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EQUATIONS CLOSE TO LINEAR EQUATIONS



Abstract. The differential equation

y′′ = α0p(t)y| ln |y||σ ,

is considered in a finite or infinite interval [a, ω[, where α0 ∈ {−1, 1}, σ ∈ R,
and p : [a, ω[→ ]0, +∞[ is a continuous function. Asymptotic representa-
tions of solutions of this equation is obtained as t → ω.

2000 Mathematics Subject Classification. 34E05.
Key words and phrases. Nonlinear differential equations, nonoscilla-

tion solutions, asymptotic representations.

� � � � � � � � � � � 	 
 � � � 
 � � � 	 
 � 

[a, ω[ � 
 � � � � � � � � � � � � 
 � � � � � � � 	 � � � � �� � 
 	 � � � � � 
 � � � �

y′′ = α0p(t)y| ln |y||σ ,
� � � � �

α0 ∈ {−1, 1} � σ ∈ R,
� 
 � 


p : [a, ω[→ ]0, +∞[

 � � � � � � � 
 � � � � � � �

� �  � � 
 � � � � � � � � � 
 � � � � � � � 
 � � � � � � � � � � � � � ! � 
 � 
 	 � � � 	 � 
 � � � � � � � � 	 
 � �
t → ω

�



Asymptotic Behavior of Solutions of Second Order NDE 99

We will consider the differential equation

y′′ = α0p(t)y| ln |y||σ , (1)

where α0 ∈ {−1, 1}, σ ∈ R, p : [a, ω[→ ]0, +∞[ is a continuous function,
a < ω ≤ +∞, a > 1 if ω = +∞ and a > ω − 1 if ω < +∞. It belongs to
the category of differential equations of the type

y′′ = α0p(t)ϕ(y), (2)

where ϕ : ∆Y → ]0, +∞[ (∆Y is a one-sided neighborhood of Y , Y being
either zero or ±∞) is a twice continuously differentiable function satisfying
the conditions

lim
y→Y

y∈∆Y

ϕ(y) =

{

either 0,

or +∞,
lim

y→∆Y
Y∈∆Y

yϕ′′(y)

ϕ′(y)
= µ.

The question about asymptotically vanishing and unbounded as t ↑ ω solu-
tions of the equation (2) has been considered in the papers [1]–[4]. But it is
not studied enough for the case µ = 0. Its peculiarity is that the equation is
somehow close to the linear differential equation and requires advancement
of the analyzis scheme proposed for µ 6= 0. The differential equation (1)
refers just to this case and this paper is devoted exactly to it.

A solution y of the equation (1) defined on some interval [ty, ω[⊂ [a, ω[
will be called Pω(λ0)-solution if it satisfies the conditions:

lim
t↑ω

y(k)(t) =

{

either 0,

or ±∞
(k = 0, 1), lim

t↑ω

(y′(t))2

y′′(t)y(t)
= λ0. (3)

The purpose of this paper is to obtain necessary and sufficient conditions
for the equation (1) to have Pω(±∞)-solutions as well as asymptotic repre-
sentations as t ↑ ω for all such solutions and their first-order derivatives.

Let us introduce the auxiliary notation

πω(t) =

{

t, if ω = +∞,

t− ω, if ω < +∞,

q(t) = p(t)π2
ω(t)

∣

∣ ln |πω(t)|
∣

∣

σ
, Q(t) =

t
∫

a

p(τ)πω(τ)
∣

∣ ln |πω(τ)|
∣

∣

σ
dτ.

The following statements are true for the equation (1).

