J. Kapanadze

ON SOLVABILITY OF THE PROBLEM WITH A DIRECTIONAL DERIVATIVE FOR THE EQUATION $\Delta^{3} v=0$

Abstract

We consider the problem of directional derivative for the equation $\Delta^{3} v=0$ when the direction of the derivative belongs to the tangent plane. It is proved that if the boundary functions belong to a certain class, then the problem has a solution.

2000 Mathematics Subject Classification: 35J40.
Key words and phrases: Problem with a directional derivative, volume and single-layer potentials, Dirichlet problem.

The investigation of the problem with a directional derivative in an n dimensional domain for $n \geq 3$ has been initiated in [1], [2] and continued in [3]-[8]. In this note we treat the problem for the equation $\Delta^{3} v=0$.

Let us introduce the necessary notation. Let Ω be a bounded smooth domain belonging to the class $C^{(5, \alpha)}, \ell_{x}$ be a smooth direction at $x \in \partial \Omega$, $\ell_{x} \in C^{(4, \alpha)},\left|\ell_{x}\right|=1$. For simplicity of presentation, we will consider the three-dimensional case.

The volume potential and the single-layer potential will be denoted as follows (see [9]):

$$
V^{\mu}(x)=\frac{1}{4 \pi} \int_{\Omega} \frac{\mu(y)}{|x-y|} d y ; \quad U^{\psi}(x)=\frac{1}{4 \pi} \int_{\partial \Omega} \frac{\psi(y)}{|x-y|} d S y
$$

where $\partial \Omega$ is the boundary of $\Omega, \mu \in L_{1}(\Omega), \psi \in L_{1}(\partial \Omega)$. If G is the Green function for the Dirichlet problem for Ω, then the solution to the Dirichlet problem has the form

$$
v(x)=-\int_{\partial \Omega} \frac{\partial G(x, y)}{\partial \nu_{y}} \varphi(y) d S y, \quad x \in \Omega, \quad \varphi \in C(\partial \Omega)
$$

where ν_{x} is the outer normal at $x \in \partial \Omega,\left|\nu_{x}\right|=1$.
The Green potential is denoted by

$$
V_{G}^{f}(x)=\int_{\Omega} G(x, y) f(y) d y, \quad f \in L_{1}(\Omega) .
$$

The density of a balayaged measure $\mu \in C(\bar{\Omega})$ (see [9]) in the volume potential case is defined as the linear operator

$$
T \mu(y)=\mu^{\prime}(y)=-\int_{\Omega} \frac{\partial G(x, y)}{\partial \nu_{y}} \mu(y) d y, \quad y \in \partial \Omega
$$

It is well-known ([9], p. 260) that

$$
V^{\mu}(x)=U^{\mu^{\prime}}(x), \quad x \in R^{3} \backslash \Omega
$$

Denote

$$
E=\left\{x:\left(\nu_{x}, \ell_{x}\right)=\cos \left(\nu_{x} \ell_{x}\right)=0, x \in \partial \Omega\right\}
$$

We always assume that E consists of a finite number of closed curves. Denote by $\Gamma(x, y)$ the Newton kernel $(4 \pi|x-y|)^{-1}$.

In the sequel we use the following auxiliary equality [10]

$$
\begin{equation*}
\frac{\partial G(x, y)}{\partial \ell_{x}}=\cos \left(\nu_{x}^{\widehat{\ell}} \ell_{x}\right) \frac{\partial G(x, y)}{\partial \nu_{x}}, x \in \partial \Omega \backslash E, \quad y \in \Omega \tag{1}
\end{equation*}
$$

In the proof of the main assertion the following lemma will be used.
Lemma. Let $\mu \in C^{\alpha}(\bar{\Omega}), \Omega \in C^{(2, \alpha)}$. Then the following equality holds

$$
\begin{equation*}
\frac{\partial^{2} V_{i}^{\mu}(x)}{\partial \ell_{x}^{2}}-\frac{\partial^{2} V_{e}^{\mu}}{\partial \ell_{x}^{2}}=-\mu(x) \cos ^{2}\left(\nu_{x} \ell_{x}\right), \quad x \in \partial \Omega \backslash E . \tag{2}
\end{equation*}
$$

The outwards and inwards limits for V^{μ} are considered.
Proof. Let $x_{0} \in \partial \Omega-E$. Obviously

$$
\frac{\partial V^{\mu}(x)}{\partial \ell_{x_{0}}}=\sum_{k=1}^{3} \frac{\partial V^{\mu}(x)}{\partial x_{k}} \alpha_{k}^{0}, \quad \ell_{x_{0}}=\ell_{0}=\left(\alpha_{1}^{0}, \alpha_{2}^{0}, \alpha_{3}^{0}\right)
$$

It is easy to see that

$$
\frac{\partial^{2} V^{\mu}(x)}{\partial \ell_{0}^{2}}=\sum \frac{\partial^{2} V^{\mu}(x)}{\partial x_{j} \partial x_{k}} \alpha_{j}^{0} \alpha_{k}^{0} .
$$

