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Abstract. We consider differential-operator inclusions with wλ0
-pseu-

domonotone multi-valued maps. The problem of the investigation of the
periodic solutions and of the solutions for initial time value problem has
been solved by Faedo–Galerkin method. The important a priory estimates
have been obtained. Some topological descriptions of the resolvent operators
have been made.
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1. Introduction

One of the most effective approaches to investigation of nonlinear prob-
lems represented by partial differential equations, inclusions and inequali-
ties with boundary values, consists in the reduction of them to equations
in Banach spaces governed by nonlinear operators. In order to study these
objects, modern methods of nonlinear analysis have been used [9], [11], [21].
In [26], by using a special basis, the Cauchy problem for a class of equations
with operators of Volterra type has been studied. The important periodic
problem for equations with monotone differential operators of Volterra type
has been studied in [11]. Periodic solutions for pseudomonotone operators
have been considered in [21], while for wλ0

-pseudomonotone single-valued
operators in [16].

Convergence of approximate solutions to an exact solution of a diffe-
rential-operator equation or inclusion is frequently proved on the basis of
monotonicity or pseudomonotonity of the corresponding operator. If the
given property of the initial operator takes place, then it is possible to prove
convergence of the approximate solutions within weaker a priori estimates
than it is demanded when using embedding theorems. The monotonicity
concept has been introduced in papers of Weinberg, Kachurovsky, Minty,
Sarantonello and others. Significant generalization to monotonicity was
given by H. Brezis [3]. Namely, Brezis calls an operator A : X → X∗

pseudomonotone if
a) the operator A is bounded;
b) from un → u weakly in X and from

lim
n→∞

〈A(un), un − u〉X ≤ 0

it follows that

lim
n→∞

〈A(un), un − v〉X ≥ 〈A(u), u− v〉X ∀ v ∈ X.

In applications, as a pseudomonotone operator the sum of radially con-
tinuous monotone bounded operator and strongly continuous operator was
considered [11]. Concrete examples of pseudomonotone operators were ob-
tained by extension of elliptic differential operators when only their sum-
mands with highest derivatives satisfied the monotonicity property [21]. In
papers of J.-L. Lions, H. Gaevsky, K. Greger, K. Zaharias [11], [21] the
main results of solvability theory for abstract operator equations and dif-
ferential operator equations that are monotone or pseudomonotone in the
Brezis sense are set out. Also the application of the proved theorems are
given to concrete equations of mathematical physics, and in particular, to
free boundary problems.

The theory of monotone operators in reflexive Banach spaces is one of
the major areas of nonlinear functional analysis. Its basis is formed by
so-called variational methods, and since the 60-ies of the last century the
theory has been intensively developing in tight interaction with the theory
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of convex functions and the theory of partial differential equations. The
papers of F. Browder and P. Hess [4], [5] became classical in the given
direction of investigations. In particular, in the work [5] of F. Browder
and P. Hess a class of generalized pseudomonotone operators enveloping
the class of monotone mappings was introduced. Let W be some normed
space continuously embedded in the normed space Y . A multi-valued map
A : Y → 2Y ∗

is said to be generalized pseudomonotone on W if for each
pair of sequences {yn}n≥1 ⊂ W and {dn}n≥1 ⊂ Y ∗ such that dn ∈ A(yn),
yn → y weakly in W , dn → d ∗-weakly in Y ∗, from the inequality

lim
n→∞

〈dn, yn〉Y ≤ 〈d, y〉Y

it follows that d ∈ A(y) and 〈dn, yn〉Y → 〈d, y〉Y .
A grave disadvantage of the given theory is the fact that in the general

case it is impossible to prove that the set of pseudomonotone (in the classi-
cal sense) maps is closed with respect to summation (the given statement is
problematic). This disadvantage becomes more substantial when investigat-
ing differential-operator inclusions and evolutionary variational inequalities
when we necessarily consider the sum of the classical pseudomonotone map-
ping and the subdifferential (in Gateaux or Clarke sense) for multi-valued
map which is generalized pseudomonotone. I. V. Skripnik’s idea of passing
to subsequences in classical definitions [33], realized for stationary inclusions
in the papers of M. Z. Zgurovsky and V. S. Mel’nik [22], [25] enabled one
to consider the essentially wider class of λ0-pseudomonotone maps, closed
with respect to summation of maps, which for classical definitions appeared
problematic. In the papers of V. S. Mel’nik and P. O. Kasyanov [16] there
was introduced the class of wλ0

-pseudomonotone maps which includes, in
particular, the class of generalized pseudomonotone multi-valued operators
and also it is closed with respect to summation of maps. A multi-valued
map A : Y → 2Y ∗

with the nonempty, convex, bounded, closed values is
called wλ0

-pseudomonotone (λ0-pseudomonotone on W ) if for any sequence
{yn}n≥0 ⊂W such that yn → y0 weakly in W , dn → d0 ∗−weakly in Y ∗ as
n→ +∞, where dn ∈ A(yn) ∀n ≥ 1, from the inequalities

lim
n→∞

〈dn, yn − y0〉Y ≤ 0

it follows the existence of such subsequences {ynk
}k≥1 of {yn}n≥1 and

{dnk
}k≥1 of {dn}n≥1 for which

lim
k→∞

〈dnk
, ynk

− w〉Y ≥ [A(y0), y0 − w]− ∀w ∈ Y.

Now we have to prove solvability for differential-operator inclusions with
λ0-pseudomonotone on D(L) multi-valued maps in Banach spaces:

Lu+A(u) +B(u) 3 f, u ∈ D(L), (1)

where A : X1 → 2X∗

1 , B : X2 → 2X∗

2 are multi-valued maps of D(L)λ0
-

pseudomonotone type with nonempty, convex, closed, bounded values, X1,
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X2 are Banach spaces continuously embedded in some Hausdorff linear topo-
logical space,X = X1∩X2, L : D(L) ⊂ X → X∗ is linear, monotone, closed,
densely defined operator with the linear domain D(L).

Let us remark that any multi-valued map A : Y → 2Y ∗

defined on a
Banach space Y naturally generates respectively upper and lower forms :

[A(y), ω]+ = sup
d∈A(y)

〈d, w〉Y , [A(y), ω] = inf
d∈A(y)

〈d, w〉Y , y, ω ∈ X.

Properties of these objects have been investigated by M. Z. Zgurovsky and
V. S. Mel’nik. Thus, together with the classical coercivity condition for the
operator A,

〈A(y), y〉Y
‖y‖Y

→ +∞ as ‖y‖Y → +∞,

which ensures important a priori estimates, arises +-coercivity (and, respec-
tively, −-coercivity):

[A(y), y]+(−)

‖y‖Y
→ +∞ as ‖y‖Y → +∞.

+-coercivity is a much weaker condition than −-coercivity.
When investigating multi-valued maps of wλ0

-pseudomonotone type, it
was found out that even for subdifferentials of convex lower semicontinuous
functionals the boundedness condition is not natural [15]. Thus it was
necessary to introduce an adequate relaxation of the boundedness condition
which would envelope at least the class of monotone multi-valued maps. In
the paper [13], the following definition was introduced: a multi-valued map
A : Y → 2Y ∗

satisfies the property (Π) if for any bounded set B ⊂ Y , any
y0 ∈ Y and for some k > 0, d ∈ A for which

〈d(y), y − y0〉Y ≤ k for all y ∈ B,

there exists C > 0 such that

‖d(y)‖Y ∗ ≤ C for all y ∈ B.

Recent development of the monotonicity method in the theory of diffe-
rential-operator inclusions and evolutionary variational inequalities ensures
resolvability of the given objects under the conditions of −-coercivity, boun-
dedness and the generalized pseudomonotonicity (it is necessary to notice
that the proof is not constructive). With relation to applications, it would
be topical to relax some conditions on multi-valued maps in the problem (1)
replacing −-coercivity by +-coercivity, boundedness by the condition (Π)
and pseudomonotonicity in classical sense or generalized pseudomonotonic-
ity by wλ0

-pseudomonotonicity.
At present the operator and differential-operator equations and inclu-

sions as well as evolutionary variational inequalities are studied intensively
enough by many authors: J.-P. Aubin, V. Barbu, Yu. G. Borisovich, S. Carl,
H. Frankowska, B. D. Gelman, M. F. Gorodnij, S. Hu, M. I. Kamenskii,
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P. I. Kogut, O. A. Kovalevsky, A. D. Mishkis, D. Motreanu, V. V. Obu-
chovskii, N. S. Papageorgiou, A. M. Samoilenko, N. A. Perestyuk, V. A. Plot-
nikov, N. V. Skripnik, V. Yu. Slusarchuk, O. M. Solonucha, A. N. Vakulenko,
M. Z. Zgurovsky and others [1]–[34].

