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Abstract. The present paper deals with the existence theory of initial
and initial boundary value problems for the first order partial functional
differential equations with unbounded delay. Strongly coupled quasilinear
functional differential systems in the Schauder canonic form and nonlinear
equations are considered. We give sufficient conditions for the existence,
uniqueness and continuous dependence on data of generalized or classical
solutions. In the case of quasilinear systems we apply the method of bichar-
acteristics. Existence theorems for nonlinear initial problems which are
global with respect to spatial variables and for nonlinear mixed problems
are proved by using the method of successive approximations. Results for
nonlinear initial problems on the Haar pyramid are based on the fixed point
method.
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Preface

Up to now numerous papers have been published on first order partial
differential functional equations. It is not our aim to show a full review of
papers concerning initial or initial boundary value problems for differential
functional equations with first order partial derivatives. We will mention
only those which contain such reviews. Differential inequalities were con-
sidered in [4], [5], [20], [38]. Uniqueness of solutions and continuous depen-
dence of solutions on data were investigated in [1], [6], [27], [37]. Existence
of classical or generalized solutions was studied in [3], [34], [39], [40]. In
all these problems the initial or boundary functions are given on sets which
are subsets of (a,b) x R™ where a, b are finite. The monograph [22] contains
an exposition of recent developments of hyperbolic functional differential
equations.

There are various concepts of a solution of a functional differential equa-
tion. Generalized solutions in the Carathéodory sense were considered in
[13], [39], classical solutions were studied in [3], [14]. Cinquini Cibrario
solutions ([9], [10], [31]) form a class of solutions placed between classical
solutions and Carathéodory solutions and both inclusions are strict. The as-
sumptions that the right-hand side of an equation is continuous is sufficient
to prove that a C-C solution of such equation is classical. Continuous func-
tions satisfying integral systems obtained by integrating differential equa-
tions along bicharacteristics were investigated in [32]. Viscosity solutions
of Hamilton—Jacobi equations were considered in [37], [38].

We mention a few methods of proving the existence of generalized or
classical solutions. The method of bicharacteristics for quasilinear differen-
tial systems was introduced in [7], [8]. It was adopted in [14] for functional
differential problems. The method of quasilinearization of nonlinear differ-
ential problems was treated in [9], [10]. This method is used in [6], [31] for
functional differential problems. The idea of successive approximations was
first introduced for differential systems in [41]. By means of this method,
the first results on classical solutions to functional differential problems were
obtained ([3], [21], [36]). The fixed point method is based on the Banach
fixed point theorem. This method was used in [19] for classical solutions to
nonlinear problems.

Partial differential equations with unbounded delay were first investi-
gated in [23]. In that paper, a system of axioms for the phase space is



4 D. Jaruszewska- Walczak

formulated and existence results for initial problems to quasilinear systems
are obtained. Methods used in [23] are extended in [15] to initial bound-
ary value problems. The paper [16] initiated investigations of nonlinear
hyperbolic functional differential equations with unbounded delay.

The present paper deals with first order partial functional differential
equations with unbounded delay. Our aim is to give a systematic presenta-
tion of the existence theory of initial and initial boundary value problems.
Strongly coupled quasilinear functional differential systems in the Schauder
canonic form and nonlinear equations are considered. The first type theo-
rems in the paper deal with initial problems which are global or local with
respect to spatial variables, while the theorems of the second type are con-
cerned with initial boundary value problems.

In this paper we use general ideas concerning axiomatic approach to
equations with unbounded delay which were introduced for ordinary dif-
ferential equations in [18], [30] (see also [11]). In the case of quasilinear
systems we apply the method of bicharacteristics. It was widely studied
in non-functional setting in [7], [8]. Initial and mixed problems for weakly
coupled quasilinear systems with unbounded delay were investigated in [26].
We extend these results to strongly coupled quasilinear Schauder systems
(compare [17]). For nonlinear initial problems which are global with respect
to spatial variables and for nonlinear mixed problems we exploit the ideas
introduced in [28], [29] and used in [12], [24]. Results for nonlinear initial
problems on the Haar pyramid are based on the fixed point method. The
set of axioms for phase spaces which we use to initial, global with respect
to spatial variables, problems and mixed problems was introduced in [26].
The systems of axioms for initial problems on the Haar pyramid are new.

The present work is organized in the following way. In Chapter 1 we
give a system of axioms and examples of phase spaces. We consider initial
problems which are global with respect to spatial variables for quasilinear
systems in the Schauder canonic form. We prove theorems on existence
and uniqueness of weak solutions and continuous dependence upon initial
data. The same set of axioms of phase spaces is used in Chapters 2, 3
and 4. In Chapter 2 initial problems for nonlinear equations which are
global with respect to spatial variables and classical unbounded solutions are
studied. Chapter 3 deals with initial boundary value problems for Schauder
systems. Results on the existence of Carathédory solutions are proved. In
Chapter 4 we consider mixed problems for nonlinear equations. We prove a
theorem on solutions in the Cinquini Cibrario sense. Chapter 5 is devoted
to initial problems on the Haar pyramid. In the case of quasilinear Schauder
systems we give sufficient conditions for existence of generalized solutions
as well as results on continuous dependence on initial functions. Finally, we
prove theorems on classical solutions to nonlinear weakly coupled systems.
Examples of differential equations with a deviated argument and differential
integral equations can be derived from a general model by specializing the
given functions.



CHAPTER 1

Initial Problems for Quasilinear Systems

1.1. Introduction
Let B = (—00,0] x [-r,r], r € R}, Ry = [0,+00). Given a function
2z : (—o00,a] x R — R¥ a > 0, and a point (t,x) € (—o00,a] x R", we
consider the function z(; ) : B — RF defined by
2y (s,y) = 2(t+ s, +y), (s,y) €B.

The function z(; ) is the restriction of z to the set (—oo,t| x [z —r, 2 + 7]
shifted to the set B. We denote by M., the space of all k x m matrices
with real elements. For z = (21,...,7,) € R", p = (p1,...,px) € R¥ and
C = [cijli=1,... k, j=1,....m € Mkxm, we put

n
lall = D" leil, [ploe = max {|pil - 1< <k},
i=1

1C]loe = max{zm: e 1<i < k}

j=1
If C € Mjxm, then CT denotes the transposed matrix. For C,D € Mk,
C = [cijlij=1,...k, D = [dijli,j=1,....x, we define

k
CxD= [dl,...,dk]T, d/i:ZCijdjia 1§Z§/€

j=1
Vectorial inequalities are understood to hold componentwise. Let X be a
linear space with the norm || - || x consisting of functions mapping the set B
into R*. Suppose that

A:[0,a] X R" X X — Myxk, A= [Aijlij=1, .k
0:[0,a] Xx R" x X — Mpxn, 0= [0ijli=1,....k, j=1,...,ns
f:00,a] x R" x X = R*, f={(f1,..-,fr), ®:(=00,0] x R* — R

are given functions. Assume that ¢ : [0,a] x R"® — R ¢ = (¢0,9'),
Y = (1,...,%,), and we require that (¢, z) <t for (¢,x) € [0,a] x R™.

Let us denote by z = (z1,...,2;) an unknown function of the variables
(t,z), v = (x1,...,2,). We consider the system of differential functional

5
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equations in the Schauder canonic form

k n
Z Aij(t, 2, 2y(t,2)) (3th (t,z) + Z 0iv (t, T, 2y(t,2)) O, 24 (t, I)) =

j=1 v=1
= fi(t7x72'¢)(t,x))7 1<:< k7 (11)

with the initial condition
z(t,x) = o(t,x) for (t,z) € (—o0,0] x R". (1.2)

Here X denotes an abstract linear space satisfying suitable axioms. The
elements of X are functions from B into R* and X is called phase space.
Further assumptions on X are given in next parts of the paper. The set B
and the function ¢ are such that the functional dependence in the above
problems is of Volterra type.

We consider weak solutions of the problem (1.1),(1.2). A function z :
(—o00,c] x R" — R ¢ € (0,a], is a solution of (1.1), (1.2) provided

(1) Zy(t,e) € X for (t,2) € [0,¢] x R",
(ii) the derivatives 0;z;, 0:2Z; = (0, Ziy---,02,%i), 1 < i < k, exist
almost everywhere on [0, ¢] x R",

(iii) Z satisfies the differential system for almost all (¢,z) € [0,¢] x R™

and the initial condition holds.

Note that (1.1) is a strongly coupled system in the following sense: each
equation in (1.1) contains the partial derivatives of all unknown functions
(21,...,2). If A= E, where F € My, is the identity matrix, then (1.1)
reduces to the quasilinear system

n
Opzi(t,x) + Z 0iv (2, 2(t,2)) On, 2i(t, ) = fi(t, T, 2y(1,2)), (1.3)
v=1
where 1 < ¢ < k. The above system is weakly coupled because each equation
in (1.3) contains the unknown function z = (z1,...,2;) and the partial
derivatives of only one scalar function z;.
The classical theory of quasilinear systems in the Schauder canonic form
without functional dependence is presented in [2], [7].

1.2. Phase Spaces

Assume that ¢ > 0, w : (=00, ¢] X [-r,r] — R¥ and t € (—o0,c]. We
define the function wt,g) : B — R* by w,0)(s,y) = w(t + s,9), (s,y) € B.
If the above w is continuous on [0, ¢] x [—r,r], then we write

lwllio,g = max { (s, )l © (s5,) € 0,1] % [=r,7]}, £ € [0,c]
The main assumption on the space X is the following.

Assumption H[X]. The space (X, ||-||x) is a Banach space of functions
from B into R¥ and
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1) there is x € R4 such that for each function w € X we have
[w(0, 2)[[o0 < xllwllx, €[]

2) if w: (—o0,c] x [-r,r] — R*, ¢ > 0, is such that w(o,0) € X and
w is continuous on [0, ¢] x [—7,7], then w gy € X for ¢ € [0, | and
(i) the function t — w, ) is continuous on [0, ¢],
(ii) there are K1, Ky € Ry independent of w such that

lwiollx < Killwliog + Kollwe,mlx, ¢ €0, (1.4)

We give examples of (X, || - ||x)-
Example 1.1. Let X be the class of all functions w : B — R* which

are bounded and uniformly continuous on B. For w € X we put
lwllx = sup {|lw(s, y)ll« = (s,) € B}. (1.5)
Then Assumption H[X] is satisfied with x = Ky = Ky = 1.
Example 1.2. Let X be the class of all continuous functions w : B —
R* such that there exists , lim w(t,z) = wo(z) uniformly with respect to
x € [—r,r]. Then Assumption H[X] is satisfied with the norm defined by
(15) and X = Kl = K() =1.

Example 1.3. Let v : (—00,0] — (0,4+00) be a continuous and nonin-
creasing function. Let X be the class of all continuous functions w : B — R*
such that

t
im wlt, z) =0, x€[-rr]
t——00 ")/(t)
with the norm of w defined by
w(t, =)o
= — = (t B:.
ol = sup { 5= ¢ (1.0) € 1)

Then Assumption H[X] is satisfied with x = v(0), K; = 'y(l—O)’ Ky =1.

Example 1.4. Let p > 1 be fixed. Denote by Y the class of all functions
w: B — RF such that
(i) w is continuous on {0} x [—r, 7],
(ii) for x € [—r,r] we have

0
/ lw(s, z)||%, ds < 400,

— 00

(iii) for each t € (—o0,0] the function w(t,) : [-r,7] — RF is continu-
ous.

For w € Y we define the norm of w by

llwlly = max{nw(m)uw .z € [-r r]}—i—
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+sup{(jlhdazﬂﬂﬂb)%:Ie[—hﬂ}-

Let us denote by X the closure of Y with the above norm. Then Assumption
H[X] is satisfied with x =1, K1 =1, Ko = 1 + ¢,

Example 1.5. Denote by Y the class of all functions w : B — RF
satisfying the conditions:

(i) w is bounded and it is continuous on {0} x [—r, 7],
(ii) for x € [—r,r] we have

10 =sw{ [ futsallmds: me N} <

—(m+1)

(iii) for each t € (—o0, 0] the function w(t,) : [-r,r] — R¥ is continu-
ous.

For w € Y we define the norm of w by
lwlly = max{Hw(Ow)Hoo D x €[ r]} —i—sup{I(x) Dx €[ r}}

Let us denote by X the closure of Y with the above norm. Then Assumption
H[X] is satisfied with x =1, K; =1+ ¢, Ko = 2.

For a function z : (—oo,c] x R" — RF, ¢ > 0, which is continuous on
[0, c] x R™, we define

215 =max {|2(5,9) o+ (5,9) €10, [o—r,47]}, (ta)€[0,c]x R".