Consider the difference

$$
\begin{equation*}
\frac{\partial^{2} V_{i}^{\mu}(x)}{\partial \ell_{0}^{2}}-\frac{\partial^{2} V_{e}^{\mu}(x)}{\partial \ell_{0}^{2}}=\sum_{j, k=1}^{3}\left(\frac{\partial^{2} V_{i}^{\mu}(x)}{\partial x_{j} \partial x_{k}}-\frac{\partial^{2} V_{\ell}^{\mu}(x)}{\partial x_{j} \partial x_{k}}\right) \alpha_{j}^{0} \alpha_{k}^{0} \tag{3}
\end{equation*}
$$

Let us now use the following relation ([11], p. 115)

$$
\begin{equation*}
\frac{\partial^{2} V_{i}^{\mu}(x)}{\partial x_{j} \partial x_{k}}-\frac{\partial^{2} V_{e}^{\mu}(x)}{\partial x_{j} \partial x_{k}}=-\mu(x) \nu_{j} \nu_{k}, \quad \nu=\left(\nu_{1}, \nu_{2}, \nu_{3}\right) \tag{4}
\end{equation*}
$$

(4) along with (3) gives $\left(\nu_{0}=\nu_{x_{0}}\right)$

$$
\frac{\partial^{2} V_{i}^{\mu}\left(x_{0}\right)}{\partial \ell_{0}^{2}}-\frac{\partial^{2} V_{e}^{\mu}\left(x_{0}\right)}{\partial \ell_{0}^{2}}=-\mu\left(x_{0}\right) \sum_{j, k=1}^{3} \alpha_{j} \alpha_{k} \nu_{j} \nu_{k}=-\mu(x) \cos ^{2}\left(\nu_{0} \widehat{\ell}_{0}\right)
$$

The lemma is proved.
Let us proceed to the main assertion of this note.

Theorem. There exists a solution to the equation $\Delta^{3} v=0$ in the domain Ω belonging to the space $C^{(4, \alpha)}(\bar{\Omega})$ and satisfying the following boundary conditions

$$
\begin{gather*}
\left.v\right|_{\partial \Omega}=\varphi_{0}, \quad \varphi_{0} \in C^{(5, \alpha)}(\partial \Omega),\left.\quad H_{0}\right|_{\partial \Omega}=\varphi_{0}, \Delta H_{0}=0 \\
\frac{\partial v(x)}{\partial \ell_{x}}=\frac{\partial H_{0}(x)}{\partial \ell_{x}}+\varphi_{1}(x)\left(\nu_{x}, \ell_{x}\right), \quad \varphi_{1} \in C^{(4, \alpha)}, x \in \partial \Omega \backslash E \\
\frac{\partial^{2} v(x)}{\partial \ell_{x}^{2}}=\frac{\partial^{2} H_{0}(x)}{\partial \ell_{x}^{2}}+\varphi_{2}(x)\left(\nu_{x}, \ell_{x}\right)^{2}+ \tag{5}\\
+\frac{\partial^{2} U_{i}^{\varphi_{1}}(x)}{\partial \ell_{x}^{2}}-\frac{\partial^{2} U_{e}^{\varphi_{1}}(x)}{\partial \ell_{x}^{2}}, \varphi_{2} \in C^{(3, \alpha)}, x \in \partial \Omega \backslash E .
\end{gather*}
$$

Proof. The solution $v \in C^{(4, \alpha)}$ has the form

$$
v(x)=H_{0}(x)-\int_{\Omega} G(x, y) H_{1}(y) d y+\int_{\Omega} G(x, y) \int_{\Omega} G(y, z) H_{2}(z) d z d y
$$

where H_{0}, H_{1} and H_{2} are harmonic functions such that $\Delta v(x)=H_{1}(x)$, $\Delta^{2} v(x)=H_{2}(x), x \in \partial \Omega$. In order to find H_{1}, let us rewrite the solution as follows

$$
v(x)=H_{0}(x)-\int_{\Omega} G(x, y) \Phi_{1}(y) d y, \quad \Phi_{1}(y)=H_{1}(y)-\int_{\Omega} G(x, y) H_{2}(z) d z
$$

Due to the second boundary condition, we get

$$
\frac{\partial H_{0}(x)}{\partial \ell_{x}}+\cos \left(\nu_{x} \widehat{\ell}_{x}\right) \Phi^{\prime}(x)=\frac{\partial H_{0}(x)}{\partial \ell_{x}}+\varphi_{1}(x) \cos \left(\nu_{x} \widehat{\ell}_{x}\right) .
$$

Therefore, $\Phi_{1}^{\prime}(x)=\varphi_{1}(x) x \in \partial \Omega\left(\Phi_{1}(x)=H_{1}(x) x \in \partial \Omega\right)$.
The third boundary condition also gives

$$
\begin{aligned}
& \frac{\partial^{2} H_{0}}{\partial \ell_{x}^{2}}+\Phi(x) \cos ^{2}\left(\nu_{x} \ell_{x}\right)+\frac{\partial^{2} U_{i}^{\varphi_{1}}(x)}{\partial \ell_{x}^{2}}-\frac{\partial^{2} U_{e}^{\varphi_{1}}(x)}{\partial \ell_{x}^{2}}= \\
& \\
& =\frac{\partial^{2} H_{0}(x)}{\partial \ell_{x}^{2}}+\varphi_{2}(x) \cos ^{2}\left(\nu_{x} \ell_{x}\right)+\frac{\partial^{2} U_{i}^{\varphi_{1}}(x)}{\partial \ell_{x}^{2}}-\frac{\partial^{2} U_{e}^{\varphi_{1}}(x)}{\partial \ell_{x}^{2}}
\end{aligned}
$$