By analogy with the differential-operator equations, at least four ap-
proaches are well-known: Faedo–Galerkin method, elliptic regularization,
the theory of semigroups, difference approximations. Extension of these ap-
proaches on evolutionary inclusions encounters a series of basic difficulties.
For differential-operator inclusions, the method of semigroups is realized in
the works of A. A. Tolstonogov, Yu. I. Umansky [34] and V. Barbu [2].
The method of finite differences first time was extended on evolutionary
inclusions and variational inequalities by P. O. Kasyanov, V. S. Melnik and
L. Toskano. The method of singular perturbations (H. Brezis [3] and Yu. A.
Dubinsky [8]) and the Faedo–Galerkin method with differential-operator in-
clusions for wλ0

-pseudomonotone multi-valued maps have not been system-
atically investigated as yet. It is required to prove the singular perturbations
method and the Faedo–Galerkin method for differential-operator inclusions
with wλ0

-pseudomonotone multi-valued maps in Banach spaces.
In the present paper, we introduce a new construction to prove the

existence of periodic solutions for differential-operator inequalities by the
Faedo–Galerkin (FG) method for wλ0

-pseudomonotone multi-valued opera-
tors. From the point of view of the applications, we have essentially widened
the class of the operators considered by other authors (see [13], [26]).

2. Problem Definition

Let (V1, ‖·‖V1
) and (V2, ‖·‖V2

) be some reflexive separable Banach spaces
continuously embedded in the Hilbert space (H, (·, ·)) and such that

V := V1 ∩ V2 is dense in spaces V1, V2 and H. (2)

After the identification H ≡ H∗, we get

V1 ⊂ H ⊂ V
∗
1 , V2 ⊂ H ⊂ V

∗
2 (3)

with continuous and dense embeddings [11], where (V ∗
i , ‖ · ‖V ∗

i
) is the space

topologically conjugate to Vi with respect to the canonical bilinear form

〈·, ·〉Vi
: V ∗

i × Vi → R

(i = 1, 2) which coincides on H with the inner product (·, ·) of H . Let us
consider the functional spaces

Xi = Lri
(S;H) ∩ Lpi

(S;Vi),

where S = [0, T ], 0 < T < +∞, 1 < pi ≤ ri < +∞ (i = 1, 2). The spaces
Xi are Banach spaces with the norms ‖y‖Xi

= ‖y‖Lpi
(S;Vi) + ‖y‖Lri

(S;H).
Moreover, Xi is a reflexive space.

Let us also consider the Banach space X = X1 ∩ X2 with the norm
‖y‖X = ‖y‖X1

+ ‖y‖X2
. Since the spaces Lqi

(S;V ∗
i ) + Lr′

i
(S;H) and X∗

i
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are isometrically isomorphic, we identify them. Analogously,

X∗ = X∗
1 +X∗

2 = Lq1
(S;V ∗

1 ) + Lq2
(S;V ∗

2 ) + Lr′
1
(S;H) + Lr′

2
(S;H),

where ri
−1 + r′i

−1
= pi

−1 + qi
−1 = 1.

Let us define the duality form on X∗ ×X :

〈f, y〉 =

∫

S

(f11(τ), y(τ))H dτ +

∫

S

(f12(τ), y(τ))H dτ+

+

∫

S

〈f21(τ), y(τ)〉V1
dτ +

∫

S

〈f22(τ), y(τ)〉V2
dτ =

=

∫

S

(f(τ), y(τ)) dτ,

where f = f11 + f12 + f21 + f22, f1i ∈ Lr′
i
(S;H), f2i ∈ Lqi

(S;V ∗
i ). Note

that for each f ∈ X∗

‖f‖X∗ = inf
f=f11+f12+f21+f22:

f1i∈Lr′
i
(S;H),f2i∈Lqi

(S;V ∗

i ) (i=1,2)

max
{

‖f11‖Lr′
1

(S;H);

‖f12‖Lr′
2

(S;H); ‖f21‖Lq1
(S;V ∗

1
); ‖f22‖Lq2

(S;V ∗

2
)

}

.

Let A : X1 ⇒ X∗
1 andB : X2 ⇒ X∗

2 be multi-valued maps with nonempty
closed convex values, L : D(L) ⊂ X → X∗ be a linear closed densely defined
operator. We consider the problem

{

Ly +A(y) +B(y) 3 f,

y ∈ D(L),
(4)

where f ∈ X∗ is arbitrarily fixed.

3. Classes of Maps

Let Y be some reflexive Banach space, Y ∗ be its topologically conjugate,

〈·, ·〉Y : Y ∗ × Y → R

be the duality form on Y . For each nonempty subset B ⊂ Y ∗, let us consider
its weak closed convex hull co(B) := clX∗

w
(co(B)). Further, by Cv(Y ∗) we

will denote the class of all nonempty convex weakly compact subsets of Y ∗.
For each multi-valued map A : Y ⇒ Y ∗, we can consider its upper and

lower function of support :

[A(y), ω]+ = sup
d∈A(y)

〈d, w〉X , [A(y), ω] = inf
d∈A(y)

〈d, w〉X ,

where y, ω ∈ X . We also consider its upper and lower norms:

‖A(y)‖+ = sup
d∈A(y)

‖d‖X∗ , ‖A(y)‖ = inf
d∈A(y)

‖d‖X∗ .
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The main properties of the given maps are considered in [18]. In particular,
from [29] the following properties of the introduced symbols with brackets
and norms take place.

Let A,B : Y → Cv(Y ∗); then for arbitrary y, v, v1, v2 ∈ Y

1) the functional Y 3 v → [A(y), v]+ is convex positively homogeneous
and lower semicontinuous;

2) [A(y), v1 + v2]+ ≥ [A(y), v1]+ + [A(y), v2]−,
[A(y), v1 + v2]− ≤ [A(y), v1]+ + [A(y), v2]−;

3) [A(y) + B(y), v]+ = [A(y), v]+ + [B(y), v]+,
[A(y) + B(y), v]− = [A(y), v]− + [B(y), v]−;

4) [A(y), v]+ ≤ ‖A(y)‖+‖v‖Y , [A(y), v]− ≤ ‖A(y)‖−‖v‖Y ;

5) the functional ‖ · ‖+ : Cv(Y ∗)→ R+ defines a norm on Cv(Y
∗);

6) the functional ‖ · ‖− : Cv(Y ∗)→ R+ satisfies the conditions:

a) 0 ∈ A(y)⇐⇒ ‖A(y)‖− = 0,

b) ‖αA(y)‖− = |α|‖A(y)‖− ∀α ∈ R, y ∈ Y ,

c) ‖A(y) + B(y)‖− ≤ ‖A(y)‖− + ‖B(y)‖−;

7) ‖A(y)− B(y)‖+ ≥
∣

∣

∣
‖A(y)‖+ − ‖B(y)‖−

∣

∣

∣
,

‖A(y)− B(y)‖− ≥ ‖A(y)‖− − ‖B(y)‖+,
dH

(

A(y), B(y)
)

≥
∣

∣‖A(y)‖+(−) − ‖B(y)‖+(−)

∣

∣,
where dH (·, ·) is the Hausdorff metric;

8) d ∈ A(y)⇐⇒ ∀ω ∈ Y [A(y), ω]+ ≥ 〈d, w〉Y .

Now we consider the main classes of maps of wλ0
-pseudomonotone type.

In what follows, yn ⇀ y in Y will mean that yn weakly converges to y in
the reflexive Banach space Y .

Definition 1. The multi-valued map A : Y → Cv(Y ∗) is called:

• +(−)-coercive if ‖y‖−1
Y [A(y), y]+(−) → +∞ as ‖y‖Y → +∞;

• weakly +(−)-coercive if for each f ∈ Y ∗ there exists R > 0 such
that

[A(y)− f, y]+(−) ≥ 0 as ‖y‖Y = R, y ∈ Y ;

• bounded if for any L > 0 there exists l > 0 such that

‖A(y)‖+ ≤ l ∀ y ∈ Y : ‖y‖Y ≤ L;

• locally bounded if for any fixed y ∈ Y there exist constants m > 0
and M > 0 such that ‖A(ξ)‖+ ≤M when ‖y − ξ‖Y ≤ m, ξ ∈ Y ;

• finite-dimensionally locally bounded if for each finite-dimensional
subspace F ⊂ Y A

∣

∣

F
is locally bounded on (F, ‖ · ‖Y ).

