_{T}, S_{T}\right)}} \leq \sqrt{T} \exp \frac{1}{2} T(1+T) \tag{3.6}
\end{equation*}
$$

Remark 3.2. The embedding operator $I: \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right) \rightarrow L_{q}\left(D_{T}\right)$ is linear continuous and compact for $1<q<\frac{2(n+1)}{n-1}$, when $n \geq 2$ [49, p. 81]. At the same time, the Nemytski operator $K: L_{q}\left(D_{T}\right) \rightarrow L_{2}\left(D_{T}\right)$, acting by the formula $K u=f(u)$, where the function f satisfies the condition (1.3), is continuous and bounded if $q \geq 2 \alpha$ [47, p. 349], [48, pp. 66, 57]. Thus if $\alpha<\frac{n+1}{n-1}$, i.e., $2 \alpha<\frac{2(n+1)}{n-1}$, then there exists a number q such that $1<q<\frac{2(n+1)}{n-1}$ and $q \geq 2 \alpha$. Therefore, in this case the operator

$$
\begin{equation*}
K_{0}=K I: \stackrel{\circ}{W_{2}^{1}}\left(D_{T}, S_{T}\right) \longrightarrow L_{2}\left(D_{T}\right) \tag{3.7}
\end{equation*}
$$

will be continuous and compact. Moreover, from $u \in \stackrel{\circ}{W_{2}^{1}}\left(D_{T}, S_{T}\right)$ it follows that $f(u) \in L_{2}\left(D_{T}\right)$, and if $u_{m} \rightarrow u$ in the space $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$, then $f\left(u_{m}\right) \rightarrow f(u)$ in the space $L_{2}\left(D_{T}\right)$.

By Remarks 3.1 and 3.2, for $F \in L_{2}\left(D_{T}\right)$ and $\alpha<\frac{n+1}{n-1}$ the function $u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ is a strong generalized solution of the problem (1.1), (1.2) of the class W_{2}^{1} in the domain D_{T} if and only if u is a solution of the following functional equation

$$
u=L_{0}^{-1}(-f(u)+F)
$$

or, what is the same thing, of the equation

$$
\begin{equation*}
u=A u:=L_{0}^{-1}\left(-K_{0} u+F\right) \tag{3.8}
\end{equation*}
$$

in the space $\stackrel{\circ}{W} \frac{1}{2}\left(D_{T}, S_{T}\right)$. Since the operator $K_{0}: \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, S_{T}\right) \rightarrow L_{2}\left(D_{T}\right)$ from (3.7) is, by Remark 3.2, continuous and compact, the operator A :
$\stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, S_{T}\right) \rightarrow \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, S_{T}\right)$ is, owing to (3.6), likewise continuous and compact. At the same time, by Lemma 2.1 and (1.4), (2.18), (2.20), for any parameter $\tau \in[0,1]$ and every solution $u \in \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, S_{T}\right)$ of the equation $u=\tau A u$ with the parameter τ, the a priori estimate (2.1) is valid with the same nonnegative constants c_{1} and c_{2} not depending on u, F and the parameter τ. Therefore, by the Leray-Schauder theorem [66, p. 375] the equation (3.8), and hence the problem (1.1), (1.2), has at least one solution $u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$.

Thus the following theorem is valid.
Theorem 3.1. Let $F \in L_{2, \text { loc }}\left(D_{\infty}\right)$ and $F \in L_{2}\left(D_{T}\right)$ for any $T>0$. Let $0<\alpha<\frac{n+1}{n-1}$ and the function f satisfy the inequality (1.3). Moreover, in case $\alpha>1$, let the function f satisfy also the condition (1.4). Then the problem (1.1), (1.2) is globally solvable in the class W_{2}^{1} in the sense of Definition 1.2, i.e., for any $T>0$ this problem has at least one strong generalized solution of the class W_{2}^{1} in the domain D_{T}.

Remark 3.3. Note that under the conditions of Theorem 3.1 the problem (1.1), (1.2) may have more than one solution. Indeed, if $F=0$ and $f(u)=$ $-|u|^{\alpha}$, where $0<\alpha<1$, then the conditions of Theorem 3.1 are fulfilled and the problem (1.1), (1.2) has, besides a trivial solution, an infinite set of global solutions $u_{\sigma}(x, t)$ in the domain D_{∞} depending on the parameter $\sigma \geq 0$ and given by the formula

$$
u_{\sigma}(x, t)= \begin{cases}\beta\left[(t-\sigma)^{2}-|x|^{2}\right]^{\frac{1}{1-\alpha}}, & t>\sigma+|x| \\ 0, & |x| \leq t \leq \sigma+|x|\end{cases}
$$

where

$$
\beta=\lambda^{\frac{1}{1-\alpha}}\left[\frac{4 \alpha}{(1-\alpha)^{2}}+\frac{2(n+1)}{1-\alpha}\right]^{-\frac{1}{1-\alpha}} .
$$

It can be easily seen that $u_{\sigma}(x, t) \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ for any $T>0$. Moreover, $u_{\sigma}(x, t) \in C^{1}\left(\bar{D}_{\infty}\right)$, and for $1 / 2<\alpha<1$ the function $u_{\sigma}(x, t)$ belongs to the space $C^{2}(\bar{D})$.

4. The Local Solvability of the Problem (1.1), (1.2) in the Class W_{2}^{1} in Case the Condition (1.4) is Violated

As it will be shown, when the condition (1.4) is violated the problem (1.1), (1.2) is unable to be globally solvable in the sense of Definition 1.2, although, as we will see below, there takes place the local solvability.

We restrict ourselves to the consideration of the case

$$
\begin{equation*}
1<\alpha<\frac{n+1}{n-1} \tag{4.1}
\end{equation*}
$$

since for $\alpha \leq 1$ from (1.3) it follows (1.4).

In $[\mathbf{2 7}]$ it is shown that if the condition (4.1) is fulfilled, then we have the inequality

$$
\begin{equation*}
\|u\|_{L_{2 \alpha}\left(D_{T}\right)} \leq c_{0} \ell_{\alpha, n} T^{\delta_{\alpha, n}}\|u\|_{\stackrel{\circ}{2}_{1}^{1}\left(D_{T}, S_{T}\right)} \forall u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right) \tag{4.2}
\end{equation*}
$$

where

$$
\ell_{\alpha, n}=\left(\frac{\omega_{n}}{n+1}\right)^{\frac{\delta_{\alpha, n}}{n+1}}, \quad \delta_{\alpha, n}=\left(\frac{1}{2 \alpha}+\frac{1}{n+1}-\frac{1}{2}\right)(n+1)
$$

a positive constant c_{0} does not depend on u and T, and, as is easily seen, the condition $\delta_{\alpha, n}>0$ is equivalent to the condition $\alpha<\frac{n+1}{n-1} ; \omega_{n}$ is the volume of the unit ball in \mathbb{R}^{n}.

Remark 4.1. Let $B(0, R):=\left\{u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right):\|u\|_{\dot{W}_{2}^{1}\left(D_{T}, S_{T}\right)} \leq R\right\}$ be a closed (convex) ball in the Hilbert space $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ with radius $R>0$ and center in the zero element. Since the problem (1.1),(1.2) is equivalent to the equation (3.8) in the class $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ and by Remark 3.2 the operator $A: \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right) \rightarrow \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ from (3.8) is (if the condition (4.1) is fulfilled) continuous and compact, according to the Schauder's principle to prove the solvability of the equation (3.8) it suffices to prove that the operator A transforms the ball $B(0, R)$ into itself $[\mathbf{6 6}, \mathrm{p} .370]$. Towards this end, on the basis of the inequality (4.2) we estimate the value $\|A u\|_{W_{W_{2}^{1}\left(D_{T}, S_{T}\right)}}$.

For the operator K_{0} from (3.7), by means of (1.3) and (4.2), we have

$$
\begin{align*}
\left\|K_{0} u\right\|_{L_{2}\left(D_{T}\right)} & =\|f(u)\|_{L_{2}\left(D_{T}\right)} \leq\left\|\left(M_{1}+M_{2}|u|^{\alpha}\right)\right\|_{L_{2}\left(D_{T}\right)} \leq \\
& \leq M_{1}\left(\operatorname{mes} D_{T}\right)^{1 / 2}+M_{2}\left\||u|^{\alpha}\right\|_{L_{2}\left(D_{T}\right)}= \\
& =M_{1}\left(\operatorname{mes} D_{T}\right)^{1 / 2}+M_{2}\|u\|_{L_{2 \alpha}\left(D_{T}\right)}^{\alpha} \leq \\
& \leq M_{1}\left(\operatorname{mes} D_{T}\right)^{1 / 2}+M_{2} c_{0} \ell_{\alpha, n} T^{\delta_{\alpha, n}}\|u\|_{\stackrel{W}{2}_{2}^{1}\left(D_{T}, S_{T}\right)} \tag{4.3}
\end{align*}
$$

for any $u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$.
Next, for the operator A from (3.8) by virtue of (3.6) and (4.3) we have

$$
\begin{gather*}
\|A u\|_{\stackrel{\circ}{2}_{2}^{1}\left(D_{T}, S_{T}\right)} \leq \\
\leq\left\|L_{0}^{-1}\right\|_{L_{2}\left(D_{T}\right) \rightarrow \stackrel{\circ}{W_{2}^{1}\left(D_{T}, S_{T}\right)}}\left[\left\|K_{0} u\right\|_{L_{2}\left(D_{T}\right)}+\|F\|_{L_{2}\left(D_{T}\right)}\right] \leq \\
\leq \sqrt{T}\left(\exp \frac{1}{2} T(1+T)\right) \times \\
\times\left[M_{1}\left(\operatorname{mes} D_{T}\right)^{1 / 2}+M_{2} c_{0} \ell_{\alpha, n} T^{\delta_{\alpha, n}}\|u\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}+\|F\|_{L_{2}\left(D_{T}\right)}\right] \tag{4.4}
\end{gather*}
$$

for any $u \in \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, S_{T}\right)$.
Fix the numbers $R>0$ and $T_{0}>0$, and let $T \leq T_{0}$. Then for $\forall u \in$ $B(0, R)$, by virtue of (4.4) and the fact that $\delta_{\alpha, n}>0$, if the condition (4.1)
is fulfilled, then we have

$$
\begin{aligned}
\|A u\|_{\stackrel{W}{2}_{2}^{1}\left(D_{T}, S_{T}\right)} & \leq \sqrt{T_{0}}\left(\exp \frac{1}{2} T_{0}\left(1+T_{0}\right)\right) \times \\
& \times\left[M_{1}\left(\operatorname{mes} D_{T_{0}}\right)^{1 / 2}+M_{2} c_{0} \ell_{\alpha, n} T_{0}^{\delta_{\alpha, n}} R+\|F\|_{L_{2}\left(D_{T_{0}}\right)}\right]
\end{aligned}
$$

whence it follows that for sufficiently small $T_{0}>0$

$$
\begin{equation*}
\|A u\|_{\mathscr{W}_{2}^{1}\left(D_{T}, S_{T}\right)} \leq R \quad \forall u \in B(0, R), \quad T \leq T_{0} . \tag{4.5}
\end{equation*}
$$

From (4.5), by Remark 4.1, we find that the problem (1.1), (1.2) is locally solvable in the class W_{2}^{1}.

Thus the following theorem is valid.
Theorem 4.1. Let $F \in L_{2, l o c}\left(D_{\infty}\right)$ and $F \in L_{2}\left(D_{T}\right)$ for any $T>0$. Let $1<\alpha<\frac{n+1}{n-1}$. For the function f let the condition (1.3) be fulfilled but the condition (1.4) may be violated. Then the problem (1.1), (1.2) is locally solvable in the class W_{2}^{1}, i.e., there exists a number $T_{0}=T_{0}(F)>0$ such that for $T \leq T_{0}$ this problem has at leat one strong generalized solution of the class W_{2}^{1} in the domain D_{T}.

5. The Non-Existence of the Global Solvability of the Problem (1.1), (1.2) in the Class W_{2}^{1} in Case the Condition (1.4) is Violated

We restrict ourselves to the consideration of the case where

$$
\begin{equation*}
1<\alpha<\frac{n+1}{n-1} \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
f(u) \leq-\lambda|u|^{\alpha}, \quad \lambda=\text { const }>0 \tag{5.2}
\end{equation*}
$$

It can be easily verified that if the conditions (5.1) and (5.2) are fulfilled, then the condition (1.4) is violated. It will be shown that if for the function F the condition

$$
\begin{equation*}
F \in L_{2, l o c}\left(D_{\infty}\right), \quad F \in L_{2}\left(D_{T}\right) \forall T>0, \quad F>0 \tag{5.3}
\end{equation*}
$$

is fulfilled, then the problem $(1.1),(1.2)$ fails to be globally solvable in the class W_{2}^{1}.

Assume that if the conditions (5.1), (5.2) and (5.3) are fulfilled, then the problem (1.1), (1.2) is globally solvable in the class W_{2}^{1}, i.e., for any $T>0$ this problem has a strong generalized solution u of the class W_{2}^{1} in the domain D_{T}. By Definition 1.1, this means that $u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ and there exists a sequence of functions $u_{m} \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, S_{T}\right)$ such that

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|u_{m}-u\right\|_{W_{2}^{1}\left(D_{T}\right)}=0, \quad \lim _{m \rightarrow \infty}\left\|L_{f} u_{m}-F\right\|_{L_{2}\left(D_{T}\right)}=0 . \tag{5.4}
\end{equation*}
$$

We use here the method of test functions [53, pp. 10-12]. Let the function φ be such that

$$
\begin{equation*}
\varphi \in C^{2}\left(\bar{D}_{T}\right),\left.\varphi\right|_{t=T}=0,\left.\quad \frac{\partial \varphi}{\partial t}\right|_{t=T}=0,\left.\varphi\right|_{D_{T}}>0 \tag{5.5}
\end{equation*}
$$

Then putting $F_{m}:=L_{f} u_{m}$ and integrating the integral equality

$$
\int_{D_{T}}\left(L_{f} u_{m}\right) \varphi d x d t=\int_{D_{T}} F_{m} \varphi d x d t
$$

by parts, we obtain

$$
\begin{align*}
\int_{D_{T}} u_{m} \square \varphi d x d t+\int_{S_{T}}\left[\frac{\partial u_{m}}{\partial N} \varphi\right. & \left.-\frac{\partial \varphi}{\partial N} u_{m}\right] d s+ \\
& +\int_{D_{T}} f\left(u_{m}\right) \varphi d x d t=\int_{D_{T}} F_{m} \varphi d x d t \tag{5.6}
\end{align*}
$$

where $\square:=\frac{\partial^{2}}{\partial t^{2}}-\Delta, \frac{\partial}{\partial N}=\nu_{0} \frac{\partial}{\partial t}-\sum_{i=1}^{n} \nu_{i} \frac{\partial}{\partial x_{i}}$ is the derivative with respect to the conormal, and $\nu=\left(\nu_{1}, \ldots, \nu_{0}, \nu_{0}\right)$ is the unit vector of the outer normal to ∂D_{T}.

Since on the characteristic conic surface S_{T} the derivative with respect to the conormal $\frac{\partial}{\partial N}$ is an inner differential operator, by virtue of the fact that $\left.u_{m}\right|_{S_{T}}=0$ we have $\left.\frac{\partial u_{m}}{\partial N}\right|_{S_{T}}=0$.

Therefore the equality (5.6) takes the form

$$
\begin{equation*}
\int_{D_{T}} u_{m} \square \varphi d x d t+\int_{D_{T}} f\left(u_{m}\right) \varphi d x d t=\int_{D_{T}} F_{m} \varphi d x d t \tag{5.7}
\end{equation*}
$$

Further, by (5.4), passing in the equality (5.7) to limit as $m \rightarrow \infty$, we obtain

$$
\begin{equation*}
\int_{D_{T}} u_{m} \square \varphi d x d t+\int_{D_{T}} f(u) \varphi d x d t=\int_{D_{T}} F \varphi d x d t \tag{5.8}
\end{equation*}
$$

Assuming

$$
\begin{equation*}
\gamma(T)=\int_{D_{T}} F \varphi d x d t \tag{5.9}
\end{equation*}
$$

by (5.2) and (5.5) we get from (5.8) that

$$
\begin{equation*}
\lambda \int_{D_{T}}|u|^{\alpha} \varphi d x d t \leq \int_{D_{T}} u \square \varphi d x d t-\gamma(T) \tag{5.10}
\end{equation*}
$$

If in Young's inequality

$$
a b \leq \frac{\varepsilon}{\alpha} a^{\alpha}+\frac{1}{\alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}} b^{\alpha^{\prime}}, \quad a, b \geq 0, \quad \alpha^{\prime}=\frac{\alpha}{\alpha-1}
$$

with the parameter $\varepsilon>0$ we take $a=|u| \varphi^{1 / \alpha}$ and $b=\frac{|\square \varphi|}{\varphi^{1 / \alpha}}$, then taking into account that $\frac{\alpha^{\prime}}{\alpha}=\alpha^{\prime}-1$ we have

$$
\begin{equation*}
|u \square \varphi|=|u| \varphi^{1 / \alpha} \cdot \frac{|\square \varphi|}{\varphi^{1 / \alpha}} \leq \frac{\varepsilon}{\alpha}|u|^{\alpha} \varphi+\frac{1}{\alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}} \frac{|\square \varphi|^{\alpha^{\prime}}}{\varphi^{\alpha^{\prime}-1}} . \tag{5.11}
\end{equation*}
$$

By virtue of (5.11), from (5.10) it follows the inequality

$$
\left(\lambda-\frac{\varepsilon}{\alpha}\right) \int_{D_{T}}|u|^{\alpha} \varphi d x d t \leq \frac{1}{\alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}} \int_{D_{T}} \frac{|\square \varphi|^{\alpha^{\prime}}}{\varphi^{\alpha^{\prime}-1}} d x d t-\gamma(T)
$$

whence for $\varepsilon<\lambda \alpha$ we find that

$$
\begin{equation*}
\int_{D_{T}}|u|^{\alpha} \varphi d x d t \leq \frac{\alpha}{(\lambda \alpha-\varepsilon) \alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}} \int_{D_{T}} \frac{|\square \varphi|^{\alpha^{\prime}}}{\varphi^{\alpha^{\prime}-1}} d x d t-\gamma(T) . \tag{5.12}
\end{equation*}
$$

Taking into account the equalities

$$
\alpha^{\prime}=\frac{\alpha}{\alpha-1}, \quad \alpha=\frac{\alpha^{\prime}}{\alpha^{\prime}-1} \quad \text { and } \min _{0<\varepsilon<\lambda \alpha} \frac{\alpha}{(\lambda \alpha-\varepsilon) \alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}}=\frac{1}{\lambda^{\alpha^{\prime}}}
$$

which is achieved for $\varepsilon=\lambda$, we obtain from (5.11) that

$$
\begin{equation*}
\int_{D_{T}}|u|^{\alpha} \varphi d x d t \leq \frac{1}{\lambda^{\alpha^{\prime}}} \int_{D_{T}} \frac{|\square \varphi|^{\alpha^{\prime}}}{\varphi^{\alpha^{\prime}-1}} d x d t-\frac{\alpha^{\prime}}{\lambda} \gamma(T) \tag{5.13}
\end{equation*}
$$

In the capacity of the test function φ we take now the function $\varphi(x, t)=$ $\varphi_{0}\left[\frac{2}{T^{2}}\left(t^{2}+|x|^{2}\right)\right]$, where the function $\varphi_{0}=\varphi_{0}(\sigma)$ of one variable σ is such that [53, p. 22]

$$
\begin{align*}
\varphi_{0} & \in C^{2}(\mathbb{R}), \quad \varphi_{0}
\end{align*} \geq 0, \quad \varphi_{0}^{\prime} \leq 0 ; ~=~=\left.~ \varphi_{0}\right|_{[2, \infty)}=0,\left.\quad \varphi_{0}\right|_{(1,2)}>0 .
$$

By (5.14), the test function $\varphi(x, t)=\varphi_{0}\left[\frac{2}{T^{2}}\left(t^{2}+|x|^{2}\right)\right]=0$ for $r=$ $\left(t^{2}+|x|^{2}\right)^{1 / 2} \geq T$. Therefore, after the change of variables $t=\frac{1}{\sqrt{2}} T \xi_{0}$ and $x=\frac{1}{\sqrt{2}} T \xi$ it is not difficult to verify that

$$
\begin{equation*}
\int_{D_{T}} \frac{|\square \varphi|^{\alpha^{\prime}}}{\varphi^{\alpha^{\prime}-1}} d x d t=\int_{\substack{r=\left(t^{2}+\left.|x|\right|^{2}\right)<T, t>|x|}} \frac{|\square \varphi|^{\alpha^{\prime}}}{\varphi^{\alpha^{\prime}-1}} d x d t=\left(\frac{1}{\sqrt{2}} T\right)^{n+1-2 \alpha^{\prime}} \varkappa_{0} \tag{5.15}
\end{equation*}
$$

where

$$
\varkappa_{0}=\int_{\substack{1<\left|\xi_{0}\right|^{2}+|\xi|^{2}<2, \xi_{0}>|\xi|}} \frac{\left|2(1-n) \varphi_{0}^{\prime}+4\left(\xi_{0}^{2}-|\xi|^{2}\right) \varphi_{0}^{\prime \prime}\right|^{\alpha^{\prime}}}{\varphi_{0}^{\alpha^{\prime}-1}} d \xi d \xi_{0}<+\infty
$$

Due to (5.15), from the inequality (5.13) with regard for the fact that $\varphi_{0}(\sigma)=1$ for $0 \leq \sigma \leq 1$ we obtain the inequality

$$
\begin{equation*}
\int_{r \leq \frac{1}{\sqrt{2}} T}|u|^{\alpha} d x d t \leq \int_{D_{T}}|u|^{\alpha} \varphi d x d t \leq \frac{1}{\lambda^{\alpha^{\prime}}}\left(\frac{1}{\sqrt{2}} T\right)^{n+1-2 \alpha^{\prime}} \varkappa_{0}-\frac{\alpha^{\prime}}{\lambda} \gamma(T) \tag{5.16}
\end{equation*}
$$

In case $\alpha<\frac{n+1}{n-1}$, i.e., for $n+1-2 \alpha^{\prime}<0$, the equation

$$
\begin{equation*}
g(T)=\frac{1}{\lambda^{\alpha^{\prime}}}\left(\frac{1}{\sqrt{2}} T\right)^{n+1-2 \alpha^{\prime}} \varkappa_{0}-\frac{\alpha^{\prime}}{\lambda} \gamma(T)=0 \tag{5.17}
\end{equation*}
$$

has a unique positive root $T=T_{0}>0$ because

$$
g_{1}(T)=\frac{1}{\lambda^{\alpha^{\prime}}}\left(\frac{1}{\sqrt{2}} T\right)^{n+1-2 \alpha^{\prime}} \varkappa_{0}
$$

is a positive, continuous, strictly decreasing function on the interval $(0,+\infty)$ satisfying $\lim _{T \rightarrow 0} g_{1}(T)=+\infty$ and $\lim _{T \rightarrow+\infty} g_{1}(T)=0$, and the function $\gamma(T)$, $T>0$, is, by virtue of $(5.9),(5.14)$ and the fact that $\left.F\right|_{D_{\infty}}>0$, positive, continuous and decreasing with $\lim _{T \rightarrow+\infty} \gamma(T)>0$. Moreover, $g(T)<0$ for $T>T_{0}$, and $g(T)>0$ for $0<T<T_{0}$. Consequently, for $T>T_{0}$, the right-hand side of (5.16) is negative, but this is impossible. The obtained contradiction proves that if the conditions (5.1), (5.2) and (5.3) are fulfilled, the problem (1.1), (1.2) is not globally solvable in the class W_{2}^{1}. Incidentally, we have obtained an estimate of T when the problem (1.1), (1.2) (which is, as shown in the previous section, locally solvable) has a strong generalized solution of the class W_{2}^{1} in the domain D_{T}. The estimate is $T \leq T_{0}$, where T_{0} is the unique positive root of the equation (5.17).

6. The Global Solvability of the Problem (1.1), (1.2) in the Class W_{2}^{2}

Below, in considering the problem (1.1), (1.2) we will restrict ourselves to the case of three spatial variables, i.e., $n=3$. The increase of the smoothness of the solution of the problem (1.1), (1.2) allows us to widen the interval (5.1) in which the exponent α varies.

Instead of the conditions (1.3) and (1.4) imposed on the function f, we consider the following conditions:

$$
\begin{array}{r}
f \in C^{1}(\mathbb{R}), \quad f(0)=0, \quad\left|f^{\prime}(u)\right| \leq M\left(1+|u|^{2}\right), \quad u \in \mathbb{R}, \\
g(u)=\int_{0}^{u} f(\tau) d \tau, \inf _{u \in \mathbb{R}} g(u)>-\infty, \quad g(u) \geq-M_{*} u^{2}, \quad u \in \mathbb{R} \tag{6.2}
\end{array}
$$

where $M, M_{*}=$ const >0.
Obviously, the function $f(u)=m^{2} u+u^{3}$ satisfies the conditions (6.1) and (6.2) [58]. At the same time, for $n=3$, the interval of variation (5.1) of the exponent α is $1<\alpha<2$.

Assume $\stackrel{\circ}{W}_{2}^{k}\left(D_{T}, S_{T}\right):=\left\{W_{2}^{*}\left(D_{T}\right):\left.u\right|_{S_{T}}=0\right\}$, where $W_{2}^{k}\left(D_{T}\right)$ is the well-known Sobolev's space [49, p. 56] consisting of the elements $L_{2}\left(D_{T}\right)$ having generalized derivatives up to the order k, inclusive, from $L_{2}\left(D_{T}\right)$, while the equality $\left.u\right|_{S_{T}}=0$ is understood in the sense of the trace theory [49, p. 70].

Definition 6.1. Let $F \in \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, S_{T}\right)$. A function $u=u(x, t)$ is said to be a solution of the problem (1.1), (1.2) of the class W_{2}^{2} in the domain D_{T}, if $u \in \stackrel{\circ}{W}_{2}^{2}\left(D_{T}, S_{T}\right)$ and it satisfies both the equation (1.1) almost everywhere in the domain D_{T} and the boundary condition (1.2) in the sense of the trace theory (and hence $u \in \stackrel{\circ}{W_{2}^{1}}\left(D_{T}, S_{T}\right)$).

Definition 6.2. Let $F \in \stackrel{\stackrel{\circ}{W}}{2}\left(D_{T}, S_{T}\right)$. The function $u \in \stackrel{\circ}{W}_{2}^{2}\left(D_{T}, S_{T}\right)$ is said to be a strong generalized solution of the problem (1.1), (1.2) of the class W_{2}^{2} in the domain D_{T} if there exists a sequence of functions $u_{n} \in$ $C^{\infty}\left(\bar{D}_{T}\right)$ satisfying the boundary condition (1.2) and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{n}-u\right\|_{W_{2}^{2}\left(D_{T}\right)}=0, \quad \lim _{n \rightarrow \infty}\left\|F_{n}-F\right\|_{W_{2}^{1}\left(D_{T}\right)}=0 \tag{6.3}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{n}=L_{f} u_{n} \text { and } \operatorname{supp} F_{n} \cap S_{T}=\varnothing \tag{6.4}
\end{equation*}
$$

Since $f(0)=0$, it is evident that $F_{n} \in \stackrel{\circ}{W_{2}^{1}}\left(D_{T}, S_{T}\right)$.
Remark 6.1. A strong generalized solution of the problem (1.1), (1.2) of the class W_{2}^{2} in the sense of Definition 6.2 is likewise a solution of the problem (1.1), (1.2) of the class W_{2}^{2} since, as it will be shown below, the first equality of (6.3) implies that $f\left(u_{n}\right) \rightarrow f(u)$ in $L_{2}\left(D_{T}\right)$. On the other hand, we will show the solvability of the problem $(1.1),(1.2)$ in the sense of Definition 6.2 and the uniqueness of the solution of the problem in the sense of Definition 6.1. Obviously, this implies the uniqueness of the solution of the problem in the sense of Definition 6.2, and hence the equivalence of these definitions.

Definition 6.3. Let $F \in L_{2, l o c}\left(D_{\infty}\right)$ and $F \in \stackrel{\circ}{W_{2}^{1}}\left(D_{T}, S_{T}\right)$ for any $T>0$. We say that the problem (1.1), (1.2) is globally solvable in the class W_{2}^{2} if for any $T>0$ this problem has a solution of the class W_{2}^{2} in the domain D_{T} in the sense of Definition 6.1.

Lemma 6.1. Let $n=3$ and the conditions (6.1), (6.2) and $F \in$ $\stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, S_{T}\right)$ be fulfilled. Then for every strong generalized solution u of the problem (1.1), (1.2) of the class W_{2}^{2} in the domain D_{T} in the sense of Definition 6.2 the a priori estimate

$$
\|u\|_{W_{2}^{2}\left(D_{T}\right)} \leq
$$

$$
\begin{equation*}
\leq c\left[1+\|F\|_{L_{2}\left(D_{T}\right)}+\|F\|_{L_{2}\left(D_{T}\right)}^{3}+\|F\|_{W_{2}^{1}\left(D_{T}\right)} \exp \left(c\|F\|_{L_{2}\left(D_{T}\right)}^{2}\right)\right] \tag{6.5}
\end{equation*}
$$

is valid with a positive constant c not depending on u and F.
Proof. By Definition 6.2 of a strong generalized solution u of the problem (1.1), (1.2) of the class W_{2}^{2} in the domain D_{T}, there exists a sequence of functions $u_{n} \in C^{\infty}\left(\bar{D}_{T}\right)$ satisfying the conditions (1.2), (6.3) and (6.4) and, hence,

$$
\begin{align*}
L_{f} u_{n} & =F_{n}, \quad u_{n} \in C^{\infty}\left(\bar{D}_{T}\right), \tag{6.6}\\
\left.u_{n}\right|_{S_{T}} & =0 \tag{6.7}
\end{align*}
$$

The proof of the above lemma runs in a few steps.
1^{0}. Putting $\Omega_{\tau}:=D_{\infty} \cap\{t=\tau\}$, we first show the validity of the a priori estimate

$$
\begin{equation*}
\int_{\Omega_{t}}\left[u_{n}^{2}+\left(\frac{\partial u_{n}}{\partial t}\right)^{2}+\sum_{i=1}^{3}\left(\frac{\partial u_{n}}{\partial x_{i}}\right)^{2}\right] d x \leq c_{1}\left(1+\int_{D_{t}} F_{n}^{2} d x d t\right), \quad 0<t \leq T \tag{6.8}
\end{equation*}
$$

with a positive constant c_{1} not depending on u_{n} and F_{n}. Indeed, multiplying both parts of the equation (6.6) by $\frac{\partial u_{n}}{\partial t}$ and integrating over the domain $D_{\tau}, 0<\tau \leq T$, with regard for (6.2) we obtain

$$
\begin{array}{r}
\frac{1}{2} \int_{D_{\tau}} \frac{\partial}{\partial t}\left(\frac{\partial u_{n}}{\partial t}\right)^{2} d x d t-\int_{D_{\tau}} \Delta u_{n} \frac{\partial u_{n}}{\partial t} d x d t+\int_{D_{\tau}} \frac{\partial}{\partial t} g\left(u_{n}\right) d x d t= \\
=\int_{D_{\tau}} F_{n} \frac{\partial u_{n}}{\partial t} d x d t\left(\Delta=\sum_{i=1}^{3} \frac{\partial^{2}}{\partial x_{i}^{2}}\right) \tag{6.9}
\end{array}
$$

Denote by $\nu=\left(\nu_{1}, \nu_{2}, \nu_{3}, \nu_{0}\right)$ the unit vector of the outer normal to $S_{T} \backslash$ $\{(0,0,0,0)\}$. The integration by parts, with regard for $g(0)=0$ from (6.2), the inequality (2.7) and $\left.\nu\right|_{\Omega_{\tau}}=(0,0,0,1)$, provides us with

$$
\begin{gathered}
\int_{D_{\tau}} \frac{\partial}{\partial t}\left(\frac{\partial u_{n}}{\partial t}\right)^{2} d x d t= \\
=\int_{\partial D_{\tau}}\left(\frac{\partial u_{n}}{\partial t}\right)^{2} \nu_{0} d s=\int_{\Omega_{\tau}}\left(\frac{\partial u_{n}}{\partial t}\right)^{2} d x+\int_{S_{\tau}}\left(\frac{\partial u_{n}}{\partial t}\right)^{2} \nu_{0} d s \\
\int_{D_{\tau}} \frac{\partial}{\partial t}\left(u_{n}^{2}\right) d x d t=\int_{\partial D_{\tau}} u_{n}^{2} \nu_{0} d s=\int_{\Omega_{\tau}} u_{n}^{2} d x \\
\int_{D_{\tau}} \frac{\partial}{\partial t} g\left(u_{n}\right) d x d t=\int_{\partial D_{\tau}} g\left(u_{n}\right) \nu_{0} d s=\int_{\Omega_{\tau}} g\left(u_{n}\right) d x \\
\int_{D_{\tau}} \frac{\partial^{2} u_{n}}{\partial x_{i}^{2}} \frac{\partial u_{n}}{\partial t} d x d t=\int_{\partial D_{\tau}} \frac{\partial u_{n}}{\partial x_{i}} \frac{\partial u_{n}}{\partial t} \nu_{i} d s-\frac{1}{2} \int_{D_{\tau}} \frac{\partial}{\partial t}\left(\frac{\partial u_{n}}{\partial x_{i}}\right)^{2} d x d t=
\end{gathered}
$$

$$
\begin{gathered}
=\int_{\partial D_{\tau}} \frac{\partial u_{n}}{\partial x_{i}} \frac{\partial u_{n}}{\partial t} \nu_{i} d s-\frac{1}{2} \int_{\partial D_{\tau}}\left(\frac{\partial u_{n}}{\partial x_{i}}\right)^{2} \nu_{0} d s= \\
=\int_{\partial D_{\tau}} \frac{\partial u_{n}}{\partial x_{i}} \frac{\partial u_{n}}{\partial t} \nu_{i} d s-\frac{1}{2} \int_{S_{\tau}}\left(\frac{\partial u_{n}}{\partial x_{i}}\right)^{2} \nu_{0} d s-\frac{1}{2} \int_{\Omega_{\tau}}\left(\frac{\partial u_{n}}{\partial x_{i}}\right)^{2} d x, \quad i=1,2,3,
\end{gathered}
$$

whence by virtue of (6.9) we have

$$
\begin{gather*}
\int_{D_{\tau}} F_{n} \frac{\partial u_{n}}{\partial t} d x d t= \\
=\int_{S_{\tau}} \frac{1}{2 \nu_{0}}\left[\sum_{i=1}^{3}\left(\frac{\partial u_{n}}{\partial x_{i}} \nu_{0}-\frac{\partial u_{n}}{\partial t} \nu_{i}\right)^{2}+\left(\frac{\partial u_{n}}{\partial t}\right)^{2}\left(\nu_{0}^{2}-\sum_{j=1}^{3} \nu_{j}^{2}\right)\right] d s+ \\
\frac{1}{2} \int_{\Omega_{\tau}}\left[\left(\frac{\partial u_{n}}{\partial t}\right)^{2}+\sum_{i=1}^{3}\left(\frac{\partial u_{n}}{\partial x_{i}}\right)^{2}\right] d x+\int_{\Omega_{\tau}} g\left(u_{n}\right) d x \tag{6.10}
\end{gather*}
$$

Since S_{τ} is a characteristic surface, we have

$$
\begin{equation*}
\left.\left(\nu_{0}^{2}-\sum_{j=1}^{3} \nu_{j}^{2}\right)\right|_{S_{\tau}}=0 \tag{6.11}
\end{equation*}
$$

Taking into account that $\left(\nu_{0} \frac{\partial}{\partial x_{i}}-\nu_{i} \frac{\partial}{\partial t}\right), i=1,2,3$, is an inner differential operator on S_{τ}, by virtue of (6.7) we get

$$
\begin{equation*}
\left.\left(\frac{\partial u_{n}}{\partial x_{i}} \nu_{0}-\frac{\partial u_{n}}{\partial t} \nu_{i}\right)\right|_{S_{\tau}}=0, \quad i=1,2,3 \tag{6.12}
\end{equation*}
$$

Bearing in mind (6.11) and (6.12), we rewrite the equality (6.10) in the form

$$
\begin{align*}
\int_{\Omega_{\tau}}\left[\left(\frac{\partial u_{n}}{\partial t}\right)^{2}\right. & \left.+\sum_{i=1}^{3}\left(\frac{\partial u_{n}}{\partial x_{i}}\right)^{2}\right] d x+2 \int_{\Omega_{\tau}} g\left(u_{n}\right) d x= \\
& =2 \int_{D_{\tau}} F_{n} \frac{\partial u_{n}}{\partial t} d x d t \tag{6.13}
\end{align*}
$$

By (6.2), there exists a number $M_{0}=$ const ≥ 0 such that

$$
\begin{equation*}
g(u) \geq-M_{0}, \quad u \in \mathbb{R} . \tag{6.14}
\end{equation*}
$$

Using (6.14) and the Cauchy inequality $2 F_{n} \frac{\partial u_{n}}{\partial t} \leq F_{n}^{2}+\left(\frac{\partial u_{n}}{\partial t}\right)^{2}$, from (6.13) we find that

$$
\begin{gather*}
\int_{\Omega_{\tau}}\left[\left(\frac{\partial u_{n}}{\partial t}\right)^{2}+\sum_{i=1}^{3}\left(\frac{\partial u_{n}}{\partial x_{i}}\right)^{2}\right] d x \leq \\
\leq 2 M_{0} \operatorname{mes} \Omega_{\tau}+\int_{D_{\tau}}\left(\frac{\partial u_{n}}{\partial t}\right)^{2} d x d t+\int_{D_{\tau}} F_{n}^{2} d x d t . \tag{6.15}
\end{gather*}
$$

From the equalities $\left.u_{n}\right|_{S_{\tau}}=0$ and $u_{n}(x, \tau)=\int_{|x|}^{\tau} \frac{\partial u_{n}(x, t)}{\partial t} d t, x \in \Omega_{\tau}$, $0<\tau \leq T$, in a standard way we obtain the inequality [49, p. 63]

$$
\begin{equation*}
\int_{\Omega_{\tau}} u_{n}^{2} d x \leq T \int_{D_{\tau}}\left(\frac{\partial u_{n}}{\partial t}\right)^{2} d x d t, \quad 0<\tau \leq T \tag{6.16}
\end{equation*}
$$

Summing the inequalities (6.15) and (6.16), we get

$$
\begin{array}{r}
\int_{\Omega_{\tau}}\left[u_{n}^{2}+\left(\frac{\partial u_{n}}{\partial t}\right)^{2}+\sum_{i=1}^{3}\left(\frac{\partial u_{n}}{\partial x_{i}}\right)^{2}\right] d x \leq \\
\leq \frac{8}{3} \pi \tau^{3} M_{0}+(1+T) \int_{D_{\tau}}\left(\frac{\partial u_{n}}{\partial t}\right)^{2} d x d t+\int_{D_{\tau}} F_{n}^{2} d x d t \tag{6.17}
\end{array}
$$

Introduce the notation

$$
w(\delta):=\int_{\Omega_{\delta}}\left[u_{n}^{2}+\left(\frac{\partial u_{n}}{\partial t}\right)^{2}+\sum_{i=1}^{3}\left(\frac{\partial u_{n}}{\partial x_{i}}\right)^{2}\right] d x
$$

Then by virtue of (6.17) we have

$$
\begin{align*}
w(\delta) \leq & (1+T) \int_{\Omega_{\delta}}\left[u_{n}^{2}+\left(\frac{\partial u_{n}}{\partial t}\right)^{2}+\sum_{i=1}^{3}\left(\frac{\partial u_{n}}{\partial x_{i}}\right)^{2}\right] d x d t+ \\
& +\frac{8}{3} \pi T^{3} M_{0}+\int_{\Omega_{\delta}} F_{n}^{2} d x d t= \\
= & (1+T) \int_{0}^{\delta} w(\sigma) d \sigma+\frac{8}{3} \pi T^{3} M_{0}+\left\|F_{n}\right\|_{L_{2}\left(D_{\delta}\right)}^{2}, \quad 0<\delta \leq T \tag{6.18}
\end{align*}
$$

From (6.18), taking into account that $\left\|F_{n}\right\|_{L_{2}\left(D_{\delta}\right)}^{2}$ as a function of δ is nondecreasing, by Gronwall's lemma [15, p. 13] we obtain

$$
w(\delta) \leq\left[\frac{8}{3} \pi T^{3} M_{0}+\left\|F_{n}\right\|_{L_{2}\left(D_{\delta}\right)}^{2}\right] \exp (1+T) \delta \leq c_{1}\left(1+\left\|F_{n}\right\|_{L_{2}\left(D_{T}\right)}^{2}\right)
$$

whence for $t=T$ it follows the inequality (6.8) with the constant

$$
c_{1}=\max \left(\frac{8}{3} \pi T^{3} M_{0} \exp (1+T) T, \exp (1+T) T\right)
$$

2^{0}. By (6.4), we have $\operatorname{supp} F_{n} \cap S_{T}=\varnothing$. Therefore there exists a positive number $\delta_{n}<T$ such that

$$
\begin{equation*}
\operatorname{supp} F_{n} \subset D_{T, \delta_{n}}:=\left\{(x, t) \in D_{T}: t>|x|+\delta_{n}\right\} \tag{6.19}
\end{equation*}
$$

At this step we will show that

$$
\begin{equation*}
\left.u_{n}\right|_{D_{T} \backslash \bar{D}_{T, \delta_{n}}}=0 . \tag{6.20}
\end{equation*}
$$

Indeed, let $\left(x^{0}, t^{0}\right) \in D_{T} \backslash \bar{D}_{T, \delta_{n}}$. Introduce into consideration the domain $D_{x^{0}, t^{0}}:=\left\{(x, t) \in \mathbb{R}^{4}:|x|<t<t^{0}-\left|x-x^{0}\right|\right\}$ which is bounded from below by the surface S_{T} and from above by the boundary $S_{x^{0}, t^{0}}^{-}:=$ $\left\{(x, t) \in \mathbb{R}^{4}: \quad t=t^{0}-\left|x-x^{0}\right|\right\}$ of the light cone of the past $G_{x^{0}, t^{0}}^{-}:=$ $\left\{(x, t) \in \mathbb{R}^{4}: t<t^{0}-\left|x-x^{0}\right|\right\}$ with the vertex at the point $\left(x^{0}, t^{0}\right)$. By (6.19), we have

$$
\begin{equation*}
\left.F_{n}\right|_{D_{x^{0}, t^{0}}}=0, \quad\left(x^{0}, t^{0}\right) \in D_{T} \backslash \bar{D}_{T, \delta_{n}} \tag{6.21}
\end{equation*}
$$

Let $D_{x^{0}, t^{0}, \tau}:=D_{x^{0}, t^{0}} \cap\{t<\tau\}$ and $\Omega_{x^{0}, t^{0}, \tau}:=D_{x^{0}, t^{0}} \cap\{t=\tau\}, 0<$ $\tau<t^{0}$. We have $\partial D_{x^{0}, t^{0}, \tau}=S_{1, \tau} \cup S_{2, \tau} \cup S_{3, \tau}$, where $S_{1, \tau}=\partial D_{x^{0}, t^{0}, \tau} \cap S_{\infty}$, $S_{2, \tau}=\partial D_{x^{0}, t^{0}, \tau} \cap S_{x^{0}, t^{0}}^{-}, S_{3, \tau}=\partial D_{x^{0}, t^{0}, \tau} \cap \bar{\Omega}_{x^{0}, t^{0}, \tau}$.