If a function z : (—oo,c] x R™ — RF, ¢ > 0, satisfies the Lipschitz condition
with respect to  on the set [0, ¢] x R™, then we write

o1 = sup { EEB =2l (s ), (o) € 0] R 2 7)

where t € [0, ¢].
Lemma 1.1. Suppose that Assumption H[X] is satisfied and z : (—o0, (]
X R" — RF, ¢ > 0. If 20,2) € X for x € R" and z is continuous on
[0,c] x R™, then 244 € X, (t,x) € [0,c] x R", and
[z llx < Kallzlo™ + Kollzo.mlx. (t.2) €0, x R™. (1.6)
If we assume additionally that z satisfies the Lipschitz condition with

respect to x on [0,c] x R", then

1l
L

lzt,2) = 2w Ix < Killzlzo - |2 =2 + Kollz0,0) — 202 llx,  (1.7)

where (t,z), (t,T) € [0,¢] x R™.
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Proof. Let w : (—oo,c] x [-r,7] — R¥ be given by w(s,y) = 2(s,z + v),
where x € R" is fixed. Then wg o) = 2¢2), t € [0,c]. It follows from
Assumption H[X] that z( ;) € X and (1.6) holds. To prove (1.7) suppose
that (t,z),(t,7) € [0,c] x R" and Z : (—oo,¢] x R* — RF is defined by
Z2(s,y) = 2(s,y + T — 1), (5,y) € (—o0,c] x R". Then Zy ) = 27). It
follows from (1.6) that

12(.2) — 20 | x =11 (2= ) 0.y | x < K1 l2= 205 ™ 4+ Kol (2= 2) 0,0 |1 x <
< K121 - llz — 7| + Koll2(0,0) — 20, |l x-
This completes the proof. O

If a function z : (—o0o,c] x R® — RF ¢ > 0, satisfies the Lipschitz
condition with respect to (¢, ) on the set [—c,c] X R™, then we write

201, =

ECMEECYNS . . .
=sup { TR (5,0), (5.9) € [ X BT (5,0) £ G0
where t € [0, ¢].

Lemma 1.2. Suppose that Assumption H[X] is satisfied and z : (—o0, c]
X R" — Rk, ¢>0. If 2(t,0) € X for (t,x) € [—c,0] x R" and z satisfies the
Lipschitz condition with respect to (t,x) on [—c,c] x R", then

2(t,2) = 2,2 Ix <
< Kzl - (1t =1+ e = 2) + Kollz0a) — 2mllx. (18)
where (t,z), (¢,T) € [0,¢] x R"™, t > .
Proof. Let (t,z), (£,T) € [0,c] x R", t > % and let Z : (—oo,c] x R® — R*
be defined by Z(s,y) = z(s+t —t,y + T — ), (s,y) € (—o0,c] x R™. Then
Z(tx) = 21z and Z(02) = Z(-1,0) € X. It follows from Lemma 1.1 that
(2 = 2)(t,») € X and by (1.6) we have
~ 1tz
1z = D)t lx < Kallz = Zll5™ + Kol (= = Do, 1x-
Thus
l2(t.2) — 23 Ix = 11(z = D)oy | x <
< Kallelply - (1t =+ lle = 7)) + Kollzo.0) = 21 1

which proves (1.8). O

1.3. Bicharacteristics for Quasilinear Systems

We begin with the following definitions. For any metric spaces Y and
Z we denote by C(Y, Z) the class of all continuous functions from Y into Z.
We will denote by L([0, c], Ry), ¢ > 0, the class of all functions v : [0,¢] —
R, which are integrable on [0,c]. Let A denote the set of all functions
« : [0,a] X R+ — Ry such that «a(-,t) € L([0,a], Ry) for t € Ry and the
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function a(t,-) : Ry — Ry is continuous, nondecreasing and «(t,0) = 0 for
almost all ¢ € [0,a]. Let 3 denote the set of all functions « € C(Ry, Ry)
which are nondecreasing and «(0) = 0.

For a linear normed space (Y, || - ||y) we write

Vi ={weY: fuly <p}. peRy. (1.9)

Let J1.[X] denote the class of all initial functions ¢ : (—oo, 0] x R* — R*
satisfying the conditions:

1) P(t,2) € X for (t,z) € (—o00,0] X R™,
2) there are bg, by € R4 such that
”(p(t,m)”X < by, Hsp(t,ac) - QP(Z,E)HX <h (|t - Z| + ||1‘ _EH)u
where (¢,z), (t,T) € (—00,0] x R".
Fix ¢ € Jp[X] and ¢ € (0,a], d = (do,d1) € R} and denote by CL [d]
the class of all functions z : (—oo,¢] x R™ — RF such that
(i) z(t,x) = ¢(t, z) for (t,z) € (—o0,0] x R™,
(ii) the estimates
lo(t, Do < do, ||2(t,2) — 2G|, < da (1t T + [l — )
hold on [0, ] x R™.

The assumptions on ¥ and g are following.

Assumption Hy[¢)]. The function ¢ : [0,a] x R® — R"™! ¢ =
(Yo, V"), ' = (11, ...,1,), satisfies the conditions:

1) Yo(t,x) <tforte[0,a], z € R,
2) there is s1 € Ry such that
[o(t, ) = o)+ [|/(t,2) — ¥/ G| < 1 (1t = + o — )
on [0,a] X R™.

Assumption Hp[g]. The function o(-,z,w) : [0,a] — My, is mea-
surable for every (xz,w) € R™ x X and there are ay € X, /1 € A such
that

HQ(LZ‘JU)HOO < 041(/1')7
le(t, z,w) = o(t. 7, @)|| , < Bi(t, 1) (lle —Z|| + w — @] x)
for (z,w), (T, w) € R" x X[p] and for almost all ¢ € [0, a).

Suppose that Assumptions H[X], Hp[¢], Hp[o] are satisfied and ¢ €

Ji[X], z € CL.[d]. Consider the Cauchy problem
77/(7-) = 0 (Ta 77(7)3 Z’l/)(‘r,n(‘r)))a W(t) =, (110)

where (t,z) € [0,¢] x R™ and 1 <i < k are fixed, while 9; = (9i1,- .-, 0in)-
Let us denote by g;[2](-, t, z) the solution of (1.10). The function g;[z] is the
i-th bicharacteristic of the system (1.1) corresponding to z.
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For functions ¢ € J[X] and z € CL [d] we write
Il = sup {lmllx : (t,2) € (~00,0] x B" },
20l = sup {||2(5,9)l + (5,9) € 0,8 x B"}, t € [0,].

We prove a lemma on existence, uniqueness and regularity of bicharac-

teristics.
Lemma 1.3. Suppose that Assumptions H[X], Hp[¢], Hrlo] are sat-

isfied and assume that ¢, % € Ji[X], z € CL |d], Z € CE [d], ¢ € (0,a].
Then for each 1 < i < k, (t,x) € [0,c] x R™ the solutions g;[z](-,t,z) and
gi[Z] (-, t, x) exist on [0, c] and they are unique. Moreover,

(1.11)

gil2](7,t, ) = gil=](m, £, D)|| < Qe (ko) (|t = + [z — 7|

[0,c]? x R™, and

for (1,t,z) €
lg:[2](7,t, ) — g:[z](7,t, o) || <
< Q.| [ Bu(6 o) de| (e =3l + Kollo -llx) (112
for (1,t,z), (1,,7) € [0,c]? x R™, where o (o) = 1+ a1 (o) and
po = Ki1do + Koby, Q.= exp <A0/51(§7/L0) 5), (1.13)

A=1 + Sl(Kldl + Kobl).

Proof. Tt follows from Assumptions H[X], Hz[¢)] and from Lemma 1.1 that
[Zprallx < o, (T,y) €10,¢] X R™.

We prove that Lemma 1.2 implies the estimate
[20(r) = 20 | 5 < s1(K1dy + Koba) |y — 7ll,

where (7,y), (1,7) € [0,¢] x R™. It is obvious in the cases (i) ¥o(7,y) < 0,
0 and (ii) ¥o(7,y) > 0, o(7,7y) > 0. Consider the case (iii)

wO(Ta y) ’S
Yo(7,y) <0, o(7,7) > 0. There are ¢ € (0,1), n € R™ such that
qw(Ta y) + (1 - Q)w(Ta y) = (0777)a

which yields
|¢O(Ta y)' + ||¢/(T7 y) - 77” + |’(/J0(T,?)| + ||77 - w/(Ta y)” =
= ’wO(Tﬂ y) - ’(/}0(7—75)’ + le(7—7 y) - ¢/(T7y)’ :

IN

IN

Thus
266r0) = 2o | x = 00 — 20w |l x
< lewrw = 2omllx + 200 = 20w |l x
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< (Kobl + Kldl)(‘¢0(7—7 y) - ’(ﬂo(T,?)‘ + H’Q/J/(T, y) - w/(Tﬂ?)H) <
< s1(Kob1 + Kidi)|ly — |-
Now it is easy to see that the following Lipschitz condition is satisfied
HQi(T7 Y, Zw(‘r,y)) —0Oi (T, Y, Z%D(T»g)) H <
< /81(7-7 ILL())A”:I/ - y”a T E [Oa C]a Y, ? € an

and there exists exactly one Carathéodory solution of (1.10) defined on [0, c].
We prove the estimates (1.11) and (1.12). The function g;[z](-,t,x)
satisfies the integral equation

T

gilz](1, t,x) =« —l—/gi(Pi[z](&t, x)) dg,
where

‘PZ[Z] (57 ta (E) = (57 gz[z] (é-u t7 -T)7 Z'I,Z’(qui[z](f,t,ib)))' (114)
If (1,t,2), (7,£,%) € [0,c]? x R", then we have

lgil2l(7,t, 2) — gil2)(m. T, 7)|| < IIw—TII+‘/Hgi(Pi[Z](&_ﬁ))Hdﬁ’Jr

4
t

Sanuo)ut—ﬂﬂm—fn)+A\ /@(@mugi[z](g,m)—gz-[z](g,af)\yds].

B(PEIERT) - s(REI(E 1 0) [ de] <

We obtain (1.11) from the Gronwall inequality. If z € C,.[d, )], Z €
Cs.cld, N, (1, t,z) € [0,c]* x R, then we have

260 z1e ta)) — Zuemzetanllx <
<s1(Kidi+Koby)||gil2](& t, ) —gi[2] (&, £, 2) ||+ K1 || 2— 2] e + Kol oI k.,
where £ € [0, ¢], and thus

|gil2)(m,t, @) — gslZ] (7, £, 2) || <
< }t/]

< ’/51(§,u0)d§’(1{1||z—2||c+Kollw—¢||§()+
t

B(PEI(E1 ) - (R 0) | de] <

+A‘ /61(5,#0)||gi[z](§7t, ) — gi[Z) (&, , o) df‘-
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Using the Gronwall inequality we obtain (1.12). O

1.4. Existence and Uniqueness of Lipschitz Continuous Solutions

We define an integral operator corresponding to the problem (1.1), (1.2).
First we formulate the following assumptions on f and A.

Assumption Hy [f]. The function f(-, z,w) : [0,a] — RF is measurable
for every (z,w) € R™ x X and there are as € X, 2 € A such that

Hf(ta‘raw)HOO < OQ(M);
£t 2 w) = F(&7,@)]| < Bo(t ) (2 = 7] + [lw — @] x)
for (z,w), (Z,w) € R" x X[p] and for almost all ¢ € [0, a).

Assumption Hp[A]. The function A : [0,a] x R™ x X — M}« satisfies
the conditions:

1) there are a, § € ¥ such that on [0,a] x R"™ x X[y
||A(t x w)lloo < a(p),

|At, z,w) — AL, T —H ) ([t =7 + |z = Z| + v — v x),

2) for each (t,z,w) € [0, a] X R™ x X [p] there exists an inverse matrix
A~Y(t,z,w) and there are ag, By € ¥ such that

AT (¢, 2, w) e < ao(p),
At 2 w) — AV E 7D, < Bol) (1t~ + o — T+ [l — T x)
for (t,z,w), (t,Z,w) € [0,a] x R™ x X[y
Remark 1.1. If A : [0,a] X R™ x X — My, satisfies the condition 1)
of Assumption Hy[A] and there exists o : Ry — (0, +00) such that
detA(t, z,w) > o(p) for (t,z,w) € [0,a] x R"™ x X[u],
then the condition 2) of Assumption Hy[A4] is satisfied.