Let W be a normed space with the norm ‖ · ‖W . We consider W ⊂ Y

with continuous embedding, C(r1; · ) : R+ → R is a continuous function for
each r1 ≥ 0 and such that τ−1C(r1; τr2) → 0 as τ → +0 ∀ r1, r2 ≥ 0, and
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‖· ‖′W is a (semi)-norm on Y that is compact with respect to ‖· ‖W on W

and continuous with respect to ‖ · ‖Y on Y .

Definition 2. The multi-valued map A : Y → Cv(Y ∗) is called:

• radially semi-continuous if ∀x, h ∈ Y the following inequality takes
place

lim
t→+0

[A(x + th), h]− ≤ [A(x), h]+;

• an operator with semi-bounded variation on W (with (Y,W )-s.b.v.)
if ∀R > 0 and ∀ y1, y2 ∈ Y with ‖y1‖Y ≤ R, ‖y2‖Y ≤ R, the
inequality
[

A(y1), y1 − y2
]

−
≥

[

A(y2), y1 − y2
]

+
− C

(

R; ‖y1 − y2‖
′

W

)

is fulfilled;
• λ-pseudomonotone on W (wλ-pseudomonotone) if for every sequence
{yn}n≥1 ⊂ W such that yn ⇀ y0 in W with y0 ∈ W , from the in-
equality

lim
n→∞

〈dn, yn − y0〉Y ≤ 0, (5)

where dn ∈ A(yn), n ≥ 1, it follows the existence of subsequences

{ynk
}k≥1 ⊂ {yn}n≥1 and {dnk

}k≥1 ⊂ {dn}n≥1,

such that

lim
k→∞

〈dnk
, ynk

− w〉Y ≥ [A(y), y0 − w]− ∀w ∈ Y ; (6)

• λ0-pseudomonotone on W (wλ0
-pseudomonotone) if for each se-

quence {yn}n≥1 ⊂W such that

yn ⇀ y0 in W, A(yn) 3 dn ⇀ d0 in Y ∗ with y0 ∈ Y, d0 ∈ Y
∗,

from the inequality (5) it follows the existence of

{ynk
}k≥1 ⊂ {yn}n≥1 and {dnk

}k≥1 ⊂ {dn}n≥1

such that (6) is true.
The above multi-valued map satisfies:

• the property (κ) if for each bounded set D in Y there exists c ∈ R

such that

[A(v), v]+ ≥ −c‖v‖Y ∀ v ∈ D.

• the property (Π) if for each nonempty bounded subset B ⊂ Y , for
each k > 0 and for each selector d ∈ A such that

〈d(y), y〉Y ≤ k for each y ∈ B,

it follows that there exists K > 0 such that

‖d(y)‖Y ∗ ≤ K for each y ∈ B.

Remark 1. The idea of the passage to subsequences in the latter definition
was adopted by us from the work of I. V. Skripnik [33].
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Let Y = Y1 ∩ Y2, where (Y1, ‖ · ‖Y1
) and (Y2, ‖ · ‖Y2

) are some reflexive
Banach spaces.

Definition 3. The pair of maps A : Y1 → Cv(Y ∗
1 ) and B : Y2 → Cv(Y ∗

2 )
is called s-mutually bounded, if for each M > 0, for each bounded set D ⊂ Y
and for each selectors dA ∈ A and dB ∈ B there exists K > 0 such that
from

y ∈ D and 〈dA(y), y〉Y1
+ 〈dB(y), y〉Y2

≤M

we have
or ‖dA(y)‖Y ∗

1
≤ K or ‖dB(y)‖Y ∗

2
≤ K.

Remark 2. A bounded map A : Y → Y ∗ satisfies the property (Π); a
map A : Y → Y ∗ that satisfies the property (Π) satisfies the property (κ); a
λ-pseudomonotone on W map is λ0-pseudomonotone on W . The converse
statement is correct for bounded multi-valued maps.

If one of the operators of the pair (A;B) is bounded, then the pair (A;B)
is s-mutually bounded. Moreover, if each of maps satisfies the condition
(Π), then their sum also satisfies the condition (Π) and the pair (A;B) is
s-mutually bounded.

Now let W = W1 ∩W2, where (W1, ‖ · ‖W1
) and (W2, ‖ · ‖W2

) are Banach
spaces such that Wi ⊂ Yi with continuous embedding.

Lemma 1 ([18]). Let A : Y1 → Cv(Y
∗
1 ) and B : Y2 → Cv(Y ∗

2 ) be s-
mutually bounded λ0-pseudomonotone on W1 and respectively on W2 mul-
tivalued maps. Then C := A + B : Y → Cv(Y ∗) is a λ0-pseudomonotone
on W map.

Remark 3. If the pair (A;B) is not s-mutually bounded, then the given
proposition takes place only for λ-pseudomonotone (respectively on W1 and
on W2) maps.

Lemma 2 ([18]). Let A : Y1 ⇒ Y1
∗, B : Y2 ⇒ Y2

∗ be +-coercive maps
which satisfy the condition (κ). Then the map C := A + B : Y ⇒ Y ∗ is
+-coercive.

Remark 4. Under the conditions of the last lemma it follows that the
operator C = A+B : Y → Cv(Y ∗) is weakly +-coercive.

Proposition 1 ([18]). Let A : X ⇒ X∗ be a λ0-pseudomonotone opera-
tor on W , the embedding of W in the Banach space Y be compact and dense,
the embedding of X in Y be continuous and dense, and let co∗B : Y ⇒ Y ∗

be a locally bounded map such that the graph of co∗B is closed in Y × Y ∗
w

(i.e. with respect to the strong topology of Y and the weakly star topology in
Y ∗). Then C = A+B is a λ0-pseudomonotone on W map.

Now we consider a functional ϕ : X 7→ R.

Definition 4. The functional ϕ is said to be locally Lipschitz, if for any
x0 ∈ X there are r, c > 0 such that

|ϕ(x) − ϕ(y)| ≤ c‖x− y‖X ∀x, y ∈ Br(x0) =
{

x ∈ X | ‖x− x0‖X < r
}

.
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For a locally Lipschitz functional ϕ defined on a Banach space X , we
consider the upper Clarke’s derivative [7]

ϕ
↑
Cl(x, h) = lim

v→x, α↘0+

1

α

(

ϕ(v + αh)− ϕ(v)
)

∈ R, x, h ∈ X

and Clarke’s generalized gradient

∂Clϕ(x) =
{

p ∈ X∗| 〈p, v − x〉X ≤ ϕ
↑
Cl(x, v − x) ∀ v ∈ X

}

, x ∈ X.

Proposition 2 ([18]). Let W be a Banach space compactly embedded in
some Banach space Y , ϕ : Y 7→ R be a locally Lipschitz functional. Then
Clarke’s generalized gradient ∂Clϕ : Y ⇒ Y ∗ is λ0-pseudomonotone on W .

Definition 5. The operator L : D(L) ⊂ Y → Y ∗ is called

• monotone, if for each y1, y2 ∈ D(L) 〈Ly1 − Ly2, y1 − y2〉Y ≥ 0;
• maximal monotone, if it is monotone and from 〈w−Lu, v−u〉Y ≥ 0

for each u ∈ D(L) it follows that v ∈ D(L) and Lv = w.

Remark 5. If a reflexive Banach space Y is strictly convex with its con-
jugate, then [21, Lemma 3.1.1] a linear operator L : D(L) ⊂ Y → Y ∗

is maximal monotone and dense defined if and only if L is a closed non-
bounded operator such that

〈Ly, y〉Y ≥ 0 ∀ y ∈ D(L) and 〈L∗y, y〉Y ≥ 0 ∀ y ∈ D(L∗),

where L∗ : D(L∗) ⊂ Y → Y ∗ is the operator conjugate to L in the sense of
non-bounded operators theory (see [12]).

4. Auxiliary Statements

From (2) and (3) V = V1 ∩ V2 ⊂ H with the continuous and dense
embedding. Since V is a separable Banach space, there exists a complete in
V and consequently in H countable system of vectors {hi}i≥1 ⊂ V .