In the same way as in obtaining the equality (6.10), multiplying both parts of the equality (6.6) by $\frac{\partial u_{n}}{\partial t}$, integrating over the domain $D_{x^{0}, t^{0}, \tau}$, $0<\tau<t^{0}$ and taking into account (6.7) and (6.21), we obtain

$$
\begin{align*}
0 & =\int_{S_{1, \tau} \cup S_{2, \tau}} \frac{1}{2 \nu_{0}}\left[\sum_{i=1}^{3}\left(\frac{\partial u_{n}}{\partial x_{i}} \nu_{0}-\frac{\partial u_{n}}{\partial t} \nu_{i}\right)^{2}+\left(\frac{\partial u_{n}}{\partial t}\right)^{2}\left(\nu_{0}^{2}-\sum_{j=1}^{3} \nu_{j}^{2}\right)\right] d s+ \\
& +\int_{S_{2, \tau} \cup S_{3, \tau}} g\left(u_{n}\right) \nu_{0} d s+\frac{1}{2} \int_{S_{3, \tau}}\left[\left(\frac{\partial u_{n}}{\partial t}\right)^{2}+\sum_{j=1}^{3}\left(\frac{\partial u_{n}}{\partial x_{i}}\right)^{2}\right] d x \tag{6.22}
\end{align*}
$$

By (6.7) and (6.11), bearing in mind that the surface $S_{2, \tau}$ is, just like $S_{1, \tau}$, a characteristic one and hence $\left.\left(\nu_{0}^{2}-\sum_{j=1}^{3} \nu_{j}^{2}\right)\right|_{S_{1, \tau} \cup S_{2, \tau}}=0$, and

$$
\begin{gathered}
\left.\nu_{0}\right|_{S_{1}, \tau}=-\frac{1}{\sqrt{2}}<0,\left.\quad \nu_{0}\right|_{S_{2, \tau}}=\frac{1}{\sqrt{2}}>0,\left.\quad \nu_{0}\right|_{S_{3, \tau}}=1 \\
\left.\left(\frac{\partial u_{n}}{\partial x_{i}} \nu_{0}-\frac{\partial u_{n}}{\partial t} \nu_{i}\right)\right|_{S_{1, \tau}}=0,\left.\quad\left(\frac{\partial u_{n}}{\partial x_{i}} \nu_{0}-\frac{\partial u_{n}}{\partial t} \nu_{i}\right)^{2}\right|_{S_{2, \tau}} \geq 0, \quad i=1,2,3
\end{gathered}
$$

we have

$$
\begin{equation*}
\int_{S_{1, \tau} \cup S_{2, \tau}} \frac{1}{2 \nu_{0}}\left[\sum_{i=1}^{3}\left(\frac{\partial u_{n}}{\partial x_{i}} \nu_{0}-\frac{\partial u_{n}}{\partial t} \nu_{i}\right)^{2}+\left(\frac{\partial u_{n}}{\partial t}\right)^{2}\left(\nu_{0}^{2}-\sum_{j=1}^{3} \nu_{j}^{2}\right)\right] d s \geq 0 \tag{6.23}
\end{equation*}
$$

Taking into account (6.2) and (6.23), the equality (6.11) yields

$$
\begin{equation*}
\int_{S_{3, \tau}}\left[\left(\frac{\partial u_{n}}{\partial t}\right)^{2}+\sum_{i=1}^{3}\left(\frac{\partial u_{n}}{\partial x_{i}}\right)^{2}\right] d x \leq M_{1} \int_{S_{2, \tau} \cup S_{3, \tau}} u_{n}^{2} d s, \quad 0<\tau<t^{0} . \tag{6.24}
\end{equation*}
$$

Since $u_{n} \in C^{\infty}\left(\bar{D}_{T}\right),\left.\nu_{0}\right|_{S_{2, \tau} \cup S_{3, \tau}} \geq 0,\left|\nu_{0}\right| \leq 1$, by virtue of (6.2) we can define a nonnegative constant M_{1} independent of the parameter τ by the equality

$$
\begin{equation*}
M_{1}=2 M_{*}=\text { const }>0 \tag{6.25}
\end{equation*}
$$

Since $\left.u_{n}\right|_{S_{T}}=0$, where $S_{T}: t=|x|, t \leq T$, we have

$$
\begin{equation*}
u_{n}(x, t)=\int_{|x|}^{t} \frac{\partial u_{n}(x, \sigma)}{\partial t} d \sigma, \quad(x, t) \in S_{2, \tau} \cup S_{3, \tau} \tag{6.26}
\end{equation*}
$$

Reasoning in a standard way [49, p. 63], we get from (6.26) that

$$
\begin{equation*}
\int_{S_{2, \tau} \cup S_{3, \tau}} u_{n}^{2} d s \leq 2 t^{0} \int_{D_{x^{0}, t^{0}, \tau}}\left(\frac{\partial u_{n}}{\partial t}\right)^{2} d x d t, \quad 0<\tau \leq t^{0} \tag{6.27}
\end{equation*}
$$

Putting $v(\tau)=\int_{S_{3, \tau}}\left[\left(\frac{\partial u_{n}}{\partial t}\right)^{2}+\sum_{i=1}^{3}\left(\frac{\partial u_{n}}{\partial x_{i}}\right)^{2}\right] d x$, from (6.24) and (6.27) we easily obtain

$$
v(\tau) \leq 2 t^{0} M_{1} \int_{0}^{\tau} v(\delta) d \delta, \quad 0<\tau \leq t^{0}
$$

whence by (6.25) and Gronwall's lemma it immediately follows that $v(\tau)=$ $0,0<\tau \leq t^{0}$, and hence $\frac{\partial u_{n}}{\partial t}=\frac{\partial u_{n}}{\partial x_{1}}=\frac{\partial u_{n}}{\partial x_{2}}=\frac{\partial u_{n}}{\partial x_{3}}=0$ in the domain $D_{x^{0}, t^{0}}$. Therefore $\left.u_{n}\right|_{D_{x^{0}, t^{0}}}=$ const, and taking into account the homogeneous boundary condition (6.7), we find that $\left.u_{n}\right|_{D_{x^{0}, t^{0}}}=0 \forall\left(x^{0}, t^{0}\right) \in D_{T} \backslash \bar{D}_{T, \delta_{n}}$. Thus we have proved the equality (6.20).
3^{0}. We will now proceed directly to proving the a priori estimate (6.5). By (6.20), extending the values of the function u_{n} from the domain D_{T} into the layer $\Sigma_{T}:=\left\{(x, t) \in \mathbb{R}^{4}: x \in \mathbb{R}^{3}, 0<t<T\right\}$ by zero and preserving the notation, we obtain

$$
\begin{equation*}
u_{n} \in C^{\infty}\left(\bar{\Sigma}_{T}\right),\left.\quad u_{n}\right|_{\bar{\Sigma}_{T} \backslash \bar{D}_{T, \delta_{n}}}=0 \tag{6.28}
\end{equation*}
$$

In particular, it follows from (6.28) that $u_{n}=0$ for $|x| \geq T$.
Differentiating the equality (6.6) with respect to the variable x_{i}, we have

$$
\begin{equation*}
\square u_{n, x_{i}}=-f^{\prime}\left(u_{n}\right) u_{n, x_{i}}+F_{n, x_{i}}, \quad i=1,2,3 \tag{6.29}
\end{equation*}
$$

where

$$
u_{n, x_{i}}=\frac{\partial u_{n}}{\partial x_{i}}, \quad F_{n, x_{i}}=\frac{\partial F_{n}}{\partial x_{i}}, \quad \square:=\frac{\partial^{2}}{\partial t^{2}}-\sum_{i=1}^{3} \frac{\partial^{2}}{\partial x_{i}^{2}}
$$

Let

$$
\begin{equation*}
E(\tau):=\frac{1}{2} \sum_{i=1}^{3} \int_{\Omega_{\tau}}\left(u_{n, x_{i} t}^{2}+\sum_{k=1}^{3} u_{n, x_{i} x_{k}}^{2}\right) d x, \quad \Omega_{\tau}=D_{\infty} \cap\{t=\tau\} \tag{6.30}
\end{equation*}
$$

By virtue of (6.28), in the right-hand side of (6.30) we can replace the domain Ω_{τ} by the three-dimensional ball $B_{\tau}(0, T):|x|<T$ in the plane $t=\tau$. Therefore, differentiating the equality (6.30) with respect to the
variable τ and then integrating by parts, with regard for (6.6), (6.28) and (6.29) we obtain

$$
\begin{align*}
E^{\prime}(\tau) & =\sum_{i=1}^{3} \int_{B_{\tau}(0, T)}\left(u_{n, x_{i} t} u_{n, x_{i} t t}+\sum_{k=1}^{3} u_{n, x_{i} x_{k}} u_{n, x_{i} x_{k} t}\right) d x= \\
& =\sum_{i=1}^{3} \int_{B_{\tau}(0, T)}\left(u_{n, x_{i} t t} u_{n, x_{i} t}-\sum_{k=1}^{3} u_{n, x_{i} x_{k} x_{k}} u_{n, x_{i} t}\right) d x= \\
& =\sum_{i=1}^{3} \int_{B_{\tau}(0, T)}\left(\square u_{n, x_{i}}\right) u_{n, x_{i} t} d x= \\
& =\sum_{i=1}^{3} \int_{B_{\tau}(0, T)}\left[-f^{\prime}\left(u_{n}\right) u_{n, x_{i}}+F_{\left.n, x_{i}\right]}\right] u_{n, x_{i} t} d x, \tag{6.31}
\end{align*}
$$

where $B_{\tau}(0, T):|x|<T, t=\tau$.
By (6.1) and Gronwall's inequality [22, p. 134]

$$
\left|\int f_{1} f_{2} f_{3} d x\right| \leq\left\|f_{1}\right\|_{L_{p_{1}}}\left\|f_{2}\right\|_{L_{p_{2}}}\left\|f_{3}\right\|_{L_{p_{3}}}
$$

for $p_{1}=3, p_{2}=6, p_{3}=2, \frac{1}{p_{1}}+\frac{1}{p_{2}}+\frac{1}{p_{3}}=1$, as well as by the Cauchy inequality, for the right-hand side (6.31) we have the estimate

$$
\begin{gather*}
I=\left|\sum_{i=1}^{3} \int_{B_{\tau}(0, T)}\left[-f^{\prime}\left(u_{n}\right) u_{n, x_{i}}+F_{\left.n, x_{i}\right]}\right] u_{n, x_{i} t} d x\right| \leq \\
\leq \\
\frac{1}{2} \sum_{i=1}^{3} \int_{B_{\tau}(0, T)} F_{n, x_{i}}^{2} d x+\frac{1}{2} \sum_{i=1}^{3} \int_{B_{\tau}(0, T)} u_{n, x_{i}}^{2} d x+ \\
\quad+\sum_{i=1}^{3} \int_{B_{\tau}(0, T)}\left|f^{\prime}\left(u_{n}\right) u_{n, x_{i}} u_{n, x_{i} t}\right| d x \leq \\
\leq \frac{1}{2} \sum_{i=1}^{3} \int_{B_{\tau}(0, T)} u_{n, x_{i}}^{2} d x+\frac{1}{2} \sum_{i=1}^{3} \int_{B_{\tau}(0, T)} F_{n, x_{i}}^{2} d x+ \tag{6.32}\\
+M \sum_{i=1}^{3}\left\|\left(1+u_{n}^{2}\right)\right\|_{L_{3}\left(B_{\tau}(0, T)\right)}\left\|u_{n, x_{i}}\right\|_{L_{6}\left(B_{\tau}(0, T)\right)}\left\|u_{n, x_{i}}\right\|_{L_{2}\left(B_{\tau}(0, T)\right)}
\end{gather*}
$$

According to the theorem of embedding of the space $W_{m}^{\ell}(\Omega)$ into $L_{p}(\Omega)$, for $\operatorname{dim} \Omega=3, m=2, \ell=1, p=6[49$, p. 84], [48, p. 111] there takes place the estimate

$$
\begin{equation*}
\|v\|_{\left.L_{6}(|x|<T)\right)} \leq c_{2}\|v\|_{\left.\stackrel{W}{2}_{1}^{1}(|x|<T)\right)} \forall v \in \stackrel{\circ}{W}_{2}^{1}((|x|<T)) \tag{6.33}
\end{equation*}
$$

with a positive constant c_{2} not depending on v.
There also takes place [49, p. 117]

$$
\begin{equation*}
\sum_{i=1}^{3} \int_{|x|<T} v_{x_{i}}^{2} d x \leq c_{3} \sum_{i, j=1}^{3} \int_{|x|<T} v_{x_{i} x_{j}}^{2} d x \quad \forall v \in \stackrel{\circ}{W}_{2}^{2}((|x|<T)) \tag{6.34}
\end{equation*}
$$

with a positive constant c_{3} not depending on v.
Applying the inequality (6.33) to the functions u_{n} and $u_{n, x_{i}}$ which, owing to (6.28), belong to the space $\stackrel{\circ}{W}_{2}^{1}((|x|<T))$ for fixed $t=\tau$, we obtain

$$
\begin{gather*}
\left\|u_{n}\right\|_{L_{6}\left(B_{\tau}(0, T)\right)} \leq c_{2}\left\|u_{n}\right\|_{\stackrel{\circ}{2}_{1}^{1}\left(B_{\tau}(0, T)\right)}, \\
\left\|u_{n, x_{i}}\right\|_{L_{6}\left(B_{\tau}(0, T)\right)} \leq c_{2}\left\|u_{n, x_{i}}\right\|_{\stackrel{\circ}{2}_{2}^{1}\left(B_{\tau}(0, T)\right)} . \tag{6.35}
\end{gather*}
$$

By (6.8), (6.30) and (6.35), we have

$$
\begin{align*}
& \left\|\left(1+u_{n}^{2}\right)\right\|_{L_{3}\left(B_{\tau}(0, T)\right)}\left\|u_{n, x_{i}}\right\|_{L_{6}\left(B_{\tau}(0, T)\right)}\left\|u_{n, x_{i} t}\right\|_{L_{2}\left(B_{\tau}(0, T)\right)} \leq \\
\leq & \left(\sqrt[3]{\frac{4}{3} \pi T}+\left\|u_{n}\right\|_{L_{6}\left(B_{\tau}(0, T)\right)}^{2}\right) c_{2}\left\|u_{n}\right\|_{W_{2}^{1}\left(B_{\tau}(0, T)\right)}[2 E(\tau)]^{1 / 2} \leq \\
\leq & {\left[\sqrt[3]{\left.\frac{4}{3} \pi T+c_{2}^{2} c_{1}\left(1+\left\|F_{n}\right\|_{L_{2}\left(D_{T}\right)}^{2}\right)\right] c_{2}[2 E(\tau)]^{1 / 2}[2 E(\tau)]^{1 / 2} \leq} \text { } \leq c_{4}\left(1+\left\|F_{n}\right\|_{L_{2}\left(D_{T}\right)}^{2}\right) E(\tau),\right.}
\end{align*}
$$

where

$$
c_{4}=2 c_{2} \sqrt[3]{\frac{4}{3} \pi} T+2 c_{2}^{3} c_{1}
$$

It follows from $(6.8),(6.32),(6.34)$ and (6.36) that

$$
\begin{equation*}
I \leq c_{3} E(\tau)+\frac{1}{2}\left\|F_{n}\right\|_{W_{2}^{1}\left(B_{\tau}(0, T)\right)}^{2}+3 c_{4} M\left(1+\|F\|_{L_{2}\left(D_{T}\right)}^{2}\right) E(\tau) \tag{6.37}
\end{equation*}
$$

By (6.31) and (6.37), we have

$$
\begin{equation*}
E^{\prime}(\tau) \leq \alpha(\tau) E(\tau)+\beta(\tau) \leq \alpha(\tau) E(\tau)+\beta(\tau), \quad \tau \leq T \tag{6.38}
\end{equation*}
$$

Here

$$
\begin{align*}
& \alpha(\tau)=c_{3}+3 c_{4} M\left(1+\left\|F_{n}\right\|_{L_{2}\left(D_{T}\right)}^{2}\right), \\
& \beta(\tau)=\frac{1}{2}\left\|F_{n}\right\|_{W_{2}^{1}\left(B_{\tau}(0, T)\right)}^{2} . \tag{6.39}
\end{align*}
$$

From (6.28) we have $E(0)=0$. Therefore, multiplying both parts of the inequality (6.38) by $\exp [-\alpha(T) \tau]$ and integrating, in a standard way we obtain

$$
\begin{aligned}
E(\tau) & \leq e^{\alpha(T) \tau} \int_{0}^{\tau} e^{-\alpha(T) \sigma} \beta(\sigma) d \sigma \leq e^{\alpha(T) \tau} \int_{0}^{\tau} \beta(\sigma) d \sigma= \\
& =\frac{1}{2} e^{\alpha(T) \tau} \int_{0}^{\tau}\left\|F_{n}\right\|_{W_{2}^{1}\left(B_{\tau}(0, T)\right)}^{2} d \sigma \leq \frac{1}{2} e^{\alpha(T) \tau}\left\|F_{n}\right\|_{W_{2}^{1}\left(D_{\tau}\right)}^{2} \leq
\end{aligned}
$$

$$
\begin{equation*}
\leq \frac{1}{2} e^{\alpha(T) T}\left\|F_{n}\right\|_{W_{2}^{1}\left(D_{T}\right)}^{2}, \quad 0 \leq \tau \leq T \tag{6.40}
\end{equation*}
$$

By virtue of (6.6), we have

$$
\begin{equation*}
u_{n, t t}=\Delta u_{n}-f\left(u_{n}\right)+F_{n} . \tag{6.41}
\end{equation*}
$$

It follows from (6.1) that

$$
\begin{equation*}
\left|f\left(u_{n}\right)\right|=\left|\int_{0}^{u_{n}} f^{\prime}(\sigma) d \sigma\right| \leq M\left(\left|u_{n}\right|+\frac{1}{3}\left|u_{n}\right|^{3}\right) . \tag{6.42}
\end{equation*}
$$

Squaring both parts of the equality (6.41) and using (6.42) and the inequality $\left(\sum_{i=1}^{n} a_{i}\right)^{2} \leq n \sum_{i=1}^{n} a_{i}^{2}$, we obtain

$$
\int_{\Omega_{\tau}} u_{n, t t}^{2} d x \leq \frac{8}{9} M^{2} \int_{B_{\tau}(0, T)}\left|u_{n}\right|^{6} d x+4 \int_{B_{\tau}(0, T)}\left[\left(\Delta u_{n}\right)^{2}+2 M^{2} u_{n}^{2}+F_{n}^{2}\right] d x
$$

whence by virtue of $(6.8),(6.35)$ and the facts that $\left(\Delta v_{n}\right)^{2} \leq 3 \sum_{i=1}^{3} u_{n, x_{i} x_{i}}^{2}$ and $(a+b)^{6} \leq 2^{5}\left(a^{6}+b^{6}\right)$, we find that

$$
\begin{gather*}
\int_{\Omega_{\tau}} u_{n, t t}^{2} d x \leq \\
\leq M^{2} c_{2}^{6}\left\|u_{k}\right\|_{W_{2}^{1}\left(B_{\tau}(0, T)\right)}^{6}+24 E(\tau)+8 M^{2} c_{1}\left(1+\left\|F_{n}\right\|_{L_{2}\left(D_{\tau}\right)}^{2}\right)+ \\
+4\left\|F_{n}\right\|_{L_{2}\left(B_{\tau}(0, T)\right)}^{2} \leq M^{2} c_{2}^{6} 2^{5} c_{1}^{3}\left[1+\left\|F_{n}\right\|_{L_{2}\left(D_{\tau}\right)}^{6}\right]+ \\
+8 c_{1} M^{2}\left(1+\left\|F_{n}\right\|_{L_{2}\left(D_{\tau}\right)}^{2}\right)+4\left\|F_{n}\right\|_{L_{2}\left(B_{\tau}(0, T)\right)}^{2}+24 E(\tau) . \tag{6.43}
\end{gather*}
$$

By (6.40), from (6.43) it follows that

$$
\begin{gather*}
\int_{D_{T}} u_{n, t t}^{2} d x d t=\int_{0}^{T} d \tau \int_{\Omega_{\tau}} u_{n, t t}^{2} d x \leq \\
\leq M^{2} c_{2}^{6} 2^{5} c_{1}^{3} T\left[1+\left\|F_{n}\right\|_{L_{2}\left(D_{T}\right)}^{6}\right]+8 c_{1} M^{2} T\left(1+\left\|F_{n}\right\|_{L_{2}\left(D_{T}\right)}^{2}\right)+ \\
+4\left\|F_{n}\right\|_{L_{2}\left(D_{T}\right)}^{2}+12 T e^{\alpha(T) T}\left\|F_{n}\right\|_{W_{2}^{1}\left(D_{T}\right)}^{2} \leq \\
\leq c_{5}+c_{6}\left\|F_{n}\right\|_{L_{2}\left(D_{T}\right)}^{2}+c_{7}\left\|F_{n}\right\|_{L_{2}\left(D_{T}\right)}^{2}+c_{8}\left\|F_{n}\right\|_{W_{2}^{1}\left(D_{T}\right)}^{2} . \tag{6.44}
\end{gather*}
$$

Here

$$
\begin{gather*}
c_{5}=M^{2} c_{2}^{6} 2^{5} c_{1}^{3} T+8 c_{1} M^{2} T, \quad c_{6}=8 c_{1} M^{2} T+4, \\
c_{7}=M^{2} c_{2}^{6} 2^{5} c_{1}^{3} T, \quad c_{8}=12 T e^{\alpha(T) T} . \tag{6.45}
\end{gather*}
$$

From (6.8), (6.30), (6.40) and (6.44), we have

$$
\left\|u_{n}\right\|_{W_{2}^{2}\left(D_{T}\right)}=\int_{0}^{T} d \tau \times
$$

$$
\begin{align*}
& \times \int_{\Omega_{\tau}}\left[u_{n}^{2}+\left(\frac{\partial u_{n}}{\partial t}\right)^{2}+\sum_{i=1}^{3}\left(\frac{\partial u_{n}}{\partial x_{i}}\right)^{2}+u_{n, t t}^{2}+\sum_{i=1}^{3} u_{n, x_{i} t}^{2}+\sum_{i, k=1}^{3} u_{n, x_{i} x_{k}}^{2}\right] d x \leq \\
& \quad \leq \int_{0}^{T} c_{1}\left(1+\left\|F_{n}\right\|_{L_{2}\left(D_{\tau}\right)}^{2}\right) d \tau+\int_{D_{\tau}} u_{n, t t}^{2} d x d t+\int_{0}^{T} 2 E(\tau) d \tau \leq \\
& \quad \leq c_{1} T+c_{1} T\|F\|_{L_{2}\left(D_{T}\right)}^{2}+c_{5}+c_{6}\left\|F_{n}\right\|_{L_{2}\left(D_{T}\right)}^{2}+ \\
& \quad+c_{7}\left\|F_{n}\right\|_{L_{2}\left(D_{T}\right)}^{6}+c_{8}\left\|F_{n}\right\|_{W_{2}^{1}\left(D_{T}\right)}^{2}+T e^{\alpha(T) T}\left\|F_{n}\right\|_{W_{2}^{1}\left(D_{T}\right)}^{2} \leq \\
& \quad \leq c_{9}+c_{10}\left\|F_{n}\right\|_{L_{2}\left(D_{T}\right)}^{2}+c_{11}\left\|F_{n}\right\|_{L_{2}\left(D_{T}\right)}^{6}+c_{12}\left\|F_{n}\right\|_{W_{2}^{1}\left(D_{T}\right)}^{2} . \tag{6.46}
\end{align*}
$$

By (6.45) we obtain

$$
\begin{gather*}
c_{9}=c_{1} T+M^{2} c_{2}^{6} 2^{5} c_{1}^{3} T+8 c_{1} M^{2} T, \quad c_{10}=c_{1} T+8 c_{1} M^{2} T+4 \\
c_{11}=M^{2} c_{2}^{6} 2^{5} c_{1}^{3} T, \quad c_{12}=13 T e^{\alpha(T) T} \tag{6.47}
\end{gather*}
$$

Taking into account the obvious inequality $\left(\sum_{i=1}^{n}\left|a_{i}\right|\right)^{1 / 2} \leq \sum_{i=1}^{n}\left|a_{i}\right|^{1 / 2}$ along with (6.39) and (6.47), from (6.46) we get

$$
\begin{align*}
\left\|u_{n}\right\|_{W_{2}^{2}\left(D_{T}\right)} \leq c\left[1+\left\|F_{n}\right\|_{L_{2}\left(D_{T}\right)}\right. & +\left\|F_{n}\right\|_{L_{2}\left(D_{T}\right)}^{3}+ \\
& \left.+\|F\|_{W_{2}^{1}\left(D_{T}\right)} \exp \left(c\left\|F_{n}\right\|_{L_{2}\left(D_{T}\right)}^{2}\right)\right] \tag{6.48}
\end{align*}
$$

where the positive constant c does not depend on u_{n} and F_{n}. By virtue of (6.3), passing in the inequality (6.48) to limit as $n \rightarrow \infty$, we obtain the a priori estimate (6.5).

Thus Lemma 6.1 is proved completely.
Remark 6.2. Note that when deducing the a priori estimate (6.5), we have used essentially the fact that the spatial dimension of the equation (1.1) was assumed to be three (see, e.g., the equation (6.33)). Moreover, the same fact will be used below in proving the compactness of the corresponding to $f(u)$ nonlinear Nemytski operator.

Remark 6.3. Before we proceed to proving the global solvability of the nonlinear problem (1.1), (1.2) in the class W_{2}^{2} on the basis of the a priori estimate (6.5), we will consider the same issue in the linear case, when $f=0$, i.e., for the problem

$$
\begin{gather*}
L_{0} u(x, t)=F(x, t), \quad(x, t) \in D_{T} \quad(L:=\square) \tag{6.49}\\
u(x, t)=0, \quad(x, t) \in S_{T} \tag{6.50}
\end{gather*}
$$

In this case, for $F \in \stackrel{\circ}{W_{2}^{1}}\left(D_{T}, S_{T}\right)$ we introduce the notion of a strong generalized solution $u \in \stackrel{\circ}{W} \stackrel{2}{2}\left(D_{T}, S_{T}\right)$ of the problem (6.49), (6.50) of the
class W_{2}^{2} in the domain D_{T} for which there exists a sequence of functions $u_{n} \in C^{\infty}\left(\bar{D}_{T}\right)$ satisfying the condition (6.50) and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{n}-u\right\|_{W_{2}^{2}\left(D_{T}\right)}=0, \quad \lim _{n \rightarrow \infty}\left\|L_{0} u_{n}-F\right\|_{W_{2}^{1}\left(D_{T}\right)}=0 . \tag{6.51}
\end{equation*}
$$

Remark 6.4. Following the proof of the a priori estimate (6.5), it is not difficult to see that for $f=0$, i.e., for a strong generalized solution of the linear problem (6.49), (6.50) of the class W_{2}^{2} in the domain D_{T} the estimate

$$
\begin{equation*}
\|u\|_{W_{2}^{2}\left(D_{T}\right)} \leq c_{0}\|F\|_{W_{2}^{1}\left(D_{T}\right)} \tag{6.52}
\end{equation*}
$$

is valid with a positive constant c_{0} independent of u and F.
Since the space $C_{0}^{\infty}\left(\bar{D}_{T}, S_{T}\right):=\left\{F \in C^{\infty}\left(\bar{D}_{T}\right): \operatorname{supp} F \cap S_{T}=\varnothing\right\}$ of infinitely differentiable in \bar{D}_{T} functions vanishing in some neighborhood (its own for each such function) of the set S_{T} is dense in ${ }^{\circ}{ }_{2}^{1}\left(D_{T}, S_{T}\right)$, for a function $F \in \stackrel{\circ}{W_{2}^{1}}\left(D_{T}, S_{T}\right)$ there exists a sequence of functions $F_{n} \in$ $C_{0}^{\infty}\left(\bar{D}_{T}, S_{T}\right)$ such that $\lim _{n \rightarrow \infty}\left\|F_{n}-F\right\|_{W_{2}^{1}\left(D_{T}\right)}=0$. For fixed n, extending the function F_{n} from the domain D_{T} into the layer $\Sigma_{T}:=\left\{(x, t) \in \mathbb{R}^{4}\right.$: $0<t<T\}$ by zero and leaving the same notation, we have $F_{n} \in C^{\infty}\left(\bar{\Sigma}_{T}\right)$, for which the support $\operatorname{supp} F_{n} \subset D_{\infty}: t>|x|$. Denote by u_{n} a solution of the following linear Cauchy problem: $L_{0} u_{n}=F_{n},\left.u_{n}\right|_{t=0}=0,\left.\frac{\partial u_{n}}{\partial t}\right|_{t=0}=0$ in the layer Σ_{T} which, as is known, exists, is unique and belongs to the space $C^{\infty}\left(\bar{\Sigma}_{T}\right)[\mathbf{1 7}, \mathrm{p} .192]$. Note that since $\operatorname{supp} F_{n} \subset D_{\infty}$ and $\left.u_{n}\right|_{t=0}=$ $\left.\frac{\partial u_{n}}{\partial t}\right|_{t=0}=0$, taking into account the geometry of the domain of dependence of solution of the linear wave equation, we have supp $u_{n} \subset D_{\infty}[\mathbf{1 7}$, p. 191]. Leaving for the restriction of the function u_{n} to the domain D_{T} the same notation, it can be easily seen that $u_{n} \in C^{\infty}\left(\bar{D}_{T}\right),\left.u_{n}\right|_{S_{T}}=0$, and owing to the estimate (6.52) we have

$$
\begin{equation*}
\left\|u_{n}-u\right\|_{W_{2}^{2}\left(D_{T}\right)} \leq c_{0}\left\|F_{n}-F\right\|_{W_{2}^{1}\left(D_{T}\right)} . \tag{6.53}
\end{equation*}
$$

Since the sequence $\left\{F_{n}\right\}$ is fundamental in $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$, by virtue of (6.53) the sequence $\left\{u_{n}\right\}$ will be fundamental in the complete space

$$
\stackrel{\circ}{W_{2}^{2}}\left(D_{T}, S_{T}\right):=\left\{u \in W_{2}^{2}\left(D_{T}\right):\left.u\right|_{S_{T}}=0\right\}
$$

Therefore there exists a function $u \in \stackrel{\circ}{W}_{2}^{2}\left(D_{T}, S_{T}\right)$ such that $\lim _{n \rightarrow \infty} \| u_{n}-$ $u \|_{W_{2}^{2}\left(D_{T}\right)}=0$, and hence, due to the fact that $L_{0} u_{n}=F_{n} \rightarrow F$ in the space $W_{2}^{1}\left(D_{T}\right)$, the function u will, by Remark 6.3 , be a strong generalized solution of the problem (6.49), (6.50) of the class W_{2}^{2} in the space D_{T}. According to what has been said, for the solution u of the problem (6.49), (6.50) we can write $u=L_{0}^{-1} F$, where $L_{0}^{-1}: \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right) \rightarrow \stackrel{\circ}{W}_{2}^{2}\left(D_{T}, S_{T}\right)$ is a linear continuous operator whose norm admits, by virtue of (6.52), the estimate

$$
\begin{equation*}
\left\|L_{0}^{-1}\right\|_{\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right) \rightarrow \stackrel{\circ}{W}_{2}^{2}\left(D_{T}, S_{T}\right)} \leq c_{0} \tag{6.54}
\end{equation*}
$$

Remark 6.4. If the condition (6.1) is fulfilled, the Nemytski operator $\mathcal{N}: \stackrel{\circ}{W}_{2}^{2}\left(D_{T}, S_{T}\right) \rightarrow \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, S_{T}\right)$ acting by the formula $\mathcal{N} u=-f(u)$ is continuous and compact. This assertion is a consequence of the following facts: (1) owing to $D_{T} \subset \mathbb{R}^{4}$ for $n=4$, the embedding operator $I_{1}: \stackrel{\circ}{W}{ }_{2}^{2}\left(D_{T}, S_{T}\right) \rightarrow L_{q}\left(D_{T}\right)$ is continuous and compact for every $q \geq 1[49$, p. 84]; (2) the embedding operator $I_{2}: \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, S_{T}\right) \rightarrow L_{p}\left(D_{T}\right)$ is continuous for $1<p<4$ [49, p. 83]; (3) the nonlinear Nemytski operator \mathcal{H} acting by the formula $\mathcal{H} u=h(x, u)$, where the function $h=h(x, \xi)$ possesses the Carathéodory property, is continuous from the space $L_{p}\left(D_{T}\right)$ into $L_{r}\left(D_{T}\right)$, $p \geq 1, r \geq 1$, if and only if $|h(x, \xi)| \leq d(x)+\delta|\xi|^{p / r} \forall \xi \in(-\infty, \infty)$, where $d \in L_{r}\left(D_{T}\right)$, and $\delta=$ const $\geq 0[48$, p. 66]; (4) according to the condition (6.1), the inequality

$$
|f(u)| \leq M+2 M|u|^{3}, \quad u \in \mathbb{R}
$$

holds, and hence according to the above-said, if $u_{n} \rightarrow u$ in the space $\stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, S_{T}\right)$, then $f\left(u_{n}\right) \rightarrow f(u)$ in the space $L_{2}\left(D_{T}\right)$ and $f^{\prime}\left(u_{n}\right) \rightarrow f^{\prime}(u)$ in the space $L_{6}\left(D_{T}\right)$; (5) if $u \in \stackrel{\circ}{W}_{2}^{2}\left(D_{T}, S_{T}\right)$, then $f^{\prime}(u) \in L_{q}\left(D_{T}\right)$ for $q \geq 1$, and since $\frac{\partial u}{\partial x_{i}} \in W_{2}^{1}\left(D_{T}\right)$, therefore $\frac{\partial u}{\partial x_{i}} \in L_{p}\left(D_{T}\right)$ for $1<p<4$, and, in particular, $\frac{\partial u}{\partial x_{i}} \in L_{3}\left(D_{T}\right)$; (6) if $f_{i} \in L_{p_{i}}\left(D_{T}\right), i=1,2, \frac{1}{p_{1}}+\frac{1}{p_{2}}=\frac{1}{r}$, $p_{i}>1, r>1$, then $f_{1} f_{2} \in L_{r}\left(D_{T}\right)$ [58, p. 45]; in particular, for $p_{1}=6$, $p_{2}=3, r=2(1 / 6+1 / 3=1 / 2), f_{1}=f^{\prime}(u), f_{2}=\frac{\partial u}{\partial x_{i}}, u \in \stackrel{\circ}{W}_{2}^{2}\left(D_{T}, S_{T}\right)$, we obtain $\frac{\partial \mathcal{N} u}{x_{i}}=-f^{\prime}(u) \frac{\partial u}{\partial x_{i}} \in L_{2}\left(D_{T}\right), i=1,2,3$; analogously, we have $\frac{\partial \mathcal{N} u}{\partial t} \in L_{2}\left(D_{T}\right)$, and hence $\mathcal{N} u \in W_{2}^{1}\left(D_{T}\right)$ if $u \in \stackrel{\circ}{W}_{2}^{2}\left(D_{T}, S_{T}\right)$. We will show below that in fact $\mathcal{N} u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$.