Let us fix ¢ € J[X], ¢ € (0,a], z € Cf [d]. Suppose that (t,z) €
[0,c] x R™ and g;[2](-,t,z), 1 <4 < k, is the solution of (1.10). It follows
from (1.1) that for (¢,x) € [0,¢] x R™

k
3 A (Pl ,2)) 2 24 0ilel 7 ,0)) = fi( Pl t,2),

where 1 < < k and P;[z](-, ¢, ) is given by (1.14). Integrating from 0 to ¢,
we obtain
k k

Z A(t, @, Zw(tvm))zj (t,z) = Z Aij (PZ [2](0, ¢, m))(pj (0, gi[2](0, ¢, )+

Jj=1 Jj=1

Lok
/Zdi (1t .T))ZJ(T gilz](7,t, x) dT—‘r/fl > (T7t,$)) dr.

o J=1
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The above relation allows us to construct the following integral operator.
Write

Alz|(r,t,x) = :AU (r,t,x LJ -
(. t.2) = i)
Z[:\(rt ) = 'v% )]

r T
tht@=ﬁ@HUtWLLﬁ-

For z € CL [d] define T,(2) : (o0, ¢] x R™ — R" in the following way

T,(2)(t,z) = A~ (t, =, zw(m)){A[z](OJ, x) * D[2](0,¢,2)+

—1—/(01i Alz](,t, ) * Z[z](T,t,x)—l—f[z](T,t,x)) dT}, (t,z)€]0,c]x R™,

T, (2)(t,z) = p(t,x), (t,z) € (—00,0] x R™. (1.15)

We can write the above relation as follows
3

To(2)(t, ) = @(0,2) + A~ (t, 2, 2y 00) D, Ail2](E, ), (1.16)
i=1
where (t,z) € [0,c] x R™ and
t
Asle](t ) = / FlA(rt,2) dr,
0
Aal2](t, z) = A[2] (0,1, 2) * (2[2)(0,¢, 2) — D[] (L, 1, ),
¢
/ (r.t,2) * (Z[)(r, 1 2) — B[] (1,1, ) dr.
0
We formulate the following lemmas on the operator T,.
Lemma 1.4. If Assumptions H[X|, Hr[¢], Hyplo], Hr[f], HL[A] are
satisfied, then there are ¢ € (0,a], d = (do,d1) € R% such that for each
¢ € Jp|X] the operator T, maps the set Cﬁ.c[d] into itself.

Proof. Let ¢ € Ji[X] and for z € C% [d] let T,,(2) be defined by (1.15),
(1.16). We will show that Tj,(z) € C% .[d]. Tt follows from the assumptions
of the lemma that

5 (T gl2l(7,t.2)) = 0y(0,2)| <

zj (T, gi[z](7, 1, x)) -z (O, 9i[z](7, 1, x)) ‘—i—

<
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+

©;(0, gil2](7,t, 7)) — <Pj(079€)‘ < edy + can (o) xb,

d
H 77 Fo(rgilEl () ’x < (K1dy + Koby)s1a7 (o),

Hdr z|(7,t 93))HOO <p* with p* = B(uo)Aay (o).
Thus

ZHA 1(t, 2)||0e < %,

where §* = aa(uo) + oz(u())xblal(ug) + ep*diay (io). Therefore
1T (2) (¢, )]l o0 < Xbo + can(po)d™ on [0,¢] x R™.
We assume that
do > xbo + cao(i0)d™. (1.17)
Then
IT,(2)(t, z)||oo < do for (t,z) € [0,¢] x R".
To estimate ||T,(2)(t, ) — Typ(2) (L, T)| o0, we first note that
lgil=)(rst 2) = gil2l (T BB + |20 mutzim ) = Zocranteirdianllx <
< AQcaf (po) (|t — | + [z — 7).
We have
[A1[2)(t,2) = Aa[2] (7)<

H/ (7, t,2) — fl2)(7,5,T)) H/f 1(r,%,7)d S
<dic (|t =T +|lz— =),
where .
dh.c = aa(pi) + AQua (o) [ (e, o) .
Moreover, ’
18 [2](t 2) — Asl)(F, 7| <
< ‘ A[)(0, 8, 2) — A[2](0, 7, a?)) x (@[z](o,m) - @[z](t,t,x))Hoo—i-

|
A 4110, ) (2110, 1, 2) @ [£](0,5.7) ~BLal ¢, )+ @ ERT) ) | <
< da.o(|t =1 + l= — 7)),
where

da.c = o) xb1(Qeaf (po) + 1) + cB(ro)AQcar (110)xbron (o).
Finally,

|Asl](t ) — Mgl 7)<
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57) — @[z}(f,z,:?)) dr|| +

oo

< H / L A7)+ (21

T=t

+H (A[z](f, t ) — A[Z](T,t,f)) x (Z[z](T,t,a:) - @[z](t,t,x)) +

7=0]|

_|_

o0

+H /t (A[z](r,t,a:) — AlZ)(7,1, f)) * % Z[Z|(7t, x)dr

<
o0

< d30(|t - Z' + ||1‘ - f”)?

where
ds.c = cp* (dl (Qcaif (mo) +1) + Xblaf(uo))Jr

o+ eB0)or (10) (1A (Qer (10) + 1) + (14 subu)xbron (10) Qe ).

Suppose that d; satisfies the condition

3
dl Z Xbl + Cﬂ(,uo)A(S* + Oé()(u()) Z dzc (118)

Since

we obtain
| To(2)(t,x) — Tw(z)(Z,T)HOO <di([t—F +|z—7=||) on [0, x R".

In this way we have proved that T, : Cé.c[d] — Of;.c[d] for ¢ € (0, al
and d = (do,dy) € R3 satisfying the inequalities (1.17) and (1.18). O

Lemma 1.5. Suppose that the assumptions of Lemma 1.4 are satisfied.
If o, ¢ € JLX] and z € CL [d], Z € C& [d], then there are Gy .., G2 € Ry
such that

|To(2) = T5(2)||, < Grcllz —Zlc + Galle — Bl (1.19)
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Proof. Let ¢,@ € Ji[X], z € CL_[d], Z € C%_[d]. We have the following
estimates

1 2y(t,2) = Zyt,a)llx < Killz —Z|e + Kol — Pl x,

and

gil2)(7.t, @) = gilZl(m, 1, 2) || + |26 (rguta (ritio)) = ForgElrtan | x <
<o (Kl = 3l + Kaollo - @l) with ¢ =1+ 4@, [ 5u(6. o) e
0
We conclude from Assumptions Hy [¢], Hz[f], Hz[A] that
| A2t ) — ArZ](t, )| <
t
< [f1e)(rt0) = PRIt | dr v (Kol = 3l Kollo =1 ).

|As[2](t, ) — A2[Z](t, 7)), <
< || (A10, 1. 2) - A=), ) * (B0, 8, 2) — D)8, 1,0)| |+
+|AEI©.t,2) + (1210, 1, 2) - B[2)(0, 1, 2) — @[] 2,1, )+
Fl0.t2)| <

+® [
o2.c(Kullz = Zlle + Kollp = Bl ) + 2a(u0)xlle — Bl
| As[2](t, z) — As[Z](t, ) ||Oo_

< H j diT Al)(m, £, 2)
)

*(Z[z](T, t.x) — Z[E (7t x) — ®[2](t, 1, ) + D] (¢, 1, x)) dr

[Z](¢,t, ) + @[Z](0, ¢, x) —

+

oo

T=t
+

o0

+H (A[z] (r,t,2) — A[F] (T,t,x)) « (Z[z] (r,t,2) — D[F] (t,t,x))

7=0

<

+ i ALE)(rt,2) — AF)(rt2)) + L 23] (r, 4 2) dr
i )t

(o]

< o3c(Kullz = =l + Kolle = Bl ) + ep™xlle = Bl +ep”l12 = 31l

where

C

O1l.c = q*/ﬁ2(§a,u0) dé-a

0
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Go.e = ¢ Blj10) Xbran (0)e + alpo)xbi Qe / By (€, o) dé,

03.c = Cp*dec/ﬁl(& 1o) d§+5(uo)(d10+q*Xbla1(MO)C‘Fq*leéIL(Mo)C)-

Since
TSD(Z)(t7x) - TE(E)(tﬂ 'r) =
3
(0,z2)—5(0 a?)—i—(A (t, 2, Zp(1,0)) — A Yt x Zy(t I)))ZAl[z](Lx)—&—
i=1
3
+ A7 Nt 2, 2(t, 1)) Z (A2t 2) — A[Z(t, ),
we obtain )
1 T(2) = T3], < Gi.cllz = Zlle + Galle — Bl
where
3
Gi.=K; (cﬂo(uo )0* + ap(po) Zal c) + cag(po)p™, (1.20)
=1

3
Gy = K, (cﬂo(,uo 10" + ap(po ZO’Z C) + ao(po)x(2a(po) + ep™). (1.21)

This completes the proof of Lemma 1.5. O
Now we can give a theorem on solution of the problem (1.1), (1.2).
Theorem 1.1. Suppose that Assumptions H[X|, Hp[¢], Hr[o], HL[f]

and HE[A] are satisfied. Assume that the inequalities (1.17), (1.18) and

Gic<1 (1.22)

hold, where G1 . is given by (1.20). Then for each ¢ € JL[X] there exists
z = z[p] € CL_[d] which is a unique solution of (1.1), (1.2) in the class

Cf,_c[d]. Moreover, if p, 0 € Jp[X], z = z[go], Z = z[¢|, then

Iz ==lle < 7= ||90 ?llx (1.23)

with Ga given by (1.21).
Proof. Tt follows from the assumptions of the theorem that for each ¢ €
Jr[X] the operator Ty, : Of;.c[d] — C’é.c[d] and it is a contraction. Thus T,
has a unique fixed point z = z[p] € C% [d]. We prove that z = z[p] is a
solution of (1.1). We have shown that
k k
Z Aij (@, 2y (t,0)) 2 (8 ) = Z Aij (Pi[2](0,1,2)) 9;(0, gi[2](0, 2, 2))+

j=1 j=1
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t
/Zd i ( (1,t,2)) 2(1, 9:[2)(1, ¢, 7)) dT+/fi(Pi[Z](T7 t,x))dr
o J=1 0
on [0,c] x R™. The relations
i = gi[z](ovtvx) and z = gi[z](tvov 771‘)

are equivalent for z,n; € R™. We have g;[2](7,t, g:[2]t,0,m:) = ¢:[2](7,0,m;).
Thus

k
ZA” (£, 0,7:)) 2 (t, gi 2] (£, 0,m:)) = Y Aij (0,71, 20,0,)) 25 (0, i) +
j=1
t k d
—|—/Z e Aij (7,0, nl))zj (T, gi[z](r,(),m)) dr+
o J=1

/fl \2)(r, 0,m:)) dr.

By differentiating with respect to ¢ and by using the transformations n; =
9i[2](0,t,x) which preserve the sets of measure zero, we obtain that z sat-
isfies (1.1) almost everywhere on [0,¢] x R™. The inequality (1.23) follows
from Lemma 1.5. O

1.5. Solutions Satisfying Generalized Lipschitz Condition

In this part of the paper we consider a special case of the problem
(1.1),(1.2). Suppose that ¢y : [0,a] — R and ¢’ : [0,a] x R® — R",
Y = (Y1,...,¢¥,). We require that 1o(t) < ¢ for ¢t € [0,a]. Write 9 (¢, z) =
(o(t), V1t ), ..., ¥n(t,x)), t € [0,a], z € R™. Assume that

0:[0,a] Xx R" x X — Mpxn, 0= [0ijli=1,....k, j=1,...,ns
f:[0,a) x R"x X = R*, f=(f1,...,fr), ¢:(—00,0] x R" — R*
are given functions. Given the function
A:[0,a] x R" x R* — Myxy, A=[Aijlij=1, .k

we consider the following initial problem

k n
Z At z, 2(t, ) ((%zj(t, x) + Z 0iv (T, 2y(t,2)) O, 25 (t, :c)) =
j=1

v=1
2(t,x) = @(t,x) for (t,z) € (—oo,O] x R™. (1.25)

There are the following differences between the problems (1.1),(1.2)
and (1.24),(1.25). The matrix A in (1.24) does not depend on the func-
tional variable zy;,) and the function vy depends on ¢ only. Solutions
of (1.1),(1.2) are functions satisfying the classical Lipschitz condition on
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[0,c] x R™. We look for solutions of (1.24),(1.25) in the class of functions
satisfying the following generalized Lipschitz condition:

|(t,2) — 2(E 7). < ‘/A(T)dT‘ +difle—7| on [0, x R™.
t

Let us denote by Jc[X] the class of all initial functions ¢ : (—o0,0] x
R™ — R* satisfying the conditions:
1) o) € X for (t,x) € (—00,0] x R",
2) there are by, b1 € R4 such that
le@allx < bo, l@ee) — eemllx < billz =2,
where (t,z), (t,T) € (—o0,0] x R™.
Let ¢ € Jo[X] and ¢ € (0,a], d = (do,d1) € R3, X € L([0,c], Ry).
Denote by C, .[d, ] the class of all functions 2 : (—oo,c] x R" — R such
that

(1) Z(t,SC) = (p(t,:ﬂ) for (tax) € (_0070] X Rna
(ii) the estimates

T
ot D)lloo < do ||2(t,2) — 2@ )| L < ]/A(T) dr| + dilla ~ 7]
t

hold on [0, ] x R™.
We introduce the following assumptions on the functions ¢ and p.