Hence, $\Phi(x)=H_{1}(x)=\varphi_{2}(x), x \in \partial \Omega$.
In order to define H_{2}, we apply again the second boundary condition

$$
\begin{aligned}
\frac{\partial v(x)}{\partial \ell_{x}} & =\frac{\partial H_{0}(x)}{\partial \ell_{x}}+\varphi_{1} \cos \left(\nu_{x} \widehat{\ell}_{x}\right)= \\
& =\frac{\partial H_{0}(x)}{\partial \ell_{x}}+H_{1}^{\prime}(x) \cos \left(\nu_{x} \widehat{\ell}_{x}\right)+\left(V_{G}^{h_{2}}\right)^{\prime} \cos \left(\nu_{x} \widehat{\ell}_{x}\right)
\end{aligned}
$$

Hence, $\varphi_{1}(x)-H_{1}^{\prime}(x)=\left(V_{G}^{H_{2}}(x)\right)^{\prime} x \in \partial \Omega$.
Therefore,

$$
\int_{\Omega} \frac{V_{G}^{H_{2}}(x)}{|x-y|} d x=\int_{\partial \Omega} \frac{\varphi(x) d S_{x}}{|x-y|}, \quad \varphi=\varphi_{1}-H_{1}^{\prime} \in C^{(4, \alpha)}, x \in R^{3}-\Omega .
$$

Due to the equality

$$
\int_{\Omega} \frac{V_{G}^{H_{2}}(y) d y}{|x-y|}=\int_{\partial \Omega} \frac{\varphi(y) d S_{y}}{|x-y|}, x \in R^{3} \backslash \Omega\left(v_{1}(x)=\frac{V_{G}^{H_{2}}(y) d y}{|x-y|}\right)
$$

we get the Dirichlet problem in the domain Ω for the equation $\Delta^{3} v_{1}=0$

$$
\begin{aligned}
v_{1}(x) & =U^{\varphi}(x), \quad x \in \partial \Omega \\
\frac{\partial v_{1}(x)}{\partial \nu_{x}} & =\frac{\partial U_{\ell}^{\varphi}(x)}{\partial \nu_{x}}, \quad x \in \partial \Omega \\
\frac{\partial^{2} v_{1}(x)}{\partial \nu_{x}^{2}} & =\frac{\partial^{2} U_{\ell}^{\varphi}(x)}{\partial \nu_{x}^{2}}, \quad x \in \partial \Omega
\end{aligned}
$$

Now H_{2} can easily be found by solving the Dirichet problem $\left(\Delta^{2} v_{1}=\right.$ H_{2}).

References

1. A. V. Bitsadze, The homogeneous problem for the directional derivative for harmonic functions in three-dimensional regions. (Russian) Dokl. Akad. Nauk SSSR 148 (1963), 749-752.
2. A. V. Bitsadze, Boundary value problems for elliptic equations of second order. (Russian) Nauka, Moscow, 1966.
3. M. B. Maljutov, Oblique derivative problem in three-dimensional space. (Russian) Dokl. Akad. Nauk SSSR 172 (1967), 283-286.
4. A. Janušauskas, On the oblique derivative problem for harmonic functions of three independent variables. (Russian) Sibirsk. Mat. Ž. 8 (1967), 447-462.
5. Ju. V. Egorov and V. A. Kondrat'ev, The oblique derivative problem. (Russian) Mat. Sb. (N.S.) 78 (120) (1969), 148-176.
6. V. G. Maz'Ja, The degenerate problem with an oblique derivative. (Russian) Mat. Sb. (N.S.) 87 (129) (1972), 417-454.
7. Sh. A. Alimov, On a problem with an oblique derivative. (Russian) Differentsial'nye Uravneniya 17 (1981), No. 10, 1738-1751.
8. S. Rempel and B.-V. Schulze, Index theory of elliptic boundary problems. Akademie-Verlag, Berlin, 1982; Russian transl.: Mir, Moscow, 1986.
9. N. S. Landkof, Fundamentals of modern potential theory. (Russian) Nauka, Moscow, 1966.
10. D. V. Kapanadze, On the uniqueness of a solution of the oblique derivative problem for the equation $\Delta^{n} v=0$. (Russian) Ukrain. Mat. Zh. 58 (2006), No. 6, 835-841; English transl.: Ukrainian Math. J. 58 (2006), No. 6, 945-953
11. N. M. Gyunter, Theory of the potential and its application to the basic problems of mathematical physics. (Russian) Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1953.
(Received 18.05.2006)
Author's address:
M. Nodia Institute of Geophysics

1, Aleksidze St., 0193 Tbilisi
Georgia