Indeed, let X be some bounded subset of the space $\stackrel{\circ}{W}_{2}^{2}\left(D_{T}, S_{T}\right)$, and let $\left\{u_{n}\right\}$ be an arbitrary subset of elements from X. Since the space $\stackrel{\circ}{W}{ }_{2}^{2}\left(D_{T}, S_{T}\right)$ is compactly embedded into the space $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ [48, p. 183], there exist a subsequence $\left\{u_{n_{k}}\right\}$ and a function $u \in \stackrel{\circ}{W_{2}^{1}}\left(D_{T}, S_{T}\right)$ such that

$$
\begin{align*}
\lim _{k \rightarrow \infty}\left\|u_{n_{k}}-u\right\|_{L_{2}\left(D_{T}\right)}=\lim _{k \rightarrow \infty} \| & \left\|\frac{u_{n_{k}}}{\partial t}-\frac{\partial u}{\partial t}\right\|_{L_{2}\left(D_{T}\right)}= \\
& =\lim _{k \rightarrow \infty}\left\|\frac{\partial u_{n_{k}}}{\partial x_{i}}-\frac{\partial u}{\partial x_{i}}\right\|_{L_{2}\left(D_{T}\right)}=0 . \tag{6.55}
\end{align*}
$$

On the other hand, according to what has been said there exists a subsequence of the sequence $\left\{u_{n_{k}}\right\}$ (with the same notation) such that

$$
\begin{gather*}
\lim _{k \rightarrow \infty}\left\|f^{\prime}\left(u_{n_{k}}\right)-v_{0}\right\|_{L_{6}\left(D_{T}\right)}=0, \quad \lim _{k \rightarrow \infty}\left\|\frac{\partial u_{n_{k}}}{\partial x_{i}}-v_{i}\right\|_{L_{2}\left(D_{T}\right)}=0 \\
i=1,2,3 \tag{6.56}\\
\lim _{k \rightarrow \infty}\left\|f\left(u_{n_{k}}\right)-v\right\|_{L_{2}\left(D_{T}\right)}=0, \quad \lim _{k \rightarrow \infty}\left\|\frac{\partial u_{n_{k}}}{\partial t}-v_{4}\right\|_{L_{3}\left(D_{T}\right)}=0
\end{gather*}
$$

where $v_{0}, v, v_{i}, i=1, \ldots, 4$, are some functions respectively from the spaces $L_{6}\left(D_{T}\right), L_{2}\left(D_{T}\right)$ for v_{0}, v, and $L_{3}\left(D_{T}\right)$ for v_{i}. Using the definition of generalized derivatives due to Sobolev, from (6.55) and (6.56), reasoning in a standard way, we obtain

$$
\begin{equation*}
v_{0}=f^{\prime}(u), \quad v=f(u), \quad v_{i}=\frac{\partial u}{\partial x_{i}}, \quad i=1,2,3, \quad v_{4}=\frac{\partial u}{\partial t} . \tag{6.57}
\end{equation*}
$$

Let now show that

$$
\begin{align*}
& \lim _{k \rightarrow \infty}\left\|\frac{\partial \mathcal{N} u_{n_{k}}}{\partial x_{i}}-\frac{\partial \mathcal{N} u}{\partial x_{i}}\right\|_{L_{2}\left(D_{T}\right)}=0, \quad i=1,2,3 \\
& \lim _{k \rightarrow \infty}\left\|\frac{\partial \mathcal{N} u_{n_{k}}}{\partial t}-\frac{\partial \mathcal{N} u}{\partial t}\right\|_{L_{2}\left(D_{T}\right)}=0 \tag{6.58}
\end{align*}
$$

Indeed, using Hölder's inequality for $p=3, q=3 / 2(1 / p+1 / q=1)$, we will have

$$
\begin{gather*}
\left\|\frac{\partial \mathcal{N} u_{n_{k}}}{\partial x_{i}}-\frac{\partial \mathcal{N} u}{\partial x_{i}}\right\|_{L_{2}\left(D_{T}\right)}= \\
=\int_{D_{T}}\left(f^{\prime}\left(u_{n_{k}}\right) \frac{\partial u_{n_{k}}}{\partial x_{i}}-f^{\prime}(u) \frac{\partial u}{\partial x_{i}}\right)^{2} d x d t= \\
=\int_{D_{T}}\left[\left(f^{\prime}\left(u_{n_{k}}\right)-f^{\prime}(u)\right) \frac{\partial u_{n_{k}}}{\partial x_{i}}+f^{\prime}(u)\left(\frac{\partial u_{n_{k}}}{\partial x_{i}}-\frac{\partial u}{\partial x_{i}}\right)\right]^{2} d x d t \leq \\
\leq 2 \int_{D_{T}}\left(f^{\prime}\left(u_{n_{k}}\right)-f^{\prime}(u)\right)^{2}\left(\frac{\partial u_{n_{k}}}{\partial x_{i}}\right)^{2} d x d t+ \\
\quad+2 \int_{D_{T}}\left(f^{\prime}(u)\right)^{2}\left(\frac{\partial u_{n_{k}}}{\partial x_{i}}-\frac{\partial u}{\partial x_{i}}\right)^{2} d x d t \leq \\
\leq 2\left\|\left(f^{\prime}\left(u_{n_{k}}\right)-f^{\prime}(u)\right)^{2}\right\|_{L_{3}\left(D_{T}\right)}\left\|\left(\frac{\partial u_{n_{k}}}{\partial x_{i}}\right)^{2}\right\|_{L_{3 / 2}\left(D_{T}\right)}+ \\
+2\left\|\left(f^{\prime}(u)\right)^{2}\right\|_{L_{3}\left(D_{T}\right)}\left\|\left(\frac{\partial u_{n_{k}}}{\partial x_{i}}-\frac{\partial u}{\partial x_{i}}\right)^{2}\right\|_{L_{3 / 2}\left(D_{T}\right)}= \\
=2\left\|f^{\prime}\left(u_{n_{k}}\right)-f^{\prime}(u)\right\|_{L_{6}\left(D_{T}\right)}^{2}\left\|\frac{\partial u_{n_{k}}}{\partial x_{i}}\right\|_{L_{3}\left(D_{T}\right)}^{2}+ \\
+2\left\|\left(f^{\prime}(u)\right)\right\|_{L_{6}\left(D_{T}\right)}^{2}\left\|\frac{\partial u_{n_{k}}}{\partial x_{i}}-\frac{\partial u}{\partial x_{i}}\right\|_{L_{3}\left(D_{T}\right)}^{2} . \tag{6.59}
\end{gather*}
$$

By virtue of (6.56), the sequence $\left\{\left\|\frac{\partial u_{n_{k}}}{\partial x_{i}}\right\|_{L_{3}\left(D_{T}\right)}^{2}\right\}$ is bounded. Therefore from (6.59), in view of (6.56) and (6.57), there follow the first three
equalities from (6.58) for $i=1,2,3$. The last equality from (6.58) is proved analogously. Thus the fact that $\mathcal{N} u_{n_{k}} \rightarrow \mathcal{N} u$ in the space $W_{2}^{1}\left(D_{T}\right)$ follows directly from (6.56), (6.57) and (6.58). So we have proved that the operator \mathcal{N} from Remark 6.4 is compact, acting from the space ${ }^{\circ}{ }_{2}^{2}\left(D_{T}, S_{T}\right)$ to the space $W_{2}^{1}\left(D_{T}\right)$. This implies that this operator is also continuous since the above-mentioned spaces, being the Hilbert ones, are reflexive [48, p. 182]). Finally, the fact that the image $\mathcal{N}\left({ }_{W}^{\circ} 2\left(D_{T}, S_{T}\right)\right)$ is actually a subspace of the space $\stackrel{\circ}{W}_{2}^{2}\left(D_{T}, S_{T}\right)$ follows from the following reasoning. If $u \in \stackrel{\circ}{W}_{2}^{2}\left(D_{T}, S_{T}\right)$, then there exists a sequence $u_{n} \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, S_{T}\right):=\{u \in$ $\left.C^{2}\left(\bar{D}_{T}\right):\left.u\right|_{S_{T}}=0\right\}$ such that $u_{n} \rightarrow u$ in the space $\stackrel{\circ}{W}_{2}^{2}\left(D_{T}, S_{T}\right)$. But, according to the above-said, $\mathcal{N} u_{n} \rightarrow \mathcal{N} u$ in the space $W_{2}^{1}\left(D_{T}\right)$, and since $\mathcal{N} u_{n}=-f\left(u_{n}\right) \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, S_{T}\right) \subset \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ (recall that $f(0)=0$ by the condition (6.1)), therefore taking into account that the space $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ is complete, we obtain $\mathcal{N}\left(\stackrel{\circ}{W}{ }_{2}^{2}\left(D_{T}, S_{T}\right)\right) \subset \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$, and hence the operator $\mathcal{N}: \stackrel{\circ}{W}{ }_{2}^{2}\left(D_{T}, S_{T}\right) \rightarrow \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, S_{T}\right)$ is continuous and compact.

Remark 6.5. As is mentioned in Remark 6.1, from the first equality (6.3) it follows that $\lim _{n \rightarrow \infty}\left\|f\left(u_{n}\right)-f(u)\right\|_{L_{2}\left(D_{T}\right)}=0$. The latter is a direct consequence of the assertion we formulated in Remark 6.4. From this reasoning it immediately follows that if $F \in \stackrel{\circ}{W}_{2}^{2}\left(D_{T}, S_{T}\right)$, then the function $u \in \stackrel{\circ}{W}_{2}^{2}\left(D_{T}, S_{T}\right)$ is, by virtue of (6.54), a strong generalized solution of the problem (1.1), (1.2) of the class W_{2}^{2} if and only if this function is a solution of the functional equation

$$
\begin{equation*}
u=L_{0}^{-1}(-f(u)+F) \tag{6.60}
\end{equation*}
$$

in the space $\stackrel{\circ}{W}_{2}^{2}\left(D_{T}, S_{T}\right)$.
We rewrite the equation (6.60) in the form

$$
\begin{equation*}
u=A u:=L_{0}^{-1}(\mathcal{N} u+F) \tag{6.61}
\end{equation*}
$$

where the operator $\mathcal{N}: \stackrel{\circ}{W}_{2}^{2}\left(D_{T}, S_{T}\right) \rightarrow \stackrel{\circ}{W_{2}^{1}}\left(D_{T}, S_{T}\right)$ is, by Remark 6.5, continuous and compact, and consequently, owing to (6.54), the operator $A: \stackrel{\circ}{W}_{2}^{2}\left(D_{T}, S_{T}\right) \rightarrow \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, S_{T}\right)$ is likewise continuous and compact. At the same time, by Lemma 6.1, for any parameter $\tau \in[0,1]$ and every solution $u \in \stackrel{\circ}{W}_{2}^{2}\left(D_{T}, S_{T}\right)$ of the equation $u=\tau A u$ with the parameter τ the following a priori estimate is valid:

$$
\begin{gathered}
\|u\|_{W_{2}^{2}\left(D_{T}\right)} \leq \\
\leq c\left[1+\tau\|F\|_{L_{2}\left(D_{T}\right)}+\tau^{3}\|F\|_{L_{2}\left(D_{T}\right)}^{3}+\tau\|F\|_{W_{2}^{1}\left(D_{T}\right)} \exp \left(c \tau^{2}\|F\|_{L_{2}\left(D_{T}\right)}^{2}\right)\right] \leq
\end{gathered}
$$

$$
\begin{gathered}
\leq c\left[1+\|F\|_{L_{2}\left(D_{T}\right)}+\|F\|_{L_{2}\left(D_{T}\right)}^{3}+\|F\|_{W_{2}^{1}\left(D_{T}\right)} \exp \left(c\|F\|_{L_{2}\left(D_{T}\right)}^{2}\right)\right]= \\
=C_{0}(c, F)
\end{gathered}
$$

where $C_{0}=C_{0}(c, F)$ is a positive constant not depending on u and the parameter τ.

Therefore, by the Leray-Schauder theorem [66, p. 375] the equation (6.61) and hence the problem (1.1), (1.2) has at least one strong generalized solution of the class W_{2}^{2} in the domain D_{T}. Thus, by Remark 6.1 and Definitions 6.1, 6.2 and 6.3, the following theorem is valid.

Theorem 6.1. Let $n=3, F \in L_{2, l o c}\left(D_{\infty}\right)$ and $F \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ for any $T>0$. Then the problem (1.1), (1.2) is globally solvable in the class W_{2}^{2}, i.e., for any $T>0$ this problem has a solution of the class W_{2}^{2} in the domain D_{T} in the sense of Definition 6.1.

Assume

$$
\stackrel{\circ}{W_{2, l o c}^{k}}\left(D_{\infty}, S_{\infty}\right)=\left\{v \in L_{2, l o c}\left(D_{\infty}\right):\left.v\right|_{D_{T}} \in \stackrel{\circ}{W}_{2}^{k}\left(D_{T}, S_{T}\right) \forall T>0\right\} .
$$

In the next section we will prove the uniqueness of solution of the problem (1.1), (1.2) of the class W_{2}^{2} in the sense of Definition 6.1. This circumstance along with Theorem 6.1 allows us to conclude that the theorem below is valid.

Theorem 6.2. Let $n=3, F \in \stackrel{\circ}{W}_{2, l o c}^{1}\left(D_{\infty}, S_{\infty}\right)$. Then the problem (1.1), (1.2) has in the light cone D_{∞} of future a global solution u from the space $\stackrel{\circ}{W}_{2, \text { loc }}^{1}\left(D_{T}, S_{T}\right)$ which satisfies the equation (1.1) almost everywhere in the domain D_{∞} as well as the boundary condition (1.2) in the sense of the trace theory.

7. The Uniqueness of a Solution of the Problem (1.1), (1.2) in the Class W_{2}^{2}

Lemma 7.1. Let $n=3$ and the condition (6.1) be fulfilled. Then the problem (1.1), (1.2) cannot have more than one solution of the class W_{2}^{2} in the domain D_{T} in the sense of Definition 1.1.

Proof. Let u_{1} and u_{2} be two solutions of the problem (1.1), (1.2) of the class W_{2}^{2} in the domain D_{T} in the sense of Definition 6.1. Then for the difference $u=u_{2}-u_{1}$ we have

$$
\begin{gather*}
\frac{\partial^{2} u}{\partial t^{2}}-\Delta u=-\left(f\left(u_{2}\right)-f\left(u_{1}\right)\right) \tag{7.1}\\
\quad u, u_{1}, u_{2} \in \stackrel{\circ}{W_{2}^{2}}\left(D_{T}, S_{T}\right) \tag{7.2}
\end{gather*}
$$

Multiplying both parts of the equality (7.1) by u_{t} and integrating over the domain D_{τ}, just as in obtaining (6.13) we have

$$
\begin{equation*}
\int_{\Omega_{\tau}}\left[u_{t}^{2}+\sum_{i=1}^{3} u_{x_{i}}^{2}\right] d x=-2 \int_{D_{\tau}}\left(f\left(u_{2}\right)-f\left(u_{1}\right)\right) u_{t} d x d t, \quad 0<\tau \leq T \tag{7.3}
\end{equation*}
$$

We estimate the right-hand side of the equality (7.3). By (6.1) we have

$$
\begin{gather*}
\left|-2 \int_{D_{\tau}}\left(f\left(u_{2}\right)-f\left(u_{1}\right)\right) u_{t} d x d t\right|= \\
=2\left|\int_{D_{\tau}}\left[\left(u_{2}-u_{1}\right) \int_{0}^{1} f^{\prime}\left(u_{1}+s\left(u_{2}-u_{1}\right)\right) d s\right] u_{t} d x d t\right| \leq \\
\leq 2 M \int_{D_{\tau}}\left|u_{2}-u_{1}\right|\left(1+2\left|u_{1}\right|^{2}+2\left|u_{2}\right|^{2}\right)\left|u_{t}\right| d x d t= \\
=4 M \int_{D_{\tau}}\left(\left|u_{1}\right|^{2}+\left|u_{2}\right|^{2}\right)|u|\left|u_{t}\right| d x d t+2 M \int_{D_{\tau}}^{\tau}|u|\left|u_{t}\right| d x d t= \\
=4 M \int_{0}^{\tau} d \sigma \int_{\Omega_{\sigma}}\left(\left|u_{1}\right|^{2}+\left|u_{2}\right|^{2}\right)|u|\left|u_{t}\right| d x+2 M \int_{0} d \sigma \int_{\Omega_{\sigma}}|u|\left|u_{t}\right| d x . \tag{7.4}
\end{gather*}
$$

Using Hölder's inequality for $p_{1}=3, p_{2}=6, p_{3}=2(1 / 3+1 / 6+1 / 2=1)$ and the Schwarz inequality, we obtain

$$
\begin{gather*}
\int_{\Omega_{\sigma}}\left(\left|u_{1}\right|^{2}+\left|u_{2}\right|^{2}\right)|u|\left|u_{t}\right| d x \leq \\
\leq\left(\left\|u_{1}^{2}\right\|_{L_{3}\left(\Omega_{\sigma}\right)}+\left\|u_{2}^{2}\right\|_{L_{3}\left(\Omega_{\sigma}\right)}\right)\|u\|_{L_{6}\left(\Omega_{\sigma}\right)}\left\|u_{t}\right\|_{L_{2}\left(\Omega_{\sigma}\right)}= \\
=\left(\left\|u_{1}\right\|_{L_{6}\left(\Omega_{\sigma}\right)}^{2}+\left\|u_{2}\right\|_{L_{6}\left(\Omega_{\sigma}\right)}^{2}\right)\|u\|_{L_{6}\left(\Omega_{\sigma}\right)}\left\|u_{t}\right\|_{L_{2}\left(\Omega_{\sigma}\right)}, \quad 0<\sigma \leq T, \tag{7.5}\\
\int_{\Omega_{\sigma}}|u|\left|u_{t}\right| d x \leq\|u\|_{L_{2}\left(\Omega_{\sigma}\right)}+\left\|u_{t}\right\|_{L_{2}\left(\Omega_{\sigma}\right)} . \tag{7.6}
\end{gather*}
$$

By the embedding theorems [49, pp. 69, 78], we have

$$
\begin{align*}
\left\|\left.v\right|_{\Omega_{\sigma}}\right\|_{W_{2}^{1}\left(\Omega_{\sigma}\right)} & \leq C(T)\|v\|_{W_{2}^{2}\left(D_{T}\right)} \quad\left(\operatorname{dim} \Omega_{\sigma}=3, \operatorname{dim} D_{T}=4\right) \\
\left\|\left.v\right|_{\Omega_{\sigma}}\right\|_{L_{6}\left(\Omega_{\sigma}\right)} & \leq \beta\left\|\left.v\right|_{\Omega_{\sigma}}\right\|_{W_{2}^{1}\left(\Omega_{\sigma}\right)} \leq \beta C(T)\|v\|_{W_{2}^{2}\left(D_{T}\right)} \tag{7.7}\\
\left\|v_{t} \mid \Omega_{\sigma}\right\|_{L_{2}\left(\Omega_{\sigma}\right)} & \leq C_{1}(T)\|v\|_{W_{2}^{2}\left(D_{T}\right)}
\end{align*}
$$

where the positive constants $C(T), C_{1}(T)$ and β do not depend on the parameter $\sigma \in(0, T]$ and the function v.

Due to (7.2), from (7.5), (7.6) and (7.7) it follows that

$$
\begin{gather*}
\int_{\Omega_{\sigma}}\left(\left|u_{1}\right|^{2}+\left|u_{2}\right|^{2}\right)|u|\left|u_{t}\right| d x \leq 2 M_{4}\|u\|_{W_{2}^{1}\left(\Omega_{\sigma}\right)}\left\|u_{t}\right\|_{L_{2}\left(\Omega_{\sigma}\right)} \leq \\
\leq M_{4}\left(\|u\|_{W_{2}^{1}\left(\Omega_{\sigma}\right)}^{2}+\left\|u_{t}\right\|_{L_{2}\left(\Omega_{\sigma}\right)}^{2}\right)=M_{4} \int_{\Omega_{\sigma}}\left[u_{t}^{2}+\sum_{i=1}^{3} u_{x_{i}}^{2}\right] d x, \tag{7.8}\\
\int_{\Omega_{\sigma}}|u|\left|u_{t}\right| d x \leq \frac{1}{2}\left(\|u\|_{L_{2}\left(\Omega_{\sigma}\right)}^{2}+\left\|u_{t}\right\|_{L_{2}\left(\Omega_{\sigma}\right)}^{2}\right) \leq \\
\leq \frac{1}{2} \int_{\Omega_{\sigma}}\left[u^{2}+u_{t}^{2}\right] d x \leq M_{5} \int_{\Omega_{\sigma}}\left[u_{t}^{2}+\sum_{i=1}^{3} u_{x_{i}}^{2}\right] d x, \tag{7.9}
\end{gather*}
$$

where

$$
M_{4}=\beta^{3} C(T) \max \left(\left\|u_{1}\right\|_{W_{2}^{2}\left(D_{T}\right)}^{2},\left\|u_{2}\right\|_{W_{2}^{2}\left(D_{T}\right)}^{2}\right)<+\infty, \quad M_{5}=\text { const }>0
$$

here we have used the fact that in the space $\stackrel{\circ}{W}_{2}^{1}\left(\Omega_{\sigma}\right)$ the norm

$$
\|u\|_{\stackrel{D}{2}_{1}^{1}\left(\Omega_{\sigma}\right)}=\left\{\int_{\Omega_{\sigma}}\left[u^{2}+\sum_{i=1}^{3} u_{x_{i}}^{2}\right] d x\right\}^{1 / 2}
$$

is equivalent to the norm [49, p. 62]

$$
\|u\|=\left\{\int_{\Omega_{\sigma}}\left[\sum_{i=1}^{3} u_{x_{i}}^{2}\right] d x\right\}^{1 / 2}
$$

Assuming $w(\tau)=\int_{\Omega_{\sigma}}\left[u_{t}^{2}+\sum_{i=1}^{3} u_{x_{i}}^{2}\right] d x$ and taking into account (7.3), (7.4), (7.8) and (7.9), we obtain

$$
w(\tau) \leq M_{6} \int_{0}^{\tau} w(\sigma) d \sigma, \quad M_{6}=\mathrm{const}>0
$$

whence by Gronwall's lemma we find that $w=0$, i.e., $u_{t}=u_{x_{i}}=0$, $i=1,2,3$. Consequently, $u=$ const, and since $\left.u\right|_{S_{T}}=0$, therefore $u=0$, i.e., $u_{2}=u_{1}$, which proves our lemma.

Sobolev's Problem for Multi-Dimensional Nonlinear Wave Equations in a Conic Domain of Time Type

1. Statement of the Problem

Consider the nonlinear wave equation of the type

$$
\begin{equation*}
L_{\lambda} u:=\frac{\partial^{2} u}{\partial t^{2}}-\Delta u+\lambda|u|^{p} u=F \tag{1.1}
\end{equation*}
$$

where $\lambda \neq 0$ and $p>0$ are given real numbers, $F=F(x, t)$ is a given and u is an unknown real function, $\Delta=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}, n \geq 2$.

Let D be a conic domain in the space \mathbb{R}^{n+1} of the variables $x=$ $\left(x_{1}, \ldots, x_{n}\right)$ and t, i.e., D contains, along with the point $(x, t) \in D$, the whole ray ℓ : $(\tau x, \tau t), 0<\tau<\infty$. By S we denote the conic surface $\partial D . D$ is assumed to be homeomorphic to the conic domain $\omega: t>|x|$, and $S \backslash O$ is a connected n-dimensional manifold of the class C^{∞}, where $O=(0, \ldots, 0,0)$ is the vertex of S. Assume also that D lies in the half-space $t>0$, and $D_{T}:=\{(x, t) \in D: t<T\}, S_{T}:=\{(x, t) \in S: t \leq T\}, T>0$. In case $T=\infty$, it is obvious that $D_{\infty}=D$ and $S_{\infty}=S$.

For the equation (1.1), we consider the problem: find in the domain D_{T} a solution $u(x, t)$ of that equation according to the boundary condition

$$
\begin{equation*}
\left.u\right|_{S_{T}}=g \tag{1.2}
\end{equation*}
$$

where g is a given real function on S_{T}.
In case the conic manifold $S=\partial D$ is time-oriented, i.e.,

$$
\begin{equation*}
\left.\left(\nu_{0}^{2}-\sum_{i=1}^{n} \nu_{i}^{2}\right)\right|_{S}<0,\left.\quad \nu_{0}\right|_{S}<0 \tag{1.3}
\end{equation*}
$$

where $\nu=\left(\nu_{1}, \ldots, \nu_{n}, \nu_{0}\right)$ is the unit vector of the outer normal to $S \backslash O$, and the equation is linear, i.e., for $\lambda=0$, the problem (1.1), (1.2) has been formulated and investigated by S. L. Sobolev in [63]. Note that in the case (1.3), the problem (1.1), (1.2) can be considered as a multi-dimensional version of the second Darboux problem [2, pp. 228, 233] for the nonlinear equation (1.1).

Below, the condition (1.3) will be assumed to be fulfilled.

Remark 1.1. The embedding operator $I: W_{2}^{1}\left(D_{T}\right) \rightarrow L_{q}\left(D_{T}\right)$ is linear, continuous and compact for $1<q<\frac{2(n+1)}{n-1}$, when $n>1$ [49, p. 81]. At the same time, the Nemytski operator $K: L_{q}\left(D_{T}\right) \rightarrow L_{2}\left(Q_{T}\right)$ acting by the formula $K u:=\lambda|u|^{p} u$ is continuous and bounded if $q \geq 2(p+1)$ [47, pp. 349], [48, pp. 66, 67]. Thus if $p<\frac{2}{n-1}$, i.e., $2(p+1)<\frac{2(n+1)}{n-1}$, then there exists a number q such that $1<2(p+1) \leq q<\frac{2(n+1)}{n-1}$ and hence the operator

$$
\begin{equation*}
K_{0}=K I: W_{2}^{1}\left(D_{T}\right) \rightarrow L_{2}\left(D_{T}\right) \tag{1.4}
\end{equation*}
$$

is continuous and compact. In addition, from $u \in W_{2}^{1}\left(D_{T}\right)$ it follows that $u \in L_{p+1}\left(D_{T}\right)$.

As mentioned above, it is assumed that here and in the sequel $p>0$.
Definition 1.1. Let $F \in L_{2}\left(D_{T}\right), g \in W_{2}^{1}\left(S_{T}\right)$ and $0<p<\frac{2}{n-1}$. The function $u \in W_{2}^{1}\left(D_{T}\right)$ is said to be a strong generalized solution of the problem (1.1), (1.2) of the class W_{2}^{1} in the domain D_{T} if there exists a sequence of functions $u_{k} \in C^{2}\left(\bar{D}_{T}\right)$ such that $u_{k} \rightarrow u$ in the space $W_{2}^{1}\left(D_{T}\right), L_{\lambda} u_{k} \rightarrow F$ in the space $L_{2}\left(D_{T}\right)$, and $\left.u_{k}\right|_{S_{T}} \rightarrow g$ in the space $W_{2}^{1}\left(S_{T}\right)$. Besides, the convergence of the sequence $\left\{\lambda\left|u_{k}\right|^{p} u_{k}\right\}$ to the function $\lambda|u|^{p} u$ in the space $L_{2}\left(D_{T}\right)$ as $u_{k} \rightarrow u$ in the space $W_{2}^{1}\left(D_{T}\right)$ follows from Remark 1.1. Note that since $|u|^{p+1} \in L_{2}\left(D_{T}\right)$ and the domain D_{T} is bounded, the function $u \in L_{p+1}\left(D_{T}\right)$.

Definition 1.2. Let $0<p<\frac{2}{n-1}, F \in L_{2, l o c}(D), g \in W_{2, l o c}^{1}(S)$, and $F \in L_{2}\left(D_{T}\right), g \in W_{2}^{1}\left(S_{T}\right)$ for any $T>0$. We say that the problem (1.1), (1.2) is globally solvable in the class W_{2}^{1} if for any $T>0$ this problem has a strong generalized solution of the class W_{2}^{1} in the domain D_{T}.

2. A Priori Estimate of a Solution of the Problem (1.1), (1.2) in the Class W_{2}^{1}

Lemma 2.1. Let $\lambda>0,0<p<\frac{2}{n-1}, F \in L_{2}\left(D_{T}\right)$, and $g \in W_{2}^{1}\left(S_{T}\right)$. Then for every strong generalized solution u of the problem (1.1), (1.2) of the class W_{2}^{1} in the domain D_{T} the a priori estimate

$$
\begin{equation*}
\|u\|_{W_{2}^{1}\left(D_{T}\right)} \leq c\left(\|F\|_{L_{2}\left(D_{T}\right)}+\|g\|_{W_{2}^{1}\left(S_{T}\right)}\right) \tag{2.1}
\end{equation*}
$$

is valid with a positive constant c not depending on u and F.
Proof. Let $u \in W_{2}^{1}\left(D_{T}\right)$ be a strong generalized solution of the problem (1.1), (1.2) of the class W_{2}^{1} in the domain D_{T}. Then by Definition 1.1 there exists a sequence of function $u_{k} \in C^{2}\left(\bar{D}_{T}\right)$ such that

$$
\begin{gather*}
\lim _{k \rightarrow \infty}\left\|u_{k}-u\right\|_{W_{2}^{1}\left(D_{T}\right)}=0, \quad \lim _{k \rightarrow \infty}\left\|L_{\lambda} u_{k}-F\right\|_{L_{2}\left(D_{T}\right)}=0 \tag{2.2}\\
\lim _{k \rightarrow \infty}\left\|\left.u_{k}\right|_{S_{T}}-g\right\|_{W_{2}^{1}\left(S_{T}\right)}=0 \tag{2.3}
\end{gather*}
$$

Consider the function $u_{k} \in C^{2}\left(\bar{D}_{T}\right)$ as a solution of the problem

$$
\begin{align*}
& L_{\lambda} u_{k}=F_{k}, \tag{2.4}\\
& \left.u_{k}\right|_{S_{T}}=g_{k} . \tag{2.5}
\end{align*}
$$

Here

$$
\begin{equation*}
F_{k}:=L_{\lambda} u_{k}, \quad g_{k}:=\left.u_{k}\right|_{S_{T}} . \tag{2.6}
\end{equation*}
$$

Multiplying both parts of the equation (2.7) by $\frac{\partial u_{k}}{\partial t}$ and integrating over the domain $D_{\tau}:=\{(x, t) \in D: t<\tau\}, 0<\tau \leq T$, we obtain

$$
\begin{align*}
& \frac{1}{2} \int_{D_{\tau}} \frac{\partial}{\partial t}\left(\frac{\partial u_{k}}{\partial t}\right)^{2} d x d t-\int_{D_{\tau}} \Delta u_{k} \frac{\partial u_{k}}{\partial t} d x d t+ \\
&+\frac{\lambda}{p+2} \int_{D_{\tau}} \frac{\partial}{\partial t}\left|u_{k}\right|^{p+2} d x d t=\int_{D_{\tau}} F_{k} \frac{\partial u_{k}}{\partial t} d x d t \tag{2.7}
\end{align*}
$$

Assume $\Omega_{\tau}:=D \cap\{t=\tau\}$. Clearly, $\Omega_{\tau}=D_{\tau} \cap\{t=\tau\}$ for $0<\tau<T$. Then taking into account the equality (2.5) and our reasoning in Chapter II for (2.8), we integrate the left-hand side (2.7) by parts and obtain

$$
\begin{gather*}
\int_{D_{\tau}} F_{k} \frac{\partial u_{k}}{\partial t} d x d t= \\
=\int_{S_{\tau}} \frac{1}{2 \nu_{0}}\left[\sum_{i=1}^{n}\left(\frac{\partial u_{k}}{\partial x_{i}} \nu_{0}-\frac{\partial u_{k}}{\partial t} \nu_{i}\right)^{2}+\left(\frac{\partial u_{k}}{\partial t}\right)^{2}\left(\nu_{0}^{2}-\sum_{j=1}^{n} \nu_{j}^{2}\right)\right] d s+ \\
\quad+\frac{1}{2} \int_{\Omega_{\tau}}\left[\left(\frac{\partial u_{k}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u_{k}}{\partial x_{i}}\right)^{2}\right] d x+ \\
+\frac{\lambda}{p+2} \int_{S_{T}}\left|g_{k}\right|^{p+2} \nu_{0} d s+\frac{\lambda}{p+2} \int_{\Omega_{\tau}}\left|u_{k}\right|^{p+2} d x \tag{2.8}
\end{gather*}
$$

where $\nu=\left(\nu_{1}, \ldots, \nu_{n}, \nu_{0}\right)$ is the unit vector of the outer normal to ∂D_{τ}.
By virtue of $\lambda>0$ and (1.3), it follows from (2.8) that

$$
\begin{align*}
\frac{1}{2} \int_{\Omega_{\tau}}\left[\left(\frac{\partial u_{k}}{\partial t}\right)^{2}+\right. & \left.\sum_{i=1}^{n}\left(\frac{\partial u_{k}}{\partial x_{i}}\right)^{2}\right] d x \leq \\
\leq & \int_{S_{\tau}} \frac{1}{2\left|\nu_{0}\right|}
\end{aligned} \quad\left[\sum_{i=1}^{n}\left(\frac{\partial u_{k}}{\partial x_{i}} \nu_{0}-\frac{\partial u_{k}}{\partial t} \nu_{i}\right)^{2}\right] d s+\quad \begin{aligned}
& +\frac{\lambda}{p+2} \int_{S_{T}}\left|g_{k}\right|^{p+2} \nu_{0} d s+\int_{D_{\tau}} F_{k} \frac{\partial u_{k}}{\partial t} d x d t .
\end{align*}
$$

Since S is a conic manifold, $\sup _{S \backslash O}\left|\nu_{0}\right|^{-1}=\sup _{S \cap\{t=1\}}\left|\nu_{0}\right|^{-1}$. At the same time, $S \backslash O$ is a smooth manifold and $S \cap\{t=1\}=\partial \Omega_{\tau=1}$ is compact.

Therefore, taking into account that ν_{0} is a continuous function on $S \backslash O$, we have

$$
\begin{equation*}
M_{0}:=\sup _{S \backslash O}\left|\nu_{0}\right|^{-1}=\sup _{S \cap\{t=1\}}\left|\nu_{0}\right|^{-1}<+\infty, \quad\left|\nu_{0}\right| \leq|\nu|=1 . \tag{2.10}
\end{equation*}
$$

Noticing that $\left(\nu_{0} \frac{\partial}{\partial x_{i}}-\nu_{i} \frac{\partial}{\partial t}\right), i=1, \ldots, n$, is an inner differential operator on S_{T}, by virtue of (2.5) we can easily see that

$$
\begin{equation*}
\int_{S_{\tau}}\left[\sum_{i=1}^{n}\left(\frac{\partial u_{k}}{\partial x_{i}} \nu_{0}-\frac{\partial u_{k}}{\partial t} \nu_{i}\right)^{2}\right] d s \leq\left\|\left.u_{k}\right|_{S_{T}}\right\|_{W_{2}^{1}\left(S_{T}\right)}^{2}=\left\|g_{k}\right\|_{W_{2}^{1}\left(S_{T}\right)}^{2} \tag{2.11}
\end{equation*}
$$

It follows from (2.10) and (2.11) that

$$
\begin{equation*}
\int_{S_{\tau}} \frac{1}{2\left|\nu_{0}\right|}\left[\sum_{i=1}^{n}\left(\frac{\partial u_{k}}{\partial x_{i}} \nu_{0}-\frac{\partial u_{k}}{\partial t} \nu_{i}\right)^{2}\right] d s \leq \frac{1}{2} M_{0}\left\|g_{k}\right\|_{W_{2}^{1}\left(S_{T}\right)}^{2} \tag{2.12}
\end{equation*}
$$

Taking into account the Cauchy inequality $2 F_{k} \frac{\partial u_{k}}{\partial t} \leq\left|F_{k}\right|^{2}+\left(\frac{\partial u_{k}}{\partial t}\right)^{2}$, by virtue of (2.12) from (2.9) we find that

$$
\begin{gather*}
\int_{\Omega_{\tau}}\left[\left(\frac{\partial u_{k}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u_{k}}{\partial x_{i}}\right)^{2}\right] d x \leq \\
\leq M_{0}\left\|g_{k}\right\|_{W_{2}^{1}\left(S_{T}\right)}^{2}+\frac{2}{p+2} \int_{S_{T}}\left|g_{k}\right|^{p+2} d s+\int_{D_{\tau}}\left(\frac{\partial u_{k}}{\partial t}\right)^{2} d x d t+\int_{D_{\tau}} F_{k}^{2} d x d t \tag{2.13}
\end{gather*}
$$

If $t=\gamma(x)$ is the equation of the conic surface S, then by (2.5) we have

$$
\begin{aligned}
u_{k}(x, \tau) & =u_{k}(x, \gamma(x))+\int_{\gamma(x)}^{\tau} \frac{\partial}{\partial t} u_{k}(x, s) d s= \\
& =g_{k}(x)+\int_{\gamma(x)}^{\tau} \frac{\partial}{\partial t} u_{k}(x, s) d s, \quad(x, \tau) \in \Omega_{\tau}
\end{aligned}
$$

Squaring both parts of the obtained equality, integrating over the domain Ω_{τ} and using the Schwarz inequality, we obtain

$$
\begin{aligned}
\int_{\Omega_{\tau}} u_{k}^{2} d x & \leq 2 \int_{\Omega_{\tau}} g_{k}^{2}(x, \gamma(x)) d x+2 \int_{\Omega_{\tau}}\left(\int_{\gamma(x)}^{\tau} \frac{\partial}{\partial t} u_{k}(x, s) d s\right)^{2} d x \leq \\
& \leq 2 \int_{S_{\tau}} g_{k}^{2} d s+2 \int_{\Omega_{\tau}}(\tau-\gamma(x))\left[\int_{\gamma(x)}^{\tau}\left(\frac{\partial u_{k}}{\partial t}\right)^{2} d s\right] d x \leq \\
& \leq 2 \int_{S_{\tau}} g_{k}^{2} d s+2 T \int_{\Omega_{\tau}}\left[\int_{\gamma(x)}^{\tau}\left(\frac{\partial u_{k}}{\partial t}\right)^{2} d s\right] d x=
\end{aligned}
$$

$$
\begin{equation*}
=2 \int_{S_{\tau}} g_{k}^{2} d s+2 T \int_{D_{\tau}}\left(\frac{\partial u_{k}}{\partial t}\right)^{2} d x d t \tag{2.14}
\end{equation*}
$$

Adding the inequalities (2.13) and (2.14), we get

$$
\begin{gather*}
\int_{\Omega_{\tau}}\left[u_{k}^{2}+\left(\frac{\partial u_{k}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u_{k}}{\partial x_{i}}\right)^{2}\right] d x \leq \\
\leq(2 T+1) \int_{D_{\tau}}\left(\frac{\partial u_{k}}{\partial t}\right)^{2} d x d t+\frac{\lambda}{p+2} \int_{S_{T}}\left|g_{k}\right|^{p+2} d s+ \\
+\int_{D_{\tau}} F_{k}^{2} d x d t+\left(M_{0}+2\right)\left\|g_{k}\right\|_{W_{2}^{1}\left(S_{T}\right)}^{2} \leq \\
\leq(2 T+1) \int_{D_{\tau}}\left[u_{k}^{2}+\left(\frac{\partial u_{k}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u_{k}}{\partial x_{i}}\right)^{2}\right] d x d t+ \\
+\frac{\lambda}{p+2} \int_{S_{T}}\left|g_{k}\right|^{p+2} d s+\left(M_{0}+2\right)\left[\int_{D_{\tau}} F_{k}^{2} d x d t+\left\|g_{k}\right\|_{W_{2}^{1}\left(S_{T}\right)}^{2}\right] \tag{2.15}
\end{gather*}
$$

It follows from (2.3), (2.6) and our reasoning in Remark 1.1 that

$$
\lim _{k \rightarrow \infty}\left|g_{k}\right|^{p+2} d s=\int_{S_{T}}|g|^{p+2} d s
$$

and also $\int_{S_{T}}|g|^{p+2} d s \leq C_{1}\|g\|_{W_{2}^{1}\left(S_{T}\right)}^{2}$ with a positive constant C_{1} not depending on $g \in W_{2}^{1}\left(S_{T}\right)$. Therefore, putting

$$
\begin{equation*}
w(\tau):=\int_{\Omega_{\tau}}\left[u_{k}^{2}+\left(\frac{\partial u_{k}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u_{k}}{\partial x_{i}}\right)^{2}\right] d x \tag{2.16}
\end{equation*}
$$

from (2.15) we find

$$
w(\tau) \leq(2 T+1) \int_{0}^{\tau} w(s) d s+\left(M_{0}+\frac{\lambda}{p+2} C_{1}+2\right)\left[\left\|F_{k}\right\|_{L_{2}\left(D_{T}\right)}^{2}+\left\|g_{k}\right\|_{W_{2}^{1}\left(S_{T}\right)}^{2}\right]
$$

whence by Gronwall's lemma it follows that

$$
\begin{equation*}
w(\tau) \leq\left(M_{0}+\frac{\lambda}{p+2} C_{1}+2\right)\left[\left\|F_{k}\right\|_{L_{2}\left(D_{T}\right)}^{2}+\left\|g_{k}\right\|_{W_{2}^{1}\left(S_{T}\right)}^{2}\right] \exp (2 T+1) \tau \tag{2.17}
\end{equation*}
$$

Owing to (2.16) and (2.17), we have

$$
\left\|u_{k}\right\|_{W_{2}^{1}\left(S_{T}\right)}^{2}=\int_{0}^{T} w(\tau) d \tau \leq
$$

$$
\begin{align*}
\leq\left(M_{0}+\frac{\lambda}{p+2} C_{1}+2\right) T(\exp (2 T+1) T) & {\left[\left\|F_{k}\right\|_{L_{2}\left(D_{T}\right)}^{2}\right.} \\
+ & \left.\left\|g_{k}\right\|_{W_{2}^{1}\left(S_{T}\right)}^{2}\right] \tag{2.18}
\end{align*}
$$

From (2.18) we get

$$
\begin{equation*}
\left\|u_{k}\right\|_{W_{2}^{1}\left(D_{T}\right)} \leq c\left(\left\|F_{k}\right\|_{L_{2}\left(D_{T}\right)}+\left\|g_{k}\right\|_{W_{2}^{1}\left(S_{T}\right)}\right) . \tag{2.19}
\end{equation*}
$$

Here

$$
\begin{equation*}
c=\sqrt{\left(M_{0}+\frac{\lambda}{p+2} C_{1}+2\right) T} \exp \frac{1}{2}(2 T+T) T \tag{2.20}
\end{equation*}
$$

By (2.2) and (2.3), passing in (2.19) to limit as $k \rightarrow \infty$, we obtain the estimate (2.1) with the constant c defined from (2.20) which by virtue of (2.10) does not depend on u, g and F.

3. The Global Solvability of the Problem (1.1), (1.2) in the Class W_{2}^{1}

First of all, let us consider the issue of the solvability of the corresponding to (1.1), (1.2) linear problem, when in the equation the parameter $\lambda=0$, i.e., for the problem

$$
\begin{align*}
L_{0} u(x, t) & =F(x, t), \quad(x, t) \in D_{T}, \tag{3.1}\\
u(x, t) & =g(x, t), \quad(x, t) \in S_{T} . \tag{3.2}
\end{align*}
$$

In this case, for $F \in L_{2}\left(D_{T}\right), g \in W_{2}^{1}\left(S_{T}\right)$ we introduce analogously the notion of a strong generalized solution $u \in W_{2}^{1}\left(D_{T}\right)$ of the problem (3.1), (3.2) of the class W_{2}^{1} in the domain D_{T} for which there exists a sequence of functions $u_{k} \in C^{2}\left(\bar{D}_{T}\right)$ such that $u_{k} \rightarrow u$ in the space $W_{2}^{1}\left(D_{T}\right)$, $L_{0} u_{k} \rightarrow F$ in the space $L_{2}\left(D_{T}\right)$ and $\left.u_{k}\right|_{S_{T}} \rightarrow g$ in the space $W_{2}^{1}\left(S_{T}\right)$. Note here that as is seen from the proof of Lemma 2.1, the a priori estimate (2.1) is likewise valid for a strong generalized solution of the problem (3.1), (3.2).

Introduce into consideration the weighted Sobolev space $W_{2, \alpha}^{k}(D), 0<$ $\alpha<\infty, k=1,2, \ldots$, consisting of the functions belonging to the class $W_{2, l o c}^{k}(D)$ and for which the norm ([46])

$$
\|u\|_{W_{2, \alpha}^{k}(D)}^{2}=\sum_{i=0}^{k} \int_{D} r^{-2 \alpha-2(k-1)}\left|\frac{\partial^{i} u}{\partial x^{i^{\prime}} \partial t^{i_{0}}}\right|^{2} d x d t
$$

where

$$
r=\left(\sum_{j=1}^{n} x_{j}^{2}+t^{2}\right)^{1 / 2}, \quad \frac{\partial^{2} u}{\partial x^{i^{\prime}} \partial t^{i_{0}}}=\frac{\partial^{i} u}{\partial x_{1}^{i_{1}} \cdots \partial x_{n}^{i_{n}} \partial t^{i_{0}}}, \quad i=i_{1}+\cdots+i_{n}+i_{0}
$$

is finite.
Analogously, we introduce the space $W_{2, \alpha}^{k}(S), S=\partial D$.

Along with the problem (3.1), (3.2), we consider an analogous problem in the infinite cone D. The problem is posed as follows:

$$
\begin{align*}
L_{0} u(x, t) & =F(x, t), \quad(x, t) \in D \tag{3.3}\\
u(x, t) & =g(x, t), \quad(x, t) \in S \tag{3.4}
\end{align*}
$$

By (1.3), according to a result obtained in [24, p. 114], there exists a sequence $\alpha_{0}=\alpha_{0}(k)>1$ such that for $\alpha \geq \alpha_{0}$ the problem (3.3), (3.4) has a unique solution $u \in W_{2, \alpha}^{k}(D)$ for every $F \in W_{2, \alpha-1}^{k-1}(D)$ and $g \in W_{2, \alpha-\frac{1}{2}}^{k}(S)$.