Let for each n ≥ 1 Hn = span{hi}
n
i=1, on which we consider the inner

product induced from H that we again denote by (·, ·); Pn : H → Hn ⊂ H

be the operator of orthogonal projection from H on Hn, i.e.,

∀h ∈ H Pnh = argmin
hn∈Hn

‖h− hn‖H .

Definition 6. We say that the triple ({hi}i≥1;V ;H) satisfies the condi-
tion (γ) if sup

n≥1
‖Pn‖L(V,V ) < +∞, i.e., there exists C ≥ 1 such that

∀ v ∈ V, ∀n ≥ 1 ‖Pnv‖V ≤ C · ‖v‖V .

Let us remark that a construction of the basis which satisfies (or not)
the above condition was introduced in the papers [10], [16], [17], [35].

Remark 6. When the system of vectors {hi}i≥1 ⊂ V is orthogonal in H ,
the condition (γ) means that the given system is a Schauder basis in the
Banach space V [35].
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Remark 7. Since Pn ∈ L(V, V ), its conjugate operator P ∗n ∈ L(V ∗, V ∗)
and ‖Pn‖L(V,V ) = ‖P ∗n‖L(V ∗,V ∗). It is clear that for each h ∈ H , Pnh = P ∗nh.
Hence, we identify Pn with P ∗n . Then the condition (γ) means that for each
v ∈ V and n ≥ 1 ‖Pnv‖V ∗ ≤ C · ‖v‖V ∗ .

Due to the equivalence of H∗ and H , it follows that H∗
n ≡ Hn. For

each n ≥ 1, we consider the Banach space Xn = Lp0
(S;Hn) ⊂ X , where

p0 := max{r1, r2}, with the norm ‖ · ‖Xn
induced from the space X . This

norm is equivalent to the natural norm in Lp0
(S;Hn) [11].

The space Lq0
(S;Hn) (q−1

0 + p−1
0 = 1) with the norm

‖f‖X∗

n
:= sup

x∈Xn\{0}

|〈f, x〉|

‖x‖X
= sup

x∈Xn\{0}

|〈f, x〉Xn
|

‖x‖Xn

is isometrically isomorphic to the conjugate space X∗
n of Xn (further the

given spaces will be identified); moreover, the map

X∗
n ×Xn 3 f, x→

∫

S

(

f(τ), x(τ)
)

Hn
dτ =

∫

S

(

f(τ), x(τ)
)

dτ = 〈f, x〉Xn

is the duality form on X∗
n ×Xn. This statement is correct since

X∗
n = Lq0

(S;Hn) ⊂ Lq0
(S;H) ⊂ Lr′

1
(S;H)+

+ Lr′
2
(S;H) + Lq1

(S;V ∗1 ) + Lq2
(S;V ∗

2 ) = X∗

(see [11]). Let us remark that 〈·, ·〉
∣

∣

X∗

n×Xn
= 〈·, ·〉Xn

.

Proposition 3 ([16, Proposition 1]). For each n ≥ 1 Xn = PnX, i.e.,
Xn = {Pny(·)| y(·) ∈ X}, and we have

〈f, Pny〉 = 〈f, y〉 ∀ y ∈ X and f ∈ X∗
n.

Moreover, if the triples ({hj}j≥1;Vi;H) for i = 1, 2 satisfy the condition (γ)
with C = Ci, then

‖Pny‖X ≤ max {C1, C2} · ‖y‖X ∀ y ∈ X and n ≥ 1.

For each n ≥ 1 we denote by In the canonical embedding of Xn in X

(∀x ∈ Xn Inx = x), and by I∗n : X∗ → X∗
n its conjugate operator. We point

out that

‖In‖L((Xn,‖·‖X);(X,‖·‖X)) = ‖I∗n‖L((X∗,‖·‖X∗);(X∗

n,‖·‖X∗
n

)) = 1.

Proposition 4 ([16, Proposition 2]). For each n ≥ 1 and f ∈ X∗

(I∗nf)(t) = Pnf(t) for a.a. t ∈ S. Moreover, if the triples ({hj}j≥1;Vi;H)
for i = 1, 2 satisfy the condition (γ) with C = Ci, then

for each f ∈ X∗ and n ≥ 1 ‖I∗nf‖X∗ ≤ max {C1, C2} · ‖f‖X∗,

i.e., sup
n≥1
‖I∗n‖L(X∗;X∗) ≤ max {C1, C2}.

From the last two propositions and the properties of I∗n it immediately
follows the following
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Corollary 1. For each n ≥ 1 X∗
n = PnX

∗ = I∗nX, i.e.,

X∗
n =

{

Pnf(·)| f(·) ∈ X∗
}

=
{

I∗nf | f ∈ X
∗
}

.

Proposition 5 ([16, Proposition 3]). The set
⋃

n≥1

Xn is dense in (X, ‖·‖X).

For some linear densely defined operator L : D(L) ⊂ Y → Y ∗, we con-
sider the normed space D(L) with the graph norm

‖y‖D(L) = ‖y‖Y + ‖Ly‖Y ∗ ∀ y ∈ D(L). (7)

Proposition 6. Let Y be a reflexive Banach space, L : D(L) ⊂ Y → Y ∗

be a linear maximal monotone operator. Then every bounded sequence of
the space D(L) with the graph norm (7) has a weakly convergent in D(L)
subsequence.

5. The Faedo–Galerkin Method

For each n ≥ 1 let us set

Ln := I∗nLIn : D(Ln) = D(L) ∩Xn ⊂ Xn → X∗
n, fn := I∗nf ∈ X

∗
n,

An := I∗nAIn : Xn → Cv(X∗
n), Bn := I∗nBIn : Xn → Cv(X∗

n).

Remark 8. We will denote by I∗n also the conjugate operators of the
canonical embeddings of Xn in X1 and of Xn in X2, because these operators
coincide with I∗n on X∗

1 ∩X
∗
2 which is dense in X∗

1 , X∗
2 , X∗.

By analogy with Proposition 6, we consider the normed space D(L) with
the graph norm (7). We note that if the linear operator L is closed and
densely defined, then (D(L), ‖ · ‖D(L)) is a Banach space continuously em-
bedded in X .

In addition to the problem (4), we consider the following class of prob-
lems:

{

Lnyn +An(yn) +Bn(yn) 3 fn,

yn ∈ D(Ln).
(8)

Remark 9. We consider on D(Ln) the graph norm

‖yn‖D(Ln) = ‖yn‖Xn
+ ‖Lnyn‖X∗

n
for each yn ∈ D(Ln).

Definition 7. We say that the solution y ∈ D(L) of (4) is obtained by
theFaedo-Galerkin method, if y is the weak limit of a subsequence {ynk

}k≥1

from {yn}n≥1 in D(L), where for each n ≥ 1 yn is a solution of the prob-
lem (8).

6. The Main Solvability Theorem

Theorem 1. Let L : D(L) ⊂ X → X∗ be a linear operator, A : X1 →
Cv(X

∗
1 ) and B : X2 → Cv(X∗

2 ) be multi-valued maps such that

1) L is maximal monotone on D(L) and satisfies

• the condition L1: for each n ≥ 1 and xn ∈ D(Ln) Lxn ∈ X
∗
n;
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• the condition L2: for each n ≥ 1 the set D(Ln) is dense in Xn;
• the condition L3: for each n ≥ 1 Ln is maximal monotone on D(L);

2) there exist Banach spaces W1 and W2 such that W1 ⊂ X1, W2 ⊂ X2

and D(L) ⊂W1 ∩W2 with continuous embedding;

3) A is λ0-pseudomonotone on W1 and satisfies the condition (Π);

4) B is λ0-pseudomonotone on W2 and satisfies the condition (Π);

5) the pair (A;B) is s-mutually bounded and the sum C = A+B : X ⇒

X∗ is finite-dimensionally locally bounded and weakly +-coercive.

Furthermore, let {hj}j≥1 ⊂ V be a complete system of vectors in V1, V2,
H such that ∀ i = 1, 2 the triple ({hj}j≥1;Vi;H) satisfies the condition (γ).

Then for each f ∈ X∗ the set

KH(f) :=
{

y ∈ D(L)| y is a solution of (4),

obtained by the Faedo-Galerkin method
}

is non-empty and the representation

KH(f) =
⋂

n≥1

[

⋃

m≥n

Km(fm)
]

Xw

(9)

is true, where for each n ≥ 1

Kn(fn) =
{

yn ∈ D(Ln)| yn is a solution of (8)
}

and [· ]Xw
is the closure operator in the space X with respect to the weak

topology.
Moreover, if the operator A+B : X ⇒ X∗ is −-coercive, then KH(f) is

weakly compact in X and in D(L) with respect to the graph norm (7).