Assumption H¢[¢]. The functions ¢ : [0,a] — R and ¢’ : [0, a] x
R™ — R™ are continuous and satisfy the conditions:

1) ¢o(t) <t fort € [0,al,
2) there is s1 € Ry such that

19 (t,2) = ¥'(t, )] < salle =2 on [0,a] x R™.

Assumption H¢lg]. The function o(-, z,w) : [0,a] = Mgy, is mea-
surable for every (z,w) € R™ x X and there are a1, 81 € A such that
ot z,w)llee < an(t, p),
Hgtzw—g( EEH <,61t,u(||z—i||—|—||w—w||x)

for (z,w), (T, w) € R" x X[p] and for almost ¢ € [0, al.

Suppose that Assumptions H[X], He[¢], He[g] are satisfied and ¢ €
Jc[X], z € Cyp.cld, A]. Consider the Cauchy problem

77/(7) = 0 (T; 77(7-)’ Zw(‘r,n(r)))u n(t) =, (126)
where (t,z) € [0,c] x R™ and 1 < ¢ < k are fixed. Let us denote by
9i[z](-,t, ) the solution of (1.26). The following are important properties
of solutions of (1.26).



Hyperbolic Differential Functional Equations with Unbounded Delay 21
Lemma 1.6. Suppose that Assumptions H[X], He[¢], Helo] are sat-
isfied and @, ¢ € Jo[X], z € Cyc[d, N, z € C5.c[d, N], ¢ € (0,a]. Then, for

each 1 <i <k, (t,x) € [0,c] x R™, the solutions g;[z](-,t,x) and g;[Z](-,t, )
of (1.26) exist on [0, c] and they are unique. Moreover,

oot - im0 < Q.| [artepmrde| + 1o -71) 121

on [0,¢]*> x R, and

Hgi[z](Tv 2 JC) - gi[i] (T7 L, 'T) || <

< Qe

[ o) de|(ale = 3l + Kallo - wl%)  (1.28)
t

on [0,c]* x R™, where

Q. = exp (A/C&(S,Mo)df)v (1.29)
0

Ho :K1d0+K0b0, A= 1—|—81(K1d1—|—K0b1).

Proof. The existence and uniqueness of Carathéodory solutions of (1.26)
follows from classical theorems. It follows from the assumptions of the
lemma and from the integral equation

T

gilz](7,t, x) :x—l—/gi(ﬂ[z](@t,x)) dg,

where

Pil2](&,t,x) = (&, g:l2](& 1, @), 2p(e,g: 21 (6. 1,2))) (1.30)
that the inequalities

|lg:l2)(7, t, 2) — gsl2)(7, 4, 2)|| < ||z — =+

+’/a1(§aﬂo)d§’+A}/51(57/10)”91'[2](@@90)—gi[z](ffaf)H%’

T

and

Hgi[z](Tv 2 JC) - gl[z] (T7 L, 'T) || <

< ‘ /51(5, 11o) dg‘ (K1||z —Z|le + Kol —Gllﬁ()ﬂL
t

+ A‘ /61(57#0)"gi[2](§vt7x) - gi[i](f,t,x)H df‘
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hold for (7,t,2), (7,%,7) € [0,c]?> x R™. Using the Gronwall inequality, we
obtain (1.27) and (1.28). O

Now we construct an integral operator corresponding to the problem
(1.24),(1.25). We will need the following assumptions on f and A.

Assumption H¢[f]. The function f(-,z,w) : [0,a] — R* is measur-
able for every (z,w) € R™ x X and there are ag, 32 € A such that
Hf(ta €T, w)HOO < OQ(ta :U‘)v
for (z,w), (T, w) € R™ x X[u] and for almost ¢ € [0, a).

Assumption Ho[A]. The function A : [0,a] x R x RF — My,
satisfies the conditions:

1) there are o, 8 € ¥ and v € A such that

AT z,p) oo < a(p),
At z,p) — A7, D) < Bw)(|lz—z| + llp —ll) + ‘ /v(f,u) df‘

for (t,2,p), (1,7,p) €[0,a] x R" x R*[y],
2) for each (t,z,p) € [0,a]x R™ x R¥[u] there exists the inverse matrix
A~7L(t,x,p) and there are ag, 3y € ¥ and 7o € A such that

||A_1(t7x7p)||00 < O‘O(M)a
47 2. p)= A7 E ) < Golo) o=+ lp=pi) + | [ 2006, ]
t

for (t,z,p), (,7,P) € [0,a] x R™ x R¥[u].

Let us fix ¢ € Jo[X], ¢ € (0,al], z € Cy.c[d, \]. Suppose that (¢,z) €
[0,c] x R™ and g¢;[2](-,t,2), 1 < i < k, are bicharacteristics. We can write
(1.24) in the form

k

ZAU (Qil2](7,t,2)) % zj (1, gilz] (7, t,2)) = fi(Pi[2)(,t, 2)),

j=1
where P;[z](+,t,x) is given by (1.30) and
Qilz](1.t,x) = (7, gsl2) (7, t, ), 2(7, gi[2] (7, t, x))). (1.31)

Integrating from 0 to ¢, we obtain

k

k
Z Ay (t, @, 2(t, 'T))ZJ (t,x) = Z Ay (Qi['z](oﬂ i 'T))Spj (0,9i[2](0, ¢, 2))+
j=1

j=1
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t
/Zd i ( (1,t,2)) 2 (1, 9:[2](7, t, x)) dT+/fi(Pi[Z](T7 t,x))dr
0 7=1 0

which allows us to define an integral operator. Put

A*[2] (7, t,x) = [Aij (Qi[z](Tat7x))L,j:1,...,k’

B2 (7,t,2) = [10i(0, g;[2](7, 1, ‘r))]i,jzl,...,k’
Z2|(rt,x) = [ZZ(T g;2)(7 vtvx))]i,jzl,...,k’
FEIE L) = [P )] e
We define the operator C, c[d,A] 3 z —— T(2) in the following way
3
T;(z)(t7 z) = ¢(0,z) + A_l(t, x, z(t,x)) Z Al [z](t, x) (1.32)

for (¢t,z) € [0,¢] x R™ and
T;(2)(t, ) = ¢(t,z), (t,x)€ (—00,0] x R", (1.33)

where
MVW#ﬁZ/fMU%mﬂﬂ
0

A[2(t, z) = A*[](0,, ) * (@[z] (0,t,x) — D[] (t,t,x)),

t

d
83le)(ta) = [ 52 AEl(r ) ¢ (ZLa)(ritn) = BLal( )
T
0
We look for the fixed point of the operator 7.

1.6. The Existence and Uniqueness Theorem

We prove the following properties of the operator Tt;.

Lemma 1.7. If Assumptions H[X]|, He[v], Helo], Helf], Hel4] are
satisfied, then there are ¢ € (0,a], d = (do,d1) € R%, X € L([0,¢c], Ry) such
that for each ¢ € Jc[X] the operator T, maps the set Cy c[d, A] into itself.

Proof. Assume that ¢ € Jo[X] and 2z € Cy c[d, A]. Let T;;(2) be defined by
(1.32), (1.33). It follows from the assumptions of the lemma that

Htht@—ﬂéljm@wd

T

%vwmvm@wwmmﬂs/xa&+w4fm@mw¢

0
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| £ =gl )| < A + dves (7 10),
| vt t)|_ <0t

with p(7) = (7, po) + B(10) (MN(7) + dra1 (7, pro)). Thus
A7 [2](t, @)oo < ic, i =1,2,3,

where

C C

61.c:/a2(§=,u0)d§a 62.c:a(b0)xbl/al(§=,u0) dg,

0 0
c

s = < / NE) de -+ x| a1<§,uo>ds> / p(r) dr.
0 0 0

According to the above estimates, we have

3
(T3 (2) (¢, )| . < xbo + co(bo) Z(Si.c on [0,¢] x R".

i=1
We assume that the constant ¢ € (0, a] is sufficiently small for

3
do = xbo + ao(bo) Z di.c- (1.34)

i=1
Then
1T5(2)(t, 7)||oo < do, (t,2)€[0,c] x R".
To estimate || T3 (2)(t,z) — T3(2)(f,T)|| o0, We observe that

gile](7,t, 2) = gil2] (7 L2 + [|2p(rgatal (rtie)) — Zurgutzirzan |l x <

< AQC< /zoél(fauo) df} + ||$—f||)-

Write

dl.c = AQC/62(T7 MO) dT7 )\10(5) = dl.cal (57/’60) + O‘?(é-a ,uo),
0

dao = xbs <a(bo)(Qc 1)+ 8001+ Q. [ o) df),

0
c

A2.c(§) = xb1Qe (a(bo) + B(bo)(1 + dl)/al(T7 o) dT) a1(&, o),

0
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c

d3,c = Fc + Xbl /p(T) dTa

0
c c

0ct€) = ([ N)dr+xtn [ astro o) dr ) p©) + Lo 6. o).

where

c

I'. = ﬁ(do)(l—‘rdl ( 1+Q )\ dT+2d1Qc (T,,UQ)dT)—f—
-

0
c

+ deC/p(T) dT7

0

and assume that

3 3
dy > xb1 + Bo(do)(1+d1) Y 6ic+ aoldo) Y dic, (1.35)
=1 =1
3
(&) = (Bo(do)A(E) +70(&, do)) Z&c + ozo(do)Z/\i.c(ﬁ). (1.36)
=1 1=1

It follows easily that
T
T3t ) - T2 () 7)), < \/A(g) €] + il — 7.

t

In this way we have proved that 7.} : Cy c[d, \]| — Cy.c[d, A] for ¢ € (0, a],
d = (do,d1) € R, X € L([0, c], Ry) satisfying the inequalities (1.34), (1.35)
and (1.36). O

Lemma 1.8. Suppose that the assumptions of Lemma 1.7 are satisfied.
If p, 0 € Jo[X] and z € Cycld, N, Z € Cg.c[d, N, then there are Gi..,G2 €
Ry such that

|75 (2) = T5)||, < Gucllz = Zlle + Galle — Bl %- (1.37)

Proof. Let ¢, % € J[X], z € C,.cld, N, Z € Cz.c[d, \]. We use the following
estimates

|2pt,2) — Zuitoll x < Killz = Zlle + Kollo — 2%
and
|g:2)(7, t, 2) = gilZ)(7, b, ) || + |2p(rgule) (b)) — ZoraiElrtaen) || x <
< Q(r,t)(Kullz = 7lle + Kolle — 1l )
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with

Q(r,t) = 1+ AQ.

t
[ o6 o).

We have
ATt 2) = AR )| < viellz = Zlle + Dielle — Pl %, i=1,2,3,

K2

where

S / Bol(7, 110)Q(r,¢) dr, D10 = Ko / Bo(r, 10)Q(r, ¢) dr,
0 0

o2.c = K, (ﬁ(ﬂo)xle(O, C)/Oél(7'7 o) dT+Oé(M0)Xb1Qc/51 (7, po) dT)7
0 0

c

Bne = KoB(o)xbr Q(0, ¢) / o1 (7, o) dr+
0

+0<(M0)X(2 + Kolec/ﬁl (7, Mo)d7>7
0

030 = KiT%, g0 = / B*(v) dr + KoT™,
0
where

I} =diQc | 57(7) | Bi(& po) d€ dr+
+ﬂ(uo)< M) dr 4+ xb1Q(0,¢) [ (o 10) dr+
/ 0/

0
+ /Q(T7 ¢) ()\(T) + dyaq (T, ,uo)) dT).
0

Thus we obtain
|T5(2) = T5(2)||, < Grellz = Zlle + Gallo — 2%,

where

3 3
Gr.c = K1Po(pt0) Y bic + 0(io) Y _ i,

=1 =1 (1.38)

3 3
G2 = KofBo(to) Z di.c + (o) Z Vic.

i=1 =1
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This completes the proof of Lemma 1.8. 0

We are now in a position to show a theorem on existence, uniqueness and
continuous dependence on initial functions for the problem (1.24), (1.25).