Since the space $C_{0}^{\infty}\left(D_{T}\right)$ of finitary, infinitely differentiable in D_{T} functions is dense in $L_{2}\left(D_{T}\right)$, for a given $F \in L_{2}\left(D_{T}\right)$ there exists a sequence of functions $F_{\ell} \in C_{0}^{\infty}\left(D_{T}\right)$ such that $\lim _{\ell \rightarrow \infty}\left\|F_{\ell}-F\right\|_{L_{2}\left(D_{T}\right)}=0$. For the fixed ℓ, extending the function F_{ℓ} by zero beyond the domain D_{T} and leaving the same as above notation, we have $F_{\ell} \in C_{0}^{\infty}(D)$. Obviously, $F_{\ell} \in W_{2, \alpha-1}^{k-1}(D)$ for any $k \geq 1$ and $\alpha>1$, and hence for $\alpha \geq \alpha_{0}=\alpha_{0}(k)$. If $g \in W_{2}^{1}\left(S_{T}\right)$, then, as is known, there exists a function $\widetilde{g} \in W_{2}^{1}(S)$ such that $g=\left.\widetilde{g}\right|_{S_{T}}$ and diam supp $\widetilde{g}<+\infty$. At the same time, the space $C_{*}^{\infty}(S):=\left\{g \in C^{\infty}(S): \operatorname{diam} \operatorname{supp} g<+\infty, 0 \notin \operatorname{supp} g\right\}$ is dense in $W_{2}^{1}(S)$. Therefore there exists a sequence of functions $g_{\ell} \in C_{*}^{\infty}(S)$ such that $\lim _{\ell \rightarrow \infty}\left\|g_{\ell}-\widetilde{g}\right\|_{W_{2}^{1}(S)}=0$. It can be easily seen that $g_{\ell} \in W_{2, \alpha-\frac{1}{2}}^{k}(S)$ for any $k \geq 2$ and $\alpha>1$, and hence for $\alpha \geq \alpha_{0}=\alpha_{0}(k)$, as well. According to what has been said, there exists a solution $\widetilde{u}_{\ell} \in W_{2, \alpha}^{k}(D)$ of the problem (3.3), (3.4) for $F=F_{\ell}$ and $g=g_{\ell}$. Assume $u_{\ell}=\left.\widetilde{u}_{\ell}\right|_{D_{T}}$. Since $u_{\ell} \in W_{2}^{k}\left(D_{T}\right)$, when the number k is sufficiently large, namely, $k>\frac{n+1}{2}+2$, by the embedding theorem [49, p. 84] the function $u_{\ell} \in C^{2}\left(\bar{D}_{T}\right)$. As far as the a priori estimate (2.1) is likewise valid for a strong generalized solution of the problem (3.1), (3.2) of the class W_{2}^{1} in the domain D_{T}, we have

$$
\begin{equation*}
\left\|u_{\ell}-u_{\ell^{\prime}}\right\|_{W_{2}^{1}\left(D_{T}\right)} \leq c\left(\left\|F_{\ell}-F_{\ell^{\prime}}\right\|_{L_{2}\left(D_{T}\right)}+\left\|g_{\ell}-g_{\ell^{\prime}}\right\|_{W_{2}^{1}\left(S_{T}\right)}\right) \tag{3.5}
\end{equation*}
$$

Since the sequences $\left\{F_{\ell}\right\}$ and $\left\{g_{\ell}\right\}$ are fundamental respectively in the spaces $L_{2}\left(D_{T}\right)$ and $W_{2}^{1}\left(D_{T}\right)$, owing to (3.5) the sequence $\left\{u_{\ell}\right\}$ will be fundamental in the space $W_{2}^{1}\left(D_{T}\right)$. Therefore because the space $W_{2}^{1}\left(D_{T}\right)$ is complete, there exists a function $u \in W_{2}^{1}\left(D_{T}\right)$ such that $\lim _{\ell \rightarrow \infty}\left\|u_{\ell}-u\right\|_{W_{2}^{1}\left(D_{T}\right)}=$ 0 , and since $L_{0} u_{\ell}=F_{\ell} \rightarrow F$ in the space $L_{2}\left(D_{T}\right)$ and $g_{\ell}=\left.u_{\ell}\right|_{S_{T}} \rightarrow g$ in the space $W_{2}^{1}\left(S_{T}\right)$, this function is a strong generalized solution of the problem (3.1), (3.2) of the class W_{2}^{1} in the domain D_{T}. The uniqueness of the solution of the problem (3.1), (3.2) of the class W_{2}^{1} in the domain D_{T} follows from the a priori estimate (2.1). Consequently, for a solution u of the problem (3.1), (3.2) we can write $u=L_{0}^{-1}(F, g)$, where $L_{0}^{-1}: L_{2}\left(D_{T}\right) \times W_{2}^{1}\left(S_{T}\right) \rightarrow$ $W_{2}^{1}\left(D_{T}\right)$ is a linear continuous operator whose norm, by virtue of (2.1), admits the estimate

$$
\begin{equation*}
\left\|L_{0}^{-1}\right\|_{L_{2}\left(D_{T}\right) \times W_{2}^{1}\left(S_{T}\right) \rightarrow W_{2}^{1}\left(D_{T}\right)} \leq c \tag{3.6}
\end{equation*}
$$

where the constant c is defined from (2.20).

Since the operator $L_{0}^{-1}: L_{2}\left(D_{T}\right) \times W_{2}^{1}\left(S_{T}\right) \rightarrow W_{2}^{1}\left(D_{T}\right)$ is linear, there takes place the representation

$$
\begin{equation*}
L_{0}^{-1}(F, g)=L_{01}^{-1}(F)+L_{02}^{-1}(g) \tag{3.7}
\end{equation*}
$$

where $L_{01}^{-1}: L_{2}\left(D_{T}\right) \rightarrow W_{2}^{1}\left(D_{T}\right)$ and $L_{02}^{-1}: W_{2}^{1}\left(S_{T}\right) \rightarrow W_{2}^{1}\left(D_{T}\right)$ are linear continuous operators, and by (3.6)

$$
\begin{equation*}
\left\|L_{01}^{-1}\right\|_{L_{2}\left(D_{T}\right) \rightarrow W_{2}^{1}\left(D_{T}\right)} \leq c, \quad\left\|L_{02}^{-1}\right\|_{W_{2}^{1}\left(S_{T}\right) \rightarrow W_{2}^{1}\left(D_{T}\right)} \leq c \tag{3.8}
\end{equation*}
$$

Remark 3.1. Note that for $F \in L_{2}\left(D_{T}\right), g \in W_{2}^{1}\left(S_{T}\right), 0<p<\frac{2}{n-1}$, by virtue of (3.6), (3.7), (3.8) and Remark 1.1 the function $u \in W_{2}^{1}\left(D_{T}\right)$ is a strong generalized solution of the problem (1.1), (1.2) of the class W_{2}^{1} in the domain D_{T} if and only if u is a solution of the functional equation

$$
\begin{equation*}
u=L_{01}^{-1}\left(-\lambda|u|^{p} u\right)+L_{01}^{-1}(F)+L_{02}^{-1}(g) \tag{3.9}
\end{equation*}
$$

in the space $W_{2}^{1}\left(D_{T}\right)$.
We rewrite the equation (3.9) in the form

$$
\begin{equation*}
u:=A u=-L_{01}^{-1}\left(K_{0} u\right)+L_{01}^{-1}(F)+L_{02}^{-1}(g), \tag{3.10}
\end{equation*}
$$

where the operator $K_{0}: W_{2}^{1}\left(D_{T}\right) \rightarrow L_{2}\left(D_{T}\right)$ from (1.4) is, by Remark 1.1, continuous and compact. Consequently, by (3.8) the operator $A: W_{2}^{1}\left(D_{T}\right)$ $\rightarrow W_{2}^{1}\left(D_{T}\right)$ is continuous and compact, as well. At the same time, by Lemma 2.1 and (2.10), (2.20) for any parameter $\tau \in[0,1]$ and every solution of the equation $u=\tau A u$ with the parameter τ the same a priori estimate (2.1) is valid with a positive constant c not depending on u, F, g and τ. Therefore by the Leray-Schauder theorem [66, p. 375] the equation (3.10) and hence by Remark 3.1 the problem (1.1), (1.2) has at least one solution $u \in W_{2}^{1}\left(D_{T}\right)$.

Thus we have proved the following theorem.
Theorem 3.1. Let $\lambda>0,0<p<\frac{2}{n-1}, F \in L_{2, l o c}(D), g \in W_{2, l o c}^{1}(S)$ and $F \in L_{2}\left(D_{T}\right), g \in W_{2}^{1}\left(S_{T}\right)$ for any $T>0$. Then the problem (1.1), (1.2) is globally solvable in the class W_{2}^{1}, i.e., for any $T>0$ this problem has a strong generalized solution of the class W_{2}^{1} in the domain D_{T}.

4. The Non-Existence of the Global Solvability of the Problem (1.1), (1.2)

Below we will restrict ourselves to the case where the boundary condition (1.2) is homogeneous, i.e.,

$$
\begin{equation*}
\left.u\right|_{S_{T}}=0 . \tag{4.1}
\end{equation*}
$$

For $\left(x^{0}, t^{0}\right) \in D_{T}$, we introduce into consideration the domain $D_{x^{0}, t^{0}}$ which is bounded from below by the conic surface S and from above by the light cone of the past $S_{x^{0}, t^{0}}^{-}: t=t^{0}-\left|x-x^{0}\right|$ with the vertex at the point $\left(x^{0}, t^{0}\right)$.

Lemma 4.1. Let $F \in C\left(\bar{D}_{T}\right)$ and $u \in C^{2}\left(\bar{D}_{T}\right)$ be a classical solution of the problem (1.1), (4.1). Then if for some point $\left(x^{0}, t^{0}\right) \in D_{T}$ the function $\left.F\right|_{D_{x^{0}, t^{0}}}=0$, then $\left.u\right|_{D_{x^{0}, t^{0}}}=0$ as well.

Proof. Since the proof of the above lemma is, to a certain extent, analogous to that of Lemma 2.1, we cite only the main points of that proof.

Assume $D_{x^{0}, t^{0}, \tau}:=D_{x^{0}, t^{0}} \cap\{t<\tau\}, \Omega_{x^{0}, t^{0}, \tau}:=D_{x^{0}, t^{0}} \cap\{t=\tau\}$, $0<t<\tau$. Then $\partial D_{x^{0}, t^{0}, \tau}=S_{1, \tau} \cup S_{2, \tau} \cup S_{3, \tau}$, where $S_{1, \tau}=\partial D_{x^{0}, t^{0}, \tau} \cap S$, $S_{2, \tau}=\partial D_{x^{0}, t^{0}, \tau} \cap S_{x^{0}, t^{0}}^{-}, S_{3, \tau}=\partial D_{x^{0}, t^{0}, \tau} \cap \bar{\Omega}_{x^{0}, t^{0}, \tau}$. Just in the same way as in obtaining the equality (2.8), multiplying both parts of the equality (1.1) by $\frac{\partial u}{\partial t}$, integrating over the domain $D_{x^{0}, t^{0}, \tau}, 0<\tau<t^{0}$, and taking into account (1.1) and the fact that $\left.F\right|_{D_{x^{0}, t^{0}}}=0$, we obtain

$$
\begin{align*}
0 & =\int_{S_{1, \tau} \cup S_{2, \tau}} \frac{1}{2 \nu_{0}}\left[\sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}} \nu_{0}-\frac{\partial u}{\partial t} \nu_{i}\right)^{2}+\left(\frac{\partial u}{\partial t}\right)^{2}\left(\nu_{0}^{2}-\sum_{j=1}^{n} \nu_{j}^{2}\right)\right] d s+ \\
& +\int_{S_{2, \tau} \cup S_{3, \tau}} \frac{\lambda}{p+2}|u|^{p+2} \nu_{0} d s+\int_{S_{3, \tau}}\left[\left(\frac{\partial u}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}\right] d x \tag{4.2}
\end{align*}
$$

By (1.3) and (4.1), bearing in mind that

$$
\begin{gathered}
\left.\left(\nu_{0}^{2}-\sum_{i=1}^{n} \nu_{i}^{2}\right)\right|_{S_{1, \tau}}<0,\left.\nu_{0}\right|_{S_{1, \tau}}<0 \\
\left.\left(\nu_{0}^{2}-\sum_{i=1}^{n} \nu_{i}^{2}\right)\right|_{S_{2, \tau}}=0,\left.\quad \nu_{0}\right|_{S_{2, \tau}}=\frac{1}{\sqrt{2}}>0 \\
\left.\left(\frac{\partial u}{\partial x_{i}} \nu_{0}-\frac{\partial u}{\partial t} \nu_{i}\right)\right|_{S_{1, \tau}}=0,\left.\quad\left(\frac{\partial u}{\partial x_{i}} \nu_{0}-\frac{\partial u}{\partial t} \nu_{i}\right)^{2}\right|_{S_{2, \tau}} \geq 0, \quad i=1, \ldots, n,
\end{gathered}
$$

we find that

$$
\begin{equation*}
\int_{S_{1, \tau} \cup S_{2, \tau}} \frac{1}{2 \nu_{0}}\left[\sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}} \nu_{0}-\frac{\partial u}{\partial t} \nu_{i}\right)^{2}+\left(\frac{\partial u}{\partial t}\right)^{2}\left(\nu_{0}^{2}-\sum_{j=1}^{n} \nu_{j}^{2}\right)\right] d s \geq 0 . \tag{4.3}
\end{equation*}
$$

In view of (4.3), from (4.2) we get

$$
\begin{equation*}
\int_{S_{3, \tau}}\left[\left(\frac{\partial u}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}\right] d x \leq M \int_{S_{2, \tau} \cup S_{3, \tau}} u^{2} d s, \quad 0<\tau<t^{0} . \tag{4.4}
\end{equation*}
$$

Here, since $u \in C^{2}\left(\bar{D}_{T}\right)$ and $\left|\nu_{0}\right| \leq 1$, in the capacity of the nonnegative constant M independent of the parameter τ we can take

$$
\begin{equation*}
M=\frac{|\lambda|}{p+2}\|u\|_{C\left(\bar{D}_{T}\right)}^{p}<+\infty \tag{4.5}
\end{equation*}
$$

By (4.1), reasoning as in proving the inequality (2.14) we obtain

$$
\begin{equation*}
\int_{S_{2, \tau} \cup S_{3, \tau}} u^{2} d s \leq 2 t^{0} \int_{D_{x^{0}, t^{0}, \tau}}\left(\frac{\partial u}{\partial t}\right)^{2} d x, 0<\tau<t^{0} . \tag{4.6}
\end{equation*}
$$

Putting

$$
w(\tau):=\int_{S_{3, \tau}}\left[\left(\frac{\partial u}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}\right] d x
$$

from (4.4) and (4.6) we easily find that

$$
w(\tau) \leq 2 t^{0} M \int_{0}^{\tau} w(\delta) d \delta, \quad 0<\tau<t^{0}
$$

whence by (4.5) and Gronwall's lemma it immediately follows that $w(\tau)=0$, $0<\tau<t^{0}$, and hence $\frac{\partial u}{\partial t}=\frac{\partial u}{\partial x_{1}}=\cdots=\frac{\partial u}{\partial x_{n}}=0$ in the domain $D_{x^{0}, t^{0}}$. Therefore $\left.u\right|_{D_{x^{0}, t^{0}}}=$ const, and taking into account the homogeneous boundary condition (4.1), we finally obtain that $\left.u\right|_{D_{x^{0}, t^{0}}}=0$. Thus the lemma is proved.

Below we will restrict ourselves to the consideration of the case where the equation (1.1) involves a parameter $\lambda<0$ and the spatial dimension $n=2$. For simplicity of our exposition, we assume that

$$
\begin{equation*}
S: t=k_{0}|x|, \quad k_{0}=\text { const }>1 . \tag{4.7}
\end{equation*}
$$

Obviously, for the conic surface S given by the equality (4.7) the condition (1.3) is fulfilled. In this case, $D_{T}=\left\{(x, t) \in \mathbb{R}^{3}: k_{0}|x|<t<T\right\}$.

Let $G_{a}: t>|x|+a$ be the light cone of future with the vertex at the point $(0,0, a)$, where $a=$ const >0. By (4.7), it is evident that $D \backslash G_{a}=$ $\left\{(x, t) \in \mathbb{R}^{3}: k_{0}|x|<t<|x|+a,|x|<\frac{a}{k_{0}-1}\right\}$ and

$$
\begin{equation*}
D \backslash \bar{G}_{a} \subset\left\{(x, t) \in \mathbb{R}^{3}: 0<t<b\right\}, \quad b=\frac{a k_{0}}{k_{0}-1} . \tag{4.8}
\end{equation*}
$$

Lemma 4.2. Let $n=2, \lambda<0, F \in C\left(\bar{D}_{T}\right), T \geq b=\frac{a k_{0}}{k_{0}-1}$, $\operatorname{supp} F \subset \bar{G}_{a}$ and $F \geq 0$. Then if $u \in C^{2}\left(\bar{D}_{T}\right)$ is a classical solution of the problem (1.1), (4.1), then $\left.u\right|_{D_{b}} \geq 0$.

Proof. First, let us show that $\left.u\right|_{D \backslash \bar{G}_{a}}=0$. Indeed, let $\left(x^{0}, t^{0}\right) \in D \backslash \bar{G}_{a}$. Then since $\operatorname{supp} F \subset \bar{G}_{a}$, we have that $\left.F\right|_{D_{x^{0}, t^{0}}}=0$, and according to Lemma 4.1 the equality $\left.u\right|_{D_{x^{0}, t^{0}}}=0$ holds. Therefore taking into account (4.8), extending the functions u and F by zero beyound D_{b} into the strip $\Sigma_{b}:=\left\{(x, t) \in \mathbb{R}^{3}: 0<t<b\right\}$, and leaving the same as above notation,
we obtain that $u \in C^{2}\left(\bar{\Sigma}_{b}\right)$ is a classical solution of the Cauchy problem

$$
\begin{gather*}
\frac{\partial^{2} u}{\partial t^{2}}-\Delta u=-\lambda|u|^{p} u+F \tag{4.9}\\
\left.u\right|_{t=0}=0,\left.\quad \frac{\partial u}{\partial t}\right|_{t=0}=0
\end{gather*}
$$

in the strip Σ_{b}. As is known, for the solution $u \in C^{2}\left(\bar{\Sigma}_{b}\right)$ of the problem (4.9) the integral representation [69, pp. 213-216]

$$
\begin{equation*}
u(x, t)=-\frac{\lambda}{2 \pi} \int_{\Omega_{x, t}} \frac{|u|^{p} u}{\sqrt{(t-\tau)^{2}-|x-\xi|^{2}}} d \xi d \tau+F_{0}(x, t), \quad(x, t) \in \Sigma_{b} \tag{4.10}
\end{equation*}
$$

is valid.
Here

$$
\begin{equation*}
F_{0}(x, t)=\frac{1}{2 \pi} \int_{\Omega_{x, t}} \frac{F(\xi, \tau)}{\sqrt{(t-\tau)^{2}-|x-\xi|^{2}}} d \xi d \tau \tag{4.11}
\end{equation*}
$$

where $\Omega_{x, t}:=\left\{(\xi, \tau) \in \mathbb{R}^{3}:|\xi-x|<t, 0<\tau<t-|\xi-x|\right\}$ is a circular cone with the vertex at the point (x, t); its base is the circle $d:|\xi-x|<t$, $\tau=0$ in the plane $\tau=0$ of the variables ξ_{1} and $\xi_{2}, \xi=\left(\xi_{1}, \xi_{2}\right)$.

Let $\left(x^{0}, t^{0}\right) \in D_{b}$ and $\widetilde{\psi}_{0}=\widetilde{\psi}_{0}(x, t) \in C\left(\bar{\Omega}_{x^{0}, t^{0}}\right)$. Then the linear operator $\Psi: C\left(\bar{\Omega}_{x^{0}, t^{0}}\right) \rightarrow C\left(\bar{\Omega}_{x^{0}, t^{0}}\right)$ acting by the formula

$$
\Psi v(x, t)=\frac{1}{2 \pi} \int_{\Omega_{x, t}} \frac{\widetilde{\psi}_{0}(\xi, \tau) v(\xi, \tau)}{\sqrt{(t-\tau)^{2}-|x-\xi|^{2}}} d \xi d \tau, \quad(x, t) \in \bar{\Omega}_{x^{0}, t^{0}}
$$

is continuous, and for its norm the estimate [69, p. 215]

$$
\|\Psi\|_{C\left(\bar{\Omega}_{x^{0}, t^{0}}\right) \rightarrow C\left(\bar{\Omega}_{x^{0}, t^{0}}\right)} \leq \frac{\left(t_{0}\right)^{2}}{2}\left\|\widetilde{\psi}_{0}\right\|_{C\left(\bar{\Omega}_{x^{0}, t^{0}}\right)} \leq \frac{T^{2}}{2}\left\|\widetilde{\psi}_{0}\right\|_{C\left(\bar{\Omega}_{x^{0}, t^{0}}\right)}
$$

is valid.
Consider the integral equation

$$
\begin{equation*}
v(x, t)=\int_{\Omega_{x, t}} \frac{\psi_{0}(\xi, \tau) v(\xi, \tau)}{\sqrt{(t-\tau)^{2}-|x-\xi|^{2}}} d \xi d \tau+F_{0}(x, t), \quad(x, t) \in \bar{\Omega}_{x^{0}, t^{0}} \tag{4.12}
\end{equation*}
$$

with respect to the unknown function v. Here

$$
\begin{equation*}
\psi_{0}(\xi, \tau)=-\frac{\lambda}{2 \pi}|u(\xi, \tau)|^{p} \in C\left(\bar{\Omega}_{x^{0}, t^{0}}\right) \tag{4.13}
\end{equation*}
$$

where u is the classical solution of the problem (1.1), (4.1) appearing in Lemma 4.2. Since $\psi_{0}, F_{0} \in C\left(\bar{\Omega}_{x^{0}, t^{0}}\right)$, and the operator in the right-hand side (4.12) is an integral operator of Volterra type (with respect to the variable t) with a weak singularity, the equation (4.12) is uniquely solvable
in the space $C\left(\bar{\Omega}_{x^{0}, t^{0}}\right)$. In addition, the solution v of the equation (4.12) can be obtained by the Picard method of successive approximations:

$$
\begin{array}{r}
v_{0}=0, \quad v_{k+1}(x, t)=\int_{\Omega_{x, t}} \frac{\psi_{0}(\xi, \tau) v_{k}(\xi, \tau)}{\sqrt{(t-\tau)^{2}-|x-\xi|^{2}}} d \xi d \tau+F_{0}(x, t) \tag{4.14}\\
k=1,2, \ldots
\end{array}
$$

Indeed, let $\omega_{\tau}=\Omega_{x^{0}, t^{0}} \cap\{t=\tau\},\left.w_{m}\right|_{\bar{\Omega}_{x^{0}, t^{0}}}=v_{m+1}-v_{m}\left(\left.w_{0}\right|_{\bar{\Omega}_{x^{0}, t^{0}}}=\right.$ $\left.F_{0}\right), \lambda_{m}(t)=\max _{x \omega \bar{\omega}_{t}}\left|w_{m}(x, t)\right|, m=0,1, \ldots ; \delta=\int_{|\eta|<1} \frac{d \eta_{1} d \eta_{2}}{\sqrt{1-|\eta|^{2}}}\left\|\psi_{0}\right\|_{C\left(\bar{\Omega}_{x^{0}, t^{0}}\right)}=$ $2 \pi\left\|\psi_{0}\right\|_{C\left(\bar{\Omega}_{x^{0}, t^{0}}\right)}$. Then denoting $B_{\beta} \varphi(t)=\delta \int_{0}^{t}(t-\tau)^{\beta-1} \varphi(\tau) d \tau, \beta>0$, and taking onto account the equality [15, p. 206]

$$
B_{\beta}^{m} \varphi(t)=\frac{1}{\Gamma(m \beta)} \int_{0}^{t}(\delta \Gamma(\beta))^{m}(t-\tau)^{m \beta-1} \varphi(\tau) d \tau
$$

owing to (4.14) we have

$$
\begin{aligned}
\left|w_{m}(x, t)\right| & =\left|\int_{\Omega_{x, t}} \frac{\psi_{0} w_{m-1}}{\sqrt{(t-\tau)^{2}-|x-\xi|^{2}}} d \xi d \tau\right| \leq \\
& \leq \int_{0}^{t} d \tau \int_{|x-\xi|<t-\tau} \frac{\left|\psi_{0}\right|\left|w_{m-1}\right|}{\sqrt{(t-\tau)^{2}-|x-\xi|^{2}}} d \xi \leq \\
& \leq\left\|\psi_{0}\right\|_{C\left(\bar{\Omega}_{\left.x^{0}, t^{0}\right)}\right.} \int_{0}^{t} d \tau \int_{|x-\xi|<t-\tau} \frac{\lambda_{m-1}(\tau)}{\sqrt{(t-\tau)^{2}-|x-\xi|^{2}}} d \xi= \\
& =\left\|\psi_{0}\right\|_{C\left(\bar{\Omega}_{x^{0}, t^{0}}\right)} \int_{0}^{t}(t-\tau) \lambda_{m-1}(\tau) d \tau \int_{|\eta|<1} \frac{d \eta_{1} d \eta_{2}}{\sqrt{1-|\eta|^{2}}}= \\
& =B_{2} \lambda_{m-1}(t), \quad(x, t) \in \Omega_{x^{0}, t^{0}},
\end{aligned}
$$

whence

$$
\begin{gathered}
\lambda_{m}(t) \leq B_{2} \lambda_{m-1}(t) \leq \cdots \leq B_{2}^{m} \lambda_{0}(t)= \\
=\frac{1}{\Gamma(2 m)} \int_{0}^{t}(\delta \Gamma(2))^{m}(t-\tau)^{2 m-1} \lambda_{0}(\tau) d \tau \leq \\
\leq \frac{\delta^{m}}{\Gamma(2 m)} \int_{0}^{t}(t-\tau)^{2 m-1}\left\|w_{0}\right\|_{C\left(\bar{\Omega}_{\left.x^{0}, t^{0}\right)}\right.} d \tau= \\
=\frac{\left(\delta T^{2}\right)^{m}}{\Gamma(2 m) 2 m}\|F\|_{C\left(\bar{\Omega}_{x^{0}, t^{0}}\right)}=\frac{\left(\delta T^{2}\right)^{m}}{(2 m)!}\left\|F_{0}\right\|_{C\left(\bar{\Omega}_{x^{0}, t^{0}}\right)}
\end{gathered}
$$

and consequently,

$$
\left\|w_{m}\right\|_{C\left(\bar{\Omega}_{x^{0}, t^{0}}\right)}=\left\|\lambda_{m}\right\|_{C\left(\left[0, t^{0}\right]\right)} \leq \frac{\left(\delta T^{2}\right)^{m}}{(2 m)!}\left\|F_{0}\right\|_{C\left(\bar{\Omega}_{x^{0}, t^{0}}\right)}
$$

Therefore the series $v=\lim _{m \rightarrow \infty} v_{m}=v_{0}+\sum_{m=0}^{\infty} w_{m}$ converges in the class $C\left(\bar{\Omega}_{x^{0}, t^{0}}\right)$, and its sum is a solution of the equation (4.12). The uniqueness of solution of the equation (4.12) in the space $C\left(\bar{\Omega}_{x^{0}, t^{0}}\right)$ is proved analogously.

Since $\lambda<0$, by virtue of (4.13) the function $\psi_{0}(\xi, \tau)=-\frac{\lambda}{2 \pi}|u(\xi, \tau)|^{p} \geq$ 0 , and according to the equality (4.11) the function $F_{0}(x, t) \geq 0$, as well, because, by the condition, $F(x, t) \geq 0$. Therefore the successive approximations from (4.14) are nonnegative, and since $\lim _{k \rightarrow \infty}\left\|v_{k}-v\right\|_{C\left(\bar{\Omega}_{x^{0}, t^{0}}\right)}=0$, therefore the solution $v \geq 0$ in the closed domain $\bar{\Omega}_{x^{0}, t^{0}}$. It remains only to note that due to $(4.10),(4.12)$ and (4.13), the function u is likewise a solution of the equation (4.12), and owing to the unique solvability of the equation, we have $u=v \geq 0$ in $\bar{\Omega}_{x^{0}, t^{0}}$. Thus $u\left(x^{0}, t^{0}\right) \geq 0$ for any point $\left(x^{0}, t^{0}\right) \in D_{b}$, which was to be demonstrated.

Let c_{R} and φ_{R} be, respectively, the first characteristic value and eigenfunction of the Dirichlet problem in the circle $\omega_{R}: x_{1}^{2}+x_{2}^{2}<R^{2}$. Consequently,

$$
\begin{equation*}
\left.\left(\Delta \varphi_{R}+c_{R} \varphi_{R}\right)\right|_{\omega_{R}}=0,\left.\quad \varphi_{R}\right|_{\partial \omega_{R}}=0 \tag{4.15}
\end{equation*}
$$

As is known, $c_{R}>0$, and changing the sign and performing the corresponding normalization, we may assume [59, p. 25] that

$$
\begin{equation*}
\left.\varphi_{R}\right|_{\omega_{R}}>0, \quad \int_{\omega_{R}} \varphi_{R} d x=1 \tag{4.16}
\end{equation*}
$$

Below, the conditions of Lemma 4.2 will be assumed to be fulfilled. As is shown in proving this lemma, extending the functions u and F by zero beyond D_{b} into the strip $\Sigma_{b}=\left\{(x, t) \in \mathbb{R}^{3}: 0<t<b\right\}$ and leaving the same notation, we find that $u \in C^{2}\left(\bar{\Sigma}_{b}\right)$ is a classical solution of the Cauchy problem (4.9) in the strip Σ_{b}.

Remark 4.1. In the equation (1.1), without restriction of generality we may assume that $\lambda=-1$, since the case $\lambda<0, \lambda \neq-1$, by virtue of $p>0$ reduces to the case $\lambda=-1$ after we introduce a new unknown function $v=|\lambda|^{1 / p} u$. Therefore the function v will satisfy the equation

$$
v_{t t}-\Delta u=v^{p+1}+|\lambda|^{1 / p} F(x, t), \quad(x, t) \in \Sigma_{b}
$$

According to the above remark, instead of (4.9) we consider the following Cauchy problem:

$$
\begin{gather*}
\frac{\partial^{2} u}{\partial t^{2}}-\Delta u=u^{p+1}+F(x, t), \quad(x, t) \in \Sigma_{b} \tag{4.17}\\
\left.u\right|_{t=0}=0,\left.\quad \frac{\partial u}{\partial t}\right|_{t=0}=0
\end{gather*}
$$

where $\left.u\right|_{\Sigma_{b}} \geq 0$ and $u \in C^{2}\left(\bar{\Sigma}_{b}\right)$. In addition, as is shown in proving Lemma 4.2, we have

$$
\begin{equation*}
\left.u\right|_{\Sigma_{b} \backslash \bar{G}_{a}}=0 . \tag{4.18}
\end{equation*}
$$

Take $R \geq b>\frac{a}{k_{0}-1}$, where the number $\frac{a}{k_{0}-1}$ is the radius of the circle obtained by intersection of the domain $D: t>k_{0}|x|$ and the plane $t=b$. Introduce into consideration the functions

$$
\begin{equation*}
E(t)=\int_{\omega_{R}} u(x, t) \varphi_{R}(x) d x, \quad f_{R}(x)=\int_{\omega_{R}} F(x, t) \varphi_{R}(x) d x, \quad 0 \leq t \leq b \tag{4.19}
\end{equation*}
$$

Since $\left.U\right|_{\Sigma_{b}} \geq 0, u \in C^{2}\left(\bar{\Sigma}_{b}\right)$ and $F \in C\left(\bar{\Sigma}_{b}\right)$, we have $E \geq 0, E \in$ $C^{2}([0, b])$ and $f_{R} \in C([0, R])$.

By (4.15), (4.18) and (4.19), the integration by parts results in

$$
\begin{equation*}
\int_{\omega_{R}} \Delta u \varphi_{R} d x=\int_{\omega_{R}} u \Delta \varphi_{R} d x=-c_{R} \int_{\omega_{R}} u \varphi_{R} d x=-c_{R} E \tag{4.20}
\end{equation*}
$$

By virtue of (4.16) and the fact that $p>0$ and $\left.u\right|_{\Sigma_{b}} \geq 0$, using Jensen's [59, p. 26] inequality we obtain

$$
\begin{equation*}
\int_{\omega_{R}} u^{p+1} \varphi_{R} d x \geq\left(\int_{\omega_{R}} u \varphi_{R} d x\right)^{p+1}=E^{p+1} \tag{4.21}
\end{equation*}
$$

It immediately follows from (4.17)-(4.21) that

$$
\begin{gather*}
E^{\prime \prime}+c_{R} E \geq E^{p+1}+f_{R}, \quad 0 \leq t \leq b, \tag{4.22}\\
E(0)=0, \quad E^{\prime}(0)=0 \tag{4.23}
\end{gather*}
$$

To investigate the problem (4.22), (4.23), we make use of the method of test functions [53, pp. 10-12]. Towards this end, we take $b_{1}, 0<b_{1}<b_{2}$, and consider a nonnegative test function $\psi \in C^{2}([0, b])$ such that

$$
\begin{equation*}
0 \leq \psi \leq 1, \quad \psi(t)=1, \quad 0 \leq t \leq b ; \quad \psi^{(i)}(b)=0, \quad i=0,1,2 \tag{4.24}
\end{equation*}
$$

It follows from (4.22)-(4.24) that

$$
\begin{equation*}
\int_{0}^{b} E^{p+1}(t) \psi(t) d t \leq \int_{0}^{b} E(t)\left[\psi^{\prime \prime}(t)+c_{R} \psi(t)\right] d t-\int_{0}^{b} f_{R}(t) \psi(t) d t . \tag{4.25}
\end{equation*}
$$

If in the Young inequality with the parameter $\varepsilon>0$

$$
y z \leq \frac{\varepsilon}{\alpha} y^{\alpha}+\frac{1}{\alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}} z^{\alpha^{\prime}}, \quad y, z \geq 0, \quad \alpha^{\prime}=\frac{\alpha}{\alpha-1}
$$

we take $\alpha=p+1, \alpha^{\prime}=\frac{p+1}{p}, y=E \psi^{\frac{1}{p+1}}, z=\frac{\left|\psi^{\prime \prime}+c_{R} \psi\right|}{\psi^{\frac{1}{p+1}}}$ and bear in mind that $\frac{\alpha^{\prime}}{\alpha}=\frac{1}{\alpha-1}=\alpha^{\prime}-1$, then we will obtain

$$
\begin{align*}
E\left|\psi^{\prime \prime}+c_{R} \psi\right| & =E \psi^{1 / \alpha} \frac{\left|\psi^{\prime \prime}+c_{R} \psi\right|}{\psi^{1 / \alpha}} \leq \\
& \leq \frac{\varepsilon}{\alpha} E^{\alpha} \psi+\frac{1}{\alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}} \frac{\left|\psi^{\prime \prime}+c_{R} \psi\right|^{\alpha^{\prime}}}{\psi^{\alpha^{\prime}-1}} \tag{4.26}
\end{align*}
$$

By (4.26), from (4.25) we have

$$
\begin{equation*}
\left(1-\frac{\varepsilon}{\alpha}\right) \int_{0}^{b} E^{\alpha} \psi d t \leq \frac{1}{\alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}} \int_{0}^{b} \frac{\left|\psi^{\prime \prime}+c_{R} \psi\right|^{\alpha^{\prime}}}{\psi^{\alpha^{\prime}-1}} d t-\int_{0}^{b} f_{R}(t) \psi(t) d t \tag{4.27}
\end{equation*}
$$

Taking into consideration that $\inf _{0<\varepsilon<\alpha}\left[\frac{\alpha-1}{\alpha-\varepsilon} \frac{1}{\varepsilon^{\alpha^{\prime}-1}}\right]=1$ which is achieved for $\varepsilon=1$, from (4.27) with regard for (4.24) we obtain

$$
\begin{equation*}
\int_{0}^{b_{1}} E^{\alpha} \psi d t \leq \int_{0}^{b} \frac{\left|\psi^{\prime \prime}+c_{R} \psi\right|^{\alpha^{\prime}}}{\psi^{\alpha^{\prime}-1}} d t-\alpha^{\prime} \int_{0}^{b} f_{R}(t) \psi(t) d t . \tag{4.28}
\end{equation*}
$$

We take now in the capacity of the test function ψ the function of the type

$$
\begin{equation*}
\psi(t)=\psi_{0}(\tau), \quad \tau=\frac{t}{b_{1}}, \quad 0 \leq \tau \leq \tau_{1}=\frac{b}{b_{1}} . \tag{4.29}
\end{equation*}
$$

Here

$$
\begin{gather*}
\psi_{0} \in C^{2}\left(\left[0, \tau_{1}\right]\right), \quad 0 \leq \psi_{0} \leq 1, \quad \psi_{0}(\tau)=1, \quad 0 \leq \tau \leq 1 \\
\psi_{0}^{(i)}\left(\tau_{1}\right)=0, \quad i=0,1,2 \tag{4.30}
\end{gather*}
$$

It is not difficult to see that

$$
\begin{equation*}
c_{R}=\frac{c_{1}}{R^{2}} \leq \frac{c_{1}}{b^{2}} \leq \frac{c_{1}}{b_{1}^{2}}, \quad \varphi_{R}(x)=\frac{1}{R^{2}} \varphi_{1}\left(\frac{x}{R}\right) \tag{4.31}
\end{equation*}
$$

In view of (4.29), (4.30) and (4.31), taking into account that $\psi^{\prime \prime}(t)=0$ for $0 \leq t \leq b_{1}$ and $f_{R} \geq 0$ because $F \geq 0$ as well as the known inequality $|y+z|^{\alpha^{\prime}} \leq 2^{\alpha^{\prime}-1}\left(|y|^{\alpha^{\prime}}+|z|^{\alpha^{\prime}}\right)$, from (4.28) we get

$$
\begin{gathered}
\int_{0}^{b_{1}} E^{\alpha} d t \leq \\
\leq \int_{0}^{b_{1}} \frac{c_{R}^{\alpha^{\prime}} \psi^{\alpha^{\prime}}}{\psi^{\alpha^{\prime}-1}} d t+\int_{b_{1}}^{b} \frac{\left|\psi^{\prime \prime}+c_{R} \psi\right|^{\alpha^{\prime}}}{\psi^{\alpha^{\prime}-1}} d t-\alpha^{\prime} \int_{0}^{b} f_{R}(t) \psi(t) d t \leq \\
\leq c_{R}^{\alpha^{\prime}} \int_{0}^{b_{1}} \psi d t+b_{1} \int_{1}^{r_{1}} \frac{\left\lvert\, \frac{1}{b_{1}^{2}}\right.}{\psi_{0}^{\prime \prime}(\tau)+\left.c_{R} \psi_{0}(\tau)\right|^{\alpha^{\prime}}} \\
\left(\psi_{0}(\tau)\right)^{\alpha^{\prime}-1}
\end{gathered} \tau-\alpha^{\prime} \int_{0}^{b_{1}} f_{R}(t) d t \leq
$$

$$
\begin{gather*}
\leq c_{R}^{\alpha^{\prime}} b_{1}+\frac{2^{\alpha^{\prime}-1}}{b_{1}^{2 \alpha^{\prime}-1}} \int_{1}^{r_{1}} \frac{\left|\psi_{0}^{\prime \prime}(\tau)\right|^{\alpha^{\prime}}}{\left(\psi_{0}(\tau)\right)^{\alpha^{\prime}-1}} d \tau+ \\
+b_{1} 2^{\alpha^{\prime}-1} c_{R}^{\alpha^{\prime}} \int_{1}^{r_{1}} \psi_{0}(\tau) d \tau-\alpha^{\prime} \int_{0}^{b_{1}} f_{R}(t) d t \leq \\
\leq \frac{c_{1}^{\alpha^{\prime}}}{b_{1}^{2 \alpha^{\prime}-1}}+\frac{2^{\alpha^{\prime}-1}}{b_{1}^{2 \alpha^{\prime}-1}} \int_{1}^{r_{1}} \frac{\left|\psi_{0}^{\prime \prime}(\tau)\right|^{\alpha^{\prime}}}{\left(\psi_{0}(\tau)\right)^{\alpha^{\prime}-1}} d \tau+ \\
\quad+\frac{2^{\alpha^{\prime}-1} c_{1}^{\alpha^{\prime}}}{b_{1}^{2 \alpha^{\prime}-1}}\left(\tau_{1}-1\right)-\alpha^{\prime} \int_{0}^{b_{1}} f_{R}(t) d t \tag{4.32}
\end{gather*}
$$

Assuming now that $R=b=\frac{a k_{0}}{k_{0}-1}$ and the number $\tau_{1}>1$ is such that

$$
\begin{equation*}
b_{1}=\frac{b}{\tau_{1}}=a+2 \frac{b-a}{3}=\frac{a+2 b}{3}=\frac{a}{3}\left(\frac{3 k_{0}-1}{k_{0}-1}\right) \tag{4.33}
\end{equation*}
$$

from (4.32) we find

$$
\begin{gather*}
\int_{0}^{b_{1}} E^{\alpha} d t \leq b_{1}^{1-2 \alpha^{\prime}}\left[c_{1}^{\alpha^{\prime}}\left(1+2^{\alpha^{\prime}-1}\left(\tau_{1}-1\right)\right)+2^{\alpha^{\prime}-1} \int_{1}^{r_{1}} \frac{\left|\psi_{0}^{\prime \prime}(\tau)\right|^{\alpha^{\prime}}}{\left(\psi_{0}(\tau)\right)^{\alpha^{\prime}-1}} d \tau-\right. \\
\left.-\alpha^{\prime} b_{1}^{2 \alpha^{\prime}-1} \int_{0}^{b_{1}} f_{b}(t) d t\right], \quad 2 \alpha^{\prime}-1=\frac{p+2}{p} \tag{4.34}
\end{gather*}
$$

As is known, the function ψ_{0} with the property (4.30) for which the integral

$$
\begin{equation*}
d\left(\psi_{0}\right)=\int_{1}^{r_{1}} \frac{\left|\psi_{0}^{\prime \prime}(\tau)\right|^{\alpha^{\prime}}}{\left(\psi_{0}(\tau)\right)^{\alpha^{\prime}-1}} d \tau<+\infty \tag{4.35}
\end{equation*}
$$

is finite does exist [53, p. 11].
Bearing in mind (4.19) and (4.31), we have

$$
\begin{align*}
J(b) & =\int_{0}^{b_{1}} f_{b}(t) d t=\int_{0}^{b_{1}} d t \int_{\omega_{b}} F(x, t) \varphi_{b}(x) d x= \\
& =\int_{0}^{b_{1}} d t \int_{\omega_{b}} F(x, t) \frac{1}{b^{2}} \varphi_{1}\left(\frac{x}{b}\right) d x=\int_{0}^{b_{1}} d t \int_{\omega_{1}} F(b \xi, t) \varphi_{1}(\xi) d \xi \tag{4.36}
\end{align*}
$$

By virtue of (4.35), the value

$$
\begin{equation*}
\varkappa_{0}=\varkappa_{0}\left(c_{1}, \alpha^{\prime}, \psi_{0}\right)=\frac{\tau_{1}^{2 \alpha^{\prime}-1}}{\alpha^{\prime}}\left[c_{1}^{\alpha^{\prime}}\left(1+2^{\alpha^{\prime}-1}\left(\tau_{1}-1\right)\right)+2^{\alpha^{\prime}-1} d\left(\psi_{0}\right)\right] \tag{4.37}
\end{equation*}
$$

is likewise finite.