Remark 10. The sufficient condition for the weak +-coercivity of A+B

is as follows: A is +-coercive and it satisfies the condition (κ) on X1, B is
+-coercive and it satisfies the condition (κ) on X2 (see Lemma 2).

Remark 11. From the condition L2 on the operator L and from the
Proposition 5 it follows that L is densely defined.

Proof. By Lemma 1 and Remark 2 we consider the λ0-pseudomonotone on
W1∩W2 (and hence on D(L)), finite-dimensionally locally bounded, weakly
+-coercive map

X 3 y → C(y) := A(y) +B(y) ∈ Cv(X∗),

which satisfies the condition (Π).
Let f ∈ X∗ be fixed. Now let us use the weak +-coercivity condition for

C. There exists R > 0 such that

[C(y)− f, y]+ ≥ 0 ∀ y ∈ X : ‖y‖X = R. (10)
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6.1. Solvability of approximating problems.

Lemma 3 ([18]). For each n ≥ 1 there exists a solution of the problem
(8) yn ∈ D(Ln) such that ‖yn‖X ≤ R.

6.2. Passing to limit. Due to Lemma 3, we have a sequence of Galerkin
approximate solutions {yn}n≥1 that satisfies the conditions

∀n ≥ 1 ‖yn‖X ≤ R; (11)

∀n ≥ 1 yn ∈ D(Ln) ⊂ D(L), Lnyn + dn(yn) = fn, (12)

where dn(yn) = I∗nd(yn), d(yn) ∈ C(yn) is a selector.
In order to prove the given theorem, we need to obtain the following

Lemma 4 ([18]). Let for some subsequence {nk}k≥1 of the natural scale
the sequence {ynk

}k≥1 satisfy the following conditions:

• ∀ k ≥ 1 ynk
∈ D(Lnk

) = D(L) ∩Xnk
;

• ∀ k ≥ 1 Lnk
ynk

+ dnk
(ynk

) = fnk
, dnk

(ynk
) = I∗nk

d(ynk
), d(ynk

) ∈
C(ynk

);
• ynk

⇀ y in X as k → +∞ for some y ∈ X.

Then y ∈ KH(f).

By (11), (12), Lemma 4, the Banach-Alaoglu theorem and the topological
property of the upper limit [20, Property 2.29.IV.8] it follows that

∅ 6=
⋂

n≥1

[

⋃

m≥n

Km(fm)
]

Xw

⊂ KH(f).

The converse inclusion is obvious; it follows from the same topological prop-
erty of the upper limit and from D(L) ⊂ X with continuous embedding.

Now let us prove that KH(f) is weakly compact in X and in D(L) under
the −-coercivity condition on the operator C = A + B : X → Cv(X∗).
Since (9) holds and D(L) ⊂ X with continuous embedding, it suffices to
show that the given set is bounded in D(L). Let {yn}n≥1 ⊂ KH(f) be an
arbitrary sequence. Then for some dn ∈ C(yn)

Lyn + d(yn) = f.

If {yn}n≥1 is such that

‖yn‖X → +∞ as n→∞,

then we obtain the contradiction

+∞←
1

‖yn‖X
[C(yn), yn]− ≤

1

‖yn‖X
〈d(yn), yn〉 ≤

≤
1

‖yn‖X
〈Lyn + d(yn), yn〉 =

1

‖yn‖X
〈f, yn〉 ≤ ‖f‖X∗ < +∞. (13)

Hence, for some k > 0

‖yn‖X ≤ k ∀n ≥ 1. (14)
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Due to the condition (Π) for C, from (13)–(14) it follows the existence of
K > 0 such that:

‖dn‖X∗ ≤ K.

Hence,

‖Lyn‖X∗ ≤ K + ‖f‖X∗ and ‖yn‖D(L) ≤ k +K + ‖f‖X∗.

The theorem is proved. �

7. An Application

7.1. On the solvability of an initial time problem by FG method.

Let A : X1 → Cv(X∗
1 ) and B : X2 → Cv(X∗

2 ) be multi-valued maps. We
consider the problem:

{

y′ +A(y) +B(y) 3 f,

y(0) = 0
(15)

in order to find the solutions by FG method in the class

W =
{

y ∈ X | y′ ∈ X∗
}

,

where the derivative y′ of an element y ∈ X is considered in the sense of
D∗(S;V ∗). We consider the norm on W

‖y‖W = ‖y‖X + ‖y′‖X∗ for each y ∈W.

We also consider the spaces Wi = {y ∈ Xi| y
′ ∈ X∗}, i = 1, 2.

Remark 12. The space W is continuously embedded in C(S;H). Hence,
the initial condition in (15) has sense.

In parallel with the problem (15), we consider the following class of prob-
lems in order to search the solutions in Wn = {y ∈ Xn| y

′ ∈ X∗
n}:

{

y′n +An(yn) +Bn(yn) 3 fn,

yn(0) = 0,
(16)

where the maps An, Bn, fn were introduced in Section 5, the derivative y′n
of an element yn ∈ Xn is considered in the sense of D∗(S;Hn).

Let W0 := {y ∈W | y(0) = 0} and introduce the map

L : D(L) = W0 ⊂ X → X∗

by Ly = y′ for each y ∈W0.
From the main solvability theorem it follows the following

Corollary 2. Let A : X1 → Cv(X∗
1 ) and B : X2 → Cv(X∗

2 ) be multi-
valued maps such that

1) A is λ0-pseudomonotone on W1 and it satisfies the condition (Π);
2) B is λ0-pseudomonotone on W2 and it satisfies the condition (Π);
3) the pair (A;B) is s-mutually bounded and the sum C = A+B : X ⇒

X∗ is finite-dimensionally locally bounded and weakly +-coercive.
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Furthermore, let {hj}j≥1 ⊂ V be a complete system of vectors in V1, V2,
H such that for i = 1, 2 the triple ({hj}j≥1;Vi;H) satisfies the condition
(γ).

Then for each f ∈ X∗ the set

K0
H(f) :=

{

y ∈ W | y is the solution of (15),

obtained by the Faedo–Galerkin method
}

is non-empty and the representation

K0
H(f) =

⋂

n≥1

[

⋃

m≥n

K0
m(fm)

]

Xw

is true, where for each n ≥ 1

K0
n(fn) =

{

yn ∈Wn| yn is the solution of (16)
}

.

Moreover, if the operator A+B : X ⇒ X∗ is −-coercive, then K0
H(f) is

weakly compact in X and in W .

Proof. First let us prove the maximal monotonicity of L on W0. For v ∈ X ,
w ∈ X∗ such that for each u ∈W0 〈w −Lu, v − u〉 ≥ 0 is true, let us prove
that v ∈ W0 and v′ = w. If we take u = hϕx ∈ W0 with ϕ ∈ D(S), x ∈ V
and h > 0, we get

0 ≤
〈

w − ϕ′hx, v − ϕhx
〉

=

= 〈w, v〉 −

〈
∫

S

(

ϕ′(s)v(s) + ϕ(s)w(s)
)

ds, hx

〉

+ 〈ϕ′hx, ϕhx〉 =

= 〈w, v〉 + h〈v′(ϕ)− w(ϕ), x〉,

where v′(ϕ) and w(ϕ) are the values of the distributions v′ and w on ϕ ∈
D(S). So, for each ϕ ∈ D(S) and x ∈ V 〈v′(ϕ)−w(ϕ), x〉 ≥ 0 is true. Thus
we obtain v′(ϕ) = w(ϕ) for all ϕ ∈ D(S). This means that v′ = w ∈ X∗.