Theorem 1.2. Suppose that Assumptions H[X], He[v], Helo], Helf]
and He[A] are satisfied. Assume that ¢ € (0,a], d = (do,d1) € RY, X €
L([0, ¢], Ry) satisfy the inequalities (1.34)—(1.36) and

Gre<1, (1.39)
where G1. is defined by (1.38). Then for each ¢ € Jc[X] there exists

z = z[p] € Cy.c[d, \] which is a unique solution of (1.24), (1.25) in the class
Cy.cld, N]. Furthemore, if 0,0 € Jo[X], z = z[p|, Z = z[@], then

_ Go .
Iz ==l < ;—F— e —Plx (1.40)

G1
with Ga given by (1.38).
Proof. Tt follows from Lemmas 1.7 and 1.8 and from the inequalities (1.34)-
(1.36), (1.39) that for each ¢ € Jc[X] the operator T : Cy.[d,\] —

Cy.cld, A is a contraction and thus it has a fixed point z[¢] € Cy,.([d, A]
The assertion (1.40) immediately follows from Lemma 1.8. O



CHAPTER 2

Initial Problems for Nonlinear Equations

2.1. Introduction

We consider initial value problems for first order nonlinear partial differ-
ential functional equations. Suppose that B is the set defined in Chapter 1.
Let X be a linear normed space of functions from B into R. Suppose that
the functions

f:]0,a] x R" x X x R® - R, ¢:(—00,0] x R — R,
/(Z) : [O7a] x Rn anJ’»l? /(Z): (w07¢/)7 /l/)/ = (w17...,1/}n)’
are given. We assume that ¢o(¢,z) < ¢ for (¢, z) € [0,a] x R™. Consider the

nonlinear equation
Oz(t,x) = f(t,:v,qu(t’z),amz(t, :v)) (2.1)
with the initial condition
z(t,x) = o(t,x), (t,z) € (—o00,0] x R". (2.2)

We look for classical solutions of (2.1), (2.2). We use the notation intro-
duced in Chapter 1. Additionally we use the symbol o to denote the scalar
product in R™. We formulate the following assumption on the space X.

Assumption H*[X]. The space (X, || - ||x) satisfies Assumption H[X]
given in Section 1.2 with k& = 1.
Let us denote by Jn[X] the class of all initial functions ¢ : (—oo, 0] x
R™ — R such that
1) o) € X for (t,7) € (—00,0]x R", there exist the derivatives d;,
02 0= (02,0, . .., 0z, ) on (=00, 0O)xR™ and (0:9) (¢,2), (0, 0) (t,2) €
X for (t,z) € (—00,0] x R, 1 <i<mn,
2) there are by,bs € Ry with the properties

let2) = Pazmllx < bt =+l —7),
H(atsp)(t,r) - (51590)({@)”)( + Z H(aﬂcz@)(t,x) - (6%90)(5,2)")( <
=1
< ba(lt =1 + ||z — 7)),

where (¢, ), (£,T) € (—o0,0] x R".

28
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Fix ¢ € Jn[X] and ¢ € (0,a], d, po, pr € Ry. Denote by CL [d] the
class of all functions z : (—oo, ] x R" — R such that z(t,z) = ¢(t,z) for
(t,x) € (—00,0] x R™ and the estimate

|2(t,2) — 2(,7)| < d(|t —t| + ||z — z|)

holds on [0, ¢] x R™. Write C’ngc[po,pl] to denote the class of all functions
ug : (—00, ¢]x R™ — R such that ug(t, z) = dp(t, x) for (¢, z) € (—o0,0]xR"
and

luo(t, x)| < po, |uo(t,x) —uo(?,7)| < pr(|t — | + [l — )

on [0, ¢] x R™. Let the symbol ng,c[po,pl] denote the class of all functions
u: (=00, c] X R™ — R" such that u(t,z) = 9y¢(¢, z) for (t,x) € (—o0,0]x R™
and

lu(t,2)| < po, [ut,2) —uE.T)|| < pr(lt = + |2 — =)
on [0,c] x R™. We will prove that for sufficiently small ¢ € (0,a] there
exists a solution Z of the problem (2.1),(2.2) such that z € C% [d], 8,z €
Cé%tga.c[p()vpl] and azz € Ogﬂp,c[p()apl]-

2.2. Bicharacteristics for Nonlinear Equations

We begin with the following assumptions.
Assumption Hy[9, f]. The function f : [0,a] x R™ x X x R" — R of
the variables (¢, z,w, q) is such that

1) the derivative 0, f(t,x,w, q) exists for (t,z,w,q) € [0,a] x R™ x
X x R"™,

2) the function 9, f(-,z,w,q) : [0,a] — R™ is continuous and there
are C, L € R4 such that

104 f(t, z,w,q)|| < C,
160 £ (t,2,w,0) = 0,4 (t7,70,0)| < L(llz = 7] + lw — w|x + la —all)
for (t7 x? w7 q)’ (tﬂf7m?a) e [O,Q] X Rn X X X Rn

Assumption Hy[¢)]. The function v : [0,a] x R" — R"™ ¢ =

(1o, 1), ' = (1, ..., y), is such that ¥o(t, ) < t for (t,z) € [0,a] x R"
and

1) the partial derivatives (0,1, ..., 0z, ;) = Oxtbi, 0 < i < n, exist
on [0,a] x R™ and they are continuous,
2) there are s1, so € R4 with the properties

|81j¢0(t7x)| + ||azg¢/(tvz)” < s,
}asz)O(tv'r) - amji/}O(taf)} + ||am]1/)/(t,$) - am]d}/(tvf)n < SQH‘T - f||
for (¢,z), (¢,T) € [0,a] x R™, 1 < j < n.
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Suppose that Assumptions H*[X], Hx [0, f], Hny[¢] are satisfied and let
v € In[X], c € (0,a], z € C’éhc[d], u € C’aLch[po,pl], (t,z) € [0,c] x R™.
Consider the Cauchy problem

77/(7) = _aqf(Ta 77(7)3 Zap(T,m(7))s U(Ta 77(7—)))7 77@) =, (23)

and denote by g[z,u](-, ¢, z) its solution in the classical sense. The function
glz,u](-,t,x) is the bicharacteristic of (2.1) corresponding to (z,u).

We prove a lemma on bicharacteristics. For w : (—oo,¢] x R* — R"
and wo : (—o0,¢] X R™ — R we write

el = sup { (s, 9]+ (s,9) € 10,8 x B*}, 0<t<e

Jwollea = sup {lwo(s, )]+ (5,9) € 0,6 x R"}, 0<t<e

Put
Q1= (1+C)exp(cA"L), Q2= Lexp(cA™L),

2.4
AN =1+ s1(K1d + Koby) + p1. (24)

Lemma 2.1. Suppose that Assumptions H*[X], Hx[04f], Hn[¥] are
satisfied. Let p, @ € In[X] be such that ||o—2||% < 400 and let z € CL [d],
zeCL [d, ue C’gmw.c[po,pl], T € CaLwac[po,pl], c € (0,a]. Then, for each
(t,x) € [0,c] x R™ the solutions g|z, u|(-,t,x) and g[z,u](-, t, z) exist on [0, c],
they are unique and they satisfy the conditions

gz, ul(r.t.2) = glz,ul(r. &) || < Qu(|t =T + |z — 7)), (2.5)
where (1,t,), (1,t,T) € [0,c]> x R™, and

Hg[z, ul (7, t,x) — g[?,ﬂ](T,t,x)H <

t
< Qo [ (ills=Fler + Kollo =l + lu-len) @, (26)

T

where (1,t,x) € [0,c]? x R".

Proof. The existence and uniqueness of a classical solution of (2.3) follows
from Assumption Hy[9, f] and from the following Lipschitz condition

100, (7,9, 20600, 0T 9)) = 00 (7,7 2030, 0. 9) | < LA ly =,

where 7 € [0,¢|, y,y € R™. The bicharacteristics satisfy the integral equa-
tion

mAM@am:x—/mﬂPmmmamma

where

Plz,u](&,t,x) =

= (5; g[za ’LL] (5, t7 .%‘)7 2o (€,g[z,u)(€,t,x)) > U(f, g[za ’LL] (5, t7 x))) . (27)
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Then we have the integral inequality

Hg[z, ul(1,t,x) — glz, u)(T, 1, T)H <

< Q) (= =)+ | [ 24" ol s )=l 2]
t
for (1,t,2), (1,t,7) € [0,c]?> x R*. Using the Gronwall inequality, we ob-
tain (2.5).
We have
‘z(t,x) - E(t,x)‘ < |z(t,z) — 2(0,2)|+

on [0,¢] x R™. Thus ||z — z||t.1 < 00, t € [0,¢|, and the following integral
inequality

gtz ul(mt.2) = gl T 1. 2) | <
< ‘/L(A*Hg[z,u](g,m) — gl )(& 1, )|+

t
+ Kl = Slea + Kl = + u = Tle.)

holds for (7,t,z) € [0, c]>x R™. The assertion (2.6) follows from the Gronwall
inequality. This completes the proof of Lemma 2.1. O

2.3. The Sequence of Successive Approximations

We formulate further assumptions on f. We denote by CL(X, R) the
set of all linear continuous functions from X into R and by || - ||« the norm
in the space CL(X, R).

Assumption Hy[f]. The function f : [0,a] x R" x X x R® — R
satisfies Assumption Hy[0, f] and

1) thereis C € Ry such that |f(t, z,w, q)| < C on [0,a]x R" x X x R"

and
’f(t,CE,’LU,q) - f(%>x>w>Q)’ < C|t - Z|,

where (¢, z,w,q), ({,z,w,q) € [0,a] x R"* x X x R",

2) the derivative 9,f(t,x,w,q) and the Fréchet derivative
Owf(t,z,w,q) € CL(X,R) exist for (t,z,w,q) € [0,a] x R™ X
X x R",

3) the estimates

”aacf(tﬂxﬂwﬂQ)” S 07 ||awf(t7x7w7q)||* S ¢

and the Lipschitz conditions

1021 (t,2,w,0) = 0 £ (67,0, < Ll = 7| + v - Tx + la - al),
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Hawf(ta‘ruwaQ) - a’wf(ta fam q % < (”(E _EH + ||’U) - m”X + ||q - q”)
are satisfied for (¢,z,w,q), (t,Z,w,q) € [0,a] x R™ x X x R".

If w=(w1,...,wn) withw; € X, 1 <i<n,and (t,z,w,q) € [0,a] x
R™ x X x R™, then we write

Owf(t, z,w,q)(w) = ((%f(t7 T, W0, q)W1, ..y O f(E, 2, w, q)wn>.
For e jN[X] and z € Of;/c[d]? U,V € ng¢_c[p0ap1]v Vo € Cé@,c[p07pl]
with ¢ € (0, a], we define
Flz,u] : [0,¢] x R® = R, Glz,u,v9,v]:[0,¢] x R" — R"
in the following way

Flz,ul(t,z) = <p(0, glz, u](0, t, :E))+

—i—/[f(P[z,u](ﬂt,m))—qu(P[z,u](ﬂt,m))ou(T,g[zm](T,tw))} dr, (2.8)

Glz, u,v0,v)(t,z) = 0,(0, g[z,u)(0,¢,2))+

—|—/[81f(P[z, u] (7, t, a:)) —l—awf(P[z, u)(7, t, a:))(W[z, u, vg, v](7, t, x))} dr, (2.9)
0

where P[z,u](-,t, ) is given by (2.7) and
Wz, u, vg, v]|(7,t,2) = (Wl [z, u, v, v](T, t, ), ..., Wy|z, u, v, v](T,t, m)),

Wi [ZJ ’LL, UOu U](Ta t7 .’II) = Z awldj] (T7 9[27 U’](T’ t7 .’17)) (Uj)111(7'7g[Z,U](7'7t727))7
3=0
where 1 < i <n, v = (v1,...,v,). We define the sequences {z("™}, {uém)}
and {u("™}, where z(m),uém) i (=00,¢] x R* = R, u(™ : (—o0,c] x R* —
R™, as follows. Let ¢ : (—00,¢] X R™ — R be an extention of ¢ such that
e Cl ld, ¢ e Caw, c[po,pl] 9% € CF , .[po,p1]. Put

20 =g, Uo =8,¢ and u¥ = 9,5 on (—oo0, ¢ x R™.