From the above reasoning we have the following
Theorem 4.1. Let $n=2, \lambda=-1, F \in C(\bar{D}), F \geq 0$ and $\operatorname{supp} F \subset$ $\bar{G}_{a}: t \geq|x|+a, a=\mathrm{const}>0$. If the condition

$$
\begin{equation*}
b^{\frac{p+2}{p}} \int_{0}^{\frac{1}{r_{1}} b} d t \int_{\omega_{1}} F(b \xi, t) \varphi_{1}(\xi) d \xi>\varkappa_{0}, \quad b=\frac{a k_{0}}{k_{0}-1}, \quad \tau_{1}=\frac{3 k_{0}}{3 k_{0}-1} \tag{4.38}
\end{equation*}
$$

is fulfilled, then for $T \geq b$ the problem (1.1), (4.1) fails to have a classical solution $u \in C^{2}\left(\bar{D}_{T}\right)$ in the domain D_{T}.

Proof. Indeed, by (4.33) and (4.36)-(4.38) the right-hand side of the inequality (4.34) is negative, but this is impossible because the left-hand side of this inequality is nonnegative. Therefore for $T \geq b$ the problem (1.1), (4.1) cannot have a classical solution $u \in C^{2}\left(\bar{D}_{T}\right)$ in the domain D_{T}. Thus the theorem is proved.

Remark 4.2. As we can see from the proof, if the conditions of Theorem 4.1 are fulfilled and a solution $u \in C^{2}\left(\bar{D}_{T}\right)$ of the problem (1.1), (4.1) exists in the domain D_{T}, then T is contained in the interval $(0, b)$, i.e., $0<T<b=\frac{a k_{0}}{k_{0}-1}$.

Remark 4.3. In Theorem 4.1, it is assumed that $\lambda=-1$. Taking into account Remark 4.1, we can conclude that Theorem 4.1 remains also valid in case $\lambda<0$, provided in the right-hand side of the inequality (4.38) instead of \varkappa_{0} we write $|\lambda|^{-\frac{1}{p}} \varkappa_{0}$.

Corollary 4.1. Let $n=2, \lambda<0, F=\mu F_{0}$, where $\mu=$ const >0, $F_{0} \in C(\bar{D}), F_{0} \geq 0, \operatorname{supp} F_{0} \subset \bar{G}_{a}$ and $\left.F_{0}\right|_{D_{b}} \not \equiv 0$. Then there exists a positive number μ_{0} such that if $\mu>\mu_{0}$, then the problem (1.1), (4.1) cannot have a classical solution $u \in C^{2}\left(\bar{D}_{T}\right)$ for $T \geq b$.

CHAPTER 4

Some Multi-Dimensional Versions of the First Darboux Problem for Nonlinear Wave

 Equations
1. Statement of the Problems

In the Euclidean space \mathbb{R}^{n+1} of the variables $t, x_{1}, \ldots, x_{n}, n \geq 2$, we consider the nonlinear wave equation of the type

$$
\begin{equation*}
L_{\lambda} u:=\frac{\partial^{2} u}{\partial t^{2}}-\Delta u+\lambda f(u)=F \tag{1.1}
\end{equation*}
$$

where f and F are given real functions, $f \in C(\mathbb{R})$ is a nonlinear function, $f(0)=0$, and u is an unknown real function, $\Delta=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}, \lambda \neq 0$ is a given real number.

By $D: t>|x|, x_{n}>0$ we denote one half of the light cone of future which is bounded by the part $S^{0}=D \cap\left\{x_{n}=0\right\}$ of the hyperplane $x_{n}=0$ and by the half $S: t=|x|, x_{n} \geq 0$ of the characteristic conoid $C: t=|x|$ of the equation (1.1). Assume $D_{T}:=\{(x, t) \in D: t<T\}, S_{T}^{0}:=\{(x, t) \in$ $\left.S^{0}: t \leq T\right\}, S_{T}:=\{(x, t) \in S: t \leq T\}, T>0$. In case $T=\infty$, it is obvious that $D_{\infty}=D, S_{\infty}^{0}=S^{0}$ and $S_{\infty}=S$.

For the equation (1.1), we consider the following problem: find in the domain D_{T} a solution $u(x, t)$ of that equation satisfying one of the following boundary conditions:

$$
\begin{equation*}
\left.\frac{\partial u}{\partial x_{n}}\right|_{S_{T}^{0}}=0,\left.\quad u\right|_{S_{T}}=0 \tag{1.2}
\end{equation*}
$$

or

$$
\begin{equation*}
\left.u\right|_{S_{T}^{0}}=0,\left.\quad u\right|_{S_{T}}=0 . \tag{1.3}
\end{equation*}
$$

The problems (1.1), (1.2) and (1.1), (1.3) are multi-dimensional versions of the first Darboux problem for the equation (1.1), when one part of the data support is a characteristic manifold and another part is of time type [2, pp. 228, 233].

Let $f \in C(\mathbb{R})$. If $u \in C^{2}\left(\bar{D}_{T}\right)$ is a classical solution of the problem (1.1), (1.2), then multiplying both parts of the equation (1.1) by an arbitrary function $\varphi \in C^{2}\left(\bar{D}_{T}\right)$ satisfying the condition $\left.\varphi\right|_{t=T}=0$, after integration
by parts we obtain

$$
\begin{align*}
& \int_{S_{T}^{0} \cup S_{T}} \frac{\partial u}{\partial N} \varphi d s-\int_{D_{T}} u_{t} \varphi_{t} d x d t+\int_{D_{T}} \nabla_{x} u \nabla_{x} \varphi d x d t+ \\
& \lambda \int_{D_{T}} f(u) \varphi d x d t=\int_{D_{T}} F \varphi d x d t \tag{1.4}
\end{align*}
$$

where $\frac{\partial}{\partial N}=\nu_{0} \frac{\partial}{\partial t}-\sum_{i=1}^{n} \nu_{i} \frac{\partial}{\partial x_{i}}$ is the derivative with respect to the conormal, $\nu=\left(\nu_{1}, \ldots, \nu_{n}, \nu_{0}\right)$ is the unit vector of the outer normal to ∂D_{T}, $\nabla_{x}=\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right)$. Taking into account that $\left.\frac{\partial u}{\partial N}\right|_{S_{T}^{0}}=\frac{\partial u}{\partial x_{n}}$ and S_{T} is a characteristic manifold in which $\frac{\partial}{\partial N}$ is an inner differential operator, by virtue of (1.2) we have $\left.\frac{\partial u}{\partial N}\right|_{S_{T}^{0} \cup S_{T}}=0$. Therefore the equality (1.4) takes the form

$$
\begin{gather*}
-\int_{D_{T}} u_{t} \varphi_{t} d x d t+\int_{D_{T}} \nabla_{x} u \nabla_{x} \varphi d x d t+\lambda \int_{D_{T}} f(u) \varphi d x d t= \\
=\int_{D_{T}} F \varphi d x d t \tag{1.5}
\end{gather*}
$$

The equality (1.5) can be considered as a basis of the definition of a weak generalized solution of the problem (1.1), (1.2) of the class W_{2}^{1} in the domain D_{T}.

Suppose $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right):=\left\{u \in W_{2}^{1}\left(D_{T}\right):\left.u\right|_{S_{T}}=0\right\}$, where $W_{2}^{1}\left(D_{T}\right)$ is the well-known Sobolev's space, and the equality $\left.u\right|_{S_{T}}=0$ is understood in the sense of the trace theory [49, p. 70].

Definition 1.1. Let $F \in L_{2}\left(D_{T}\right)$. The function $u \in \stackrel{\circ}{W_{2}^{1}}\left(D_{T}, S_{T}\right)$ is said to be a weak generalized solution of the problem (1.1), (1.2) of the class W_{2}^{1} in the domain D_{T}, if $f(u) \in L_{2}\left(D_{T}\right)$ and for every function $\varphi \in W_{2}^{1}\left(D_{T}\right)$ such that $\left.\varphi\right|_{t=T}=0$ the equality (1.5) is fulfilled.

Remark 1.1. In a standard way [49, p. 113] it is proved that if a weak solution u of the problem (1.1), (1.2) belongs to the space $W_{2}^{1}\left(D_{T}\right)$, then for that solution the homogeneous boundary conditions (1.2) will be fulfilled in the sense of the trace theory.

Assume $\stackrel{\circ}{C^{2}}\left(\bar{D}_{T}, S_{T}^{0}, S_{T}\right):=\left\{u \in C^{2}\left(\bar{D}_{T}\right):\left.\frac{\partial u}{\partial x_{n}}\right|_{S_{T}^{0}}=0,\left.u\right|_{S_{T}}=0\right\}$.
Definition 1.2. Let $F \in L_{2}\left(D_{T}\right)$. The function $u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ is said to be a strong generalized solution of the problem (1.1), (1.2) of the class W_{2}^{1} in the domain D_{T}, if there exists a sequence of functions
$u_{k} \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, S_{T}^{0}, S_{T}\right)$ such that $u_{k} \rightarrow u$ in the space $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ and $L_{\lambda} u_{k} \rightarrow F$ in the space $L_{2}\left(D_{T}\right)$.

Remark 1.2. It can be easily verified that if $u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ is a strong generalized solution of the problem (1.1), (1.2) of the class W_{2}^{1}, then this solution will automatically be a weak generalized solution of that problem if the nonlinear Nemytski operator $K: \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right) \rightarrow L_{2}\left(D_{T}\right)$ acting by the formula $K u=f(u)$ is continuous. Therefore, if it is additionally known that $u \in W_{2}^{2}\left(D_{T}\right)$, then the boundary conditions (1.2) for that solution will be fulfilled in the sense of the trace theory. Below we will distinguish the cases where the operator K is continuous from the space $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ to $L_{2}\left(D_{T}\right)$.

Definition 1.3. Let $F \in L_{2, l o c}(D)$ and $F \in L_{2}\left(D_{T}\right)$ for any $T>0$. We say that the problem (1.1), (1.2) is globally solvable in the class W_{2}^{1} if for every $T>0$ this problem has a strong generalized solution of the class W_{2}^{1} in the domain D_{T}.

Remark 1.3. We can define analogously a weak generalized solution of the problem (1.1), (1.3) of the class W_{2}^{1} in the domain D_{T} as a function $u \in \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, S_{T}^{0} \cup S_{T}\right):=\left\{v \in W_{2}^{1}\left(D_{T}\right):\left.v\right|_{S_{T}^{0} \cup S_{T}}=0\right\}$ for which $f(u) \in L_{2}\left(D_{T}\right)$ and the integral equality (1.5) is valid for every function $\varphi \in W_{2}^{1}\left(D_{T}\right)$ such that $\left.\varphi\right|_{t=T}=0$, where $F \in L_{2}\left(D_{T}\right)$. The function $u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}^{0} \cup S_{T}\right)$ is said to be a strong generalized solution of the problem (1.1), (1.3) of the class W_{2}^{1} in the domain D_{T} if there exists a sequence of functions $u_{k} \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, S_{T}^{0} \cup S_{T}\right):=\left\{v \in C^{2}\left(\bar{D}_{T}\right):\left.v\right|_{S_{T}^{0} \cup S_{T}}=0\right\}$ such that $u_{k} \rightarrow u$ in the space $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}^{0} \cup S_{T}\right)$ and $L_{\lambda} u_{k} \rightarrow F$ in the space $L_{2}\left(D_{T}\right)$. Analogously, we say that the problem (1.1), (1.3) is globally solvable in the class W_{2}^{1} if for every $T>0$ this problem has a strong generalized solution of the class W_{2}^{1} in the domain D_{T}.

Below we will distinguish particular cases for the nonlinear function $f=f(u)$, when the problem (1.1), (1.3) is globally solvable in the class W_{2}^{1} in one case, and such solvability does not take place in the other case.

2. A Priori Estimates

Lemma 2.1. Let $\lambda \geq 0, f(u)=|u|^{p} u, p>0$ and $F \in L_{2}\left(D_{T}\right)$. Then for every strong generalized solution $u \in \stackrel{\circ}{W_{2}^{1}}\left(D_{T}, S_{T}\right)$ of the problem (1.1), (1.2) of the class W_{2}^{1} in the domain D_{T} the a priori estimate

$$
\begin{equation*}
\|u\|_{\stackrel{W}{2}_{2}^{1}\left(D_{T}, S_{T}\right)} \leq \sqrt{\frac{e}{2}} T\|F\|_{L_{2}\left(D_{T}\right)} \tag{2.1}
\end{equation*}
$$

is valid.
Proof. Let $u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ be a strong generalized solution of the problem (1.1), (1.2) of the class W_{2}^{1} in the domain D_{T}. By Definition 1.2, there exists a sequence of functions $u_{k} \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, S_{T}^{0}, S_{T}\right)$ such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|u_{k}-u\right\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}=0, \quad \lim _{k \rightarrow \infty}\left\|L_{\lambda} u_{k}-F\right\|_{L_{2}\left(D_{T}\right)}=0 \tag{2.2}
\end{equation*}
$$

Consider the function $u_{k} \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, S_{T}^{0}, S_{T}\right)$ as a solution of the problem

$$
\begin{gather*}
L_{\lambda} u_{k}=F_{k} \tag{2.3}\\
\left.\frac{\partial u_{k}}{\partial x_{n}}\right|_{S_{T}^{0}}=0,\left.\quad u_{k}\right|_{S_{k}}=0 \tag{2.4}
\end{gather*}
$$

Here

$$
\begin{equation*}
F_{k}:=L_{\lambda} u_{k} . \tag{2.5}
\end{equation*}
$$

Multiplying both parts of the equation (2.3) by $\frac{\partial u_{k}}{\partial t}$ and integrating over the domain $D_{\tau}, 0<\tau \leq T$, we get

$$
\begin{gather*}
\frac{1}{2} \int_{D_{\tau}} \frac{\partial}{\partial t}\left(\frac{\partial u_{k}}{\partial t}\right)^{2} d x d t-\int_{D_{\tau}} \Delta u_{k} \frac{\partial u_{k}}{\partial t} d x d t+\frac{\lambda}{p+2} \int_{D_{\tau}} \frac{\partial}{\partial t}\left|u_{k}\right|^{p+2} d x d t= \\
=\int_{D_{\tau}} F_{k} \frac{\partial u_{k}}{\partial t} d x d t \tag{2.6}
\end{gather*}
$$

Assume $\Omega_{\tau}:=D_{T} \cap\{t=\tau\}, 0<\tau<T$. Obviously, $\partial D_{\tau}=S_{\tau}^{0} \cup S_{\tau} \cup \Omega_{\tau}$. Taking into account (2.4) and the equalities $\left.\nu\right|_{\Omega_{\tau}}=(0, \ldots, 0,1),\left.\nu\right|_{S_{T}^{0}}=$ $(0, \ldots,-1,0)$, by integration by parts we obtain

$$
\begin{gathered}
\int_{D_{\tau}} \frac{\partial}{\partial t}\left(\frac{\partial u_{k}}{\partial t}\right)^{2} d x d t=\int_{\partial D_{\tau}}\left(\frac{\partial u_{k}}{\partial t}\right)^{2} \nu_{0} d x d t= \\
=\int_{\Omega_{\tau}}\left(\frac{\partial u_{k}}{\partial t}\right)^{2} d x+\int_{S_{\tau}}\left(\frac{\partial u_{k}}{\partial t}\right)^{2} \nu_{0} d s \\
\int_{D_{\tau}} \frac{\partial}{\partial t}\left(u_{k}\right)^{2} d x d t=\int_{\partial D_{\tau}} u_{k}^{2} \nu_{0} d s=\int_{\Omega_{\tau}} u_{k}^{2} d x \\
\int_{D_{\tau}} \frac{\partial}{\partial t}\left|u_{k}\right|^{p+2} d x d t=\int_{D_{\tau}}\left|u_{k}\right|^{p+2} \nu_{0} d s=\int_{\Omega_{\tau}}\left|u_{k}\right|^{p+2} d x \\
\int_{D_{\tau}} \frac{\partial^{2} u_{k}}{\partial x_{i}^{2}} \frac{\partial u_{k}}{\partial t} d x d t=\int_{\partial D_{\tau}} \frac{\partial u_{k}}{\partial x_{i}} \frac{\partial u_{k}}{\partial t} \nu_{i} d s-\frac{1}{2} \int_{D_{\tau}} \frac{\partial}{\partial t}\left(\frac{\partial u_{k}}{\partial x_{i}}\right)^{2} d x d t= \\
=\int_{\partial D_{\tau}} \frac{\partial u_{k}}{\partial x_{i}} \frac{\partial u_{k}}{\partial t} \nu_{i} d s-\frac{1}{2} \int_{\partial D_{\tau}}\left(\frac{\partial u_{k}}{\partial x_{i}}\right)^{2} \nu_{0} d s=
\end{gathered}
$$

$$
=\int_{S_{\tau}} \frac{\partial u_{k}}{\partial x_{i}} \frac{\partial u_{k}}{\partial t} \nu_{i} d s-\frac{1}{2} \int_{S_{\tau}}\left(\frac{\partial u_{k}}{\partial x_{i}}\right)^{2} \nu_{0} d s-\frac{1}{2} \int_{\Omega_{\tau}}\left(\frac{\partial u_{k}}{\partial x_{i}}\right)^{2} d x
$$

whence by virtue of (2.6) we get

$$
\begin{gather*}
\int_{D_{\tau}} F_{k} \frac{\partial u_{k}}{\partial t} d x d t= \\
=\int_{S_{\tau}} \frac{1}{2 \nu_{0}}\left[\sum_{i=1}^{n}\left(\frac{\partial u_{k}}{\partial x_{i}} \nu_{0}-\frac{\partial u_{k}}{\partial t} \nu_{i}\right)^{2}+\left(\frac{\partial u_{k}}{\partial t}\right)^{2}\left(\nu_{0}^{2}-\sum_{j=1}^{n} \nu_{j}^{2}\right)\right] d s+ \\
+\frac{1}{2} \int_{\Omega_{\tau}}\left[\left(\frac{\partial u_{k}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u_{k}}{\partial x_{i}}\right)^{2}\right] d x+\frac{\lambda}{p+2} \int_{\Omega_{\tau}}\left|u_{k}\right|^{p+2} d x \tag{2.7}
\end{gather*}
$$

Since S_{τ} is a characteristic manifold, we have

$$
\begin{equation*}
\left.\left(\nu_{0}^{2}-\sum_{j=1}^{n} \nu_{j}^{2}\right)\right|_{S_{\tau}}=0 \tag{2.8}
\end{equation*}
$$

Taking into account that $\left(\nu_{0}^{2} \frac{\partial}{\partial x_{i}}-\nu_{i} \frac{\partial}{\partial t}\right), i=1, \ldots, n$, is an inner differential operator on S_{τ}, by (2.4) we find that

$$
\begin{equation*}
\left.\left(\frac{\partial u_{k}}{\partial x_{i}} \nu_{0}-\frac{\partial u_{k}}{\partial t} \nu_{i}\right)\right|_{S_{\tau}}=0, \quad i=1, \ldots, n \tag{2.9}
\end{equation*}
$$

Owing to (2.8), (2.9), from (2.7) it follows

$$
\begin{gathered}
\int_{\Omega_{\tau}}\left[\left(\frac{\partial u_{k}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u_{k}}{\partial x_{i}}\right)^{2}\right] d x+\frac{2 \lambda}{p+2} \int_{\Omega_{\tau}}\left|u_{k}\right|^{p+2} d x= \\
=2 \int_{D_{\tau}} F_{k} \frac{\partial u_{k}}{\partial t} d x d t
\end{gathered}
$$

whence in view of $\lambda \geq 0$, it follows that

$$
\begin{equation*}
\int_{\Omega_{\tau}}\left[\left(\frac{\partial u_{k}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u_{k}}{\partial x_{i}}\right)^{2}\right] d x \leq 2 \int_{D_{\tau}} F_{k} \frac{\partial u_{k}}{\partial t} d x d t \tag{2.10}
\end{equation*}
$$

Putting

$$
w(\delta):=\int_{\Omega_{\delta}}\left[\left(\frac{\partial u_{k}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u_{k}}{\partial x_{i}}\right)^{2}\right] d x
$$

and taking into account the inequality $2 F_{k} \frac{\partial u_{k}}{\partial t} \leq \varepsilon\left(\frac{\partial u_{k}}{\partial t}\right)^{2}+\frac{1}{\varepsilon} F_{k}^{2}$ which is valid for any $\varepsilon=$ const >0, from (2.10) we obtain

$$
\begin{equation*}
w(\delta) \leq \varepsilon \int_{0}^{\delta} w(\sigma) d \sigma+\frac{1}{\varepsilon}\left\|F_{k}\right\|_{L_{2}\left(D_{\delta}\right)}^{2}, \quad 0<\delta \leq T . \tag{2.11}
\end{equation*}
$$

From (2.11), bearing in mind that $\left\|F_{k}\right\|_{L_{2}\left(D_{\delta}\right)}^{2}$ as a function of δ is nondecreasing, by Gronwall's lemma we get

$$
w(\delta) \leq \frac{1}{\varepsilon}\left\|F_{k}\right\|_{L_{2}\left(D_{\delta}\right)}^{2} \exp \delta \varepsilon
$$

whence with regard for the fact that $\inf _{\varepsilon>0} \frac{\exp \delta \varepsilon}{\varepsilon}=e \delta$ which is achieved for $\varepsilon=1 / \delta$, we obtain

$$
\begin{equation*}
w(\delta) \leq e \delta\left\|F_{k}\right\|_{L_{2}\left(D_{\delta}\right)}^{2}, \quad 0<\delta \leq T \tag{2.12}
\end{equation*}
$$

From (2.12) it in its turn follows that

$$
\begin{align*}
\left\|u_{k}\right\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}^{2}=\int_{D_{T}}\left[\left(\frac{\partial u_{k}}{\partial t}\right)^{2}\right. & \left.+\sum_{i=1}^{n}\left(\frac{\partial u_{k}}{\partial x_{i}}\right)^{2}\right] d x d t= \\
& =\int_{0}^{T} w(\delta) d \delta \leq \frac{e}{2} T^{2}\left\|F_{k}\right\|_{L_{2}\left(D_{T}\right)}^{2} \tag{2.13}
\end{align*}
$$

Here we have used the fact that in the space $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ one of the equivalent norms is given by means of the expression

$$
\left\{\int_{D_{T}}\left[\left(\frac{\partial u}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}\right] d x d t\right\}^{1 / 2}
$$

Indeed, from the equalities $\left.u\right|_{S_{T}}=0$ and $u(x, t)=\int_{\psi(x)}^{t} \frac{\partial u(x, \tau)}{\partial t} d \tau,(x, t) \in$ \bar{D}_{T}, where $t-\psi(x)=0$ is the equation of the conic manifold S_{T}, standard reasoning results in the inequality

$$
\int_{D_{T}} u^{2} d x d t \leq T^{2} \int_{D_{T}}\left(\frac{\partial u}{\partial t}\right)^{2} d x d t
$$

Now, due to (2.2) and (2.5), passing in the inequality (2.13) to limit as $k \rightarrow \infty$, we obtain (2.1), which proves the above lemma.

An a priori estimate for the solution of the problem $(1.1),(1.3)$ is proved analogously.

Lemma 2.2. Let $\lambda \geq 0, f(u)=|u|^{p} u, p>0$ and $F \in L_{2}\left(D_{T}\right)$. Then for any strong generalized solution $u \in \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, S_{T}^{0} \cup S_{T}\right)$ of the problem (1.1), (1.3) of the class W_{2}^{1} in the domain D_{T} the a priori estimate

$$
\begin{equation*}
\|u\|_{\dot{W}_{2}^{1}\left(D_{T}, S_{T}^{0} \cup S_{T}\right)} \leq \sqrt{\frac{e}{2}} T\|F\|_{L_{2}\left(D_{T}\right)} \tag{2.14}
\end{equation*}
$$

holds.

3. The Global Solvability

First, let us consider the issue of the solvability of the corresponding to (1.1), (1.2) linear problem, when in the equation (1.2) the parameter $\lambda=0$, i.e., for the problem

$$
\begin{gather*}
L_{0} u(x, t)=F(x, t), \quad(x, t) \in D_{T}, \tag{3.1}\\
\left.\frac{\partial u}{\partial x_{n}}\right|_{S_{T}^{0}}=0,\left.\quad u\right|_{S_{T}}=0 . \tag{3.2}
\end{gather*}
$$

In this case, for $F \in L_{2}\left(D_{T}\right)$ we introduce analogously the notion of a strong generalized solution $u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ of the problem (3.1), (3.2) of the class W_{2}^{1} in the domain D_{T} for which there exists a sequence of functions $u_{k} \in \stackrel{\circ}{C}_{2}^{1}\left(\bar{D}_{T}, S_{T}^{0}, S_{T}\right)$ such that $\lim _{k \rightarrow \infty}\left\|u_{k}-u\right\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}=0$, $\lim _{k \rightarrow \infty}\left\|L_{0} u_{k}-F\right\|_{L_{2}\left(D_{T}\right)}=0$. It should be noted that in view of Lemma 2.1, for $\lambda=0$, the a priori estimate (2.1) is likewise valid for a strong generalized solution of the problem $(3.1),(3.2)$ of the class W_{2}^{1} in the domain D_{T}.

Since the space $C_{0}^{\infty}\left(D_{T}\right)$ of finitary infinitely differentiable in D_{T} functions is dense in $L_{2}\left(D_{T}\right)$, for a given $F \in L_{2}\left(D_{T}\right)$ there exists a sequence of functions $F_{k} \in C_{0}^{\infty}\left(D_{T}\right)$ such that $\lim _{k \rightarrow \infty}\left\|F_{k}-F\right\|_{L_{2}\left(D_{T}\right)}=0$. For a fixed k, extending the function F_{k} evenly with respect to the variable x_{n} into the domain $D_{T}^{-}:=\left\{(x, t) \in \mathbb{R}^{n+1}: x_{n}<0,|x|<t<T\right\}$ and then by zero beyond the domain $D_{T} \cup D_{T}^{-}$, and leaving the same as above notation, we have $F_{k} \in C^{\infty}\left(\mathbb{R}^{n+1}\right)$ with the support $\operatorname{supp} F_{k} \subset D_{\infty} \cup D_{\infty}^{-}$, where $\mathbb{R}_{+}^{n+1}:=\mathbb{R}^{n+1} \cap\{t \geq 0\}$. Denote by u_{k} the solution of the Cauchy problem

$$
\begin{equation*}
L_{0} u_{k}=F_{k},\left.\quad u_{k}\right|_{t=0}=0,\left.\quad \frac{\partial u_{k}}{\partial t}\right|_{t=0}=0 \tag{3.3}
\end{equation*}
$$

which, as is known, exists, is unique and belongs to the space $C^{\infty}\left(\mathbb{R}_{+}^{n+1}\right)[\mathbf{1 7}$, p. 192]. In addition, $\operatorname{since} \operatorname{supp} F_{k} \subset D_{\infty} \cup D_{\infty}^{-} \subset\left\{(x, t) \in \mathbb{R}^{n+1}: t>|x|\right\}$ and $\left.u_{k}\right|_{t=0}=0,\left.\frac{\partial u_{k}}{\partial t}\right|_{t=0}=0$, taking into account the geometry of the domain of dependence of a solution of the linear wave equation $L_{0} u=$ F, we have $\operatorname{supp} u_{k} \subset\left\{(x, t) \in \mathbb{R}^{n+1}: t>|x|\right\}[\mathbf{1 7}$, p. 191], and, in particular, $\left.u_{k}\right|_{S_{T}}=0$. On the other hand, the function $\widetilde{u}_{k}\left(x_{1}, \ldots, x_{n}, t\right)=$ $u_{k}\left(x_{1}, \ldots,-x_{n}, t\right)$ is likewise a solution of the same Cauchy problem (3.3), since F_{k} is an even function with respect to the variable x_{n}. Therefore, owing to the uniqueness of the solution of the Cauchy problem, we have $\widetilde{u}_{k}=u_{k}$, i.e., $u_{k}\left(x_{1}, \ldots,-x_{n}, t\right)=u_{k}\left(x_{1}, \ldots, x_{n}, t\right)$, and hence the function u_{k} is likewise even with respect to the variable x_{n}. This, in turn, implies that $\left.\frac{\partial u_{k}}{\partial x_{n}}\right|_{x_{n}=0}=0$, which along with the condition $\left.u_{k}\right|_{S_{T}}=0$ means that if we leave for the restriction of the function u_{k} to the domain D_{T} the same notation, then $u_{k} \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, S_{T}^{0}, S_{T}\right)$. Further, by (2.1) and (3.3) there takes
place the inequality

$$
\begin{equation*}
\left\|u_{k}-u_{l}\right\|_{\stackrel{\circ}{2}_{2}^{1}\left(D_{T}, S_{T}\right)} \leq \sqrt{\frac{e}{2}} T\left\|F_{k}-F_{l}\right\|_{L_{2}\left(D_{T}\right)} \tag{3.4}
\end{equation*}
$$

since the a priori estimate (2.1) is valid for a strong generalized solution of the problem $(3.1),(3.2)$ of the class W_{2}^{1} in the domain D_{T}, as well.

Since the sequence $\left\{F_{k}\right\}$ is fundamental in $L_{2}\left(D_{T}\right)$, therefore by virtue of (3.4) the sequence $\left\{u_{k}\right\}$ is also fundamental in the space $\stackrel{\circ}{\circ}_{\circ}^{1}\left(D_{T}, S_{T}\right)$ which is complete. Therefore, there exists a function $u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ such that $\lim _{k \rightarrow \infty}\left\|u_{k}-u\right\|_{\dot{W}_{2}^{1}\left(D_{T}, S_{T}\right)}=0$, and since $L_{0} u_{k}=F_{k} \rightarrow F$ in the space $L_{2}\left(D_{T}\right)$, this function will, by the definition, be a strong generalized solution of the problem (3.1), (3.2). The uniqueness of solution from the space $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ follows from the a priori estimate (2.1). Consequently, for the solution u of the problem (3.1), (3.2) we can write $u=L_{0}^{-1} F$, where $L_{0}^{-1}: L_{2}\left(D_{T}\right) \rightarrow \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, S_{T}\right)$ is a linear continuous operator whose norm, owing to (2.1), admits the estimate

$$
\begin{equation*}
\left\|L_{0}^{-1}\right\|_{L_{2}\left(D_{T}\right) \rightarrow \stackrel{\circ}{W_{2}^{1}\left(D_{T}, S_{T}\right)}} \leq \sqrt{\frac{e}{2}} T . \tag{3.5}
\end{equation*}
$$

Remark 3.1. The embedding operator $I: \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right) \rightarrow L_{q}\left(D_{T}\right)$ is linear, continuous and compact for $1<q<\frac{2(n+1)}{n-1}$, when $n>1$ [49, p. 81]. At the same time, Nemytski's operator $K: L_{q}\left(D_{T}\right) \rightarrow L_{2}\left(D_{T}\right)$ acting by the formula $K u:=-\lambda|u|^{p} u$ is continuous and bounded if $q \geq 2(p+1)[47$, p. 349], [48, pp. 66, 67]. Thus if $p<\frac{2}{n-1}$, i.e., $2(p+1) \leq \frac{2(n+1)}{n-1}$, then there exists a number q such that $1<2(p+1) \leq q<\frac{2(n+1)}{n-1}$, and hence the operator

$$
\begin{equation*}
K_{0}=K I: \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right) \rightarrow L_{2}\left(D_{T}\right) \tag{3.6}
\end{equation*}
$$

is continuous and compact. In addition, from $u_{k} \rightarrow u$ in the space $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ it follows that $K_{0} u_{k} \rightarrow K_{0} u$ in the space $L_{2}\left(D_{T}\right)$. Therefore, according to Remark 1.2, a strong generalized solution of the problem (1.1), (1.2) of the class W_{2}^{1} in the domain D_{T} will also be a weak generalized solution of that problem of the class W_{2}^{1} in the domain D_{T}.

Remark 3.2. For $F \in L_{2}\left(D_{T}\right), 0<p<\frac{2}{n-1}$, by virtue of (3.5) and Remark 3.1 a function $u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ is a strong generalized solution of the problem (1.1), (1.2) of the class W_{2}^{1} in the domain D_{T} if and only if u is a solution of the functional equation

$$
\begin{equation*}
u=L_{0}^{-1}\left(-\lambda|u|^{p} u+F\right) \tag{3.7}
\end{equation*}
$$

in the space $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$.

We rewrite the equation (3.7) as follows:

$$
\begin{equation*}
u=A u:=L_{0}^{-1}\left(K_{0} u+F\right), \tag{3.8}
\end{equation*}
$$

where the operator $K_{0}: \stackrel{\stackrel{1}{W}}{2}\left(D_{T}, S_{T}\right) \rightarrow L_{2}\left(D_{T}\right)$ from (3.6) is, by Remark 3.1, continuous and compact. Consequently, by (3.5) the operator $A: \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, S_{T}\right) \rightarrow \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, S_{T}\right)$ is likewise continuous and compact. At the same time, by Lemma 2.1 for any parameter $\tau \in[0,1]$ and every solution of the equation $u=\tau A u$ with the parameter τ the a priori estimate $\|u\|_{W_{W_{2}^{1}\left(D_{T}, S_{T}\right)}} \leq c\|F\|_{L_{2}\left(D_{T}\right)}$ is valid with a positive constant c independent of u, F and τ. Therefore, according to the Leray-Schauder theorem [66, p. 375] the equation (3.8), and hence the problem (1.1), (1.2) has at least one strong generalized solution of the class W_{2}^{1} in the domain D_{T}. Thus we have proved the following

Theorem 3.1. Let $\lambda>0, f(u)=|u|^{p} u, 0<p<\frac{2}{n-1}, F \in L_{2, l o c}(D)$ and $F \in L_{2}\left(D_{T}\right)$ for any $T>0$. Then the problem (1.1), (1.2) is globally solvable in the class W_{2}^{1}, i.e., for any $T>0$ this problem has a weak generalized solution of the class W_{2}^{1} in the domain D_{T}.

Reasoning analogously, we can prove that the statement of Theorem 3.1 is likewise valid for the problem (1.1), (1.3).

4. The Non-Existence of the Global Solvability

Below we will consider the case where in the equation (1.1) the function $f(u)=-|u|^{p+1}, p>0$, i.e., the equation

$$
\begin{equation*}
L_{\lambda} u:=\frac{\partial^{2} u}{\partial t^{2}}-\Delta u-\lambda|u|^{p+1}=F \tag{4.1}
\end{equation*}
$$

as well as the more general than (1.2) boundary condition

$$
\begin{equation*}
\left.\frac{\partial u}{\partial x_{n}}\right|_{S_{T}^{0}}=0,\left.\quad u\right|_{S_{T}}=g \tag{4.2}
\end{equation*}
$$

where g is a given real function on S_{T}.
Remark 4.1. Under the assumption that $F \in L_{2}\left(D_{T}\right), g \in W_{2}^{1}\left(S_{T}\right)$ and $0<p<\frac{2}{n-1}$, similarly to Definitions 1.1 and 1.2 concerning a weak and a strong generalized solution of the problem (1.1), (1.2) of the class W_{2}^{1} in the domain D_{T}, with regard for Remark 3.1 we introduce the notions of a weak and a strong generalized solution of the problem (4.1), (4.2) of the class W_{2}^{1} in the domain D_{T} :
(i) a function $u \in W_{2}^{1}\left(D_{T}\right)$ is said to be a weak generalized solution of the problem (4.1), (4.2) of the class W_{2}^{1} in the domain D_{T} if for every function $\varphi \in W_{2}^{1}\left(D_{T}\right)$ such that $\left.\varphi\right|_{t=T}=0$ the integral
equation

$$
\begin{gather*}
-\int_{D_{T}} u_{t} \varphi_{t} d x d t+\int_{D_{T}} \nabla_{x} u \nabla_{x} \varphi d x d t= \\
=\lambda \int_{D_{T}}|u|^{p+1} \varphi d x d t+\int_{D_{T}} F \varphi d x d t-\int_{S_{T}} \frac{\partial g}{\partial N} \varphi d s \tag{4.3}
\end{gather*}
$$

holds, where $\frac{\partial}{\partial N}=\nu_{0} \frac{\partial}{\partial t}-\sum_{i=1}^{n} \nu_{i} \frac{\partial}{\partial x_{i}}$ is the derivative with respect to the conormal being an inner differential operator on S_{T} since the conic manifold S_{T} is characteristic, and $\nu=\left(\nu_{1}, \ldots, \nu_{n}, \nu_{0}\right)$ is the unit vector of the outer normal to $\partial D_{T}, \nabla_{x}:=\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right)$;
(ii) a function $u \in W_{2}^{1}\left(D_{T}\right)$ is said to be a strong generalized solution of the problem (4.1), (4.2) of the class W_{2}^{1} in the domain D_{T}, if there exists a sequence of functions $u_{k} \in \stackrel{\circ}{C}_{*}^{2}\left(D_{T}, S_{T}\right):=\{u \in$ $\left.C^{2}\left(\bar{D}_{T}\right):\left.\frac{\partial u}{\partial x_{n}}\right|_{S_{T}^{0}}=0\right\}$ such that $u_{k} \rightarrow u$ in the space $W_{2}^{1}\left(D_{T}\right)$, $L_{\lambda} u_{k} \rightarrow F$ in the space $L_{2}\left(D_{T}\right)$ and $\left.u_{k}\right|_{S_{T}} \rightarrow g$ in the space $W_{2}^{1}\left(S_{T}\right)$.
Note also that according to Remarks 1.2 and 3.1 a strong generalized solution of the problem (4.1), (4.2) of the class W_{2}^{1} in the domain D_{T} is likewise a weak generalized solution of that problem of the class W_{2}^{1} in the domain D_{T}.

Analogously, we introduce the notion of the global solvability of the problem (4.1), (4.2) of the class W_{2}^{1}.

Remark 4.2. Below we will use the fact that the derivative with respect to the conormal $\frac{\partial}{\partial N}$, being an inner differential operator on the characteristic conic manifold S, coincides with the derivative $\frac{\partial}{\partial r}$ with respect to the spherical variable $r=\left(t^{2}+|x|^{2}\right)^{1 / 2}$ with minus sign.

We have the following theorem on the non-existence of the global solvability of the problem (4.1), (4.2).

Theorem 4.1. Let $F \in L_{2, l o c}(D), g \in W_{2, l o c}^{1}(S)$ and $F \in L_{2}\left(D_{T}\right)$, $g \in W_{2}^{1}\left(S_{T}\right)$ for any $T>0$. Then if $\lambda>0,0<p<\frac{2}{n-1}$ and

$$
\begin{equation*}
\left.F\right|_{D} \geq 0,\left.\quad g\right|_{S} \geq 0,\left.\quad \frac{\partial g}{\partial r}\right|_{S} \geq 0 \tag{4.4}
\end{equation*}
$$

then there exists a positive number $T_{0}=T_{0}(F, g)$ such that for $T>T_{0}$ the problem (4.1), (4.2) cannot have a weak generalized solution of the class W_{2}^{1} (for $F=0$ and $g=0$, nontrivial) in the domain D_{T}.