Now we prove v(0) = 0. If we use [11, Theorem IV.1.17] with u(t) =
v(T ) t

T
∈W0, we obtain that

0 ≤ 〈v′ − Lu, v − u〉 = 〈v′ − u′, v − u〉 =

=
1

2

(

‖v(T )− v(T )‖2H − ‖v(0)‖2H

)

= −
1

2
‖v(0)‖2H ≤ 0,

and then v(0) = 0.
In order to prove the given statement, it is enough to show that L satisfies

the conditions L1–L3. The condition L1 follows from the following

Proposition 7 ([16, Proposition 6]). For each y ∈ X, n ≥ 1 we have
Pny

′ = (Pny)
′, where the derivative of an element x ∈ X is to be considered

in the sense of D∗(S;V ∗).
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The condition L2 follows from [11, Lemma VI.1.5] and from the fact that
the set C1(S;Hn) is dense in Lp0

(S,Hn) = Xn. The condition L3 follows
from the previous conclusions with V = H = Hn and X = Xn. �

Remark 13. In the latter Corollary we may relinquish the condition (γ)
in the following way:

Following by [21], we may assume that there is a separable Hilbert space
Vσ such that Vσ ⊂ V1, Vσ ⊂ V2 with continuous and dense embedding,
Vσ ⊂ H with compact and dense embedding. Then

Vσ ⊂ V1 ⊂ H ⊂ V
∗
1 ⊂ V

∗
σ , Vσ ⊂ V2 ⊂ H ⊂ V

∗
2 ⊂ V

∗
σ

with continuous and dense embedding. For i = 1, 2, let us set

Xi,σ = Lri
(S;H) ∩ Lpi

(S;Vσ), Xσ = X1,σ ∩X2,σ,

X∗
i,σ = Lr′

i
(S;H) + Lqi

(S;V ∗σ ), X∗
σ = X∗

1,σ +X∗
2,σ,

Wi,σ =
{

y ∈ Xi| y
′ ∈ X∗

i,σ

}

, Wσ = W1,σ ∩W2,σ .

As a complete system of vectors {hi}i≥1 ⊂ Vσ , let us take a special basis,
i.e.,

(i) {hi}i≥1 orthonormal in H ;

(ii) {hi}i≥1 orthogonal in Vσ ;

(iii) ∀ i ≥ 1 (hi, v)Vσ
= λi(hi, v) ∀ v ∈ Vσ , where 0 ≤ λ1 ≤ λ2, . . . , λj →

∞ as j →∞, (·, ·)Vσ
is the natural inner product in Vσ .

Then
sup
n≥1
‖I∗n‖L(X∗

σ; X∗

σ) = 1. (17)

To use this construction, we need to consider some stronger condition for
A, B:
A is λ0-pseudomonotone on W1,σ;
B is λ0-pseudomonotone on W2,σ.
So, in the proof of Theorem 1 we need to modify only “Passing to limit”.
Due to Lemma 3, we have a sequence of Galerkin approximate solutions

{yn}n≥1, that satisfies the following conditions:

a) ∀n ≥ 1 : ‖yn‖X ≤ R; (18)

b) ∀n ≥ 1 : yn ∈ Wn ⊂W, y′n + Cn(yn) 3 fn; (19)

c) ∀n ≥ 1 : yn(0) = 0. (20)

From the inclusion (19) we have that

∀n ≥ 1 ∃ dn ∈ C(yn) : I∗ndn =: d1
n = fn − y

′
n ∈ Cn(yn) = I∗nC(yn). (21)

Lemma 5. From the sequences {yn}n≥1, {dn}n≥1 satisfying (18)–(21),
subsequences {ynk

}k≥1 ⊂ {yn}n≥1 and {dnk
}k≥1 ⊂ {dn}n≥1 can be selected

in such a way that for some y ∈ W0, d ∈ X
∗, z ∈ H the following types of

convergence will take place:

1) ynk
⇀ y in X as k →∞; (22)
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2) y′nk
⇀ y′ in X∗

σ as k →∞; (23)

3) dnk
⇀ d in X∗ as k →∞; (24)

4) ynk
(T ) ⇀ z in H as k →∞. (25)

Moreover, in (25)
z = y(T ). (26)

Proof. 1◦. The boundedness of {dn}n≥1 in X∗ is clear. So,

∃ c1 > 0 : ∀n ≥ 1 ‖dn‖X∗ ≤ c1. (27)

2◦. Let us prove the boundedness of {y′n}n≥1 in X∗. From (21) it follows
that ∀n ≥ 1 y′n = I∗n(f −dn), and therefore keeping in mind (17), (18), (19)
and (27) we have:

‖y′n‖X∗

σ
≤ ‖yn‖Wσ

≤ R+ c
(

‖f‖X∗ + c1
)

=: c2 < +∞, (28)

where c > 0 is the constant from the inequality

‖f‖X∗

σ
≤ c‖f‖X∗ ∀ f ∈ X∗.

3◦. From (21) and from Wn ⊂ C(S;H) with continuous embedding, we
obtain that for each t ∈ S, n ≥ 1

‖yn(t)‖2H = 2

t
∫

0

(y′n(s), yn(s)) ds = 2

t
∫

0

(

f(s)− dn(s), yn(s)
)

ds ≤

≤
(

‖f‖X∗ + c1
)

R.

Hence there exists c3 > 0 such that

∀n ≥ 1 for all t ∈ S ‖yn(t)‖H ≤ c3 < +∞.

In particular,
∀n ≥ 1 ‖yn(T )‖H ≤ c3. (29)

4◦. From the estimates (18), (27)–(29), due to the Banach–Alaoglu the-
orem, it follows the existence of subsequences

{ynk
}k≥1 ⊂ {yn}n≥1, {dnk

}k≥1 ⊂ {dn}n≥1

and of elements y ∈Wσ , d ∈ X∗ and z ∈ H , for which convergence of types
(22)–(25) take place.

5◦. Let us prove that
y′ = f − d. (30)

Let ϕ ∈ D(S), n ∈ N and h ∈ Hn. Then ∀ k : nk ≥ n we have:
(

∫

S

ϕ(τ)
(

y′nk
(τ) + dnk

(τ)
)

dτ, h

)

=

∫

S

(

ϕ(τ)
(

y′nk
(τ) + dnk

(τ)
)

, h

)

dτ =

=

∫

S

(

y′nk
(τ) + dnk

(τ), ϕ(τ)h
)

dτ =
〈

y′nk
+ dnk

, ψ
〉

,

where ψ(τ) = h · ϕ(τ) ∈ Xn ⊂ X .
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Note that we use the property of Bochner’s integral here [11, Theo-
rem IV.1.8, c. 153]. Since for nk ≥ n Hnk

⊃ Hn, we have

〈y′nk
+ dnk

, ψ〉 = 〈fnk
, ψ〉.

So, ∀ k ≥ 1: nk ≥ n it follows that

〈fnk
, ψ〉 = 〈f, Ink

ψ〉 =

=

∫

S

(

f(τ), ϕ(τ)h
)

dτ =

∫

S

(

ϕ(τ)f(τ), h
)

dτ =

(
∫

S

ϕ(τ)f(τ)dτ, h

)

.

Therefore, for all k : nk ≥ n

(
∫

S

ϕ(τ)y′nk
(τ) dτ, h

)

=

(
∫

S

ϕ(τ)
(

f(τ)− dnk
(τ)

)

dτ, h

)

=

=

∫

S

(

(f(τ) − dnk
(τ)), ϕ(τ)h

)

dτ = 〈f − dnk
, ψ〉 → 〈f − d, ψ〉 =

=

(
∫

S

ϕ(τ)(f(τ) − d(τ)) dτ, h

)

as k →∞. (31)

The latter follows from the weak convergence of dnk
to d in X∗.

From the convergence (23) we have:

(
∫

S

ϕ(τ)y′nk
(τ) dτ, h

)

→

→

(
∫

S

ϕ(τ)y′(τ) dτ, h

)

=
(

y′(ϕ), h
)

as k → +∞, (32)

where

∀ϕ ∈ D(S) y′(ϕ) = −y(ϕ′) = −

∫

S

y(τ)ϕ′(τ) dτ

is the derivative of the element y considered in the sense of D∗(S, V ∗).
Hence, from (31) and (32) it follows that

∀ϕ ∈ D(S) ∀h ∈
⋃

n≥1

Hn

(

y′(ϕ), h
)

=

(
∫

S

ϕ(τ)(f(τ) − d(τ)) dτ, h

)

.

Since
⋃

n≥1

Hn is dense in V , we have

∀ϕ ∈ D(S) y′(ϕ) =

∫

S

ϕ(τ)
(

f(τ)− d(τ)
)

dτ.

So, y′ = f − d ∈ X∗ and y ∈W .
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6◦. Prove that y(0) = 0. Let h ∈ Hn, ϕ ∈ D(S), n ∈ N, ψ(τ) :=
(T − τ)h ∈ Xn. From (30) it follows:

〈y′, ψ〉 =

∫

S

(

y′(τ), ψ(τ)
)

dτ =

∫

S

(

f(τ) − d(τ), ψ(τ)
)

dτ =

= lim
k→∞

∫

S

(

f(τ) − dnk
(τ), ψ(τ)

)

dτ = lim
k→∞

〈f − dnk
, Ink

ψ〉 =

= lim
k→∞

〈I∗nk
(f − dnk

), ψ〉 = lim
k→∞

〈(fnk
− d1

nk
), ψ〉 = lim

k→∞
〈y′nk

, ψ〉.

Noting that ψ′(τ) = −h, τ ∈ S, we obtain:

lim
k→∞

〈y′nk
, ψ〉 = lim

k→∞

{

− 〈ψ′, ynk
〉+

(

ynk
(T ), ψ(T )

)

}

=

= lim
k→∞

{
∫

S

(ynk
(τ), h) dτ

}

=

∫

S

(y(τ), h) dτ = −〈ψ′, y〉.

The latter is true due to ynk
⇀ y in X . On the other hand,

−〈ψ′, y〉 = 〈y′, ψ〉 − (y(T ), ψ(T )) + (y(0), ψ(0)) = 〈y′, ψ〉+ T (y(0), h).

Hence, ∀h ∈
⋃

n≥1

Hn

〈y′, ψ〉 = 〈y′, ψ〉+ T (y(0), h)⇐⇒ (y(0), h) = 0.

From the density of
⋃

n≥1

Hn in H it follows that y(0) = 0 and y ∈W0.

7◦. To complete the proof, we must show that y(T ) = z. The proof is
similar to that of 6◦.

Lemma 5 is proved. �

Now, to prove that y is a solution of the problem (16), it is necessary to
show that y satisfies the inclusion from (16). Due to the identity (30), it is
sufficient to prove that d ∈ C(y).

First let us ascertain that

lim
k→∞

〈dnk
, ynk

− y〉 ≤ 0. (33)

Indeed, due to (30), ∀ k ≥ 1 we have:

〈dnk
, ynk

− y〉 = 〈dnk
, ynk
〉 − 〈dnk

, y〉 = 〈d1
nk
, ynk
〉 − 〈dnk

, y〉 =

= 〈fnk
− y′nk

, ynk
〉 − 〈dnk

, y〉 = 〈fnk
, ynk
〉 − 〈y′nk

, ynk
〉 − 〈dnk

, y〉 =

= 〈f, ynk
〉 − 〈dnk

, y〉 −
1

2
‖ynk

(T )‖2H . (34)

Further in left and right sides of the equality (34) we pass to upper limit as
k →∞. We have:

lim
k→∞

〈dnk
, ynk

− y〉 ≤ lim
k→∞

〈f, ynk
〉+ lim

k→∞
〈dnk

,−y〉− lim
k→∞

1

2
‖ynk

(T )‖2H ≤
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≤ 〈f, y〉X − 〈d, y〉 −
1

2
‖y(T )‖2H = 〈f − d, y〉 − 〈y′, y〉 = 0.

From the conditions (22), (23), (24), (33) and λ0-pseudomonotonicity of
C on Wσ (it holds due to Lemma 1) it follows that there exist {dm} ⊂
{dnk

}k≥1, {ym} ⊂ {ynk
}k≥1 such that

∀ω ∈ X lim
m→∞

〈dm, ym − ω〉 ≥
[

C(y), y − ω
]

−
. (35)

If we prove that

〈d, y〉 ≥ lim
m→∞

〈dm, ym〉, (36)

then from (35) and from the convergence of (27) we will have:

∀ω ∈ X
[

C(y), y − ω
]

−
≤ 〈d, y − ω〉,

and we will obtain that this is equivalent to the inclusion y ∈ C(y) ∈
Cv(X

∗). Therefore, y will be a solution of the problem (16).
Let us prove (36):

lim
m→∞

〈dm, ym〉 = lim
m→∞

〈fm − y
′
m, ym〉 ≤

≤ lim
m→∞

〈fm, ym〉+ lim
m→∞

(

− 〈y′m, ym〉
)

=

= lim
m→∞

〈f, ym〉 −
1

2
lim

m→∞
‖ym(T )‖2H ≤

≤ 〈f, y〉 −
1

2
‖y(T )‖2H = 〈f, y〉 − 〈y′, y〉 = 〈d, y〉.

So, y ∈W is a solution of the problem (16).

7.2. On searching the periodic solutions for differential-operator

inclusions by FG method. Let A : X1 → Cv(X∗
1 ) and B : X2 → Cv(X∗

2 )
be multi-valued maps. We consider the following problem:

{

y′ +A(y) +B(y) 3 f,

y(0) = y(T )
(37)

in order to find the solutions by FG method in the class

W =
{

y ∈ X | y′ ∈ X∗
}

,

where the derivative y′ of an element y ∈ X is considered in the sense of
scalar distributions space D∗(S;V ∗) = L(D(S);V ∗

w ), with V = V1 ∩ V2, V
∗
w

equals to V ∗ with the topology σ(V ∗, V ) [32]. We consider the following
norm on W

‖y‖W = ‖y‖X + ‖y′‖X∗ for each y ∈W.

We also consider the spaces Wi = {y ∈ Xi| y
′ ∈ X∗}, i = 1, 2.

Remark 14. It is clear that the space W is continuously embedded in
C(S;V ∗). Hence, the condition in (37) has sense.
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In parallel with the problem (37), we consider the following class of prob-
lems in order to search the solutions in Wn = {y ∈ Xn| y

′ ∈ X∗
n}:

{

y′n +An(yn) +Bn(yn) 3 fn,

yn(0) = yn(T ),
(38)

where the maps An, Bn, fn were introduced in Section 5, the derivative y′n
of an element yn ∈ Xn is considered in the sense of D∗(S;Hn).

Let Wper := {y ∈W | y(0) = y(T )} and introduce the map

L : D(L) = Wper ⊂ X → X∗

by Ly = y′ for each y ∈Wper .
From the main solvability theorem it follows

Corollary 3. Let A : X1 → Cv(X∗
1 ) and B : X2 → Cv(X∗

2 ) be multi-
valued maps such that

1) A is λ0-pseudomonotone on W1 and it satisfies the condition (Π);
2) B is λ0-pseudomonotone on W2 and it satisfies the condition (Π);
3) the pair (A;B) is s-mutually bounded and the sum C = A+B : X ⇒

X∗ is finite-dimensionally locally bounded and weakly +-coercive.
Furthermore, let {hj}j≥1 ⊂ V be a complete vector system in V1, V2, H

such that for i = 1, 2 the triple ({hj}j≥1;Vi;H) satisfies the condition (γ).
Then for each f ∈ X∗ the set

K
per
H (f) :=

{

y ∈W | y is the solution of (37),

obtained by the Faedo–Galerkin method
}

is non-empty and the representation

K
per
H (f) =

⋂

n≥1

[

⋃

m≥n

Kper
m (fm)

]

Xw

is true, where for each n ≥ 1

Kper
n (fn) =

{

yn ∈ Wn| yn is the solution of (38)
}

.

Moreover, if the operator A+B : X ⇒ X∗ is −-coercive, then K
per
H (f)

is weakly compact in X and in W .

Proof. First let us prove the maximal monotonicity of L on Wper . For
v ∈ X , w ∈ X∗ such that for each u ∈ Wper 〈w − Lu, v − u〉 ≥ 0 is true,
let us prove that v ∈ Wper and v′ = w. By analogy with the proof of
Corollary 2, we obtain v′ = w ∈ X∗. Now we prove v(0) = v(T ). If we use
[11, Theorem VI.1.17] with u(t) ≡ v(T ) ∈Wper , we obtain that

0 ≤ 〈v′ − Lu, v − u〉 = 〈v′ − u′, v − u〉 =

=
1

2

(

‖v(T )− v(T )‖2H − ‖v(0)− v(T )‖2H

)

= −
1

2
‖v(0)− v(T )‖2H ≤ 0

and then v(0) = v(T ).
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In order to prove the given statement, it is enough to show that L satisfies
the conditions L1–L3. The condition L1 follows from Proposition 7. The
condition L2 follows from [11, Lemma VI.1.5] and from the fact that the
set C1(S;Hn) is dense in Lp0

(S,Hn) = Xn. The condition L3 follows from
[11, Lemma VI.1.7] with V = H = Hn and X = Xn. �

Remark 15. In the latter Corollary we may relinquish the condition (γ)
in the way introduced in Remark 13. The proof is similar.