Suppose that z(™) e C’Sf.c[d], uo ) e Cat@.c[povpl] and u(™) € Cavac[po,pl]
are known functions. Then

1) the function u(™+1) is a solution of the problem

u= G[z( m) oy uém),u(m)], u=0zp on (—o0,0] x R", (2.10)
2) the functions z(™+1) and u( m+1)
2(MFD) = ppm) o m+D] 0 20mFD) — o on (—00,0] X R™,

u((Jerl):f(., (Z(m))w(.)7u(m+1)(,)) (m+1) =0y on (—oo, 0]x R™.

are given by

(2.11)
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Remark 2.1. The above defined sequences {z(™}, {u("™} can be called
the sequence of succesive approximations for the system of functional inte-
gral equations

z = Flz,u], w=Gz,u,up,u] on [0,c] x R", (2.12)
where ug(t,x) = f(t, 7, 2y@,2), u(t, z)) for (t,x) € [0,c] x R™ and ug(t,z) =
Orp(t, x) for (t,x) € (—00,0] x R™, with the initial conditions

z=¢, u=0yp on (—o0,0]x R".

This problem is obtained in the following way. We introduce an unknown
function u, where u = 9,z and consider the linearization of (2.1)

O z(t,x) = f(t,x,zw(t)m),u(t,:c))—k
+8qf(t, T, Zy (1) u(t, z)) o ((%z(t, x) — u(t, 9:)) (2.13)

By virtue of (2.1) we get the following differential system for the unknown
function u

atu(tv CC) = al‘f(ta Ly Zap(t,x)s u(tv I)) + aqf(tv Ty Zop(t,x)s u(ta I)) © aiu(tv CC)+
+awf(taIaZw(t,w)vu(taz))(v(tvx))7 (214)
where V = (V4,...,V,,) and

V;(t; :E) = awin(tax)(atz)w(t,m) + Z ail)iwj(t7x)(awjz)’¢'(t,:l))7 1<i<n.

Jj=1

Finally we put 0,2 = u and 0;z = ug in (2.14) and we consider (2.13), (2.14)
along the bicharacteristics g[z, u](-, ¢, «). In this way we obtain

diT Z(T, glz, u)(7, t, 1:)) =

= f(P[z7 u) (7, ¢, x)) — qu(P[z, u(T, t, x)) o u(T, glz,ul(T, t, m)),

d
E U(T, 9[27 u](Ta t7 I)) =

= Bmf(P[z7 u)(7,t, @) + Bwf(P[z, u](T, t, x)) (W[z, u, ug, ul(7,t, x)).
By integrating from 0 to ¢ with respect to 7 we get (2.12).

We formulate the lemmas on existence of the above defined sequences

{z(m)}, {uém)} and {u("™}. We need the following assumption on the con-
stants ¢, d, po, p1. Write

Xo = Kimax{C,po} + Kobi, M =K max {(1+ A*)C,p1 } + Kobs,
Ly =LA*Q1, L, =xb2Q1, Ly = Q1(s2X0 + s3\1).

Assumption Hc,d, pg,p1]- The constants ¢ € (0,a], d, po, p1 € Ry
satisfy the conditions

po=d> max{xbl +¢cC(1+ s1Mg),
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xb1Q1 +C + Cpo +¢((C+ Lpo)A" +CQipr) }, (2.15)
p1 > max {0(1 +A%), Ly +c(Ly + Lsido + CLy) } (2.16)

If m > 1 is fixed, and the functions (™) € C% [d], u((Jm) € CF, ;. c[po, p1] and
ul™ e ng,c[po,pl] are known, then we write
Gy = G[z(m),u,uém),u(m)], u € CaLW.c[po,pl]. (2.17)

Lemma 2.2. If Assumptions H*[X], Hx[f], Hn[¢], Hlc, d, po, p1] are
satisfied and @ € Jn[X], then G : C§  [po,p1] — C§ , c[po, p1]. More-
over, there exists exactly one function u € Cang,,c[po,pl] satisfying the equa-
tion u = G™)[u].

Proof. Let u € ngw_c[po,pl]. We prove that
HG(m) [u](t,2)|| < po, (t,x)€[0,c] x R" (2.18)
and
|Gt 2) = G W] E D) < pr(lE = + = — ), (2.19)
where (¢,), (¢,) € [0,c] x R™. Tt follows from the assumptions that
"G(m)[u](t,I)H < xby +cC(1+ s1M) on [0,c] x R",

and according to (2.15) we get (2.18).
Let w(™[u](r,t,2) € X™ be given by

w™) [u](,t,2) = W[z(m),u, uém),u(m)] (1,t, ).

Suppose that (t,z), (t,7) € [0,c] x R™. The terms

|

Hawf(P[zW, ul(r,t,2)) — O f (P2, u)(r,, 7))

)

are bounded from above by L;(|t — 7| + || — Z||). We have also
0 (0. 912", u)(0,1,2)) = 0uip(0, g2, u) (0,7, 7)) | <

< Lo ([t =t + [l= =),
[w ™) (7, t,2) — w™[u)(r,7,7)||, < Lo (It =7 + |z — 7).

Thus we obtain (2.19) under the assumption (2.16). This proves that
G € C§ , [po, p1]-
There is ¥ > 0 such that for u,u € Og%w,c[po,pl] we have

6 lt0) - G @) <7 [ u-Tlends, (t2) € 0.6 x B
0
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For u € CaLW_C[po,pl] and for A > 7 we define
lullgy = max { Jut, @) le ™ : (t,2) € [0,¢] x R"}.

If u,we Cf , [po,p1], then
t ~
|G () (t, ) — GO [ (¢, )| <7 / =y e de < lu—|y €,
0

that is,

|G ] = G| ) < 5 llu =l

We have ;Y < 1 and by the Banach fixed point theorem there exists exactly
one u € C(%W,c[]ﬂoapl] satisfying the equation v = G(™[u]. The proof of
Lemma 2.2 is complete. O

The following lemma is important in our considerations.

Lemma 2.3. If Assumptions H*[X], Hx[f], Hn[¢], Hlc, d, po, p1] are
satisfied, ¢ € In[X], then for any m > 0 we have

02 (1) = ud™ (t,2), 0pz™(t ) = u™ (t,x) on [0, x R" (2.20)

and
2m e C’éhc[d], uém) € OaLW.c[vapl]- (2.21)

Proof. First we prove (2.20) by induction. It follows from the definition

of 2, u(? u(© that (2.20) is satisfied for m = 0. Suppose that (2.20)

holds for a given m > 0. We will prove that for z(™+1) given by (2.11) the
following equalities

By = D 9, (D =y (mHD o [0, ¢] x R™ (2.22)
are true. Write
Alt,t,2,7) =
= 2@ F) =2 (4 ) — T (8 2) T 1) —u I, 3) o (T—2),
where (t,x), (£,7) € [0,c] x R™. We prove that there exists Cy € Ry such
that )
|A(t,E,2,T)| < Co([Tt—t| + |z — )" (2.23)
According to (2.10), (2.11) and (2.17) we have
At t,z,T) = F[z(m), u(erl)] (t,7) — F[z(m), u(erl)} (t,z)—
— " (t,2)(E — 1) — Gt ) o (7 — 2).
For simplicity write
g(T,t7ac):g[z(m),u(erl)](T,t7gc)7 w(ﬂt,m):w(m) [u(erl)](T7 t,x),

2.24
Q(t,x) = (0,9(0,t,2)), P(r,t,x) = P[z™umtV](r,1,2). (2.24)
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Let R(s,7,t,T,2,7) be the following intermediate point
R(s,7,t,t,x,T) = P(r,t,2) + s(P(7,1,%) — P(r,t,2)), 0<s<1.
Fix (t,z), (t,T) € [0,c] x R™. To formulate the properties of A, we define

A(@Za%f):@(Q(z _))_QD(Q(t .’L'))—(?m(p(Q(t, x)) o (g(&t,f)—g(o,t,x)),

B(t,t,2,7) = 0:(Q ( x)) o ((Oafﬁ)—g(oytw)—@—x)),

Of.2(s, T, t,t,1,7) = (RST,t,ZxE))—(? f( ( , ),

Spw(s, Tt t,2,T) = (Rsr,t,txx) t,z)),

Of.q(s,7,t,%,2,T) = (RST,t,txx) ( ,ff)).
We have

A(t,%, Iaf) = Al(taza Iaf) + AQ(tvza Iaf)a

where

_|_/t/1[(5fm (s,7,t,t,2,T) o (9(7.1,7) — g(7.t,2))+
0

+6f.w(8u T, t, ta Zz, f) ((Z(m))w(f,g(f,f@)) - (Z(m))w(ﬂg(ﬂtvx))> +

+3pq(s, 71, F, 7)o (w0 (7, (r,7,7) —u" D (7, g1 , z)))} ds dr+
t

+/awf(P(T7 ta ‘T))((z(m))w(ﬂg(‘r,{@)) - (Z(m))w(T,g(T,t@))_

0
—w(T,t,x) o0 (g(r, 1,T) — g(T,t,x))) dr

and

+ [ |(@sPta) + 2, f(PE L wlrt,0) o

(=)

o(g(T7 t,7T) —g(r,t,z) — (T — x))—

—(0f(P(1,1,7)) — 0y f (P(,t,z))) o u™ V) (1, g(7,1, z))] dr+

|

+ / (f(P(T,Z, %)) — 0o f (P(7,1,7)) o ul™ (7, g(T,f,E))) dr—

t
—ul" (¢ 2)(F - b).
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Substituting the relation

9(1,8,%) — g(r,t,x) — (T — ) =
= / ((%f(P(T7 t,T)) — 0y f (P(m, 1, 1:))) dr + /&J(P(T7 t,7))dr
(
t

t

into Ag(t,%,2,%) and changing the order of integration, we obtain

AQ(tv 7I7T) = C(t,f,;z:,f)—F

+/t<8qf(P(T7Z,E)) _8qf(P(T7t’gj))> o D(r t,7) dr,
0
where

150~ [ [t

o (W™D g1 ) ~u " g, ) £ (P E.3) ™ )]

D(r,t,x) = —u(m+1)(77g(7,t7x)) + 0. p(Q(t, 2))+

t

+ [ (0 (Pt) + 0, F(PE ) (e, 1. 0))

(=)

Since g(s, 7, g(7,t,7)) = g(s,t, ) for (7,t,2) € [0,c]?> x R", we have

ul™ (7, (7,1, 7)) = Dup(Q(t, )+

+ ((%Cf(P(s7 t,x)) + O f(P(s,t,2))(w(s,t, x))) ds.

O~

Thus
D(r,t,x) =0, (1,t,z) €[0,c]* x R".

Consequently,

Ns(t,t,2,7) =C(t, t,2,T) for (t,z),(t,T) € [0,¢] x R™,
and there is C; € R, such that
|As(t,F,2,7)| < Co([T—t| + T —2l))®, (t,2), 7,T) € [0,d] x R". (2.25)
To estimate A4 (¢, %, x,T), we note that there exists C 4 € Ry such that
|A(t,7,2,7)| < Ca(jT—t| + |7 —2||)”.
Moreover, the terms

65.2(s, 7,6, 8,2, F)||, [|0p.q(s,7, 8,82, T)|], ||0pw(s, 7, t,8,2,7)|,



38 D. Jaruszewska- Walczak

are bounded from above by Ls||g(7,%, ) — g(7,t, )| for some Ls € Ry. We
have also

(m)

Ju(rg(r.to) ’X <

Ssl(Kld'i‘Kobl)Hngf) (Tt .’L‘)
"u(m+l)(7,g(r,f,i)) —ul™ (7 g(1,t,x H < leQ 1, T) — Q(T’tvx)H'
It follows from the equalities 9;2(™) = u(m 0,2 = 4™ on [0,¢] x R™

that

H(Z(m))w(‘r,g(‘r,f,i)) - (2

(Z(m))w(f,g(m‘,i)) - (Z(m))w(r,g(ﬂm))_
- w(T7 ta ‘T) © (9(75275) - g(T7tax)) HX <
< (S%(Klpl + Kobz) + s2(K1d + Kobl)) |g(,%.7) — 9(7715795)”2-

All the above estimates together with properties of bicharacteristics imply
that there is Cy € R4 such that

AL, 2,7)| < Cu([T—t| + |7 —=])®, (t,2), 7,T) € [0,d x R". (2.26)
The relations (2.25) and (2.26) give (2.23) and consequently on [0, ] x R"™
82 V(t,2) = ul" TV (t,2), 8,2V (t,2) = u Y (¢, ).

The proof of (2.22) is complete. O

Now we prove that z(™*1) € CL [d], where z(™*+1) is given by (2.11).
It follows from (2.20) and from Assumption Hlc, d, po, p1] that on [0, ¢] x R™

0,2+ (t,0)| < .