Proof. Let $G_{T}:|x|<t<T, G_{T}^{-}:=G_{T} \cap\left\{x_{n}<0\right\}, S_{T}^{-}: t=|x|, x_{n} \leq 0$, $t \leq T$. Obviously, $D_{T}=G_{T}^{+}:=G_{T} \cap\left\{x_{n}>0\right\}$ and $G_{T}=G_{T}^{-} \cup S_{T}^{0} \cup D_{T}$, where $S_{T}^{0}=\partial D_{T} \cap\left\{x_{n}=0\right\}$. We extend the functions u, F and g evenly
with respect to the variable x_{n} into G_{T}^{-}and S_{T}^{-}, respectively. For the sake of simplicity, for the extended functions defined in G_{T} and $S_{T}^{-} \cup S_{T}$ we leave the same notation u, F and g. Then if $u \in W_{2}^{1}\left(D_{T}\right)$ is a weak generalized solution of the problem (4.1), (4.2) of the class W_{2}^{1} in the domain D_{T}, then for every function $\psi \in W_{2}^{1}\left(G_{T}\right)$ such that $\left.\psi\right|_{t=T}=0$ the equality

$$
\begin{gather*}
-\int_{G_{T}} u_{t} \psi_{t} d x d t+\int_{G_{T}} \nabla_{x} u \nabla_{x} \psi d x d t= \\
=\lambda \int_{G_{T}}|u|^{p+1} \psi d x d t+\int_{G_{T}} F \psi d x d t-\int_{S_{T}^{-} \cup S_{T}} \frac{\partial g}{\partial N} \psi d s \tag{4.5}
\end{gather*}
$$

holds.
Indeed, if $\psi \in W_{2}^{1}\left(G_{T}\right)$ and $\left.\psi\right|_{t=T}=0$, then, obviously, $\left.\psi\right|_{D_{T}} \in$ $W_{2}^{1}\left(D_{T}\right)$ and $\widetilde{\psi} \in W_{2}^{1}\left(D_{T}\right)$, where, by definition, $\widetilde{\psi}\left(x_{1}, \ldots, x_{n}, t\right)=$ $\psi\left(x_{1}, \ldots,-x_{n}, t\right),\left(x_{1}, \ldots, x_{n}, t\right) \in D_{T}$, and $\left.\widetilde{\psi}\right|_{t=T}=0$. Therefore, by the equality (4.3) we have

$$
\begin{gather*}
\quad-\int_{D_{T}} u_{t} \psi_{t} d x d t+\int_{D_{T}} \nabla_{x} u \nabla_{x} \psi d x d t= \\
=\lambda \int_{D_{T}}|u|^{p+1} \psi d x d t+\int_{D_{T}} F \psi d x d t-\int_{S_{T}} \frac{\partial g}{\partial N} \psi d s \tag{4.6}\\
\quad-\int_{D_{T}} u_{t} \widetilde{\psi}_{t} d x d t+\int_{D_{T}} \nabla_{x} u \nabla_{x} \tilde{\psi} d x d t= \\
=\lambda \int_{D_{T}}|u|^{p+1} \widetilde{\psi} d x d t+\int_{D_{T}} F \widetilde{\psi} d x d t-\int_{S_{T}} \frac{\partial g}{\partial N} \widetilde{\psi} d s \tag{4.7}
\end{gather*}
$$

Taking now into account that u, F and g are even functions with respect to the variable x_{n}, as well as the equality

$$
\widetilde{\psi}\left(x_{1}, \ldots, x_{n}, t\right)=\psi\left(x_{1}, \ldots,-x_{n}, t\right), \quad\left(x_{1}, \ldots, x_{n}, t\right) \in D_{T}
$$

we find that

$$
\begin{gather*}
-\int_{D_{T}} u_{t} \tilde{\psi}_{t} d x d t+\int_{D_{T}} \nabla_{x} u \nabla_{x} \tilde{\psi} d x d t= \\
=-\int_{G_{T}^{-}} u_{t} \psi_{t} d x d t+\int_{G_{T}^{-}} \nabla_{x} u \nabla_{x} \psi d x d t \tag{4.8}\\
\lambda \int_{D_{T}}|u|^{p+1} \widetilde{\psi} d x d t+\int_{D_{T}} F \widetilde{\psi} d x d t-\int_{S_{T}} \frac{\partial g}{\partial N} \widetilde{\psi} d s= \\
=\lambda \int_{D_{T}}|u|^{p+1} \psi d x d t+\int_{G_{T}^{-}} F \psi d x d t-\int_{S_{T}} \frac{\partial g}{\partial N} \psi d s . \tag{4.9}
\end{gather*}
$$

From (4.7), (4.8) and (4.9) it follows that

$$
\begin{gather*}
-\int_{G_{T}^{-}} u_{t} \psi_{t} d x d t+\int_{G_{T}^{-}} \nabla_{x} u \nabla_{x} \psi d x d t= \\
=\lambda \int_{G_{T}^{-}}|u|^{p+1} \psi d x d t+\int_{G_{T}^{-}} F \psi d x d t-\int_{S_{T}^{-}} \frac{\partial g}{\partial N} \psi d s \tag{4.10}
\end{gather*}
$$

Finally, adding the equalities (4.6) and (4.10) we obtain (4.5).
Note that the inequality $\left.\frac{\partial g}{\partial r}\right|_{S} \geq 0$ in the condition (4.4) is understood in the generalized sense, i.e., by the assumption $g \in W_{2, l o c}^{1}(S)$ there exists the generalized derivative $\frac{\partial g}{\partial r} \in L_{2, l o c}(S)$ which is nonnegative, and hence, for every function $\beta \in C(S)$ finitary with respect to the variable $r, \beta \geq 0$, the inequality

$$
\begin{equation*}
\int_{S} \frac{\partial g}{\partial r} \beta d s \geq 0 \tag{4.11}
\end{equation*}
$$

holds.
Here we will use the method of test functions [53, pp. 10-12]. In the capacity of a test function in the equality (4.5) we take $\psi(x, t)=\psi_{0}\left[\frac{2}{T^{2}}\left(t^{2}+\right.\right.$ $\left.\left.|x|^{2}\right)\right]$, where $\psi_{0} \in C^{2}((-\infty,+\infty)), \psi_{0} \geq 0, \psi_{0}^{\prime} \leq 0, \psi_{0}(\sigma)=1$ for $0 \leq \sigma \leq 1$ and $\psi_{0}(\sigma)=0$ for $\sigma \geq 2\left[\mathbf{5 3}\right.$, p. 22]. Obviously, $\left.\psi\right|_{t=T}=0$ and $\psi \in C^{2}\left(\bar{G}_{T}\right)$, and all the more, $\psi \in W_{2}^{1}\left(G_{T}\right)$.

Integrating the left-hand side (4.5) by parts, we obtain

$$
\begin{align*}
\int_{G_{T}} u \square \psi d x d t & =\lambda \int_{G_{T}}|u|^{p+1} \psi d x d t+ \\
& +\int_{G_{T}} F \psi d x d t+\int_{S_{T}^{-} \cup S_{T}} g g \frac{\partial \psi}{\partial N} d s-\int_{S_{T}^{-} \cup S_{T}} \frac{\partial g}{\partial N} \psi d s \tag{4.12}
\end{align*}
$$

Taking into account Remark 4.1, (4.4) and (4.11), we have

$$
\begin{equation*}
\int_{D_{T}} F \psi d x d t \geq 0, \quad \int_{S_{T}^{-} \cup S_{T}} g \frac{\partial \psi}{\partial N} d s \geq 0, \quad \int_{S_{T}^{-} \cup S_{T}} \frac{\partial g}{\partial N} \psi d s \leq 0 \tag{4.13}
\end{equation*}
$$

where ψ is the above-introduced test function.
Assuming that the functions F, g and ψ are fixed, we introduce into consideration the function of one variable T,

$$
\begin{equation*}
\gamma(T)=\int_{G_{T}} F \psi d x d t+\int_{S_{T}^{-} \cup S_{T}} g \frac{\partial \psi}{\partial N} d s-\int_{S_{T}^{-} \cup S_{T}} \frac{\partial g}{\partial N} \psi d s, T>0 \tag{4.14}
\end{equation*}
$$

Owing to the absolute continuity of the integral and the inequalities (4.9), the function $\gamma(T)$ from (4.10) is nonnegative, continuous and nondecreasing. Note that $\lim _{T \rightarrow \infty} \gamma(T)=0$.

Taking into account (4.10), we rewrite the equality (4.8) in the form

$$
\lambda \int_{G_{T}}|u|^{p+1} \psi d x d t=\int_{G_{T}} u \square \psi d x d t-\gamma(T)
$$

The rest of our reasoning allowing for proving Theorem 4.1 word by word repeats that of Section 5 in Chapter II for $\alpha=p+1$.

Remark 4.3. The conclusion of Theorem 4.1 remains valid for the limiting case $p=\frac{2}{n-1}$ as well, if we take advantage of the reasoning presented in [53, p. 23]. The conclusion of that theorem ceases to be valid if the condition $p>\frac{2}{n-1}$ and the second condition of (4.4), i.e., the condition $\left.g\right|_{S} \geq 0$, are violated simultaneously. Indeed, the function $u(x, t)=$ $-\varepsilon\left(1+t^{2}-|x|^{2}\right)^{-1 / p}, \varepsilon=$ const >0, is a global classical, and hence, generalized solution of the problem (4.1), (4.2) for $g=-\varepsilon\left(\left.\frac{\partial g}{\partial r}\right|_{S}=0\right)$ and $F=\left[2 \varepsilon \frac{n+1}{p}-4 \varepsilon \frac{p+1}{p^{2}} \frac{t^{2}-|x|^{2}}{1+t^{2}-|x|^{2}}-\lambda \varepsilon^{p+1}\right]\left(1+t^{2}-|x|^{2}\right)^{\frac{p+1}{p}} ;$ in addition, as it can be easily verified, $\left.F\right|_{D} \geq 0$ if $p>\frac{2}{n-1}$ and $0<\varepsilon \leq\left\{\frac{2}{\lambda}\left[\frac{n+1-\frac{2(p+1)}{p}}{p}\right]\right\}^{1 / p}$. Note that the inequality $n+1-\frac{2(p+1)}{p}>0$ is equivalent to $p>\frac{2}{n-1}$.

Remark 4.4. The conclusion of Theorem 4.1 also ceases to be valid if only the third condition of (4.4) is violated, i.e., the condition $\left.\frac{\partial g}{\partial r}\right|_{S} \geq$ 0 . Indeed, the function $u(x, t)=c_{0}\left[\left(t_{0}+1\right)^{2}-|x|^{2}\right]^{-1 / p}$, where $c_{0}=$ $\lambda^{-1 / p}\left[\frac{4(p+1)}{p^{2}}-\frac{2(n+1)}{p}\right]^{-1 / p}$, is a global classical solution of the problem (4.1), (4.2) for $F=0$ and $g=\left.u\right|_{S}=c_{0}\left[(t+1)^{2}-t^{2}\right]^{-1 / p}>0$.

Remark 4.5. In case $-1<p<0$, the problem (4.1), (4.2) may have more than one global solution. For example, for $F=0$ and $g=0$, the conditions (4.4) are fulfilled, but the problem (4.1), (4.2) has, besides the trivial solution, an infinite set of global linearly independent solutions $u_{\alpha}(x, t)$ depending on the parameter $\alpha \geq 0$ and given by the formula

$$
u_{\alpha}(x, t)= \begin{cases}c_{0}\left[(t-\alpha)^{2}-|x|^{2}\right]^{-1 / p}, & t>\alpha+|x| \\ 0, & |x| \leq t \leq \alpha+|x|\end{cases}
$$

where $c_{0}=\lambda^{-1 / p}\left[\frac{4(p+1)}{p^{2}}-\frac{2(n+1)}{p}\right]^{-1 / p}$. It is not difficult to see that $u_{\alpha} \in$ $C^{1}(\bar{D})$ for $p<0$, while for $-1 / 2<p<0$ the function $u_{\alpha} \in C^{2}(\bar{D})$.

5. The Local Solvability

Remark 5.1. Just as is mentioned in Remarks 3.1 and 3.2, for $0<p<$ $\frac{2}{n-1}$ the operator

$$
\begin{equation*}
K_{1}: \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right) \rightarrow L_{2}\left(D_{T}\right) \quad\left(K_{1} u=\lambda|u|^{p+1}\right) \tag{5.1}
\end{equation*}
$$

is continuous and compact, and the problem (4.1), (4.2) for $g=0$ is equivalent to the functional equation

$$
\begin{equation*}
u=A_{1} u+u_{0} \tag{5.2}
\end{equation*}
$$

in the space $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$, where

$$
\begin{equation*}
A_{1}=L_{0}^{-1} K_{1}, \quad u_{0}=L_{0}^{-1} F \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right) \tag{5.3}
\end{equation*}
$$

with regard for (5.1). Here $L_{0}^{-1}: L_{2}\left(D_{T}\right) \rightarrow \stackrel{\circ}{W_{2}^{1}}\left(D_{T}, S_{T}\right)$ is a linear continuous operator whose norm admits the estimate (3.5).

Remark 5.2. Let $B(0, d):=\left\{u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right):\|u\|_{{\underset{W}{2}}_{2}^{1}\left(D_{T}, S_{T}\right)} \leq d\right\}$ be the closed (convex) sphere in the Hilbert space $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$ of radius $d>0$ with the center at the zero element. Since by the above Remark 5.1 the operator $A_{1}: \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, S_{T}\right) \rightarrow \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, S_{T}\right)$ for $0<p<\frac{2}{n-1}$ is continuous and compact, according to the Schauder principle for showing the solvability of the equation (5.2) it suffices to prove that the operator A_{2} acting by the formula $A_{2} u=A_{1} u+u_{0}$ transforms the ball $B(0, d)$ into itself for some $d>0[66, \mathrm{p} .379]$. Towards this end, we will give here the needed estimate for $\|A u\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}$.

If $u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$, we denote by \widetilde{u} the function which is, in fact, the extension of the function u evenly through the planes $x_{n}=0$ and $t=T$. Obviously $\widetilde{u} \in \stackrel{\circ}{W_{2}^{1}}\left(D_{T}^{*}\right)$, where $D_{T}^{*}:|x|<t<2 T-|x|$.

Using the inequality [72, p. 258]

$$
\int_{\Omega}|v| d \Omega \leq(\operatorname{mes} \Omega)^{1-\frac{1}{q}}\|v\|_{q, \Omega}, \quad q \geq 1
$$

and taking into account the equalities

$$
\|\widetilde{u}\|_{L_{q}\left(D_{T}^{*}\right)}^{q}=4\|u\|_{L_{q}\left(D_{T}\right)}^{q}, \quad\|\widetilde{u}\|_{W_{2}^{1}\left(D_{T}^{*}\right)}^{2}=4\|u\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}^{2},
$$

from the well-known multiplicative inequality [49, p. 78]

$$
\begin{aligned}
\|v\|_{q, \Omega} & \leq \beta\|\nabla v\|_{m, \Omega}^{\widetilde{\alpha}}\|v\|_{r, \Omega}^{1-\widetilde{\alpha}} \forall v \in \stackrel{\circ}{W}_{2}^{1}(\Omega), \quad \Omega \subset \mathbb{R}^{n+1}, \\
\widetilde{\alpha} & =\left(\frac{1}{r}-\frac{1}{q}\right)\left(\frac{1}{r}-\frac{1}{\widetilde{m}}\right)^{-1}, \quad \widetilde{m}=\frac{(n+1) m}{n+1-m},
\end{aligned}
$$

for $\Omega=D_{T}^{*} \subset \mathbb{R}^{n+1}, v=\widetilde{u}, r=1, m=2$ and $1<q \leq \frac{2(n+1)}{n-1}$, where $\beta=$ const >0 does not depend on v and T, we obtain the following inequality:

$$
\begin{equation*}
\|u\|_{L_{q}\left(D_{T}\right)} \leq c_{0}\left(\operatorname{mes} D_{T}\right)^{\frac{1}{q}+\frac{1}{n+1}-\frac{1}{2}}\|u\|_{\stackrel{W}{2}_{1}^{1}\left(D_{T}, S_{T}\right)} \forall u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right) \tag{5.4}
\end{equation*}
$$

where $c_{0}=$ const >0 does not depend on u.

Taking into account that mes $D_{T}=\frac{\omega_{n}}{2(n+1)} T^{n+1}$, where ω_{n} is the volume of the unit ball in \mathbb{R}^{n}, for $q=2(p+1)$ (5.4) yields

$$
\begin{gather*}
\|u\|_{L_{2(p+1)}\left(D_{T}\right)} \leq \\
\leq c_{0} \widetilde{\ell}_{p, n} T^{(n+1)}\left(\frac{1}{2(p+1)}+\frac{1}{n+1}-\frac{1}{2}\right)\|u\|_{\stackrel{W}{2}_{1}^{1}\left(D_{T}, S_{T}\right)} \tag{5.5}
\end{gather*} \forall u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right), ~ .
$$

where $\tilde{\ell}_{p, n}=\left(\frac{\omega_{n}}{2(n+1)}\right)^{\left(\frac{1}{2(p+1)}+\frac{1}{n+1}-\frac{1}{2}\right)}$.
For the value $\left\|K_{1} u\right\|_{L_{2}\left(D_{T}\right)}$, where $u \in \stackrel{\circ}{W_{2}^{1}}\left(D_{T}, S_{T}\right)$ and the operator K_{1} acts by the equality from (5.1), by virtue of (5.5) the estimate

$$
\begin{align*}
\left\|K_{1} u\right\|_{L_{2}\left(D_{T}\right)} & \leq \lambda\left[\int_{D_{T}}|u|^{2(p+1)} d x d t\right]^{1 / 2}=\lambda\|u\|_{L_{2(p+1)}\left(D_{T}\right)}^{p+1} \leq \\
& \leq \lambda \ell_{p, n} T^{(p+1)(n+1)\left(\frac{1}{2(p+1)}+\frac{1}{n+1}-\frac{1}{2}\right)}\|u\|_{\stackrel{\circ}{W_{2}^{1}\left(D_{T}, S_{T}\right)}}^{p+1} \tag{5.6}
\end{align*}
$$

holds, where $\ell_{p, n}=\left[c_{0} \tilde{\ell}_{p, n}\right]^{p+1}$.
Now from (3.5) and (5.6), for $\left\|A_{1} u\right\|_{\stackrel{W}{2}_{2}^{1}\left(D_{T}, S_{T}\right)}$, where by virtue of (5.3) $A_{1} u=L_{0}^{-1} K_{1} u$, the estimate

$$
\begin{array}{r}
\left\|A_{1} u\right\|_{\stackrel{\circ}{W_{2}^{1}\left(D_{T}, S_{T}\right)}} \leq\left\|L_{0}^{-1}\right\|_{L_{2}\left(D_{T}\right) \rightarrow \stackrel{\circ}{W_{2}^{1}\left(D_{T}, S_{T}\right)}}\left\|K_{1} u\right\|_{L_{2}\left(D_{T}\right)} \leq \\
\leq \sqrt{\frac{e}{2}} \lambda \ell_{p, n} T^{1+(p+1)(n+1)\left(\frac{1}{2(p+1)}+\frac{1}{n+1}-\frac{1}{2}\right)}\|u\|_{\stackrel{\circ}{W_{2}^{1}\left(D_{T}, S_{T}\right)}}^{p+1} \tag{5.7}\\
\forall u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)
\end{array}
$$

is valid.
Note that $\frac{1}{2(p+1)}+\frac{1}{n+1}-\frac{1}{2}>0$ for $p<\frac{2}{n-1}$.
Consider the equation

$$
\begin{equation*}
a z^{p+1}+b=z \tag{5.8}
\end{equation*}
$$

with respect to the unknown function z, where

$$
\begin{equation*}
a=\sqrt{\frac{e}{2}} \lambda \ell_{p, n} T^{1+(p+1)(n+1)\left(\frac{1}{2(p+1)}+\frac{1}{n+1}-\frac{1}{2}\right)}, \quad b=\sqrt{\frac{e}{2}} T\|F\|_{L_{2}\left(D_{T}\right)} . \tag{5.9}
\end{equation*}
$$

For $T>0$, it is evident that $a>0$ and $b \geq 0$. A simple analysis similar to that which for $p=2$ is performed in $[\mathbf{6 6}, \mathrm{pp} .373,374]$ shows that:
(1) if $b=0$, the equation (5.8) along with the zero root $z_{1}=0$ has the unique positive root $z_{2}=a^{-1 / p}$;
(2) if $b>0$, then for $0<b<b_{0}$, where

$$
\begin{equation*}
b_{0}=\left[(p+1)^{-\frac{1}{p}}-(p+1)^{-\frac{p+1}{p}}\right] a^{-\frac{1}{p}}, \tag{5.10}
\end{equation*}
$$

the equation (5.8) has two positive roots z_{1} and $z_{2}, 0<z_{1}<z_{2}$, which for $b=b_{0}$ merge into one positive root

$$
z_{1}=z_{2}=z_{0}=[(p+1) a]^{-\frac{1}{p}} ;
$$

(3) if $b>b_{0}$, then the equation (5.8) has no nonnegative root.

Note that for $0<b<b_{0}$ there take place the inequalities

$$
z_{1}<z_{0}=[(p+1) a]^{-\frac{1}{p}}<z_{2}
$$

Owing to (5.9) and (5.10), the condition $b \leq b_{0}$ is equivalent to the condition

$$
\begin{gathered}
\sqrt{\frac{e}{2}} T\|F\|_{L_{2}\left(D_{T}\right)} \leq \\
\leq\left[\sqrt{\frac{e}{2}} \lambda \ell_{p, n} T^{1+(p+1)(n+1)\left(\frac{1}{2(p+1)}+\frac{1}{n+1}-\frac{1}{2}\right)}\right]^{-\frac{1}{p}}\left[(p+1)^{-\frac{1}{p}}-(p+1)^{-\frac{p+1}{p}}\right]
\end{gathered}
$$

or

$$
\begin{equation*}
\|F\|_{L_{2}\left(D_{T}\right)} \leq \gamma_{n, \lambda, p} T^{-\alpha_{n}}, \quad \alpha_{n}>0 \tag{5.11}
\end{equation*}
$$

where

$$
\begin{aligned}
\gamma_{n, \lambda, p} & =\left[(p+1)^{-\frac{1}{p}}-(p+1)^{-\frac{p+1}{p}}\right]\left(\lambda \ell_{p, n}\right)^{-\frac{1}{p}} \exp \left[-\frac{1}{2}\left(1+\frac{1}{p}\right)\right] \\
\alpha_{n} & =1+\frac{1}{p}\left[1+(p+1)(n+1)\left(\frac{1}{2(p+1)}+\frac{1}{n+1}-\frac{1}{2}\right)\right]
\end{aligned}
$$

Bearing in mind that the Lebesgue integral is absolutely continuous, we have $\lim _{T \rightarrow 0}\|F\|_{L_{2}\left(D_{T}\right)}=0$. At the same time, $\lim _{T \rightarrow 0} T^{-\alpha_{n}}=+\infty$. Therefore, there exists a number $T_{1}=T_{1}(F), 0<T_{1}<+\infty$ such that inequality (5.11) holds for

$$
\begin{equation*}
0<T \leq T_{1}(F) \tag{5.12}
\end{equation*}
$$

Let us now show that if the condition (5.12) is fulfilled, then the operator $A_{2}: \stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right) \rightarrow \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}, S_{T}\right)$ acting by the formula $A_{2}=A_{1} u+u_{0}$ transforms the ball $B\left(0, z_{2}\right)$ mentioned in Remark 5.2 into itself, where z_{2} is the maximal positive root of the equation (3.8). Indeed, if $u \in B\left(0, z_{2}\right)$, then by (5.7), (5.8) and (5.9) we have

$$
\left\|A_{2} u\right\|_{\stackrel{W}{2}_{1}^{1}\left(D_{T}, S_{T}\right)} \leq a\|u\|_{W_{2}^{1}\left(D_{T}, S_{T}\right)}^{p+1}+b \leq a z_{2}^{p+1}+b=z_{2} .
$$

Therefore, according to Remarks 5.1 and 5.2 the following theorem is valid.

Theorem 5.1. Let $0<p<\frac{2}{n-1}, g=0, F \in L_{2, l o c}(D)$ and $F \in$ $L_{2}\left(D_{T}\right)$ for any $T>0$. Then the problem (4.1), (4.2) in the domain D_{T} has at least one strong generalized solution of the class W_{2}^{1} if T satisfies the inequality (5.12).

Note that analogous results are valid for the problem (4.1), (4.3) as well.

Characteristic Boundary Value Problems for Nonlinear Equations with the Iterated Wave Operator in the Principal Part

1. Statement of the First Characteristic Boundary Value Problem

In the Euclidean space \mathbb{R}^{n+1} of the variables x_{1}, \ldots, x_{n}, t, we consider the nonlinear equation of the type

$$
\begin{equation*}
L_{\lambda} u:=\square^{2} u+\lambda f(u)=F, \tag{1.1}
\end{equation*}
$$

where λ is a given real constant, $f: \mathbb{R} \rightarrow \mathbb{R}$ is a given continuous nonlinear function, $f(0)=0, F$ is a given and u is an unknown real function,:= $\frac{\partial^{2}}{\partial t^{2}}-\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}, n \geq 2$.

By $D_{T}:|x|<t<T-|x|$ we denote the domain which is the intersection of the light cone of future $K_{0}^{+}: t>|x|$ with the vertex at the origin $O(0, \ldots, 0)$ and the light cone of past $K_{A}^{-}: t<T-|x|$ with the vertex at the point $A(0, \ldots, 0, T), T=$ const >0.

For the equation (1.1), we consider the characteristic boundary value problem: find in the domain D_{T} a solution $u\left(x_{1}, \ldots, x_{n}, t\right)$ of that equation according to the boundary condition

$$
\begin{equation*}
\left.u\right|_{\partial D_{T}}=0 . \tag{1.2}
\end{equation*}
$$

Assume $\stackrel{\circ}{C}^{k}\left(\bar{D}_{T}, \partial D_{T}\right):=\left\{u \in C^{k}\left(\bar{D}_{T}\right):\left.u\right|_{\partial D_{T}}=0\right\}, k \geq 1$. Let $u \in$ $\stackrel{\circ}{C}^{4}\left(\bar{D}_{T}, \partial D_{T}\right)$ be a classical solution of the problem (1.1), (1.2). Multiplying both parts of the equation (1.1) by an arbitrary function $\varphi \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, \partial D_{T}\right)$ and integrating the obtained equality by parts over the domain D_{T}, we obtain

$$
\begin{equation*}
\int_{D_{T}} \square u \square \varphi d x d t+\lambda \int_{D_{T}} f(u) \varphi d x d t=\int_{D_{T}} F \varphi d x d t \tag{1.3}
\end{equation*}
$$

When deducing (1.3), we have used the equality

$$
\int_{D_{T}} \square u \square \varphi d x d t=\int_{\partial D_{T}} \frac{\partial \varphi}{\partial N} \square \varphi d s-\int_{\partial D_{T}} \varphi \frac{\partial}{\partial N} \square u d s+\int_{D_{T}} \varphi \square^{2} u d x d t
$$

and the fact that since ∂D_{T} is a characteristic manifold, the derivative with respect to the conormal $\frac{\partial}{\partial N}=\nu_{n+1} \frac{\partial}{\partial t}-\sum_{i=1}^{n} \nu_{i} \frac{\partial}{\partial x_{i}}$, where $\nu=\left(\nu_{1}, \ldots, \nu_{n}, \nu_{n+1}\right)$ is the unit vector of the outer normal to ∂D_{T}, is an inner differential operator on the characteristic manifold ∂D_{T}, and hence if $v \in \stackrel{\circ}{C}^{1}\left(\bar{D}_{T}, \partial D_{T}\right)$, then $\left.\frac{\partial v}{\partial N}\right|_{\partial D_{T}}=0$.

Introduce the Hilbert space $\stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$ as the completion with respect to the norm

$$
\begin{equation*}
\|u\|_{W_{2, \square}^{1}\left(D_{T}\right)}^{2}=\int_{D_{T}}\left[u^{2}+\left(\frac{\partial u}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}+(\square u)^{2}\right] d x d t \tag{1.4}
\end{equation*}
$$

of the classical space $\stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, \partial D_{T}\right)$. It follows from (1.4) that if $u \in$ $\stackrel{\circ}{W_{2, \square}^{1}}\left(D_{T}\right)$, then $u \in \stackrel{\circ}{W_{2}^{1}}\left(D_{T}\right)$ and $\square u \in L_{2}\left(D_{T}\right)$. Here $W_{2}^{1}\left(D_{T}\right)$ is the well-known Sobolev space [49, p. 56] consisting of the elements $L_{2}\left(D_{T}\right)$ having the first order generalized derivatives from $L_{2}\left(D_{T}\right)$, and $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}\right)=$ $\left\{u \in W_{2}^{1}\left(D_{T}\right):\left.u\right|_{\partial D_{T}}=0\right\}$, where the equality $\left.u\right|_{\partial D_{T}}=0$ is understood in the sense of the trace theory [30, p. 70].

We take the equality (1.3) as a basis for our definition of the generalized solution of the problem (1.1), (1.2).

Definition 1.1. Let $F \in L_{2}\left(D_{T}\right)$. The function $u \in \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$ is said to be a weak generalized solution of the problem (1.1), (1.2), if $f(u) \in$ $L_{2}\left(D_{T}\right)$ and for any function $\varphi \in \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$ the integral equality (1.3) is valid, i.e.,

$$
\begin{equation*}
\int_{D_{T}} \square u \square \varphi d x d t+\lambda \int_{D_{T}} f(u) \varphi d x d t=\int_{D_{T}} F \varphi d x d t \forall \varphi \in \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right) \tag{1.5}
\end{equation*}
$$

It is not difficult to verify that if a solution u of the problem (1.1), (1.2) belongs, in the sense of Definition 1.1, to the class $C^{4}\left(\bar{D}_{T}\right)$, then it will also be a classical solution of that problem.

2. The Solvability of the Problem (1.1), (1.2) in Case of the

 Nonlinearity of the Type $f(u)=|u|^{\alpha} \operatorname{sgn} u$Let a nonlinear function f in the equation (1.1) be of the form

$$
\begin{equation*}
f(u)=|u|^{\alpha} \operatorname{sgn} u, \quad \alpha=\text { const }>0, \quad \alpha \neq 1 \tag{2.1}
\end{equation*}
$$

Then according to (2.1) the equation (1.1) and the integral equality (1.5) take the form

$$
\begin{equation*}
L_{\lambda} u:=\square^{2} u+\lambda|u|^{\alpha} \operatorname{sgn} u=F \tag{2.2}
\end{equation*}
$$

and

$$
\begin{align*}
\int_{D_{T}} & \square u \square \varphi d x d t+\lambda \int_{D_{T}} \varphi|u|^{\alpha} \operatorname{sgn} u d x d t= \\
& =\int_{D_{T}} F \varphi d x d t \forall \varphi \in \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right) . \tag{2.3}
\end{align*}
$$

Lemma 2.1. The inequality

$$
\begin{equation*}
\|u\|_{\dot{W}_{2, \square}^{1}\left(D_{T}\right)} \leq c\|\square u\|_{L_{2}\left(D_{T}\right)} \forall u \in \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right) \tag{2.4}
\end{equation*}
$$

holds, where the norm of the space $\stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$ is given by the equality (1.4) and the positive constant c does not depend on u.

Proof. Since the space $\stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, \partial D_{T}\right)$ is a dense subspace of the space $\stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$, it suffices to prove that $\forall u \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, \partial D_{T}\right)$

$$
\begin{equation*}
\|u\|_{W_{2, \square}^{1}\left(D_{T / 2}^{+}\right)}^{2} \leq c^{2}\|\square u\|_{L_{2}\left(D_{T / 2}\right)}^{2},\|u\|_{W_{2, \square}^{1}\left(D_{T / 2}^{-}\right)}^{2} \leq c^{2}\|\square u\|_{L_{2}\left(D_{T / 2}^{-}\right)}^{2} \tag{2.5}
\end{equation*}
$$

where $D_{T / 2}^{+}=D_{T} \cap\{t<T / 2\}, D_{T / 2}^{-}=D_{T} \cap\{t>T / 2\}$ and the norm $\|\cdot\|_{\stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T / 2}\right)}$ is given by the equality (1.4) in which instead of D_{T} we have to take $D_{T / 2}^{ \pm}$.

We restrict ourselves to the proof of the first inequality (2.5) since the second one is word by word proved analogously.

Assume $\Omega_{\tau}:=\bar{D}_{T / 2}^{ \pm} \cap\{t=\tau\}, D_{\tau}^{+}:=D_{T / 2}^{+} \cap\{t<\tau\}, S_{\tau}^{+}:=\{(x, t) \in$ $\left.\partial D_{\tau}^{+}: t=|x|\right\}, 0<\tau \leq T / 2$, and let $\nu=\left(\nu_{1}, \ldots, \nu_{n}, \nu_{n+1}\right)$ be the unit vector of the outer normal to ∂D_{τ}^{+}. For $u \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, \partial D_{T}\right)$, in view of the equalities $\left.u\right|_{S_{\tau}} ^{+}=0, \Omega_{\tau}=\partial D_{\tau}^{+} \cap\{t=\tau\}$ and $\left.\nu\right|_{\Omega_{\tau}}=(0, \ldots, 0,1)$, the integration by parts provides us with

$$
\begin{gather*}
\int_{D_{\tau}^{+}} \frac{\partial^{2} u}{\partial t^{2}} \frac{\partial u}{\partial t} d x d t=\frac{1}{2} \int_{D_{\tau}^{+}} \frac{\partial}{\partial t}\left(\frac{\partial u}{\partial t}\right)^{2} d x d t=\frac{1}{2} \int_{D_{\tau}^{+}}\left(\frac{\partial u}{\partial t}\right)^{2} \nu_{n+1} d s= \\
=\frac{1}{2} \int_{\Omega_{\tau}}\left(\frac{\partial u}{\partial t}\right)^{2} d x+\frac{1}{2} \int_{S_{\tau}^{+}}\left(\frac{\partial u}{\partial t}\right)^{2} \nu_{n+1} d s, \tau \leq \frac{T}{2} \tag{2.6}\\
\int_{D_{\tau}^{+}} \frac{\partial^{2} u}{\partial x_{i}^{2}} \frac{\partial u}{\partial t} d x d t=\int_{\partial D_{\tau}^{+}} \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial t} \nu_{i} d s-\frac{1}{2} \int_{D_{\tau}^{+}} \frac{\partial}{\partial t}\left(\frac{\partial u}{\partial x_{i}}\right)^{2} d x d t= \\
=\int_{\partial D_{\tau}^{+}} \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial t} \nu_{i} d s-\frac{1}{2} \int_{\partial D_{\tau}^{+}}\left(\frac{\partial u}{\partial x_{i}}\right)^{2} \nu_{n+1} d s=
\end{gather*}
$$

$$
\begin{equation*}
=\int_{\partial D_{\tau}^{+}} \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial t} \nu_{i} d s-\frac{1}{2} \int_{S_{\tau}^{+}}\left(\frac{\partial u}{\partial x_{i}}\right)^{2} \nu_{n+1} d s-\frac{1}{2} \int_{\Omega_{\tau}}\left(\frac{\partial u}{\partial x_{i}}\right)^{2} d x, \quad \tau \leq \frac{T}{2} . \tag{2.7}
\end{equation*}
$$

It follows from (2.6) and (2.7) that

$$
\begin{gather*}
\int_{D_{\tau}^{+}} \square u \frac{\partial u}{\partial t} d x d t= \\
=\int_{S_{\tau}^{+}} \frac{1}{2 \nu_{n+1}}\left[\sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}} \nu_{n+1}-\frac{\partial u}{\partial t} \nu_{i}\right)^{2}+\left(\frac{\partial u}{\partial t}\right)^{2}\left(\nu_{n+1}^{2}-\sum_{j=1}^{n} \nu_{j}^{2}\right)\right] d s+ \\
+\frac{1}{2} \int_{\Omega_{\tau}}\left[\left(\frac{\partial u}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}\right] d x, \quad \tau \leq \frac{T}{2} \tag{2.8}
\end{gather*}
$$

Since $\left.u\right|_{S_{\tau}^{+}}=0$ and $\left(\nu_{n+1} \frac{\partial}{\partial x_{i}}-\nu_{i} \frac{\partial}{\partial t}\right), 1 \leq i \leq n$, is an inner differential operator on S_{τ}^{+}, there take place the following equalities:

$$
\begin{equation*}
\left.\left(\frac{\partial u}{\partial x_{i}} \nu_{n+1}-\frac{\partial u}{\partial t} \nu_{i}\right)\right|_{S_{\tau}^{+}}=0, \quad i=1, \ldots, n . \tag{2.9}
\end{equation*}
$$

Therefore, taking into account that $\nu_{n+1}^{2}-\sum_{j=1}^{n} \nu_{j}^{2}=0$ on the characteristic manifold S_{τ}^{+}, by virtue of (2.8) and (2.9) we have

$$
\begin{equation*}
\int_{\Omega_{\tau}}\left[\left(\frac{\partial u}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}\right] d x=2 \int_{D_{\tau}^{+}} \square u \frac{\partial u}{\partial t} d x d t, \quad \tau \leq \frac{T}{2} . \tag{2.10}
\end{equation*}
$$

Putting

$$
w(\delta):=\int_{\Omega_{\delta}}\left[\left(\frac{\partial u}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}\right] d x
$$

and using the equality

$$
2 \square u \frac{\partial u}{\partial t} \leq \varepsilon\left(\frac{\partial u}{\partial t}\right)^{2}+\frac{1}{\varepsilon}|\square u|^{2}
$$

which is valid for every $\varepsilon=$ const >0, from (2.10) we obtain

$$
\begin{equation*}
w(\delta) \leq \varepsilon \int_{0}^{\delta} w(\sigma) d \sigma+\frac{1}{\varepsilon}\|\square u\|_{L_{2}\left(D_{\delta}^{+}\right)}^{2}, \quad 0<\delta \leq \frac{T}{2} \tag{2.11}
\end{equation*}
$$

From (2.11), taking into account that $\|\square u\|_{L_{2}\left(D_{\delta}^{+}\right)}^{2}$ as a function of δ is nondecreasing, by Gronwall's lemma [15, p. 13] we find that

$$
w(\delta) \leq \frac{1}{\varepsilon}\|\square u\|_{L_{2}\left(D_{\delta}^{+}\right)}^{2} \exp \delta \varepsilon
$$

whence bearing in mind that $\inf _{\varepsilon>0} \frac{1}{\varepsilon} \exp \delta \varepsilon=e \delta$ is achieved for $\varepsilon=1 / \delta$, we obtain

$$
\begin{equation*}
w(\delta) \leq e \delta\|\square u\|_{L_{2}\left(D_{\delta}^{+}\right)}^{2}, \quad 0<\delta \leq \frac{T}{2} \tag{2.12}
\end{equation*}
$$

In its turn, from (2.12) it follows that

$$
\begin{equation*}
\int_{D_{T / 2}^{+}}\left[\left(\frac{\partial u}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}\right] d x d t=\int_{0}^{T / 2} w(\delta) d \delta \leq \frac{e}{8} T^{2}\|\square u\|_{L_{2}\left(D_{T / 2}^{+}\right)}^{2} \tag{2.13}
\end{equation*}
$$

Using the equalities $\left.u\right|_{S_{T / 2}}=0$ and $u(x, t)=\int_{|x|}^{t} \frac{\partial u(x, \tau)}{\partial t} d \tau,(x, t) \in$ $\bar{D}_{T / 2}^{+}$, which are valid for every function $u \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, \partial D_{T}\right)$, and reasoning in a standard way [49, p. 69], it is not difficult to get the inequality

$$
\begin{equation*}
\int_{D_{T / 2}^{+}} u^{2}(x, t) d x d t \leq \frac{T^{2}}{4} \int_{D_{T / 2}^{+}}\left(\frac{\partial u}{\partial t}\right)^{2} d x d t \tag{2.14}
\end{equation*}
$$

Owing to (2.13) and (2.14), we have

$$
\begin{aligned}
\|u\|_{W_{2, \square}^{1}\left(D_{T / 2}^{+}\right)}^{2} & =\int_{D_{T / 2}^{+}}\left[u^{2}+\left(\frac{\partial u}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}+(\square u)^{2}\right] d x d t \leq \\
& \leq\left(1+\frac{e}{8} T^{2}+\frac{e}{32} T^{4}\right)\|\square u\|_{L_{2}\left(D_{T / 2}^{+}\right)}^{2},
\end{aligned}
$$

whence we obtain the first inequality from (2.5) with the constant $c^{2}=$ $1+\frac{e}{8} T^{2}+\frac{e}{32} T^{4}$. Thus we have proved the lemma.

Lemma 2.2. Let $F \in L_{2}\left(D_{T}\right), 0<\alpha<1$, and in the case $\alpha>1$ we additionally require that $\lambda>0$. Then for a weak generalized solution $u \in \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$ of the problem (1.1), (1.2) with nonlinearity of the type (2.1), i.e., of the problem (2.2), (1.2) in the sense of the integral equality (2.3) for $|u|^{\alpha} \in L_{2}\left(D_{T}\right)$, the a priori estimate

$$
\begin{equation*}
\|u\|_{\mathscr{W}_{2, \square}^{1}\left(D_{T}\right)} \leq c_{1}\|F\|_{L_{2}\left(D_{T}\right)}+c_{2} \tag{2.15}
\end{equation*}
$$

is valid with nonnegative constants $c_{i}(T, \alpha, \lambda), i=1,2$, independent of u and F and $c_{1}>0$.