Theorem 1. For existence of a Pω(±∞)-solution of the equation (1) it

is necessary and sufficient that the following conditions be satisfied

lim
t↑ω

q(t) = 0, lim
t↑ω

Q(t) = ∞. (4)

Moreover, for these conditions there is a one-parameter family of Pω(±∞)-
solutions and each of them assumes the following asymptotic representations

ln |y(t)| = ln |πω(t)|+ α0Q(t)[1 + o(1)],

ln |y′(t)| = α0Q(t)[1 + o(1)] as t ↑ ω.
(5)



100 V. M. Evtukhov and Mousa Jaber Abu Elshour

Theorem 2. If the function p : [a, ω[→ ]0, +∞[ is continuously differ-

entiable, the conditions (4) are fulfilled and there exists (finite or equal to

±∞) lim
t↑ω

πω(t)q′(t)
q(t) , then for each Pω(±∞)-solution of the equation (1) the

asymptotic representations

ln |y(t)| = ln |πω(t)|+ α0Q(t)[1 + o(1)],

y′(t)

y(t)
=

1

πω(t)

[

1 + α0q(t)[1 + o(1)]
]

as t ↑ ω
(6)

are valid.

Theorem 3. Let the function p : [a, ω[→ ]0, +∞[ be continuously differ-

entiable and along with (4) the following conditions be satisfied

ω
∫

a

|q′(t)| dt < +∞,

ω
∫

a

q2(t)

|πω(t)|
dt < +∞,

ω
∫

a

q(t)|Q(t)|

πω(t) ln |πω(t)|
dt < +∞. (7)

Then for any c 6= 0 there exists a Pω(±∞)-solution of the equation (1) which

assumes the asymptotic representations

y(t) = πω(t) exp[α0Q(t)] [c + o(1)],

y′(t) = exp[α0Q(t)] [c + o(1)] as t ↑ ω. (8)

Proof of Theorem 1. Necessity. Let y : [ty, ω[→ R be a Pω(±∞)-solution of
the equation (1). Then the first of the conditions (3) is satisfied and

lim
t↑ω

y′′(t)y(t)

(y′(t))2
= 0.

Without restriction of generality we can assume that y′(t) and ln |y(t)| are
different from zero for t ∈ [ty, ω[ . Hence in view of the identity

y′′(t)y(t)

(y′(t))2
=

(y′(t)

y(t)

)′(y′(t)

y(t)

)−2

+ 1

it follows that

lim
t↑ω

πω(t)y′(t)

y(t)
= 1, lim

t↑ω

πω(t)y′′(t)

y′(t)
= 0. (9)

Due to the first limit relation (9) it follows that ln |y(t)| ∼ ln |πω(t)| as t ↑ ω,
and in view of (1)

y′′(t) = α0p(t)πω(t)
∣

∣ ln |πω(t)|
∣

∣

σ
y′(t)[1 + o(1)] as t ↑ ω. (10)

Hence in view of the second limit relation (9) it follows that

p(t)π2
ω(t)| ln |πω(t)||σ → 0 as t ↑ ω.

Thus the first condition (4) is satisfied. Now dividing (10) by y′(t) and
taking integral from ty to t, we conclude due to the first condition (4) that
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ω
∫

ty

p(t)πω(t)| ln |πω(t)||σ dt = ∞ and the asymptotic representation

ln |y′(t)| = α0

t
∫

a

p(τ)πω(τ)
∣

∣ ln |πω(τ)|
∣

∣

σ
dτ [1 + o(1)] as t ↑ ω

is valid. So the second condition (4) and the second asymptotic representa-
tion (5) are satisfied.

The validity of the first asymptotic representation (5) follows from the

second one if we note that according to (9) y′(t) ∼ y(t)
πω(t) as t ↑ ω.

Sufficiency. Suppose that the conditions (4) are true. The equation (1)
by the transformation

ln |y(t)| = [1 + v1(τ)] ln |πω(t)|,
y′(t)

y(t)
=

1 + v2(τ)

πω(t)
, τ = β ln |πω(t)|, (11)

where

β =

{

1, if ω = +∞,

−1, if ω < +∞,

is converted to the system of differential equations






v′1 =
1

τ
[v2 − v1],

v′2 = β
[

f(τ) + σf(τ)v1 − v2 + V (τ, v1, v2)
]

,
(12)

in which

f(τ)=f(τ(t))=α0q(t), V (τ, v1, v2)=−v2
2+f(τ)

[

|1+v1|
σ−1−σv1

]

.

This system of equations can be considered on the set Ω = [τ0, +∞[×
{

(v1, v2) : |vi| ≤ 1/2 (i = 1, 2)
}

, where τ0 = β ln |πω(a)|. On this set
the right-hand sides of the system are continuous and, because of the first
condition (4), lim

τ→+∞
f(τ) = lim

t↑ω
α0q(t) = 0. Besides,

∂V (τ, v1, v2)

∂vi

−→ 0 as |v1|+ |v2| −→ 0 (i = 1, 2)

uniformly in τ ∈ [τ0, +∞[ .

Therefore, due to Theorem 1.3 (taking into account the points 1.1, 1.4,
1.5) from the work [5], the system of differential equations (12) has a one-
parameter family of solutions (v1(τ), v2(τ)) : [τ1, +∞[→ R

2 (τ1 ≥ τ0) tend-
ing to zero as τ → +∞. By the transformation (11) each of them cor-
responds to a solution y : [t1, ω[→ R (τ1 = β ln |πω(t1)|) that admits the
asymptotic representations

ln |y(t)| = [1 + o(1)] ln |πω(t)|,
y′(t)

y(t)
=

1

πω(t)
[1 + o(1)] as t ↑ ω.
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The solution y, in view of these asymptotic relations and the second con-
dition (4), as it was shown in the proof of necessity, admits the asymptotic
representations (5). �

Proof of Theorem 2. First of all we will show that

lim
t↑ω

πω(t)q′(t)

q(t)
= 0. (13)

Indeed, if this is not the case, then supposing c(t) = πω(t)q′(t)
q(t) and noting

that there exists a limit of this function as t ↑ ω, we will obtain the relation

q′(t) =
q(t)c(t)

πω(t)
, where lim

t↑ω
c(t) =

{

either const 6= 0,

or ±∞.

Hence, taking into account the second condition (4), we get

q(t)− q(a) =

t
∫

a

q(τ)c(τ)

πω(τ)
dτ −→∞ as t ↑ ω.

But this can not be true because due to the first condition (4) the left-hand
side of this relation has a finite limit as t ↑ ω.

Since the conditions (4) are satisfied, according to Theorem 1 the equa-
tion (1) has a one-parameter family of Pω(±∞)-solutions, each of them
admitting the asymptotic representations (5).

Let y : [ty, ω[→ R be any of these solutions. Without restriction of
generality we can assume that ln |y(t)| and y′(t) are different from zero as
t ∈ [ty, ω[ . For this solution in view of (1) and (5) we have

y′′(t) = α0p(t)y(t)
∣

∣ ln |πω(t)|
∣

∣

σ
∣

∣

∣
1 +

α0Q(t)

ln |πω(t)|
[1 + o(1)]

∣

∣

∣

σ

as t ↑ ω.

Hence, since by l’Hospital’s rule

lim
t↑ω

Q(t)

ln |πω(t)
= lim

t↑

Q′(t)

(ln |πω(t))′
= lim

t↑ω
q(t) = 0,

we get
(y′(t)

y(t)

)′

+
(y′(t)

y(t)

)2

= α0p(t)
∣

∣ ln |πω(t)|
∣

∣

σ
[1 + ε(t)] as t ∈ [t0, ω[ , (14)

where t0 is some number from the interval [ty, ω[ and ε : [t0, ω[→ R is a
continuous function satisfying the condition

lim
t↑ω

ε(t) = 0. (15)

Now introduce the function z : [ty, ω[→ R by

y′(t)

y(t)
=

1

πω(t)

[

1 + α0q(t)z(t)
]

. (16)
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Because of (14) this function on the interval [t0, ω[ is a solution of the
differential equation

z′ =
1

πω(t)

[

−
πω(t)q′(t)

q(t)
z − z − α0q(t)z

2 + 1 + ε(t)
]

. (17)

Taking into account (4), (12) and (15), we note that the corresponding to
this equation function is

Bc(t) =
1

πω(t)

[

−
πω(t)q′(t)

q(t)
c− c− α0q(t)c

2 + 1 + ε(t)
]

.