Let (t,z), (¢,z) € [0,c] x R™. We use the notation (2.24) and we can write
the following estimates

0(Q(t,2)) = (Q(F,2))| < xb1Qult 17,

< (C+Cpo)lt -1,

<|f(P(T7 ta 'T))_f(P(Tj’x)”+‘aqf(P(T7 ta z))ou(erl)(Tvg(Tvtvx))_

o,

—0,f(P(1,1,2)) o u™*V (7, g(7,1, x))‘) dr <
< ¢((C + Lpo)A* + CQ1p1)|t — 1.
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It follows from Assumption H[e, d, po, p1] that
|2 (¢, 2) — 2 HD(F, 2)| < dft —T.
Since |uém+1)(t,:v)| < C and
lu§™ 0 (¢, 2) — u§" V@D < (1 + ADC(JE =T + |l — 2]
on [0,c] x R™, we have
g™ (k)| < po, g™V (4 w) g™V @) < (= T+ - )
(m+1)

on [0, ¢] x R™. The above estimates prove that u, € C’é%c[po,pl]. This
completes the proof of Lemma 2.3.

2.4. Existence and Uniqueness of Classical Solutions
We prove the convergence of the sequences {z(™}, {uém)} and {u(™)}.

Lemma 2.4. If Assumptions H*[X], Hx[f], Hnx[¢], Hlc, d, po, p1] are
satisfied and ¢ € Jn[X], then the sequences {z(™}, {uém)} and {u(™} are
uniformly convergent on [0,c] x R™.

Proof. For (t,x) € [0,¢] x R™, m > 1, we have the following estimates
‘z(m)(t, z) — 2m=D(¢, z)| <
< ’z(m)(t,:c) —z(m (0,z)| + ]z“”*l)(o, z) — 2m= (¢, )| < 2de,
Hu(m) (t,z) —um=V(, z)|| <
< Hu(m)(Lx) —u™(0, z)|| + Hu“”*l)(o, x) — u(mfl)(tw)H < 2piec.
Thus for ¢ € [0, c] and m > 1 we can write
Zn(t) = [0 — 2D, and Up(t) = u&™ — u@D,,..

The assumptions of Lemma 2.4 imply the inequality
¢

Unt1(t) <T / (K1 Zy(7) + Upgr (7)) dr+

0
t

+ K1Cs; 1+ YU (1) + CK 1dZpy—1(7) ) dT,
0

where ¢ € [0, ¢] for some T e R4 independent of m. The above estimate
and the Gronwall inequality yield

Un1(t) <

t
SQCfl/|:5102K12Zm,1(T)—FflKlZm(T)+51K10(1+C)Um(7-):| dT' (227)
0
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An easy computation shows that there is T, € R, such that

t
m+1 / K1Z +Um+1( )) dT+C/ m+1 )d T. (228)
0

The inequalities (2.27) and (2.28) yield

t

Zmir () +Umin (1) < Ay / (Zon(7) + Ui (7)) dr + Ay / T A(r)dr (2.29)
0 0

for some Ay, As € Ry independent of m, t € [0,¢]. For Y € C([0, ], R) and
for A > A; + As we put

1Y = max{|Y(t)|e_’\t 1 te[0,d}.
It follows from (2.29) that

t t
Zm+1(t)—|—Um+1(t) S Al/HZm"'UmH)\ 6)\7 dT+A2/HZm71H)\ 6)\7 dT S

A A
< (5 1Zm + Unlla+ 52 1Zm-illa) e, t € 0,
that is,
A A
| Zits + Unarn < 5120+ Usalla + 52 1Zimalls, m > 2.

Let us denote ¥y, = || Zm + U |lx, m > 0. Then
A A
Ym+1 < 71ym + TQqu, m > 1.

Moreover, y1, y2 < 2¢(d + p1). It follows from the stability theory for
difference equations and from the inequality % + ";—2 < 1 that there is
Ap € Ry and ¢ € (0,1) such that
Ym < Aquv m > 1.

Consequently the sequences {z(m)} {u(™?} are uniformly convergent. To
prove the convergence of {ug" } we put

Vinlt) = [ —
It follows from the inequality

Vins1(t) < C(K1 +1)(Zn(t) + U1 (1)), t€[0,d,

||t.1’ te [O,C], m > 1.

that
[Vinlla < C(K1 +1)Ao(1 + q)g™
We have also the estimate Vi (t) < 2¢py, t € [0, ¢]. Thus the sequence {uém)}

is a Cauchy sequence and hence it is uniformly convergent. The proof of
Lemma 2.4 is complete. 0
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We are in a position to state the main result for the problem (2.1), (2.2).
Set

el = sup {100, llx + (k) € (—00,0] x R},
J0al15 = sup {

J

10, 90,01 l1x ¢ (t2) € (—00,0] x B"},
1

where ¢ € In[X].

Theorem 2.1. Suppose that Assumptions H*[X], Hy[f], Hn[¥],
Hle,d, po,p1] are satisfied. Then for each ¢ € Jn[X] there exists a solution
z=z[p]: (—o0,¢] x R™ — R to the problem (2.1),(2.2) such that

z € Cﬁic[d], Oz € OaLW,c[po,pﬂ and 0z € OaLW,c[po,pﬂ-
Moreover, if ¢, ¢ € In[X] are such that || — @l %, |10t — OB %, |0z —
0.9||% are finite and z = z[p|, Z = z[@], then there is © € Ry such that

Iz =Zllea + |0z = 02| + []0:2 = 0], <
<0(llp - Bl + [|ow - 03[y + 0w - 0:7]% ). (2:30)
Proof. Tt follows from Lemmas 2.3 and 2.4 that there is z € C% [d] such
that
z(t,x) = lim 2™(t, ),

m—00

Oz(t,x) = lim uém)(t,:v), Dpz(t,z) = lim u™ (¢, )

m—00 m—00

uniformly on [0, ¢] x R™. Thus we get
z = Flz,052], 0yz=G[z,05%,0,2] on [0,c] x R".

Moreover, z = ¢ on (—00,0] X R™. Hence z is a solution of the problem
(2.1),(2.2) on (—o0, ] x R".

We prove the assertion (2.30). There are ©¢, ©; € R such that the
following integral inequality

lz = Zlle1 + ||0ez — 617Ht.n <

< 0o(lle ~Blx + o0 — 02 + 100 — B:lI5 ) +
t

+@1/ (12 =l + [j02 ~ 0221, ) dr
0

is satisfied for ¢ € [0, ¢]. Using the Gronwall inequality, we get

e = Zlle + (1022 — 0.7, ,, <

< Qg e©1 (||90 —2l% + [|0ve — 0| + ||z — 8@”;). (2.31)
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Moreover, we have

002 = 017, , < C(Kullz = Zllea + Kollp - Bl + [|0s2 - 0.7]),,) <

< C((K1+1)00e® + Ko ) (o =Bl x+ 00— 017 +|0o - 0,7 ).
which together with (2.31) yields (2.30), where
0 =00e®1(1+C(K, + 1)) + CK,.
This completes the proof of Theorem 2.1. O



CHAPTER 3

Mixed Problems for Quasilinear Systems

3.1. Introduction

Let B be the set defined in Chapter 1. For a > 0 and b = (Eh . ,En),
b; >0,i=1,...,n, we define the sets

E=[0,a] x[-b,b], Eo=(—00,0]x[-b—r,b+71], Do=(—00,0]x[-b,b],
8F = [0, a] x ([—b — b+ 7]\ (=b, b)).
For ¢ € (0,a] we put
Eld={(t,x) e E: t<c}, QE[d]={(t,x) €E: t<c},
E*ld={(t,x) e EEUEUQE: t <c}.

Given a function z : E*[¢] — RF, ¢ € (0,a], and a point (t,x) € Dy U E|d],
we consider the function z( ) : B — RF defined by
2y (s,y) = 2(t+s,2+y), (s,y) €B.

Let (X,] - || x) be the phase space of functions from B into R¥ and suppose
that Assumption H[X] (see Section 1.2) is satisfied. Write 2 = E' x X and
suppose that

0:Q = Mpxn, 0=[0ijli=1,...k, j=1,....n»
f:QHRkv f:(fla"'afk)a
805E0U80E—>Rk and w:EHDOUEv 11):(1/’0,1//)7 1/)/:(11117---71/%)7

are given functions. We assume that 1o (t, ) < t for (¢,2) € E. We consider
the system of differential functional equations in the Schauder canonic form

k n
Z AZ] (tu x, Zw(t,z)) (atZ]t, :E) + Z Qiv (t7 x, Z'd}(t,m))awy'z] (tu :E)) =
v=1

j=1
= fi(t,CC, Zw(t@)), 1 S ) S k, (31)
with the initial boundary condition
z(t,x) = p(t,x) for (t,2) € Eg UOE. (3.2)

A function z : E*[c] — R¥, ¢ € (0,a], is a solution of the above prob-
lem if

43
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(1) Zy(t,e) € X for (t,2) € Elc],
(ii) the derivatives 0;z, 0:2z; = (0x,Ziy---,0x,2i), 1 < i < k, exist
almost everywhere on F|c],
(iii) Z satisfies (3.1) almost everywhere on E[c] and the condition (3.2)
holds.

We use the notation introduced in Chapter 1. Let us denote by Jp[X]
the class of all initial boundary functions ¢ : Eg U 9oF — R* satisfying the
following conditions:

1) o(t,2) € X for (t,2) € Do and there are bg, by € Ry such that
e llx < bos e —eamllx <boi(lt =t + [z —7),

where (t,), (t,T) € Do,
2) |lp(t, x)]loo < qo on O E and there is ¢ € R4 such that on 9 FE

[e(t,2) = o, D)|| < au (|t =7+ |z — 7).

Let ¢ € Jp[X], ¢ € (0,a] and d = (do,d1) € RY. Denote by C, [d]
the class of all functions z : E*[c] — RF such that z(t,z) = ¢(t,z) for
(t,z) € Ey UOpF|c] and the estimates

I2(t, ) |lo < do, Hz(t, T) — z(f,f)Hoo <d (|t — |+ ||z — f||)
hold on Elc] U pFE[c]. We will prove the existence and uniqueness of a
solution to the problem (3.1), (3.2) in the class Cy, .[d].
3.2. Bicharacteristics and their Domains
First we will introduce assumptions on the functions g and . Write
AT ={ze[-bb]: z; zgj}, A7 ={ze[-bb]: z; = _Ej}7 1<j<n

Assumption Hp[g]. The function o(-,z,w) : [0,a] = Mgy, is mea-
surable for every (z,w) € [-b,b] x X and

1) there exist aq, 31 € 3 such that
Hg(taxaw)Hoo S 0[1(/14)7
HQ(t,(E,’U}) - g(t,f,@)“m < 51(/1)(”‘@ _EH + ||’U) - EHX)

for (z,w), (T,w) € [—b,b] x X[u] and for almost all t € [0, al,
2) there is 0 : R4 — (0,400) such that for 1 <i<kand 1<j<mn
we have

0ij(t,z,w) < —o(u), (v,w) € AF x X[u],
0ij(t,z,w) > o(p), (z,w) € Ay x X[y
for almost all ¢ € [0, al.

/ A(ssumptiogl Hp[y]. The function ¢ : E — Do U E, b = (¢o,v),
Y = (Y1,...,%y), is continuous and
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1) there is s; € R satisfying
[vo(t, @) — o(E,7)| + ||¢' (¢, 2) — ' (,7)|| < s1([t — 7|+ [z —Z) on E,
2) o(t,x) <t for (t,x) € E.
Suppose that Assumptions H[X], Hg[g], Hp[¢)] are satisfied and let
v € JpX], z € Cy.c[d]. Consider the Cauchy problem
77/(7) = 0 (T; 77(7-)’ Zw(‘r,n(r)))u n(t) =, (33)
where (t,z) € E|c|, 1 < i < k. Denote by g;[z](-,t,x) the solution of (3.3).
Let §;[2](t, ) be the left end of the maximal interval on which the solution
gi[z](-,t, x) is defined. We write
P; [Z] (T7 t, x) = (7‘, gi [Z] (7‘, t, 1‘)7 Zw(r,gi[z](r,t,x)))' (3.4)
For ¢ € Jp[X] and z € C,, .[d] we put

Il = sup {llpeellx : (t,2) € Do},
Ipllo.c = max {lle(s, ) = (s.9) € DoElt]}, 0<t<e,

Izl = max {l12(s,9)]| : (s,9) € B UAEL}, 0<t<c
Write
af (o) = a1(uo) + 1, po = Kido + Kobo,

(3.5)
Qc = exp (CAﬁl (Mo)), A =1+ s(Kidi + Koby)

and .
= ({0} x [=b, 0] ( dx | J@arua;y )

j=1
Lemma 3.1. Suppose that Assumptions H[X], Hg|o], Hp[¢] are sat-
isfied and ¢, p € Jp[X], z € Cy.cld], Z € Cz.cld], c € (0,a]. Then for each
1 <i <k, (t,x) € Elc| the solutions g;[z](-,t,z) and g;[Z](-,t,x) exist on
intervals [(it@) and thf) such that (¢, gi2)(Gis t, 2)), (i, 9i[Z)(C,,t, ) €T,
where §; = 0;(z](t, z), (; = 0:[Z](¢t, z). The solutions of (3.3) are unique and

they satisfy the conditions

gil=](r,t, @) = gil2l(r, £, 7)|| < Qeaf (o) (It =T + [z = 7]),  (3.6)

where (t,z), (t,7) € E|], TEI(M)QI(”)’ and

o7 ,2) — ulZl (1,0 <
< Qe (o) (K1||Z —Z|le + Kol — @H%)c, (3.7)

where (t,x) € Elc], T € I(it 2) ﬂTEt@). Moreover, for each 1 < i < k the
functions §;[z] and 0;[Z] are continuous on E|c] and

I = 2@004?_ (MO) (|

[0, 2) — a1 )| < TS (] + e ), (35)
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2@061 (,U*O

ile),2) -6l ,0)] < ¢ 222U (ks szt Kallp-). (59

where (t,z), (1,7) € E[d].