Proof. First, let $\alpha>1$ and $\lambda>0$. Putting $\varphi=u \in \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$ in the equality (2.3) and taking into account (1.4) for any $\varepsilon>0$, we obtain

$$
\|\square u\|_{L_{2}\left(D_{T}\right)}^{2}=\int_{D_{T}}(\square u)^{2} d x d t=-\lambda \int_{D_{T}}|u|^{\alpha+1} d x d t+\int_{D_{T}} F u d x d t \leq
$$

$$
\begin{align*}
& \leq \int_{D_{T}} F u d x d t \leq \frac{1}{4 \varepsilon} \int_{D_{T}} F^{2} d x d t+\varepsilon\|u\|_{L_{2}\left(D_{T}\right)}^{2} \leq \\
& \leq \frac{1}{4 \varepsilon}\|F\|_{L_{2}\left(D_{T}\right)}^{2}+\varepsilon\|u\|_{W_{2, \square}^{1}\left(D_{T}\right)}^{2} \tag{2.16}
\end{align*}
$$

By virtue of (2.4) and (2.16), we have

$$
\|u\|_{{\stackrel{\circ}{W_{2, \square}^{1}\left(D_{T}\right)}}_{2}^{2}} \leq c^{2}\|\square u\|_{L_{2}\left(D_{T}\right)}^{2} \leq \frac{c^{2}}{4 \varepsilon}\|F\|_{L_{2}\left(D_{T}\right)}^{2}+c^{2} \varepsilon\|u\|_{W_{2, \square}^{1}\left(D_{T}\right)}^{2},
$$

whence for $\varepsilon=\frac{1}{2 c^{2}}<\frac{1}{c^{2}}$ we obtain

$$
\begin{equation*}
\|u\|_{\stackrel{\circ}{W_{2, \square}^{1}\left(D_{T}\right)}}^{2} \leq \frac{c^{2}}{4 \varepsilon\left(1-\varepsilon c^{2}\right)}\|F\|_{L_{2}\left(D_{T}\right)}^{2}=c^{4}\|F\|_{L_{2}\left(D_{T}\right)}^{2} \tag{2.17}
\end{equation*}
$$

In case $\alpha>1$ and $\lambda>0$, from (2.17) it follows the inequality (2.15) with $c_{1}=c^{2}$ and $c_{2}=0$.

Let now $0<\alpha<1$. Using the well-known inequality $a b \leq \frac{\varepsilon a^{p}}{p}+\frac{b^{q}}{q \varepsilon^{q-1}}$ with the parameter $\varepsilon>0$ for $a=|u|^{\alpha+1}, b=1, p=\frac{2}{\alpha+1}>1, q=\frac{2}{a-\alpha}$, $\frac{1}{p}+\frac{1}{q}=1$, analogously as when deducing the inequality (2.16) we have

$$
\begin{align*}
& \quad\|\square u\|_{L_{2}\left(D_{T}\right)}^{2}=\int_{D_{T}}(\square u)^{2} d x d t=-\lambda \int_{D_{T}}|u|^{\alpha+1} d x d t+\int_{D_{T}} F u d x d t \leq \\
& \leq|\lambda| \int_{D_{T}}\left[\varepsilon \frac{1+\alpha}{2}|u|^{2}+\frac{1-\alpha}{2 \varepsilon^{q-1}}\right] d x d t+\frac{1}{4 \varepsilon} \int_{D_{T}} F^{2} d x d t+\varepsilon \int_{D_{T}} u^{2} d x d t= \\
& \leq \frac{1}{4 \varepsilon}\|F\|_{L_{2}\left(D_{T}\right)}^{2}+\varepsilon\left(|\lambda| \frac{1+\alpha}{2}+1\right)\|u\|_{L_{2}\left(D_{T}\right)}^{2}+|\lambda| \frac{1-\alpha}{2 \varepsilon^{q-1}} \operatorname{mes} D_{T} . \tag{2.18}
\end{align*}
$$

By virtue of (1.4) and (2.4), it follows from (2.18) that

$$
\begin{gathered}
\|u\|_{W_{2, \square}^{1}\left(D_{T}\right)}^{2} \leq c^{2}\|\square u\|_{L_{2}\left(D_{T}\right)}^{2} \leq \\
\leq \frac{c^{2}}{4 \varepsilon}\|F\|_{L_{2}\left(D_{T}\right)}^{2}+\varepsilon c^{2}\left(|\lambda| \frac{1+\alpha}{2}+1\right)\|u\|_{W_{2, \square}^{1}\left(D_{T}\right)}^{2}+c^{2}|\lambda| \frac{1-\alpha}{2 \varepsilon^{q-1}} \operatorname{mes} D_{T} \\
q=\frac{2}{1-\alpha}
\end{gathered}
$$

whence for $\varepsilon=\frac{1}{2} c^{-2}\left(|\lambda| \frac{1+\alpha}{2}+1\right)^{-1}$ we obtain

$$
\begin{gather*}
\|u\|_{W_{2, \square}^{1}\left(D_{T}\right)}^{2} \leq \\
\leq\left[1-\varepsilon c^{2}\left(|\lambda| \frac{1+\alpha}{2}+1\right)\right]^{-1}\left(\frac{c^{2}}{4 \varepsilon}\|F\|_{L_{2}\left(D_{T}\right)}+c^{2}|\lambda| \frac{1-\alpha}{2 \varepsilon^{q-1}} \operatorname{mes} D_{T}\right)= \\
=c^{4}\left(|\lambda| \frac{1+\alpha}{2}+1\right)\|F\|_{L_{2}\left(D_{T}\right)}^{2}+2 c^{2}|\lambda| \frac{1-\alpha}{2 \varepsilon^{q-1}} \operatorname{mes} D_{T} \tag{2.19}
\end{gather*}
$$

From (2.19), in case $0<\alpha<1$ it follows the inequality (2.15) with $c_{1}=c^{2}\left(|\lambda| \frac{1+\alpha}{2}+1\right)^{1 / 2}$ and $c_{2}=c\left(2|\lambda| \frac{1-\alpha}{2 \varepsilon^{q-1}} \operatorname{mes} D_{T}\right)^{1 / 2}$, where $q=\frac{1}{1-\alpha}$. Thus the lemma is proved completely.

Remark 2.1. It follows from the proof of Lemma 2.2 that the constants c_{1} and c_{2} in the estimate (2.15) are equal to:
(1) $\alpha>1, \lambda>0: c_{1}=c^{2}, c_{2}=0$;
(2) $0<\alpha<1,-\infty<\lambda<+\infty$:

$$
\begin{equation*}
c_{1}=c^{2}\left(|\lambda| \frac{1+\alpha}{2}+1\right)^{1 / 2}, \quad c_{2}=c\left(2|\lambda| \frac{1-\alpha}{2 \varepsilon^{q-1}} \operatorname{mes} D_{T}\right)^{1 / 2} \tag{2.20}
\end{equation*}
$$

where the constant $c=\left(1+\frac{e}{8} T^{2}+\frac{e}{32} T^{4}\right)^{1 / 2}$ is taken from the estimate (2.4) and $q=\frac{1}{1-\alpha}$.

Remark 2.2. Below we will first consider the linear problem corresponding to (1.1), (1.2), i.e., the case where $\lambda=0$. In this case, for $F \in L_{2}\left(D_{T}\right)$ we introduce analogously the notion of a weak generalized solution $u \in \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$ of that problem when the integral equality

$$
\begin{equation*}
(u, \varphi)_{\square}:=\int_{D_{T}} \square u \square \varphi d x d t=\int_{D_{T}} F \varphi d x d t \forall \varphi \in \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right) \tag{2.22}
\end{equation*}
$$

holds.
Remark 2.3. By (1.4) and (2.4), taking into account that

$$
\begin{aligned}
& \left|(\square u, \square \varphi)_{L_{2}\left(D_{T}\right)}\right|=\left|\int_{D_{T}} \square u \square \varphi d x d t\right| \leq \\
& \quad \leq\|\square u\|_{L_{2}\left(D_{T}\right)}\|\square \varphi\|_{L_{2}\left(D_{T}\right)} \leq\|\square u\|_{\stackrel{\circ}{2, \square}_{1}^{\left(D_{T}\right)}}\|\square \varphi\|_{{\stackrel{D}{W_{2, \square}}}^{1}\left(D_{T}\right)}
\end{aligned}
$$

we can take the bilinear form $(u, \varphi)_{\square}:=\int_{D_{T}} \square u \square \varphi d x d t$ from (2.22) as a scalar product in the Hilbert space $\stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$. Therefore, for $F \in L_{2}\left(D_{T}\right)$

$$
\left|\int_{D_{T}} F \varphi d x d t\right| \leq\|F\|_{L_{2}\left(D_{T}\right)}\|\varphi\|_{L_{2}\left(D_{T}\right)} \leq\|F\|_{L_{2}\left(D_{T}\right)}\|\varphi\|_{\stackrel{\circ}{2, \square}_{1}^{\left(D_{T}\right)}}
$$

and by the Riesz theorem [10, p. 83] there exists a unique function u from the space $\stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$ which satisfies the equality (2.22) for every $\varphi \in$ $\stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$ and for its norm the estimate

$$
\begin{equation*}
\|u\|_{\dot{W}_{2, \square}^{1}\left(D_{T}\right)} \leq\|F\|_{L_{2}\left(D_{T}\right)} \tag{2.23}
\end{equation*}
$$

is valid. Thus introducing the notation $u=L_{0}^{-1} F$, we find that to the linear problem corresponding to (1.1), (1.2), i.e., for $\lambda=0$, there corresponds the
linear bounded operator $L_{0}^{-1}: L_{2}\left(D_{T}\right) \rightarrow \stackrel{\circ}{W}{ }_{2, \square}^{1}\left(D_{T}\right)$ and for its norm the estimate

$$
\begin{equation*}
\left\|L_{0}^{-1}\right\|_{L_{2}\left(D_{T}\right) \rightarrow \stackrel{\circ}{W_{2, \square}^{1}\left(D_{T}\right)}} \leq\|F\|_{L_{2}\left(D_{T}\right)} \tag{2.24}
\end{equation*}
$$

holds by virtue of (2.23).
Taking into account Definition 1.1 and Remark 2.3, we can rewrite the equality (2.3), equivalent to the problem (2.2), (1.2), in the form

$$
\begin{equation*}
u=L_{0}^{-1}\left[-\lambda|u|^{\alpha} \operatorname{sgn} u+F\right] \tag{2.25}
\end{equation*}
$$

in the Hilbert space $\stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$.
Remark 2.4. The embedding operator $I: \stackrel{\circ}{W}_{2}^{1}\left(D_{T}\right) \rightarrow L_{q}\left(D_{T}\right)$ is linear, continuous and compact for $1<q<\frac{2(n+1)}{n-1}$, when $n \geq 2$ [49, p. 81]. At the same time, the Nemytski operator $N: L_{q}\left(D_{T}\right) \rightarrow L_{2}\left(D_{T}\right)$ acting by the formula $N u=-\lambda|u|^{\alpha} \operatorname{sgn} u, \alpha>1$, is continuous and bounded if $q \geq 2 \alpha$ [47, p. 349], [48, pp. 66, 67]. Thus if $1<\alpha<\frac{n+1}{n-1}$, then there exists a number q such that $1<2 \alpha \leq q<\frac{2(n+1)}{n-1}$ and hence the operator

$$
\begin{equation*}
N_{1}=N I: \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}\right) \rightarrow L_{2}\left(D_{T}\right) \tag{2.26}
\end{equation*}
$$

is continuous and compact. In addition, from $u \in \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}\right)$ there follows $f(u)=|u|^{\alpha} \operatorname{sgn} u \in L_{2}\left(D_{T}\right)$. Next, since due to (1.4) the space $\stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$ is continuously embedded into the space $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}\right)$, bearing in mind (2.26) we will see that the operator

$$
\begin{equation*}
N_{2}=N I I_{1}: \stackrel{\circ}{W_{2, \square}^{1}}\left(D_{T}\right) \rightarrow L_{2}\left(D_{T}\right) \tag{2.27}
\end{equation*}
$$

where $I_{1}: \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right) \rightarrow \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}\right)$ is the embedding operator, is likewise continuous and compact for $1<\alpha<\frac{n+1}{n-1}$. For $0<\alpha<1$ the operator (2.27) is also continuous and compact since, by Rellikh's theorem [49, p. 64], the space $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}\right)$ is continuously and compactly embedded into $L_{2}\left(D_{T}\right)$, and the space $L_{2}\left(D_{T}\right)$ is, in its turn, continuously embedded into $L_{p}\left(D_{T}\right)$ for $0<p<2$.

We rewrite the equation (2.25) as follows:

$$
\begin{equation*}
u=A u:=L_{0}^{-1}\left(N_{2} u+F\right), \tag{2.28}
\end{equation*}
$$

where the operator $N_{2}: \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right) \rightarrow L_{2}\left(D_{T}\right)$, by Remark 2.4 , for $0<$ $\alpha<\frac{n+1}{n-1}, \alpha \neq 1$, is continuous and compact. Then, taking into account (2.24) we conclude that the operator $A: \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right) \rightarrow \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$ from (2.28) is likewise continuous and compact. At the same time, according to the a priori estimate (2.15) of Lemma 2.2 in which the constants c_{1} and c_{2}
are given by the equalities (2.20) and (2.21), for any parameter $\tau \in[0,1]$ and for every solution $u \in \stackrel{\circ}{W}{ }_{2, \square}^{1}\left(D_{T}\right)$ of the equation $u=\tau A u$ with the above-mentioned parameter the a priori estimate (2.15) is valid with positive constants $c_{1}>0$ and $c_{2} \geq 0$ independent of u, F and τ. Therefore, by the Leray-Schauder theorem [66, p. 375] the equation (2.28) and hence the problem (2.2), (1.2) has at least one weak generalized solution u from the space $\stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$. Thus the following theorem is valid.

Theorem 2.1. Let $0<\alpha<\frac{n+1}{n-1}, \alpha \neq 1, \lambda \neq 0$ and $\lambda>0$ for $\alpha>1$. Then for any $F \in L_{2}\left(D_{T}\right)$ the problem (2.2), (1.2) has at least one weak generalized solution $u \in \stackrel{\circ}{W_{2, \square}^{1}}\left(D_{T}\right)$.
3. The Uniqueness of a Solution of the Problem (1.1), (1.2) in Case of the Nonlinearity of the Type $f(u)=|u|^{\alpha} \operatorname{sgn} u$

Let $F \in L_{2}\left(D_{T}\right)$, and moreover, let u_{1} and u_{2} be two weak generalized solutions of the problem $(2.2),(1.2)$ from the space $\stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$, i.e., according to (2.3) the equalities

$$
\begin{gather*}
\int_{D_{T}} \square u_{i} \square \varphi d x d t= \\
=-\lambda \int_{D_{T}} \varphi\left|u_{i}\right|^{\alpha} \operatorname{sgn} u_{i} d x d t+\int_{D_{T}} F \varphi d x d t \quad \forall \varphi \in \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right) \tag{3.1}
\end{gather*}
$$

are valid and $\left|u_{i}\right|^{\alpha} \in L_{2}\left(D_{T}\right), i=1,2$.
From (3.1), for the difference $v=u_{2}-u_{1}$ we have

$$
\begin{gather*}
\int_{D_{T}} \square v \square \varphi d x d t= \\
=-\lambda \int_{D_{T}} \varphi\left(\left|u_{2}\right|^{\alpha} \operatorname{sgn} u_{2}-\left|u_{1}\right|^{\alpha} \operatorname{sgn} u_{1}\right) d x d t \quad \forall \varphi \in \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right) . \tag{3.2}
\end{gather*}
$$

Putting $\varphi=v \in \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$ in the equality (3.2), we obtain

$$
\begin{equation*}
\int_{D_{T}}(\square v)^{2} d x d t=-\lambda \int_{D_{T}}\left(\left|u_{2}\right|^{\alpha} \operatorname{sgn} u_{2}-\left|u_{1}\right|^{\alpha} \operatorname{sgn} u_{1}\right)\left(u_{2}-u_{1}\right) d x d t . \tag{3.3}
\end{equation*}
$$

Note that for the finite values u_{1} and u_{2}, for $\alpha>0$ the inequality

$$
\begin{equation*}
\left(\left|u_{2}\right|^{\alpha} \operatorname{sgn} u_{2}-\left|u_{1}\right|^{\alpha} \operatorname{sgn} u_{1}\right)\left(u_{2}-u_{1}\right) \geq 0 \tag{3.4}
\end{equation*}
$$

holds.
From (3.3) and the equality (3.4) which is fulfilled for almost all points $(x, t) \in D_{T}$ for $u_{i} \in \stackrel{\circ}{W_{2, \square}^{1}}\left(D_{T}\right), i=1,2$, in case $\alpha>0$ and $\lambda>0$ it follows
that

$$
\int_{D_{T}}(\square v)^{2} d x d t \leq 0
$$

whence, owing to (2.4), we find that $v=0$, i.e. $u_{2}=u_{1}$.
Thus the following theorem is valid.
Theorem 3.1. Let $\alpha>0, \alpha \neq 1$ and $\lambda>0$. Then for any $F \in L_{2}\left(D_{T}\right)$ the problem (2.2), (1.2) cannot have more than one generalized solution in the space $\stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$.

From Theorems 2.1 and 3.1 it in its turn follows
Theorem 3.2. Let $0<\alpha<\frac{n+1}{n-1}, \alpha \neq 1$ and $\lambda>0$. Then for any $F \in L_{2}\left(D_{T}\right)$ the problem (2.2), (1.2) has a unique weak generalized solution in the space $\stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$.

4. The Non-Existence of a Solution of the Problem (1.1), (1.2) in

 the Case of the Nonlinearity of the Type $f(u)=|u|^{\alpha}$Let now in the equation (1.1), and hence in the integral equality (1.2), the function $f(u)=|u|^{\alpha}, \alpha>1$.

Theorem 4.1. Let $\left.F^{0} \in L_{2}\left(D_{T}\right),\left\|F^{0}\right\|_{L_{2}\left(D_{T}\right)}\right) \neq 0, F^{0} \geq 0$, and $F=\mu F^{0}, \mu=\mathrm{const}>0$. Then in case $f(u)=|u|^{\alpha}, \alpha>1$, for $\lambda<0$ there exists a number $\mu_{0}=\mu_{0}\left(F^{0}, \mu, \alpha\right)>0$ such that for $\mu>\mu_{0}$ the problem (1.1), (1.2) cannot have a weak generalized solution from the space $\stackrel{\circ}{W_{2, \square}^{1}}\left(D_{T}\right)$.

Proof. Assume that the conditions of the theorem are fulfilled and the solution $u \in \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$ of the problem (1.1), (1.2) does exist for any fixed $\mu>0$. Then the equality (1.5) takes the form

$$
\begin{gather*}
\int_{D_{T}} \square u \square \varphi d x d t= \\
=-\lambda \int_{D_{T}}|u|^{\alpha} \varphi d x d t+\mu \int_{D_{T}} F^{0} \varphi d x d t \quad \forall \varphi \in \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right) . \tag{4.1}
\end{gather*}
$$

It can be easily verified that

$$
\begin{equation*}
\int_{D_{T}} \square u \square \varphi d x d t=\int_{D_{T}} u \square^{2} \varphi d x d t \forall \varphi \in \stackrel{\circ}{C}^{4}\left(\bar{D}_{T}, \partial D_{T}\right), \tag{4.2}
\end{equation*}
$$

where $\stackrel{\circ}{C}^{4}\left(\bar{D}_{T}, \partial D_{T}\right):=\left\{u \in C^{4}\left(\bar{D}_{T}\right):\left.u\right|_{\partial D_{T}}=0\right\} \subset \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$. Indeed, since $u \in \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$ and the space $\stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, \partial D_{T}\right)$ is dense in $\stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$,
there exists a sequence $u_{k} \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, \partial D_{T}\right)$ such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|u_{k}-u\right\|_{W_{2, \square}^{1}\left(D_{T}\right)}=0 . \tag{4.3}
\end{equation*}
$$

Taking into account that

$$
\begin{gather*}
\int_{D_{T}} \square u_{k} \square \varphi d x d t= \\
=\int_{\partial D_{T}} \frac{\partial u_{k}}{\partial N} \square \varphi d s-\int_{\partial D_{T}} u_{k} \frac{\partial}{\partial N} \square \varphi d s+\int_{D_{T}} u_{k} \square^{2} \varphi d x d t, \tag{4.4}
\end{gather*}
$$

where the derivative with respect to the conormal $\frac{\partial}{\partial N}=\nu_{n+1} \frac{\partial}{\partial t}-\sum_{i=1}^{n} \nu_{i} \frac{\partial}{\partial x_{i}}$ is an inner differential operator on the characteristic manifold ∂D_{T}, and hence $\left.\frac{\partial u_{k}}{\partial N}\right|_{\partial D_{T}}=0$ since $\left.u_{k}\right|_{\partial D_{T}}=0$, from (4.4) we obtain

$$
\begin{equation*}
\int_{D_{T}} \square u_{k} \square \varphi d x d t=\int_{D_{T}} u_{k} \square^{2} \varphi d x d t \tag{4.5}
\end{equation*}
$$

where $\nu=\left(\nu_{1}, \ldots, \nu_{n}, \nu_{n+1}\right)$ is the unit vector of the outer normal to ∂D_{T}. Passing in (4.5) to limit as $k \rightarrow \infty$, by virtue of (1.4) and (4.3) we obtain (4.2).

In view of (4.2), we rewrite the equality (4.1) as follows:

$$
\begin{gather*}
-\lambda \int_{D_{T}}|u|^{\alpha} \varphi d x d t= \\
=\int_{D_{T}} u \square^{2} \varphi d x d t-\mu \int_{D_{T}} F^{0} \varphi d x d t \forall \varphi \in \stackrel{\circ}{C}^{4}\left(\bar{D}_{T}, \partial D_{T}\right) . \tag{4.6}
\end{gather*}
$$

Below we will use the method of test functions [53, pp. 10-12]. As a test function we take $\varphi \in \stackrel{\circ}{C}^{4}\left(\bar{D}_{T}, \partial D_{T}\right)$ such that $\left.\varphi\right|_{D_{T}}>0$. If in Young's inequality with the parameter $\varepsilon>0$

$$
a b \leq \frac{\varepsilon}{\alpha} a^{\alpha}+\frac{1}{\alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}} b^{\alpha^{\prime}} ; \quad a, b \geq 0, \quad \alpha^{\prime}=\frac{\alpha}{\alpha-1}
$$

we take $a=|u| \varphi^{1 / \alpha}, b=\left|\square^{2} \varphi\right| / \varphi^{1 / \alpha}$, then taking into account that $\alpha^{\prime} / \alpha=$ $\alpha^{\prime}-1$ we will have

$$
\begin{equation*}
\left|u \square^{2} \varphi\right|=|u| \varphi^{1 / \alpha} \frac{\left|\square^{2} \varphi\right|}{\varphi^{1 / \alpha}} \leq \frac{\varepsilon}{\alpha}|u|^{\alpha} \varphi+\frac{1}{\alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}} \frac{\left|\square^{2} \varphi\right|^{\alpha^{\prime}}}{\varphi^{\alpha^{\prime}-1}} . \tag{4.7}
\end{equation*}
$$

By virtue of (4.7) and the fact that $-\lambda=|\lambda|$, from (4.6) there follows the inequality

$$
\left(|\lambda|-\frac{\varepsilon}{\alpha}\right) \int_{D_{T}}|u|^{\alpha} \varphi d x d t \leq \frac{1}{\alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}} \int_{D_{T}} \frac{\left|\square^{2} \varphi\right|^{\alpha^{\prime}}}{\varphi^{\alpha^{\prime}-1}} d x d t-\mu \int_{D_{T}} F^{0} \varphi d x d t
$$

whence for $\varepsilon<|\lambda| \alpha$ we get

$$
\begin{gather*}
\int_{D_{T}}|u|^{\alpha} \varphi d x d t \leq \\
\leq \frac{\alpha}{(|\lambda| \alpha-\varepsilon) \alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}} \int_{D_{T}} \frac{\left|\square^{2} \varphi\right|^{\alpha^{\prime}}}{\varphi^{\alpha^{\prime}-1}} d x d t-\frac{\alpha \mu}{|\lambda| \alpha-\varepsilon} \int_{D_{T}} F^{0} \varphi d x d t \tag{4.8}
\end{gather*}
$$

Taking into account the equalities $\alpha^{\prime}=\frac{\alpha}{\alpha-1}, \alpha=\frac{\alpha^{\prime}}{\alpha^{\prime}-1}$ and $\min _{0<\varepsilon<|\lambda| \alpha} \frac{\alpha}{(|\lambda| \alpha-\varepsilon) \alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}}=\frac{1}{|\lambda|^{\alpha^{\prime}}}$ which is achieved for $\varepsilon=|\lambda|$, from (4.8) we find that

$$
\begin{equation*}
\int_{D_{T}}|u|^{\alpha} \varphi d x d t \leq \frac{1}{|\lambda|^{\alpha^{\prime}}} \int_{D_{T}} \frac{\left|\square^{2} \varphi\right|^{\alpha^{\prime}}}{\varphi^{\alpha^{\prime}-1}} d x d t-\frac{\alpha^{\prime} \mu}{|\lambda|} \int_{D_{T}} F^{0} \varphi d x d t \tag{4.9}
\end{equation*}
$$

Note that it is not difficult to show the existence of a test function φ such that

$$
\begin{equation*}
\varphi \in \stackrel{\circ}{C}^{4}\left(\bar{D}_{T}, \partial D_{T}\right),\left.\quad \varphi\right|_{D_{T}}>0, \quad \varkappa_{0}=\int_{D_{T}} \frac{\left|\square^{2} \varphi\right|^{\alpha^{\prime}}}{\varphi^{\alpha^{\prime}-1}} d x d t<+\infty \tag{4.10}
\end{equation*}
$$

Indeed, it can be easily verified that the function

$$
\varphi(x, t)=\left[\left(t^{2}-|x|^{2}\right)\left((T-t)^{2}-|x|^{2}\right)\right]^{m}
$$

for a sufficiently large positive m satisfies the conditions (4.10).
Since by the condition of the theorem $F^{0} \in L_{2}\left(D_{T}\right),\left\|F^{0}\right\|_{L_{2}\left(D_{T}\right)} \neq 0$, $F^{0} \geq 0$, and mes $D_{T}<+\infty$, due to the fact that $\left.\varphi\right|_{D_{T}}>0$ we will have

$$
\begin{equation*}
0<\varkappa_{1}=\int_{D_{T}} F^{0} \varphi d x d t<+\infty \tag{4.11}
\end{equation*}
$$

Denote by $g(\mu)$ the left-hand side of the inequality (4.9) which is a linear function with respect to μ, and by (4.10) and (4.11) we will have

$$
\begin{equation*}
g(\mu)<0 \text { for } \mu>\mu_{0} \text { and } g(\mu)>0 \text { for } \mu<\mu_{0} \tag{4.12}
\end{equation*}
$$

where

$$
g(\mu)=\frac{\varkappa_{0}}{|\lambda|^{\alpha^{\prime}}}-\frac{\alpha^{\prime} \mu}{|\lambda|} \varkappa_{1}, \quad \mu_{0}=\frac{|\lambda|}{\alpha^{\prime}|\lambda|^{\alpha^{\prime}}} \cdot \frac{\varkappa_{0}}{\varkappa_{1}}>0 .
$$

Owing to (4.12) for $\mu>\mu_{0}$, the right-hand side of the inequality (4.9) is negative, whereas the left-hand side of that inequality is nonnegative. The obtained contradiction proves the theorem.

5. The Characteristic Cauchy Problem

For the nonlinear equation (1.1) with $f(u)=|u|^{\alpha}, \alpha=$ const >0, i.e., for the equation

$$
\begin{equation*}
L_{\lambda}:=\square^{2} u+\lambda|u|^{\alpha}=F, \quad \lambda=\text { const }<0, \tag{5.1}
\end{equation*}
$$

we consider the characteristic Cauchy problem: find in the frustrum of the cone of future $D_{T}^{+}:|x|<t<T$ a solution $u(x, t)$ of that equation according the boundary conditions

$$
\begin{equation*}
\left.u\right|_{S_{T}}=0,\left.\quad \frac{\partial u}{\partial \nu}\right|_{S_{T}}=0 \tag{5.2}
\end{equation*}
$$

where $S_{T}: t=|x|, t \leq T$ is the characteristic manifold being a conic portion of the boundary D_{T}^{+}, and $\frac{\partial}{\partial \nu}$ is the derivative with respect to the outer normal to ∂D_{T}^{+}. Considering the case $T=+\infty$, we assume $D_{\infty}^{+}: t>|x|$ and $S_{\infty}=\partial D_{\infty}^{+}: t=|x|$.

Below it will be shown that under certain conditions imposed on the nonlinearity exponent α and on the function F, the problem (5.1), (5.2) has no global solution, although, as it will be proved, this problem is locally solvable.

Let $\stackrel{\circ}{W}_{2}^{2}\left(D_{T}^{+}, S_{T}\right):=\left\{u \in W_{2}^{2}\left(D_{T}^{+}\right):\left.u\right|_{S_{T}}=0,\left.\frac{\partial u}{\partial \nu}\right|_{S_{T}}=0\right\}$, where $W_{2}^{2}\left(D_{T}^{+}\right)$is the well-known Sobolev's space [49, p. 56] consisting of the elements $L_{2}\left(D_{T}^{+}\right)$having generalized derivatives up to the second order, inclusive, from $L_{2}\left(D_{T}^{+}\right)$, and the conditions (5.2) are understood in the sense of the trace theory [49, p. 70].

Definition 5.1. Let $F \in L_{2}\left(D_{T}^{+}\right)$. The function u is said to be a weak generalized solution of the problem (5.1), (5.2) of the class W_{2}^{2} in the domain D_{T}^{+}if $u \in \stackrel{\circ}{W_{2}^{2}}\left(D_{T}^{+}, S_{T}\right),|u|^{\alpha} \in L_{2}\left(D_{T}^{+}\right)$, and for every function $\varphi \in W_{2}^{2}\left(D_{T}^{+}\right)$such that $\left.\varphi\right|_{t=T}=0,\left.\frac{\partial \varphi}{\partial t}\right|_{t=T}=0$, the integral equality

$$
\begin{equation*}
\int_{D_{T}^{+}} \square u \square \varphi d x d t+\lambda \int_{D_{T}^{+}}|u|^{\alpha} \varphi d x d t=\int_{D_{T}^{+}} F \varphi d x d t \tag{5.3}
\end{equation*}
$$

is valid.
The integration by parts allows us to verify that the classical solution $u \in \stackrel{\circ}{C}^{4}\left(\bar{D}_{T}^{+}, S_{T}\right):=\left\{u \in C^{4}\left(\bar{D}_{T}\right):\left.u\right|_{S_{T}}=0,\left.\frac{\partial u}{\partial \nu}\right|_{S_{T}}=0\right\}$ of the problem (5.1), (5.2) is also a weak generalized solution of that problem of the class W_{2}^{2} in the sense of Definition 5.1. Conversely, if a weak generalized solution of the problem (5.1), (5.2) of the class W_{2}^{2} belongs to the space $C^{4}\left(\bar{D}_{T}^{+}\right)$, then this solution will also be classical. Here we have used the fact that if $u \in C^{4}\left(\bar{D}_{T}^{+}\right)$and the conditions (5.2) are fulfilled, then as far as S_{T} is a characteristic manifold, the equality $\left.\square u\right|_{S_{T}}=0$ is true. In addition, since the derivative with respect to the conormal $\frac{\partial}{\partial N}=\nu_{n+1} \frac{\partial}{\partial t}-\sum_{i=1}^{n} \nu_{i} \frac{\partial}{\partial x_{i}}$
$\left(\nu=\left(\nu_{1}, \ldots, \nu_{n}, \nu_{n+1}\right)\right)$ is an inner differential operator on the characteristic manifold S_{T}, therefore $\left.\frac{\partial}{\partial N} \square u\right|_{S_{T}}=0$, and also $\left.\frac{\partial u}{\partial N}\right|_{S_{T}}=0$ because $\left.u\right|_{S_{T}}=0$.

Definition 5.2. Let $F \in L_{2}\left(D_{T}^{+}\right)$. The function u is said to be a strong generalized solution of the problem (5.1), (5.2) of the class W_{2}^{2} in the domain D_{T}^{+}if $u \in \stackrel{\circ}{W_{2}^{2}}\left(D_{T}^{+}, S_{T}\right),|u|^{\alpha} \in L_{2}\left(D_{T}\right)$ and there exists a sequence of functions $u_{m} \in \stackrel{\circ}{C}^{4}\left(\bar{D}_{T}^{+}, S_{T}\right)$ such that $u_{m} \rightarrow u$ in the space $\stackrel{\circ}{W}_{2}^{2}\left(D_{T}^{+}, S_{T}\right)$ and $\left|u_{m}\right|^{\alpha} \rightarrow|u|^{\alpha}, L_{\lambda} u_{m} \rightarrow F$ in the space $L_{2}\left(D_{T}^{+}\right)$.

Obviously, the classical solution of the problem (5.1), (5.2) from the space $\stackrel{\circ}{C}^{4}\left(\bar{D}_{T}^{+}, S_{T}\right)$ is a strong generalized solution of that problem of the class W_{2}^{2}. In its turn, a strong generalized solution of the problem (5.1), (5.2) of the class W_{2}^{2} is a weak generalized solution of that problem of the class W_{2}^{2}.

Definition 5.3. Let $F \in L_{2, l o c}\left(D_{\infty}^{+}\right)$and $F \in L_{2}\left(D_{T}^{+}\right)$for any $T>0$. We say that the problem (5.1), (5.2) is globally solvable in the weak (strong) sense in the class W_{2}^{2} if for any $T>0$ this problem has a weak (strong) generalized solution of the class W_{2}^{2} in the domain D_{T}^{+}.

Remark 5.1. It can be easily seen that if the problem (5.1), (5.2) is not globally solvable in the weak sense, then it will not be globally solvable in the strong sense in the class W_{2}^{2}. Obviously, the global solvability of the problem (5.1), (5.2) in the strong sense implies the global solvability of that problem in the weak sense in the class W_{2}^{2}.

Theorem 5.1. Let $F \in L_{2, l o c}\left(D_{\infty}^{+}\right), F \geq 0, F \not \equiv 0$ and $F \in L_{2}\left(D_{T}^{+}\right)$ for any $T>0$. Then if the nonlinearity exponent α in the equation (5.1) satisfies the inequalities

$$
\begin{cases}1<\alpha<\frac{n+1}{n-2}, & n>3 \tag{5.4}\\ 1<\alpha<\infty, & n=2,3\end{cases}
$$

and in the limiting case $\alpha=\frac{n+1}{n-3}$ for $n>3$ the function F satisfies the condition

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \int_{D_{T}} F d x d t=\infty \tag{5.5}
\end{equation*}
$$

then the problem (5.1), (5.2) is not globally solvable in the weak sense in the class W_{2}^{2}, i.e., there exists a number $T_{0}=T_{0}(F)>0$, such that for $T>T_{0}$ the problem (5.1), (5.2) fails to have a weak generalized solution of the class W_{2}^{2} in the domain D_{T}^{+}.

Proof. Assume that u is a weak generalized solution of the problem (5.1), (5.2) of the class W_{2}^{2} in the domain D_{T}^{+}, i.e., the integral equality (5.3) is valid for any function $\varphi \in W_{2}^{2}\left(D_{T}^{+}\right)$such that $\left.\varphi\right|_{t=T}=0,\left.\frac{\partial \varphi}{\partial t}\right|_{t=T}=0$.

Integrating the left-hand side of the equality (5.3) by parts, we obtain

$$
\begin{gather*}
\iint_{D_{T}^{+}} \square u \square \varphi d x d t= \\
\int_{\partial D_{T}^{+}} \frac{\partial u}{\partial N} \square \varphi d s-\int_{\partial D_{T}^{+}} \frac{\partial u}{\partial t} \frac{\partial}{\partial t} \square \varphi d x d t+\int_{D_{T}^{+}} \nabla_{x} u \nabla_{x}(\square \varphi) d x d t= \\
=\int_{\partial D_{T}^{+}} \frac{\partial u}{\partial N} \square \varphi d s-\int_{\partial D_{T}^{+}} u \frac{\partial}{\partial N} \square \varphi d s+\int_{D_{T}^{+}} u \square^{2} \varphi d x d t, \tag{5.6}
\end{gather*}
$$

where $\frac{\partial}{\partial N}$ is the derivative with respect to the conormal.
Let the function $\varphi_{0}=\varphi_{0}(\sigma)$ of one real variable σ be such that

$$
\varphi_{0} \in C^{4}((-\infty,+\infty)), \quad \varphi_{0} \geq 0, \quad \varphi_{0}^{\prime} \leq 0, \quad \varphi_{0}(\sigma)= \begin{cases}1, & 0 \leq \sigma \leq 1 \tag{5.7}\\ 0, & \sigma \geq 2\end{cases}
$$

We use here the method of test functions [53, pp. 10-12]. In the capacity of the test function in the equality (5.3) we take the function $\varphi(x, t)=$ $\varphi_{0}\left[\frac{2}{T^{2}}\left(t^{2}+|x|^{2}\right)\right]$. Taking into account that $\left.u\right|_{S_{T}}=0$ and hence $\left.\frac{\partial u}{\partial N}\right|_{S_{T}}=0$, since $\frac{\partial}{\partial N}=\nu_{n+1} \frac{\partial}{\partial t}-\sum_{i=1}^{n} \nu_{i} \frac{\partial}{\partial x_{i}}$ is an inner differential operator on S_{T} as well as by virtue of (5.7) and the equalities $\left.\frac{\partial^{i} \varphi}{\partial t^{i}}\right|_{t=T}=0,0 \leq i \leq 4,\left.\square \varphi\right|_{t=T}=$ $\left.\frac{\partial}{\partial N} \square \varphi\right|_{t=T}=0$, it follows from (5.6) that $\int_{D_{T}^{+}} \square u \square \varphi d x d t=\int_{D_{T}^{+}} u \square^{2} \varphi d x d t$.

Thus we can rewrite the equality (5.3) in the form

$$
\begin{equation*}
-\lambda \int_{D_{T}^{+}}|u|^{\alpha} \varphi d x d t=\int_{D_{T}^{+}} u \square^{2} \varphi d x d t-\int_{D_{T}^{+}} F \varphi d x d t \tag{5.8}
\end{equation*}
$$

If in Young's inequality with the parameter $\varepsilon>0$

$$
a b \leq \frac{\varepsilon}{\alpha} a^{\alpha}+\frac{1}{\alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}} b^{\alpha^{\prime}}, \quad a, b \geq 0, \quad \alpha^{\prime}=\frac{\alpha}{\alpha-1}
$$

we take $a=|u| \varphi^{1 / \alpha}, b=\left|\square^{2} \varphi\right| / \varphi^{1 / \alpha}$, then in view of the fact that $\alpha^{\prime} / \alpha=$ $\alpha^{\prime}-1$ we will have

$$
\begin{equation*}
\left|u \square^{2} \varphi\right|=|u| \varphi^{1 / \alpha} \frac{\left|\square^{2} \varphi\right|}{\varphi^{1 / \alpha}} \leq \frac{\varepsilon}{\alpha}|u|^{\alpha} \varphi+\frac{1}{\alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}} \frac{\left|\square^{2} \varphi\right|^{\alpha^{\prime}}}{\varphi^{\alpha^{\prime}-1}} . \tag{5.9}
\end{equation*}
$$

Owing to (5.9) and $|\lambda|=-\lambda$, from (5.8) it follows the inequality

$$
\left(|\lambda|-\frac{\varepsilon}{\alpha}\right) \int_{D_{T}^{+}}|u|^{\alpha} \varphi d x d t \leq \frac{1}{\alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}} \int_{D_{T}^{+}} \frac{\left|\square^{2} \varphi\right|^{\alpha^{\prime}}}{\varphi^{\alpha^{\prime}-1}} d x d t-\int_{D_{T}} F \varphi d x d t
$$

whence for $\varepsilon<|\lambda| \alpha$ we get

$$
\begin{gather*}
\int_{D_{T}^{+}}|u|^{\alpha} \varphi d x d t \leq \\
\leq \frac{\alpha}{(|\lambda| \alpha-\varepsilon) \alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}} \int_{D_{T}^{+}} \frac{\left|\square^{2} \varphi\right|^{\alpha^{\prime}}}{\varphi^{\alpha^{\prime}-1}} d x d t-\frac{\alpha}{|\lambda| \alpha-\varepsilon} \int_{D_{T}^{+}} F \varphi d x d t . \tag{5.10}
\end{gather*}
$$

Bearing in mind the equalities $\alpha^{\prime}=\frac{\alpha}{\alpha-1}, \alpha=\frac{\alpha^{\prime}}{\alpha^{\prime}-1}$ and $\min _{0<\varepsilon<|\lambda| \alpha} \frac{\alpha}{(|\lambda| \alpha-\varepsilon) \alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}}=\frac{1}{\lambda^{\alpha^{\prime}}}$ which is achieved for $\varepsilon=|\lambda|$, it follows from (5.10) that

$$
\begin{equation*}
\int_{D_{T}^{+}}|u|^{\alpha} \varphi d x d t \leq \frac{1}{|\lambda|^{\alpha^{\prime}}} \int_{D_{T}^{+}} \frac{\left|\square^{2} \varphi\right|^{\alpha^{\prime}}}{\varphi^{\alpha^{\prime}-1}} d x d t-\frac{\alpha^{\prime}}{|\lambda|} \int_{D_{T}^{+}} F \varphi d x d t \tag{5.11}
\end{equation*}
$$

According to the properties (5.7) of the function φ_{0}, the test function $\varphi(x, t)=\varphi_{0}\left[\frac{2}{T^{2}}\left(t^{2}+|x|^{2}\right)\right]=0$ for $r=\left(t^{2}+|x|^{2}\right)^{1 / 2} \geq T$. Therefore, after the change of variables $t=T \xi_{0}$ and $x=T \xi$ we have

$$
\begin{gathered}
\int_{D_{T}^{+}} \frac{\left|\square^{2} \varphi\right|^{\alpha^{\prime}}}{\varphi^{\alpha^{\prime}-1}} d x d t= \\
=\int_{r=\left(t^{2}+|x|^{2}\right)^{1 / 2}<T} \frac{\left|c_{1} T^{-4} \varphi_{0}^{\prime \prime}+\left(c_{2} t^{2}+c_{3}|x|^{2}\right) T^{-6} \varphi_{0}^{\prime \prime \prime}+c_{4} T^{-8}\left(t^{2}-|x|^{2}\right)^{2} \varphi_{0}^{\prime \prime \prime \prime}\right|^{\alpha^{\prime}}}{\varphi^{\alpha^{\prime}-1}} d x d t= \\
=T^{n+1-4 \alpha^{\prime}} \int_{\substack{ \\
1<2\left(\xi_{0}^{2}+|\xi|^{2}\right)<2, \xi_{0}>|\xi|}}^{\left|c_{1} \varphi_{0}^{\prime \prime}+\left(c_{2} \xi_{0}^{2}+c_{3}|\xi|^{2}\right) \varphi_{0}^{\prime \prime \prime}+c_{4}\left(\xi_{0}^{2}-|\xi|^{2}\right)^{2} \varphi_{0}^{\prime \prime \prime \prime}\right|^{\alpha^{\prime}}} \\
\varphi_{0}^{\alpha^{\prime}-1}
\end{gathered} d x d t, \quad \text { (5.12) }
$$

where $c_{i}=c_{i}(n), i=1, \ldots, 4$, are certain integers.
As is known, the test function $\varphi(x, t)=\varphi_{0}\left[\frac{2}{T^{2}}\left(t^{2}+|x|^{2}\right)\right]$ with the above-mentioned properties for which the integrals in the right-hand sides of (5.11) and (5.12) are finite does exist [53, p. 28].