7.3. Example. Let us consider a bounded domain Ω ⊂ R
n with rather

smooth boundary ∂Ω, S = [0, T ], Q = Ω × (0;T ), ΓT = ∂Ω × (0;T ). Let,
for i = 1, 2, mi ∈ N, N i

1(respectively N i
2) be the number of the derivatives

with respect to the variable x of order ≤ mi − 1 (respectively mi) and

{Ai
α(x, t, η, ξ)}|α|≤mi

be a family of real functions defined in Q×R
Ni

1×R
Ni

2 .
Let

Dku =
{

Dβu, |β| = k
}

be the differentiations by x,

δiu =
{

u,Du, . . . , Dmi−1u
}

,

Ai
α(x, t, δiu,D

miv) : x, t→ Ai
α

(

x, t, δiu(x, t), D
miv(x, t)

)

.

Moreover, let ψ : R → R be some locally Lipschitz real function and
let its Clarke’s generalized gradient Φ = ∂Clψ : R ⇒ R satisfy the growth
condition

∃C > 0 : ‖Φ(t)‖+ ≤ C(1 + |t|), [Φ(t), t]+ ≥
1

C
(t2 − 1) ∀ t ∈ R. (39)

Let us consider the following problem with Dirichlet boundary conditions:

∂y(x, t)

∂t
+

∑

|α|≤m1

(−1)|α|Dα
(

A1
α(x, t, δ1y,D

m1y)
)

+

+
∑

|α|≤m2

(−1)|α|Dα
(

A2
α(x, t, δ2y,D

m2y)
)

+ Φ(y(x, t)) 3 f(x, t) in Q, (40)

Dαy(x, t) = 0 on ΓT as |α| ≤ mi − 1 and i = 1, 2 (41)

and y(x, 0) = y(x, T ) in Ω, (42)

or y(x, 0) = 0 in Ω. (43)

Let us assume H = L2(Ω) and Vi = W
mi,pi

0 (Ω) with pi > 1 such that
Vi ⊂ H with continuous embedding. Consider the function ϕ : L2(S;H)→
R defined by

ϕ(y) =

∫

Q

ψ(y(x, t)) dx dt ∀ y ∈ L2(S;H).

Using the growth condition (39) and Lebesgue’s mean value theorem, we
note that the function ϕ is well-defined and Lipschitz continuous on bounded
sets in L2(S;H), thus locally Lipschitz, so that Clarke’s generalized gradient
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∂Clϕ : L2(S;H) ⇒ L2(S;H) is well-defined. Moreover, the Aubin–Clarke
theorem (see [7, p. 83]) ensures that for each y ∈ L2(S;H) we have

p∈∂Clϕ(y)=⇒p∈Lq3
(Q) with p(x, t)∈∂Clψ(y(x, t)) for a.e. (x, t)∈Q.

Under suitable conditions on the coefficients Ai
α, the given problems can be

written as:

y′ +A1(y) +A2(y) + ∂Clϕ(y) 3 f, y(0) = y(T ), (44)

or, respectively

y′ +A1(y) +A2(y) + ∂Clϕ(y) 3 f, y(0) = 0, (45)

where

f ∈ X∗ = L2(S;L2(Ω)) + Lq1
(S;W−m1,q1(Ω)) + Lq2

(S;W−m2,q2(Ω)),

p−1
i + q−1

i = 1.

Each element y ∈ W that satisfies (44) (or (45)) is called a generalized
solution of the problem (7.3), (41), (42) (respectively (7.3), (41), (43)).

Choice of basis. As a complete system of vectors {hj}j≥1⊂W
m1,p1

0 (Ω)∩
W

m2,p2

0 (Ω) we may consider the spacial basis for H l
0(Ω) with l ∈ N such

that H l
0(Ω) ⊂Wmi,pi

0 (Ω) with continuous embedding (i = 1, 2), or we may
assume that there is a complete system of vectors {hj}j≥1 ⊂ W

m1,p1

0 (Ω) ∩
W

m2,p2

0 (Ω) such that the triples
(

{hj}j≥1;W
mi,pi

0 (Ω);L2(Ω)
)

, i = 1, 2,

satisfy the condition (γ).
For example, when n = 1, as {hj}j≥1 we may take the “special” basis for

the pair (H
max{m1;m2}+ε
0 (Ω);L2(Ω)) with a suitable ε ≥ 0 [21], [16]. As it

is well-known, the triple ({hj}j≥1;Lp(Ω);L2(Ω)) satisfies the condition (γ)
for p > 1. Then, using (for example) the results of [16], [17], we obtain the
necessary condition.

Definition of the operators Ai. Let Ai
α(x, t, η, ξ), defined in Q ×

R
Ni

1 × R
Ni

2 , satisfy the conditions.
1) for almost all x, ∈ Q the map η, ξ → Ai

α(x, t, η, ξ) is continuous on

R
Ni

1 × R
Ni

2 ;

2) for all η, xi the map x, t→ Ai
α(x, t, η, ξ) is measurable on Q, (46)

3) for all u, v ∈ Lpi(0, T ;Vi) =: Vi Ai
α(x, t, δiu,D

miu) ∈ Lqi(Q). (47)

Then for each u ∈ Vi the map

w → ai(u,w) =
∑

|α|≤mi

∫

Q

Ai
α(x, t, δiu,D

miu)Dαw dx dt

is continuous on Vi and then

there exists Ai(u) ∈ V
∗
i such that ai(u,w) = 〈Ai(u), w〉. (48)
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Conditions on Ai. Similarly to [21, Sections 2.2.5, 2.2.6, 3.2.1] we have

Ai(u) = Ai(u, u), Ai(u, v) = Ai1(u, v) +Ai2(u),

where

〈Ai1(u, v), w〉 =
∑

|α|=mi

∫

Q

Ai
α(x, t, δiu,D

miv)Dαw dx dt,

〈Ai2(u), w〉 =
∑

|α|≤mi−1

∫

Q

Ai
α(x, t, δiu,D

miu)Dαw dx dt.

We add the following conditions:

〈Ai1(u, u), u− v〉 − 〈Ai1(u, v), u− v〉 ≥ 0 ∀u, v ∈ Vi; (49)

if uj ⇀ u in Vi, u′j ⇀ u′ in V∗i and

if 〈Ai1(uj , uj)−Ai1(uj , u), uj − u〉 → 0,

then Ai
α(x, t, δuj , D

miuj) ⇀ Ai
α(x, t, δu,Dmiu) in Lqi(Q);

(50)

“coercivity”. (51)

Remark 16. Similarly to [21, Theorem 2.2.8], the sufficient conditions for
(49), (50) are:

∑

|α|=mi

Ai
α(x, t, η, ξ)ξα

1

|ξ|+ |ξ|pi−1
→ +∞ as |ξ| → ∞

for almost all x, t ∈ Q and |η| bounded;
∑

|α|=mi

(Ai
α(x, t, η, ξ)−Ai

α(x, t, η, ξ∗))(ξα − ξ
∗
α) > 0 as ξ 6= ξ∗

for almost all x, t ∈ Q and ∀ η.
The following condition implies the coercivity:

∑

|α|=mi

Ai
α(x, t, η, ξ)ξα ≥ c|ξ|

pi for rather large |ξ|.

A sufficient condition to get (47) (see [21, p. 332]) is:
∣

∣Ai
α(x, t, η, ξ)

∣

∣ ≤ c
[

|η|pi−1 + |ξ|pi−1 + k(x, t)
]

, k ∈ Lqi
(Q). (52)

By analogy with the proof of [21, Theorem 3.2.1] and [21, Proposition
2.2.6], we get the following

Proposition 8. Let the operators Ai : Vi → V
∗
i (i = 1, 2) defined in (48)

satisfy (46), (47), (49), (50) and (51). Then Ai is pseudomonotone on Wi

(even on Wi,σ in the classical sense). Moreover, it is bounded if (52) holds.

From the last statement, Corollary 3, Corollary 2, Remark 13 and Re-
mark 15, it follows that under the above listed conditions for each f ∈ X∗

there exists a generalized solution of the problem (7.3)–(42) (respectively of
the problem (7.3)–(43)) y ∈ W , obtained by FG method and the represen-
tation (9) holds for all these solutions.
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10. P. Enflo, A counterexample to the approximation problem in Banach spaces. Acta
Math. 130 (1973), 309–317.
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