Proof. The existence and uniqueness of solutions of (3.3) follows from clas-
sical theorems on Carathéodory solutions of ordinary initial problems. The
proof of (3.6) and (3.7) is similar to the proof of Lemma 1.3. We omit the
details.

The continuity of ¢;[z] and §;[z] follows from theorems on continuous de-
pendence on initial data for Carathéodory solutions of ordinary differential
systems. Let (t,2), (t,7) € E[c], ¢ = §;[2](t, ), ¢ = 6:[2](f, ). The estimate
(3.8) is obvious in the case where ¢ = ¢ = 0. Suppose that 0 < ¢ < . We
have

2](¢,t,7) € CJ ATUAT)

Consider the case where g;[z ](Q,tmc) € A;L for some j € {1,...,n}. Then

9i[2)(C.1,T) = bj. Let y = (y1,-- - ¥n)s T = (Y1, ¥j=1, b5, Yjt1,s - - - Un)-
We have

|0ij (7,95 2 (r)) = 033 (T: G, 2y(r)) | < Bu(po) A(bj — ;)
for y € [-b,b] and for almost all 7 € [0, ¢|. Thus

1
0ij (T, Y, Zy(r,y)) < —50'(#0)

for y € [—b, b] such that b; —y; < o with g = ﬁ(fﬁ% If the points (¢, z),
(t,7) are such that
- T o T (o)
[t =% + ||z — || < 01 with &; = ) (3.10)
261 (1o) Ay (110) Qe

then

b = 9igle)(C 1 2) = g5 21(G1.7) = 935 1 C 1,2) < e
We get also
- 1
01 (Pi[2)(C,t, ) < —EU(uo) <0,
and consequently g;;[2](-, ¢, z) is decreasing on (¢, (). Therefore

gj — gij|7](1,t,x) <eo and g;; (Pi[z](T7 t, 1:)) < —%O’(‘LLO)

for almost all 7 € (¢, ). Then

¢
—%U (1o)( /QU Z|(7,t,x)) dr =
¢
= g5 [21(C, 1, @) — 952 (G t, @) > 945[2)(C 8, ) — 9452 (C, 1, %) >
> —Qea{ (po) (It — T + [l — 7)),
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that is,
2QCOZIr (#0)
o (o)
In the case where g;;[2]((,%,7) = EJ, we proceed in a similar way. If
(t,x), (t,T) do not satisfy (3.10), then we consider the points (to, zo), (t1, 1),
., (tp,zp) such that (to,zo) = (t,x), (tp,xp) = (£,Z) and

¢—¢< (It =2 + ll= — =) (3.11)

p—1
=T+ e =2l =D ([t — tyal + |25 — 2al)
j=0
and _
It —tj+1| + llzj — zjsall <01 for 0<j<p-—1
We have
16:[2)(t, %) — 6;[) (. 7 Z>6 2l(tj, ;) = il (tg1, 2410)] <
-1
2Qca MO ;D
< =N ([ — byl + ey — 2all) =
7=0
_ 2Qca1 (ko)

To prove (3.9), suppose that (t,z) € E[c] and 0 < §;[2](¢, z) < 6;[Z](¢, x).
Let & = 6;[Z](t, x), & = &;[2](t, x). We have

Z)(&, t,x) € OA""UA

Consider the case where gi[E](é_“,th) € A;f for some j € {1,...,n}. We
have g;;[Z](€,t, ) = Ej, If (t,z) € Elc] and (¢, 2), (,%) are such that

K1z — Z||e + Kollg — 2||% < 32 with 32 = ) . (3.12
iz ==l olle =% <02 with 6, 2¢f1(10) AQ 1 (110) (3.12)

then

by — 95121 t, ) = 9i5[Z(E, t, ) — gi5]2] (€, £, ) < eo.
Thus Ej — gij2](1,t,x) < g and

1
Qij (PZ[Z] (7., 'T)) < —ia(uo) <0
for almost all 7 € (&,€). Then

3
500~ 9) 2 [ os(RINr ) dr =

= Gij [Z] (57 t? ‘T) — Gij [Z] (57 ta 'T) Z Gij [Z] (55 t7 SC) — Gij [E] (ga t7 SC) Z
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~QuB1(s10) (Kallz = 2l + Kol = 1% )

that is,
Z 2Qfr (p - —
Eog < 20U (3 Koo - Bk e (313)
o (o)
If (¢, 2), (¥,%) do not satisfy (3.12), then to obtain (3.13) we use the func-
tions 2o, 21,...,2, with 20 = 2, 2, = %, z; € Oy, .[d], where p; € Tp[X],

0<j<v, =, p, =p, satisfying the conditions

v—1

Killz == + Kollg = 2l% = Y (Killz = zille + Kollgs = ¢sll ).
j=0

K1z = zipalle + Kollps — @jall% < 02, for 0<j <w—1.

The proof of Lemma 3.1 is complete. 0

3.3. Existence and Uniqueness of Weak Solutions
We formulate assumptions on the functions f and A.

Assumption Hp[f]. The function f(-,z,w) : [0,a] — R* is measur-
able for every (z,w) € [—b,b] x X and there are ay € X, B3 € A such
that

Hf(tﬂmﬂw)noo < a2(M)a
[tz w) = f(t,7,0)]| < Bet, ) (2 =] + [lw — D] x)
for (z,w), (T,w) € [=b,b] x X[p] and for almost ¢ € [0, a].

Assumption Hp[A]. The function A : Q — M satisfies the condi-
tions:

1) there are «, 8 € ¥ such that
At 2, w)l[o0 < a(u)
HAtxw ffﬁ” w) ([t =T+ ||z — 7| + [|lw — @] x)

for (t,2,w), (,7,T) € F x X[u],
2) for each (t,z,w) € E x X|[u] there exists the inverse matrix
A7Y(t, z,w) and there are oy, By € ¥ such that

IIA’l(t T, )|l < ao(p),
||A (t,z,w) — A~ (t, 7, W) H < Bo(w) (|t = + |z — || + ||w — W] x)

for (¢,x,w), (f,f,w) € Ex X[y

Now we construct the integral operator corresponding to (3.1), (3.2).
Suppose that ¢ € Jg[X], ¢ € (0,a], z € Cy.c[d]. Let Igt,x) be the domain
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of ¢;[2](,t,x) with the left end &;[z](t,z), where 1 <i <k, (t,z) € Elc]. It
follows from (3.1) that for (¢,z) € E[c] we have

k
Y- A (P ,2)) 3 24 (0l (7 ,0)) = fi( Pl t,2),

where P;[z](7,t,x) is given by (3.4). After integration from 0;[z](¢,z) to t
we obtain
k

Z Ay (t, Z, qu(t,z))Zj (t,z) =

k
=3 4y (P 2), 1.2) ) oy (Qule(t ) +

— dr
silad(ta) 7=
+ fi(Pl)(r.t, ) dr,
ilel(ta)
where
QilAl(t,@) = (il)(t @), il (Bil2] (1, w) 1) ). (3.14)

For z € C,..[d] we define U = T,,(z) as follows

ZA” t:c Zw(tw))U( x) =

j=1

k
=3 4 (PG ).t 2) ) o5 (Qul2] (1, 2) +

k
+ > L Ay (P (r )2 (r gule) ) drt

_|_

fi (Pi [2](7, t, z)) dr,
5ilz)(t,2)
where 1 < i <k, (t,z) € E[c], and
Ty(2)(t,z) = @(t,x), (t,z) € EyUdE]c]. (3.15)
We can write on E[c] the following equality
3

To(2)(t, ) = 9(0,2) + A7 (t, 2, 2(1.0)) D Wil2](t ), (3.16)

=1
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where

Wg[z](t,x) =
) T
- {;Am— (R-[z](zsi,t,z)) (sag (Qil=](t, 2)) _%(O’z))]i—l,...,k’
Wslz](t,x) =
[Z/ 7,t,)) (Zj (7, 9il2](7. t,2)) — (0, I)) dT] il L

and 0; = 6;(2](t,z), 1 < i < k. Now we give lemmas on the operator T,.

Lemma 3.2. If Assumptions H[X], Hg[¢], Hplo], Hp[f], Hp[4] are
satisfied, then there are ¢ € (0,a], d = (do,d1) € R such that for each
¢ € Jp[X] the operator T, maps the set Cy, .[d] into itself.

Proof. Assume that ¢ € Jg[X] and z € C,..[d] with some ¢ € (0,a],
d = (do,d1) € R3. Let us define T,(z) by the relations (3.15) and (3.16).
We assume that the constants ¢ € (0,a], d = (do,d1) € R% satisfy the
condition

do > qo + cao(10)So, (3.17)
where

So = aa(po) + of (o) (qra(po) + cdi15%),  B* = Bpo) Ao (po).

We prove that
1T (2)(t, 1:)”00 <dy, (t,x) € E[c]. (3.18)
It follows from Lemma 1.2 that

20(0) = Zpm || x < Erdi + Koby)sa (|t = + ||z — 7)),

HE Zep(7,g:[2) (7ot x)) ’X < af (o) (Kidy + Kob1)s1

Thus
" d
‘Zd— (1, t,x ‘ < B*.
We have also
|03 (QulE)(t ) = 2500, 2)| < eraf (o),
2i(r gilZ)(7 ) = 3(0,2)]| < edraf (uo):

The above estimates together with (3.17) give (3.18).
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To prove that

|To(2)(t, ) — Ty (2)(£, )| < di(ft =2+ [z —Z]) on E[, (3.19)
we assume an additional condition for the constants ¢ € (0,al, d = (do,d1) €
R?%. Let (t.z), (t.7) € E[c]._ Put 6; = 6;[2](t,z) and 0; = §;[2](¢,T). Con-
sider the case §; < §; <t < t. We have

fi (Pz [Z](T, 2 'T)) —fi (Pl[z] (7—7%77)) ‘ §ﬁ2(7-ﬂ MO)AQCQT(MO)(“_Z'J’_ ||$—T||),
and thus

‘/fz 5[2](7,t, @) dT—/fi(Pi[z](T,i,f)) dr| <
5
t 5,
S/ fi(BilE(r ,2)) _fZ(Pi[Z](Tvﬂf))’dT+/ fl(R[z](r,f,T))}dw
5 J

+/\fi(a[z1<r,ﬂf))|df < So(ft =8+ |z — ).

where

C

Sie= /52(5410) dé - AQcaf (o) + az(po)ée, & =1+

0

2@60[1’_ (,UO)
o(mo)

The same estimate is obtained in the case where 0; < 6 <t <t If
d; <t < §; <t, then we define (tg, zo), ..., (ts, xs) such that (to, zg) = (¢, 7),
(ts,zs) = (t,z) and
1

(Itjr1 =t + lzjer — all) = [t =2 + = — =],

S

Il
o

J
and 51] S 5i,j+1 S tj S thrl fOI‘j = 07 1, N .75—1, where 513 = 5i[z](tj,3:j),
7=0,1,...,s. Then

Utfi(ﬂ[z](r,f,f)) dT—/fl-(Pi[z](T,t,x)) dr| <

/fl 3[2)(7,t5,25)) dr — / fi(Pilz)(r tj1, wj00)) dr| <

Oij+1

=0
s—1

<S1e > (e —til + lwjn — 250l) = Sre(lt =2 + [z — 7).
j=0
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In each case we obtain
HWl[Z](t, $) — Wl[Z](Z, f)Hoo S Sl,c(|t —Z| + ||l‘ - f”)
Since

2(6i,t, 7)) — