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ON SOLVABILITY OF THE PROBLEM WITH A
DIRECTIONAL DERIVATIVE FOR THE EQUATION ∆3v = 0

Abstract. We consider the problem of directional derivative for the equa-

tion ∆3
v = 0 when the direction of the derivative belongs to the tangent

plane. It is proved that if the boundary functions belong to a certain class,
then the problem has a solution.� � � � � � � � � � 	 
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The investigation of the problem with a directional derivative in an n-
dimensional domain for n ≥ 3 has been initiated in [1], [2] and continued in
[3]–[8]. In this note we treat the problem for the equation ∆3v = 0.

Let us introduce the necessary notation. Let Ω be a bounded smooth
domain belonging to the class C(5,α), `x be a smooth direction at x ∈ ∂Ω,
`x ∈ C(4,α), |`x| = 1. For simplicity of presentation, we will consider the
three-dimensional case.

The volume potential and the single-layer potential will be denoted as
follows (see [9]):

V µ(x) =
1

4π

∫

Ω

µ(y)

|x− y|
dy; Uψ(x) =

1

4π

∫

∂Ω

ψ(y)

|x− y|
dSy,

where ∂Ω is the boundary of Ω, µ ∈ L1(Ω), ψ ∈ L1(∂Ω). If G is the Green
function for the Dirichlet problem for Ω, then the solution to the Dirichlet
problem has the form

v(x) = −

∫

∂Ω

∂G(x, y)

∂νy
ϕ(y) dSy, x ∈ Ω, ϕ ∈ C(∂Ω),

where νx is the outer normal at x ∈ ∂Ω, |νx| = 1.
The Green potential is denoted by

V
f
G (x) =

∫

Ω

G(x, y)f(y) dy, f ∈ L1(Ω).
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The density of a balayaged measure µ ∈ C(Ω) (see [9]) in the volume po-
tential case is defined as the linear operator

Tµ(y) = µ′(y) = −

∫

Ω

∂G(x, y)

∂νy
µ(y) dy, y ∈ ∂Ω.

It is well-known ([9], p. 260) that

V µ(x) = Uµ
′

(x), x ∈ R3 \ Ω.

Denote

E =
{
x : (νx, `x) = cos(νx̂ `x) = 0, x ∈ ∂Ω

}
.

We always assume that E consists of a finite number of closed curves. De-
note by Γ(x, y) the Newton kernel (4π|x− y|)−1.

In the sequel we use the following auxiliary equality [10]

∂G(x, y)

∂`x
= cos(νx̂ `x)

∂G(x, y)

∂νx
, x ∈ ∂Ω \E, y ∈ Ω. (1)

In the proof of the main assertion the following lemma will be used.

Lemma. Let µ ∈ Cα(Ω), Ω ∈ C(2,α). Then the following equality holds

∂2V
µ
i (x)

∂`2x
−
∂2V µe
∂`2x

= −µ(x) cos2(νx̂ `x), x ∈ ∂Ω \E. (2)

The outwards and inwards limits for V µ are considered.

Proof. Let x0 ∈ ∂Ω−E. Obviously

∂V µ(x)

∂`x0

=

3∑

k=1

∂V µ(x)

∂xk
α0
k, `x0

= `0 = (α0
1, α

0
2, α

0
3).

It is easy to see that

∂2V µ(x)

∂`20
=

∑ ∂2V µ(x)

∂xj∂xk
α0
jα

0
k.

Consider the difference

∂2V
µ
i (x)

∂`20
−
∂2V µe (x)

∂`20
=

3∑

j,k=1

(∂2V
µ
i (x)

∂xj∂xk
−
∂2V

µ
` (x)

∂xj∂xk

)
α0
jα

0
k. (3)

Let us now use the following relation ([11], p. 115)

∂2V
µ
i (x)

∂xj∂xk
−
∂2V µe (x)

∂xj∂xk
= −µ(x)νjνk, ν = (ν1, ν2, ν3). (4)

(4) along with (3) gives (ν0 = νx0
)

∂2V
µ
i (x0)

∂`20
−
∂2V µe (x0)

∂`20
= −µ(x0)

3∑

j,k=1

αjαkνjνk = −µ(x) cos2(ν0̂ `0).

The lemma is proved.

Let us proceed to the main assertion of this note.
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Theorem. There exists a solution to the equation ∆3v = 0 in the do-

main Ω belonging to the space C(4,α)(Ω) and satisfying the following bound-

ary conditions

v
∣∣
∂Ω

= ϕ0, ϕ0 ∈ C
(5,α)(∂Ω), H0

∣∣
∂Ω

= ϕ0,∆H0 = 0,

∂v(x)

∂`x
=
∂H0(x)

∂`x
+ ϕ1(x)(νx, `x), ϕ1 ∈ C

(4,α), x ∈ ∂Ω \E,

∂2v(x)

∂`2x
=
∂2H0(x)

∂`2x
+ ϕ2(x)(νx, `x)

2+

+
∂2U

ϕ1

i (x)

∂`2x
−
∂2Uϕ1

e (x)

∂`2x
, ϕ2 ∈ C

(3,α), x ∈ ∂Ω \E.

(5)

Proof. The solution v ∈ C(4,α) has the form

v(x) = H0(x)−

∫

Ω

G(x, y)H1(y) dy +

∫

Ω

G(x, y)

∫

Ω

G(y, z)H2(z) dz dy,

where H0, H1 and H2 are harmonic functions such that ∆v(x) = H1(x),
∆2v(x) = H2(x), x ∈ ∂Ω. In order to find H1, let us rewrite the solution as
follows

v(x)=H0(x)−

∫

Ω

G(x, y)Φ1(y) dy, Φ1(y)=H1(y)−

∫

Ω

G(x, y)H2(z) dz.

Due to the second boundary condition, we get

∂H0(x)

∂`x
+ cos(νx̂̀ x)Φ

′(x) =
∂H0(x)

∂`x
+ ϕ1(x) cos(νx̂ `x).

Therefore, Φ′

1(x) = ϕ1(x) x ∈ ∂Ω (Φ1(x) = H1(x) x ∈ ∂Ω).
The third boundary condition also gives

∂2H0

∂`2x
+ Φ(x) cos2(νx̂̀ x) +

∂2U
ϕ1

i (x)

∂`2x
−
∂2Uϕ1

e (x)

∂`2x
=

=
∂2H0(x)

∂`2x
+ ϕ2(x) cos2(νx̂̀ x) +

∂2U
ϕ1

i (x)

∂`2x
−
∂2Uϕ1

e (x)

∂`2x
.

Hence, Φ(x) = H1(x) = ϕ2(x), x ∈ ∂Ω.
In order to define H2, we apply again the second boundary condition

∂v(x)

∂`x
=
∂H0(x)

∂`x
+ ϕ1 cos(νx̂̀ x) =

=
∂H0(x)

∂`x
+H ′

1(x) cos(νx̂̀ x) + (V h2

G )′ cos(νx̂̀ x).

Hence, ϕ1(x)−H ′

1(x) = (V H2

G (x))′x ∈ ∂Ω.
Therefore,

∫

Ω

V H2

G (x)

|x− y|
dx =

∫

∂Ω

ϕ(x)dSx
|x− y|

, ϕ = ϕ1 −H ′

1 ∈ C
(4,α), x ∈ R3 − Ω.
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Due to the equality
∫

Ω

V H2

G (y)dy

|x− y|
=

∫

∂Ω

ϕ(y)dSy
|x− y|

, x ∈ R3 \ Ω
(
v1(x) =

V H2

G (y)dy

|x− y|

)
,

we get the Dirichlet problem in the domain Ω for the equation ∆3v1 = 0

v1(x) = Uϕ(x), x ∈ ∂Ω,

∂v1(x)

∂νx
=
∂U

ϕ
` (x)

∂νx
, x ∈ ∂Ω,

∂2v1(x)

∂ν2
x

=
∂2U

ϕ
` (x)

∂ν2
x

, x ∈ ∂Ω.

Now H2 can easily be found by solving the Dirichet problem (∆2v1 =
H2).
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