Due to (5.12), from the inequality (5.11) and the fact that $\varphi_{0}(\sigma)=1$ for $0 \leq \sigma \leq 1$ we obtain the inequality

$$
\begin{align*}
& \int_{\substack{\left.|x|^{2}\right)^{1 / 2}<\frac{T}{\sqrt{2}}, t>|x|}}|u|^{\alpha} d x d t \leq \\
& \quad \leq \int_{D_{T}^{+}}|u|^{\alpha} \varphi d x d t \leq \frac{T^{n+1-4 \alpha^{\prime}}}{|\lambda|^{\alpha^{\prime}}} \varkappa_{0}-\frac{\alpha^{\prime}}{|\lambda|} \gamma(T) \tag{5.13}
\end{align*}
$$

where

$$
\begin{aligned}
\gamma(T) & =\int_{D_{T}^{+}} F \varphi d x d t, \\
\varkappa_{0} & =\int_{\substack{1<2\left(\xi_{0}^{2}+|\xi|^{2}\right)<2, \xi_{0}>|\xi|}} \frac{\left|c_{1} \varphi_{0}^{\prime \prime}+\left(c_{2} \xi_{0}^{2}+c_{3}|\xi|^{2}\right) \varphi_{0}^{\prime \prime \prime}+c_{4}\left(\xi_{0}^{2}-|\xi|^{2}\right)^{2} \varphi_{0}^{\prime \prime \prime \prime}\right|^{\alpha^{\prime}}}{\varphi_{0}^{\alpha^{\prime}-1}} d \xi_{0} d \xi<+\infty .
\end{aligned}
$$

Consider first the case $q=n+1-4 \alpha^{\prime}<0$ which according to the condition (5.4) implies that $\alpha<\frac{n+1}{n-3}$ for $n>3$ and $\alpha<\infty$ for $n=2,3$. In this case, the equation

$$
\begin{equation*}
g(T)=\frac{T^{n+1-4 \alpha^{\prime}}}{|\lambda|^{\alpha^{\prime}}} \varkappa_{0}-\frac{\alpha^{\prime}}{|\lambda|} \gamma(T)=0 \tag{5.14}
\end{equation*}
$$

has a unique positive root $T=T_{0}>0$ since the function $g_{1}(T)=\frac{T^{n+1-4 \alpha^{\prime}}}{|\lambda|^{\alpha^{\prime}}} \varkappa_{0}$ is positive, continuous, strictly decreasing on the interval $(0,+\infty)$ with $\lim _{T \rightarrow 0} g_{1}(T)=+\infty$ and $\lim _{T \rightarrow+\infty} g_{1}(T)=0$, and the function $\gamma(T)=\int_{D_{T}^{+}} F \varphi d x d t$ is, by virtue of $F \geq 0$ and (5.7), nonnegative and nondecreasing and is, because of the absolute continuity of the integral, also continuous. Moreover, $\lim _{T \rightarrow+\infty} \gamma(T)>0$, since $F \geq 0$ and $F \not \equiv 0$, i.e., $F \neq 0$ on some set of the positive Lebesgue measure. Thus $g(T)<0$ for $T>T_{0}$ and $g(T)>0$ for $0<T<T_{0}$. Consequently, for $T>T_{0}$ the right-hand side of the inequality (5.13) is negative, but this is impossible.

Consider now the limiting case $q=n+1-4 \alpha^{\prime}=0$, i.e., when $\alpha=\frac{n+1}{n-3}$ for $n>3$. In this case, the equation (5.14) takes the form $\frac{1}{|\lambda|^{\alpha^{\prime}}} \varkappa_{0}-$ $\frac{\alpha^{\prime}}{|\lambda|} \gamma(T)=0$ and likewise has, owing to the obvious equality $\lim _{T \rightarrow 0} \gamma(T)=0$ and the conditions (5.5) and (5.7), a unique positive root $T=T_{0}>0$. For $T>T_{0}$, the right-hand side of the inequality (5.13) is negative, and this again leads to a contradiction. Thus the theorem is proved completely.

Remark 5.2. It follows from the proof of Theorem 5.2 that if the conditions of the theorem are fulfilled and there exists a weak generalized solution of the problem (5.1), (5.2) of the class W_{2}^{2} in the domain D_{T}^{+}, then the estimate

$$
\begin{equation*}
T \leq T_{0} \tag{5.15}
\end{equation*}
$$

is valid, where T_{0} is a unique positive root of the equation (5.14).
Below we will prove the local solvability of the problem (5.1), (5.2). First we will consider the linear case when in the equation (5.1) the parameter $\lambda=0$, i.e., we consider the problem

$$
\begin{equation*}
L_{0} u(x, t)=F(x, t), \quad(x, t) \in D_{T}^{+}, \tag{5.16}
\end{equation*}
$$

$$
\begin{equation*}
\left.u\right|_{S_{T}}=0,\left.\quad \frac{\partial u}{\partial \nu}\right|_{S_{T}}=0 \tag{5.17}
\end{equation*}
$$

where $L_{0}=\square^{2}$.
Definition 5.4. Let $F \in L_{2}\left(D_{T}^{+}\right)$. The function u is said to be a strong generalized solution of the problem (5.16), (5.17) of the class W_{2}^{2} in the domain D_{T}^{+}if $u \in \stackrel{\circ}{W}_{2}^{2}\left(D_{T}^{+}, S_{T}\right)$ and there exists a sequence of functions $u_{m} \in \stackrel{\circ}{C}^{4}\left(\bar{D}_{T}^{+}, S_{T}\right)$ such that $u_{m} \rightarrow u$ in the space $\stackrel{\circ}{W}_{2}^{2}\left(D_{T}^{+}, S_{T}\right)$ and $L_{0} u_{m} \rightarrow$ F in the space $L_{2}\left(D_{T}^{+}\right)$.

Obviously, the classical solution $u \in \stackrel{\circ}{C}^{4}\left(\bar{D}_{T}^{+}, S_{T}\right)$ of the problem (5.16), (5.17) is a strong generalized solution of the problem of the class W_{2}^{2} in the domain D_{T}.

Lemma 5.1. For a strong generalized solution u of the problem (5.16), (5.17) of the class W_{2}^{2} in the domain D_{T}^{+}the estimate

$$
\begin{equation*}
\|u\|_{\stackrel{\circ}{W}_{2}^{2}\left(D_{T}^{+}, S_{T}\right)} \leq c_{n} T^{2}\|F\|_{L_{2}\left(D_{T}^{+}\right)} \tag{5.18}
\end{equation*}
$$

holds, where the positive constant c_{n} does not depend on u, F and T.
Proof. The same reasoning as when deducing the inequality (2.13) allows us to prove the inequality

$$
\begin{equation*}
\|v\|_{\stackrel{W}{2}_{1}^{\left(D_{T}^{+}, S_{T}\right)}} \leq \sqrt{\frac{e}{2}} T\|\square v\|_{L_{2}\left(D_{T}^{+}\right)} \forall v \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}^{+}, S_{T}\right), \tag{5.19}
\end{equation*}
$$

where $\stackrel{\circ}{C}^{2}\left(\bar{D}_{T}^{+}, S_{T}\right):=\left\{v \in C^{2}\left(\bar{D}_{T}^{+}\right):\left.v\right|_{S_{T}}=0\right\}$ and in the space $\stackrel{\circ}{W_{2}^{1}}\left(D_{T}^{+}, S_{T}\right):=\left\{v \in W_{2}^{1}\left(D_{T}^{+}\right):\left.v\right|_{S_{T}}=0\right\}$ we take, by virtue of (2.14), the norm

$$
\|v\|_{W_{2}^{1}\left(D_{T}^{+}, S_{T}\right)}^{2}=\int_{D_{T}^{+}}\left[\left(\frac{\partial u}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}\right] d x d t
$$

By the definition, if u is a strong generalized solution of the problem (5.16), (5.17) of the class W_{2}^{2} in the domain D_{T}^{+}, then there exists a sequence of functions $u_{m} \in \stackrel{\circ}{C}^{4}\left(\bar{D}_{T}^{+}, S_{T}\right):=\left\{u \in C^{4}\left(\bar{D}_{T}^{+}\right):\left.u\right|_{S_{T}}=0,\left.\frac{\partial u}{\partial \nu}\right|_{S_{T}}=0\right\}$ such that

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|u_{m}-u\right\|_{W_{2}^{2}\left(D_{T}^{+}, S_{T}\right)}=0, \quad \lim _{m \rightarrow \infty}\left\|\square^{2} u_{m}-F\right\|_{L_{2}\left(D_{T}^{+}\right)}=0 . \tag{5.20}
\end{equation*}
$$

Since $u_{m} \in \stackrel{\circ}{C}^{4}\left(\bar{D}_{T}^{+}, S_{T}\right)$ satisfies the homogeneous boundary conditions (5.17) and S_{T} is a characteristic manifold corresponding to the operator \square, therefore, as is known [8, p. 546],

$$
\begin{equation*}
\left.\square u_{m}\right|_{S_{T}}=0 . \tag{5.21}
\end{equation*}
$$

Owing to (5.11), the function $v=\square u_{m} \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}^{+}, S_{T}\right)$, due to (5.19), satisfies the inequalities

$$
\begin{align*}
\left\|\square u_{m}\right\|_{L_{2}\left(D_{T}^{+}\right)}^{2} & \leq \frac{e}{2} T^{2}\left\|\square^{2} u_{m}\right\|_{L_{2}\left(D_{T}^{+}\right)}^{2}, \\
\left\|\square \frac{\partial u_{m}}{\partial t}\right\|_{L_{2}\left(D_{T}^{+}\right)}^{2} & \leq \frac{e}{2} T^{2}\left\|\square^{2} u_{m}\right\|_{L_{2}\left(D_{T}^{+}\right)}^{2}, \tag{5.22}\\
\left\|\square \frac{\partial u_{m}}{\partial x_{i}}\right\|_{L_{2}\left(D_{T}^{+}\right)}^{2} & \leq \frac{e}{2} T^{2}\left\|\square^{2} u_{m}\right\|_{L_{2}\left(D_{T}^{+}\right)}^{2}, \quad i=1, \ldots, n .
\end{align*}
$$

Since $\frac{\partial u_{m}}{\partial t}, \frac{\partial u_{m}}{\partial x_{i}} \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, S_{T}\right)$, by (5.19) and (5.22) we have

$$
\begin{gathered}
\left\|u_{m}\right\|_{W_{2}^{2}\left(D_{T}^{+}, S_{T}\right)}= \\
=\int_{D_{T}^{+}}\left[\left(\frac{\partial u_{m}}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u_{m}}{\partial x_{i}}\right)^{2}+\left(\frac{\partial^{2} u_{m}}{\partial t^{2}}\right)^{2}+\right. \\
\left.+\sum_{i=1}^{n}\left(\frac{\partial^{2} u_{m}}{\partial t \partial x_{i}}\right)^{2}+\sum_{i, j=1}^{n}\left(\frac{\partial^{2} u_{m}}{\partial x_{i} \partial x_{j}}\right)^{2}\right] d x d t \leq \\
\leq\left\|\frac{\partial u_{m}}{\partial t}\right\|_{W_{2}^{1}\left(D_{T}^{+}, S_{T}\right)}^{2}+\sum_{i=1}^{n}\left\|\frac{\partial u_{m}}{\partial x_{i}}\right\|_{W_{2}^{1}\left(D_{T}^{+}, S_{T}\right)}^{2} \leq \\
\leq \frac{e}{2} T^{2}\left\|\square \frac{\partial u_{m}}{\partial t}\right\|_{L_{2}\left(D_{T}^{+}\right)}^{2}+\frac{e}{2} T^{2} \sum_{i=1}^{n}\left\|\square \frac{\partial u_{m}}{\partial x_{i}}\right\|_{L_{2}\left(D_{T}^{+}\right)}^{2} \leq \\
\leq\left(\frac{e}{2}\right)^{2}(n+1) T^{4}\left\|\square^{2} u_{m}\right\|_{L_{2}\left(D_{T}^{+}\right)}^{2},
\end{gathered}
$$

whence

$$
\begin{equation*}
\left\|u_{m}\right\|_{\dot{W}_{2}^{2}\left(D_{T}^{+}, S_{T}\right)} \leq c_{n} T^{2}\left\|\square^{2} u_{m}\right\|_{L_{2}\left(D_{T}^{+}\right)}, \quad c_{n}=\sqrt{n+1} \frac{e}{2} \tag{5.23}
\end{equation*}
$$

By virtue of (5.20), passing in the inequality (5.23) to limit as $m \rightarrow \infty$, we obtain (5.18), which proves our lemma.

Lemma 5.2. For any $F \in L_{2}\left(D_{T}\right)$ there exists a unique strong generalized solution u of the problem (5.16), (5.17) of the class W_{2}^{2} in the domain D_{T}^{+}for which the estimate (5.18) is valid.

Proof. Since the space $C_{0}^{\infty}\left(D_{T}^{+}\right)$of finitary infinitely differentiable in D_{T}^{+} functions is dense in $L_{2}\left(D_{T}^{+}\right)$, for a given $F \in L_{2}\left(D_{T}\right)$ there exists a sequence of functions $F_{m} \in C_{0}^{\infty}\left(D_{T}^{+}\right)$such that $\lim _{m \rightarrow \infty}\left\|F_{m}-F\right\|_{L_{2}\left(D_{T}^{+}\right)}=0$. For the fixed m, extending the function F_{m} by zero beyond the domain D_{T}^{+}and leaving the same notation, we have $F_{m} \in C^{\infty}\left(\mathbb{R}_{+}^{n+1}\right)$ for which the support $\operatorname{supp} F_{m} \subset D_{\infty}^{+}$, where $\mathbb{R}_{+}^{n+1}:=\mathbb{R}^{n+1} \cap\{t \geq 0\}$. Denote by u_{m} the solution of the Cauchy problem $L_{0} u_{m}=F_{m},\left.\frac{\partial^{i} u}{\partial t^{i}}\right|_{t=0}=0,0 \leq i \leq 3$, which, as is
known, exists, is unique and belongs to the space $C^{\infty}\left(\mathbb{R}_{+}^{n+1}\right)[\mathbf{1 7}$, p. 192]. In addition, since $\operatorname{supp} F_{m} \subset D_{\infty}^{+},\left.\frac{\partial^{i} u}{\partial t^{i}}\right|_{t=0}=0,0 \leq i \leq 3$, taking into account the geometry of the domain of dependence of a solution of the linear equation $L_{0} u_{m}=F_{m}$ of hyperbolic type we find that $\operatorname{supp} u_{m} \subset D_{\infty}^{+}$ [17, p. 191]. Leaving for the restriction of the function u_{m} to the domain D_{T} the same notation, we can easily see that $u_{m} \in \stackrel{\circ}{C}^{4}\left(\bar{D}_{T}^{+}, S_{T}\right)$, and by (5.18), the inequality

$$
\begin{equation*}
\left\|u_{m}-u_{k}\right\|_{\dot{W}_{2}^{2}\left(D_{T}^{+}, S_{T}\right)} \leq c_{n} T^{2}\left\|F_{m}-F_{k}\right\|_{L_{2}\left(D_{T}^{+}\right)} \tag{5.24}
\end{equation*}
$$

is valid.
Since the sequence $\left\{F_{m}\right\}$ is fundamental in $L_{2}\left(D_{T}^{+}\right)$, owing to (5.24) the sequence $\left\{u_{m}\right\}$ is fundamental in the complete space $\stackrel{\circ}{W}_{2}^{2}\left(D_{T}^{+}, S_{T}\right)$. Therefore, there exists a function $u \in \stackrel{\circ}{W}_{2}^{2}\left(D_{T}^{+}, S_{T}\right)$ such that $\lim _{m \rightarrow \infty} \| u_{m}-$ $u_{k} \|_{\mathscr{W}_{2}^{2}\left(D_{T}^{+}, S_{T}\right)}=0$, and since $L_{0} u_{m}=F_{m} \rightarrow F$ in the space $L_{2}\left(D_{T}^{+}\right)$, this function u will, by Definition 5.4, be a strong generalized solution of the problem (5.16), (5.17) of the class W_{2}^{2} in the domain D_{T}^{+}, for which the estimate (5.18) is valid. The uniqueness of the solution follows from the estimate (5.18). Thus the lemma is proved completely.

Remark 5.3. By Lemma 5.2, for a strong generalized solution u of the problem (5.16), (5.17) of the class W_{2}^{2} in the domain D_{T}^{+}we can write $u=L_{0}^{-1} F$, where $L_{0}^{-1}: L_{2}\left(D_{T}^{+}\right) \rightarrow \stackrel{\stackrel{\circ}{W}}{2}\left(D_{T}^{+}, S_{T}\right)$ is a linear continuous operator whose norm, by virtue of (5.18), admits the estimate

$$
\begin{equation*}
\left\|L_{0}^{-1}\right\|_{L_{2}\left(D_{T}^{+}\right) \rightarrow \stackrel{\circ}{W}_{2}^{2}\left(D_{T}^{+}, S_{T}\right)} \leq c_{n} T^{2} \tag{5.25}
\end{equation*}
$$

Remark 5.4. The embedding operator $I: \stackrel{\circ}{W}_{2}^{2}\left(D_{T}^{+}, S_{T}\right) \rightarrow L_{q}\left(D_{T}^{+}\right)$is linear, continuous and compact for $1<q<\frac{2(n+1)}{n-3}$, when $n>3$, and $1<q<\infty$ when $n=2,3$ [49, p. 84]. At the same time, the Nemytski operator $N: L_{q}\left(D_{T}^{+}\right) \rightarrow L_{2}\left(D_{T}^{+}\right)$acting by the formula $N u=-\lambda|u|^{\alpha}$ is continuous and bounded if $q \geq 2 \alpha[\mathbf{4 7}$, p. 349], [48, pp. 66, 67]. Thus if the nonlinearity exponent α in the equation (5.1) satisfies the inequalities (5.4), then putting $q=2 \alpha$ we find that the operator

$$
\begin{equation*}
N_{0}=N I: \stackrel{\circ}{W}{ }_{2}^{2}\left(D_{T}^{+}, S_{T}\right) \rightarrow L_{2}\left(D_{T}^{+}\right) \tag{5.26}
\end{equation*}
$$

is continuous and compact. Moreover, from $u \in \stackrel{\circ}{W_{2}^{2}}\left(D_{T}^{+}, S_{T}\right)$ it follows that $|u|^{\alpha} \in L_{2}\left(D_{T}^{+}\right)$, and taking in Definition 5.2 into account the fact that $u_{m} \rightarrow$ u in the space $\stackrel{\circ}{W}_{2}^{2}\left(D_{T}^{+}, S_{T}\right)$, it automatically follows that $\left|u_{m}\right|^{\alpha} \rightarrow|u|^{\alpha}$ in the space $L_{2}\left(D_{T}^{+}\right)$, as well.

Remark 5.5. If $F \in L_{2}\left(D_{T}^{+}\right)$and the nonlinearity exponent α satisfies the inequalities (5.4), then according to Definition 5.2 and Remarks 5.3 and 5.4 the function $u \in \stackrel{\circ}{W}_{2}^{2}\left(D_{T}^{+}, S_{T}\right)$ is a strong generalized solution of the problem (5.1), (5.2) of the class W_{2}^{2} in the domain D_{T}^{+}if and only if u is a solution of the functional equation

$$
\begin{equation*}
u=L_{0}^{-1}\left(-\lambda|u|^{\alpha}+F\right) \tag{5.27}
\end{equation*}
$$

in the space $\stackrel{\circ}{W_{2}^{2}}\left(D_{T}^{+}, S_{T}\right)$.
We rewrite the equation (5.27) in the form

$$
\begin{equation*}
u=K u+u_{0} \tag{5.28}
\end{equation*}
$$

where the the operator $K:=L_{0}^{-1} N_{0}: \stackrel{\circ}{W_{2}^{2}}\left(D_{T}^{+}, S_{T}\right) \rightarrow \stackrel{\circ}{W_{2}^{2}}\left(D_{T}^{+}, S_{T}\right)$ is, by virtue of (5.25), (5.26) and Remark 5.4, continuous, compact and acting in the space $\stackrel{\circ}{W}_{2}^{2}\left(D_{T}^{+}, S_{T}\right)$, while $u_{0}:=L_{0}^{-1} F \in \stackrel{\circ}{W_{2}^{2}}\left(D_{T}^{+}, S_{T}\right)$.

Remark 5.6. Let $B\left(0, R_{0}\right):=\left\{u \in \stackrel{\circ}{W}_{2}^{2}\left(D_{T}^{+}, S_{T}\right):\|u\|_{\dot{W}_{2}^{2}\left(D_{T}^{+}, S_{T}\right)} \leq\right.$ $\left.R_{0}\right\}$ be the closed (convex) ball in the Hilbert space $\stackrel{\circ}{W}_{2}^{2}\left(D_{T}^{+}, S_{T}\right)$ of radius $R_{0}>0$ with the center at the zero element. Since the operator $K: \stackrel{\circ}{W}_{2}^{2}\left(D_{T}^{+}, S_{T}\right) \rightarrow \stackrel{\circ}{W}{ }_{2}^{2}\left(D_{T}^{+}, S_{T}\right)$ is continuous and compact (provided the inequalities (5.4) are fulfilled), by the Schauder principle for showing the solvability of the equation (5.28) it suffices to show that the operator K_{1} acting by the formula $K_{1} u=K u+u_{0}$ transforms the ball $B\left(0, R_{0}\right)$ into itself for some $R_{0}>0$ [66, p. 370]. By (5.25), analogously as in proving Theorem 5.1 of Chapter IV, one can prove that for sufficiently small T such a ball $B\left(0, R_{0}\right)$ does exist. Thus we have the following theorem on the local solvability of the problem (5.1), (5.2).

Theorem 5.2. Let $F \in L_{2, l o c}\left(D_{\infty}^{+}\right)$and $F \in L_{2}\left(D_{T}^{+}\right)$for any $T>0$. Then if the nonlinearity exponent α in the equation (5.1) satisfies the inequalities (5.4), then there exists a number $T_{1}=T_{1}(F)>0$ such that for $T \leq T_{1}$ the problem (5.1), (5.2) has at least one strong generalized solution of the class W_{2}^{2} in the domain D_{T}^{+}in the sense of Definition 5.2, which is also a weak generalized solution of that problem of the class W_{2}^{2} in the domain D_{T}^{+}in the sense of Definition 5.1.

Remark 5.7. It follows from Theorems 5.1 and 5.2 that if $F \in L_{2, l o c}\left(D_{\infty}^{+}\right)$, $F \geq 0, F \not \equiv 0, F \in L_{2}\left(D_{T}^{+}\right)$for any $T>0$ and the nonlinearity exponent α satisfies the inequalities (5.4), then there exists a number $T_{*}=T_{*}(F)>0$ such that for $T<T_{*}$ there exists a strong (weak) generalized solution of the problem $(5.1),(5.2)$ of the class W_{2}^{2} in the domain D_{T}, while for $T>T_{*}$ such a solution does not exist, and in view of the estimate (5.15) we have $T_{*} \in\left[T_{1}, T_{0}\right]$.

Remark 5.8. In case $0<\alpha<1$, the problem (5.1), (5.2) may have more than one global solution. For example, for $F=0$ the problem (5.1), (5.2) in the domain D_{∞} has, besides the trivial solution, an infinite set of global linearly independent solutions $u_{\sigma} \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{\infty}^{+}, S_{\infty}\right)$ depending on the parameter $\sigma \geq 0$ and given by the formula

$$
u_{\sigma}(x, t)= \begin{cases}\beta\left[(t-\sigma)^{2}-|x|^{2}\right]^{\frac{2}{1-\alpha}}, & t>\sigma+|x| \\ 0 & |x| \leq t \leq \sigma+|x|\end{cases}
$$

where $\beta=|\lambda|^{\frac{1}{1-\alpha}}[4 k(k-1)(n+2 k-1)(n+2 k-3)]^{-\frac{1}{1-\alpha}}, k=\frac{2}{1-\alpha}, \lambda<0$, and for $1 / 2<\alpha<1$ the function $u_{\sigma} \in C^{4}\left(\bar{D}_{\infty}\right)$.

Remark 5.9. Note that for $n=2$ and $n=3$, according to the wellknown properties [8, p. 745], [2, p. 84] of solutions of the linear characteristic problem $\square v=g$ in $D_{\infty},\left.v\right|_{S_{\infty}}=0$, if $g \geq 0$, then $v \geq 0$ as well. Therefore, for $n=2,3$, if $F \geq 0$, then the classical solution u of the nonlinear problem (5.1), (5.2), analogously to (5.21) satisfying also the condition $\left.\square u\right|_{S_{\infty}}=0$, will likewise be nonnegative. But in this case, for $\alpha=1$, this solution will satisfy the following linear problem:

$$
\begin{gathered}
\square^{2} u+\lambda u=F, \\
\left.u\right|_{S_{\infty}}=0,\left.\quad \frac{\partial u}{\partial \nu}\right|_{S_{\infty}}=0
\end{gathered}
$$

which is globally solvable in the corresponding functional spaces.

Acknowledgement

The work was supported by INTAS (Grant No. 03-51-5007) and by the Georgian National Scientific Foundation [project No. GNSF/ST06/3-005].

Bibliography

1. G. Berikelashvili, O. M. Dzhokhadze, B. G. Midodashyili, and S. S. KharibeGASHVILI, On the existence and nonexistence of global solutions of the first Darboux problem for nonlinear wave equations. (Russian) Differ. Uravn. 44 (2008), No. 3, 359-372; English transl.: Differ. Equ. 44 (2008), No. 3, 374-389.
2. A. V. Bitsadze, Some classes of partial differential equations. (Russian) Nauka, Moscow, 1981.
3. A. V. Bitsadze and A. M. Nakhushev, On the theory of degenerate hyperbolic equations in multidimensional domains. (Russian) Dokl. Akad. Nauk SSSR 204 (1972), 1289-1291; English transl.: Sov. Math., Dokl. 13 (1972), 807-810.
4. A. V. Bitsadze and A. M. Nakhushev, Correctly posed problems for equations of mixed type in multidimensional domains. (Russian) Dokl. Akad. Nauk SSSR 205 (1972), 9-12; English transl.: Sov. Math., Dokl. 13 (1972), 857-860.
5. A. V. Bitsadze and A. M. Nakhushev, On the theory of equations of mixed type in multidimensional domains. (Russian) Differentsial'nye Uravneniya 10 (1974), 21842191.
6. G. Bogveradze and S. Kharibegashvili, On the global and local solution of the multidimensional Darboux problem for some nonlinear wave equations. Georgian Math. J. 14 (2007), No. 1, 65-80.
7. F. Cagnac, Problème de Cauchy sur un conoïde caractéristique. Ann. Mat. Pura Appl. (4) 104 (1975), 355-393.
8. R. Courant, Partial differential equations. (Russian) Mir, Moscow, 1964.
9. V. Georgiev, H. Lindblad, and C. D. Sogge, Weighted Strichartz estimates and global existence for semilinear wave equations. Amer. J. Math. 119 (1997), No. 6, 1291-1319.
10. D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 224. Springer-Verlag, Berlin, 1983 Russian transl.: Nauka, Moscow, 1989.
11. J. Ginibre, A. Soffer, and G. Velo, The global Cauchy problem for the critical nonlinear wave equation. J. Funct. Anal. 110 (1992), No. 1, 96-130.
12. J. Gvazava and S. Kharibegashvili, To the theory of boundary value problems for hyperbolic type equations and systems. Mem. Differential Equations Math. Phys. 12 (1997), 68-75.
13. O. G. Goman, Equation of the reflected wave. Vestn. Mosk. Univ., Ser. I 23 (1968), No. 2, 84-87.
14. J. Hadamard, Lectures on Cauchy's Problem in Partial Differential Equations. Yale University Press, New Haven, 1923.
15. D. Henry, Geometrical theory of semi-linear parabolic equations. (Translated into Russian) Mir, Moscow, 1985; English original: Lecture Notes in Mathematics, 840. Springer-Verlag, Berlin-New York, 1981.
16. L. HÖRMANDER, Lectures on nonlinear hyperbolic differential equations. Mathematiques \& Applications (Berlin) [Mathematics \& Applications], 26. Springer-Verlag, Berlin, 1997.
17. L. Hörmander, Linear partial differential operators. Die Grundlehren der mathematischen Wissenschaften, Bd. 116. Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963; Russian transl.: Mir, Moscow, 1965.
18. R. Ikehata and K. Tanizawa, Global existence of solutions for semilinear damped wave equations in $\mathbf{R}^{\mathbf{N}}$ with noncompactly supported initial data. Nonlinear Anal. 61 (2005), No. 7, 1189-1208.
19. F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions. Manuscripta Math. 28 (1979), No. 1-3, 235-268.
20. O. Jokhadze and S. Kharibegashvili, On the first Darboux problem for nonlinear second order hyperbolic equations. Mat. Zametki (in print).
21. K. Jörgens, Das Anfangswertproblem im Grossen für eine Klasse nichtlinearer Wellengleichungen. Math. Z. 77 (1961), 295-308.
22. L. V. Kantorovich and G. P. Akilov, Functional analysis. 2nd ed. (Russian) Nauka, Moscow, 1977.
23. T. Kato, Blow-up of solutions of some nonlinear hyperbolic equations. Comm. Pure Appl. Math. 33 (1980), No. 4, 501-505.
24. S. Kharibegashvili, Goursat and Darboux type problems for linear hyperbolic partial differential equations and systems. Mem. Differential Equations Math. Phys. 4 (1995), 1-127.
25. S. Kharibegashvili, Some multidimensional problems for hyperbolic partial differential equations and systems. Mem. Differential Equations Math. Phys. 37 (2006), 1-136.
26. S. Kharibegashvili, On the existence or the absence of global solutions of the Cauchy characteristic problem for some nonlinear hyperbolic equations. Bound. Value Probl. 2005, No. 3, 359-376.
27. S. Kharibegashvili, On the nonexistence of global solutions of the characteristic Cauchy problem for a nonlinear wave equation in a conical domain. (Russian) Differ. Uravn. 42 (2006), No. 2, 261-271; English transl.: Differ. Equ. 42 (2006), No. 2, 279-290.
28. S. S. Kharibegashvili, On the existence or nonexistence of global solutions of a multidimensional version of the second Darboux problem for some nonlinear hyperbolic equations. (Russian) Differ. Uravn. 43 (2007), No. 3, 388-401; English transl.: Differ. Equ. 43 (2007), No. 3, 402-416.
29. S. Kharibegashvili, On the global solvability of the Cauchy characteristic problem for a nonlinear wave equation in a light cone of the future. Mem. Differential Equations Math. Phys. 42 (2007), 49-68.
30. S. Kharibegashvili, On the solvability of one multidimensional version of the first Darboux problem for some nonlinear wave equations. Nonlinear Anal. 68 (2008), No. 4, 912-924.
31. S. Kharibegashvili, On the solvability of the Cauchy characteristic problem for a nonlinear equation with iterated wave operator in the principal part. J. Math. Anal. Appl. 338 (2008), No. 1, 71-81.
32. S. Kharibegashvili, On the solvability of the Cauchy characteristic problem for some nonlinear wave equations in a light cone of the future. (Russian) Differ. Uravn. 44 (2008), No. 1, 129-139; English transl.: Differ. Equ. 44 (2008), No. 1, 135-146.
33. S. Kharibegashvili and B. Midodashvili, Solvability of characteristic boundaryvalue problems for nonlinear equations with iterated wave operator in the principal part. Electron. J. Differential Equations 2008, No. 72, 12 pp.
34. T. Kiguradze, Some boundary value problems for systems of linear partial differential equations of hyperbolic type. Mem. Differential Equations Math. Phys. 1 (1994), 1-144.
35. T. Kiguradze, On the Dirichlet problem in a characteristic rectangle for fourth order linear singular hyperbolic equations. Georgian Math. J. 6 (1999), No. 6, 537-552.
36. T. Kiguradze and V. Lakshmikantham, On doubly periodic solutions of fourthorder linear hyperbolic equations. Nonlinear Anal. 49 (2002), No. 1, Ser. A: Theory Methods, 87-112.
37. T. Kiguradze and V. Lakshmikantham, On the Dirichlet problem in a characteristic rectangle for higher order linear hyperbolic equations. Nonlinear Anal. 50 (2002), No. 8, Ser. A: Theory Methods, 1153-1178.
38. T. I. Kiguradze and T. Kusano, On the well-posedness of initial-boundary value problems for higher-order linear hyperbolic equations with two independent variables. (Russian) Differ. Uravn. 39 (2003), No. 4, 516-526, 575; English transl.: Differ. Equ. 39 (2003), No. 4, 553-563.
39. T. I. Kiguradze and T. Kusano, On ill-posed initial-boundary value problems for higher-order linear hyperbolic equations with two independent variables. (Russian) Differ. Uravn. 39 (2003), No. 10, 1379-1394; English transl.: Differ. Equ. 39 (2003), No. 10, 1454-1470.
40. T. Kiguradze, On bounded in a strip solutions of quasilinear partial differential equations of hyperbolic type. Appl. Anal. 58 (1995), No. 3-4, 199-214.
41. T. Kiguradze, On periodic in the plane solutions of nonlinear hyperbolic equations. Nonlinear Anal. 39 (2000), no. 2, Ser. A: Theory Methods, 173-185.
42. T. Kiguradze and T. Kusano, Bounded and periodic in a strip solutions of nonlinear hyperbolic systems with two independent variables. Comput. Math. Appl. 49 (2005), No. 2-3, 335-364.
43. T. Kiguradze and V. Lakshmikantham, On initial-boundary value problems in bounded and unbounded domains for a class of nonlinear hyperbolic equations of the third order. J. Math. Anal. Appl. 324 (2006), No. 2, 1242-1261.
44. T. Kiguradze and T. Smith, On doubly periodic solutions of quasilinear hyperbolic equations of the fourth order. Differential \mathcal{E} difference equations and applications, 541-553, Hindawi Publ. Corp., New York, 2006.
45. I. Kiguradze and T. Kiguradze, On blow-up solutions of initial characteristic problem for nonlinear hyperbolic systems with two independent variables. Mem. Differential Equations Math. Phys. 38 (2006), 146-149.
46. V. A. Kondrat'ev, Boundary value problems for elliptic equations in domains with conical or angular points. (Russian) Trudy Moskov. Mat. Obšč. 16 (1967), 209-292.
47. M. A. Krasnosel'skiǐ,P. P. Zabreǐko, E. I. Pustyl'nik, and P. E. Sobolevskiǐ, P. E. Integral operators in spaces of summable functions. (Russian) Nauka, Moscow, 1966.
48. A. Kufner and S. Futchik, Nonlinear differential equations. (Translated into Russian) Nauka, Moscow, 1988; English original: Studies in Applied Mechanics, 2. Elsevier Scientific Publishing Co., Amsterdam-New York, 1980.
49. O. A. LADYZHENSKAYA, Boundary value problems of mathematical physics. (Russian) Nauka, Moscow, 1973.
50. H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $P u_{t t}=-A u+\mathcal{F}(u)$. Trans. Amer. Math. Soc. 192 (1974), 121.
51. J. L. Lions, Quelques méthods de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Villars, Paris, 1969.
52. L.-E. Lundberg, The Klein-Gordon equation with light-cone data. Comm. Math. Phys. 62 (1978), No. 2, 107-118.
53. È. Mitidieri and S. I. Pohozhaev, A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities. (Russian) Tr. Mat. Inst. Steklova 234 (2001), 1-384; English transl.: Proc. Steklov Inst. Math. 2001, No. 3 (234), 1-362.
54. A. M. NAKHUSHEV, A multidimensional analogue of the problem of Darboux for hyperbolic equations. (Russian) Dokl. Akad. Nauk SSSR 194 (1970), 31-34.
55. A. M. Nakhushev, Equations of mathematical biology. (Russian) Vysshaya Shkola, Moscow, 1995.
56. R. Narasimhan, Analysis on real and complex manifolds. (Russian) Mir, Moscow, 1971.
57. N. I. Popivanov and M. F. Schneider, The Darboux problems in R^{3} for a class of degenerating hyperbolic equations. J. Math. Anal. Appl. 175 (1993), No. 2, 537-578.
58. M. Reed and B. Simon, Methods of modern mathematical physics. II: Fourier analysis. Selfadjointness (Translated into Russian) Mir, Moscow, 1978; English original: Academic Press, a subsidiary of Harcourt Brace Jovanovich, Publishers, New YorkSan Francisco-London, 1975.
59. A. A. Samarskĭ, V. A. Galaktionov, S. P. Kurdjumov, and A. P. Mikhă̆lov, Peaking modes in problems for quasilinear parabolic equations. (Russian) Nauka, Moscow, 1987.
60. L. I. Schiff, Nonlinear meson theory of nuclear forces. I. Neutral scalar mesons with point-contact repulsion. Phys. Rev., II. Ser. 84 (1951), 1-9.
61. I. E. Segal, The global Cauchy problem for a relativistic scalar field with power interaction. Bull. Soc. Math. France 91 (1963), 129-135.
62. T. C. Sideris, Nonexistence of global solutions to semilinear wave equations in high dimensions. J. Differential Equations 52 (1984), No. 3, 378-406.
63. S. L. Sobolev, Some new problems of the theory of partial differential equations of hyperbolic type. (Russian) Mat. Sb. 11 (53) (1942), 155-203.
64. W. A. Strauss, Nonlinear scattering theory at low energy. J. Funct. Anal. 41 (1981), No. 1, 110-133.
65. G. Todorova and E. Vitillaro, Blow-up for nonlinear dissipative wave equations in \mathbb{R}^{n}. J. Math. Anal. Appl. 303 (2005), No. 1, 242-257.
66. V. A. Trenogin, Functional analysis. 2nd ed. (Russian) Nauka, Moscow, 1993.
67. S. D. Troitskaya, On a well-posed boundary-value problem for hyperbolic equations with two independent variables. Uspekhi Mat. Nauk 50 (1995), No. 4, 124-125; English transl.: Russian Math. Surveys 50 (1995), No. 4.
68. S. D. Troitskaya, On a boundary value problem for hyperbolic equations. (Russian) Izv. Ross. Akad. Nauk Ser. Mat. 62 (1998), No. 2, 193-224; English transl.: Izv. Math. 62 (1998), No. 2, 399-428
69. V. S. Vladimirov, Equations of mathematical physics. (Russian) Nauka, Moscow, 1971.
70. V. N. Vragov, The Goursat and Darboux problems for a certain class of hyperbolic equations. (Russian) Differentsial'nye Uravneniya 8 (1972), 7-16.
71. V. N. Vragov, Boundary value problems for nonclassical equations of mathematical physics. (Russian) Novosibirsk State University, Novosibirsk, 1983.
72. B. Z. Vulikh, Concise course of the theory of functions of a real variable. (Russian) Nauka, Moscow, 1973.
73. P.-F. YaO, Global smooth solutions for the quasilinear wave equation with boundary dissipation. J. Differential Equations 241 (2007), No. 1, 62-93.
74. B. Yordanov and Q. S. Zhang, Finite time blow up for critical wave equations in high dimensions. J. Funct. Anal. 231 (2006), No. 2, 361-374.
75. J. ZHU, Blow-up of solutions of a semilinear hyperbolic equation and a parabolic equation with general forcing term and boundary condition. Nonlinear Anal. 67 (2007), No. 1, 33-38.
(Received 09.07.2007)
Author's address:
A. Razmadze Mathematical Institute

1, M. Aleksidze St., Tbilisi 0193
Georgia
E-mail: kharibegashvili@yahoo.com