For any c 6= 1 it preserves sign in some left neighbourhood of ω. There-
fore, repeating word for word the proof from Lemma 2.2 in the work [6], we
conclude that every solution of the equation (17) is given in a left neigh-
bourhood of ω, so the function z(t) too has a finite or equal to ±∞ limit
as t ↑ ω. Further, by reason of this fact we see that the following from (16)
relation

ln |y(t)| = ln |πω(t)| + α0

t
∫

ty

q(τ)z(τ)

πω(τ)
dτ + C

with C be some constant does not contradict the first asymptotic represen-
tation (5) only in the case where lim

t↑ω
z(t) = 1. Therefore according to (16)

the second asymptotic representation (6) has to be fulfilled. The theorem
is proved. �

Proof of Theorem 3. Choosing arbitrarily a constant c 6= 0, we transform
the equation (1) by the transformation

y(t) = πω(t) exp[α0Q(t)] [c + v1(τ)],

y′(t) = exp[α0Q(t)]
[

c + v2(τ) − α0q(t)v1(τ)
]

,

τ(t) = β ln |πω(t)|, where β =

{

1, if ω = +∞,

−1, if ω < +∞,

(18)

to the system of differential equations






v′1 = β
[

− α0ch(τ)− (1 + 2α0h(τ))v1 + v2

]

,

v′2 = αβh(τ)
[

f(τ) + b(τ)v1 +
β

τ
V (τ, v1)

]

,
(19)

in which

h(τ(t)) = q(t), f(τ(t)) = −αcq(t) + c
∣

∣

∣
1 +

α0Q(t) + ln |c|

ln |πω(t)|

∣

∣

∣

σ

− c,

V (τ(t), v1) =

= (c+v1) ln |πω(t)|

[

∣

∣

∣
1+

α0Q(t)+ln |c+v1|

ln |πω(t)|

∣

∣

∣

σ

−
∣

∣

∣
1+

α0Q(t)+ln |c|

ln |πω(t)|

∣

∣

∣

σ
]

−

−σv1

∣

∣

∣
1 +

α0Q(t) + ln |c|

ln |πω(t)|

∣

∣

∣

σ−1

,
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b(τ(t)) =− 1− α0q(t) +
πω(t)q′(t)

q(t)
+

∣

∣

∣
1 +

α0Q(t) + ln |c|

ln |πω(t)|

∣

∣

∣

σ

+

+
σ

ln |πω(t)|

∣

∣

∣
1 +

α0Q(t) + ln |c|

ln |πω(t)|

∣

∣

∣

σ−1

.

Having chosen, on account of the conditions (4), a number t0 ∈ [a, ω[ such
that for t ∈ [t0, ω[ the inequalities

∣

∣

∣

α0Q(t) + ln |c|

ln |πω(t)|

∣

∣

∣
≤

1

2
,

∣

∣

∣

ln 1
2

ln |πω(t)|

∣

∣

∣
≤

1

4

are fulfilled, we will consider the system of differential equations (19) on the
set Ω = [τ0, +∞[×D, where

τ0 = β ln |πω(t0)|, D =
{

(v1, v2) : |vi| ≤
|c|

2
(i = 1, 2)

}

.

On this set the right-hand sides of the system (19) are continuous. Besides,
due to the conditions (4) and (7) we have

lim
τ→+∞

h(τ) = lim
t↑ω

q(t) = 0,

+∞
∫

τ0

|h(τ)f(τ)| dτ =

ω
∫

t0

q(t)|f(τ(t))|

|πω(t)|
dt < +∞,

+∞
∫

τ0

|h(τ)b(τ)| dτ =

ω
∫

t0

q(t)|b(τ(t))|

|πω(t)|
dt < +∞,

+∞
∫

τ0

h(τ)

τ
dτ =

ω
∫

t0

q(t)

πω(t) ln |πω(t)|
dt < +∞,

and
∂V (τ, v1)

∂v1
−→ 0 as v1 −→ 0 evenly in τ ∈ [τ0, +∞[ .

Therefore, according to Theorem 1.3 (including Remarks 1.4 and 1.5) from
the paper [5] the system of differential equations (19) has at least one so-
lution (v1, v2) : [τ1, +∞[→ R (τ1 ≥ τ0) tending to zero as τ → +∞. In
view of the transformation (18) this solution corresponds to a solution of
differential equation (1) assuming the asymptotic representations (8). The
theorem is proved. �

When σ = 0, the equation (1) is a linear differential equation of the type

y′′ = α0p(t)y. (20)

In the case where the function p : [a, ω[→ ]0, +∞[ is continuously dif-

ferentiable and lim
t↑ω

p′(t)p−
3

2 (t) is finite or equal to ±∞, it is not simple

to show that every nonoscillatory solution y of the equation (20) different
from the solutions admitting one of the asymptotic representations y(t) ∼ c
or y(t) ∼ cπω(t) (c 6= 0) as t ↑ ω is certainly a Pω(λ0)-solution, where
−∞ ≤ λ0 ≤ +∞.
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From Theorems 1–3 there follow the next conclusions for the equati-
on (20).

Conclusion 1. For existence of Pω(±∞)-solutions of the equation (20)
it is necessary and sufficient that the conditions

lim
t↑ω

p(t)π2
ω(t) = 0,

ω
∫

a

p(τ)|πω(τ)| dτ < +∞ (21)

be fulfilled. Moreover, under these conditions there exists a one-parameter
family of Pω(±∞)- solutions and each of them assumes the following as-
ymptotic representations

ln |y(t)| = ln |πω(t)|+ α0

t
∫

a

p(τ)πω(τ) dτ [1 + o(1)],

ln |y′(t)| = α0

t
∫

a

p(τ)πω(τ) dτ [1 + o(1)] as t ↑ ω.

Conclusion 2. If the function p : [a, ω[→ ]0, +∞[ is continuously differ-
entiable, the conditions (21) hold and there exists (finite or equal to ±∞)

lim
t↑ω

(p(t)π2

ω(t))′

p(t)πω(t) , then for every Pω(±∞)-solution of the equation (20) the

asymptotic representations

ln |y(t)| = ln |πω(t)|+ α0

t
∫

a

p(τ)πω(τ) dτ [1 + o(1)],

y′(t)

y(t)
=

1

πω(t)

[

1 + α0p(t)π2
ω(t)[1 + o(1)]

]

as t ↑ ω

are valid.

Conclusion 3. Let the function p : [a, ω[→ ]0, +∞[ be continuously
differentiable and along with (21) the conditions

ω
∫

a

∣

∣(p(t)π2
ω(t))′

∣

∣ dt < +∞,

ω
∫

a

p2(t)|πω(t)|3 dt < +∞,

ω
∫

a

p(t)πω(t)

ln |πω(t)

∣

∣

∣

∣

t
∫

a

p(τ)πω(τ) dτ

∣

∣

∣

∣

dt < +∞

be satisfied. Then for any c 6= 0 there exists a Pω(±∞)-solution of the
equation (20) assuming the asymptotic representations

y(t) = πω(t) exp

[

α0

t
∫

a

p(τ)πω(τ) dτ

]

[c + o(1)],
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y′(t) = exp

[

α0

t
∫

a

p(τ)πω(τ) dτ

]

[c + o(1)] as t ↑ ω.

These conclusions complete the results from the monograph [7] (Ch. 1, § 6).
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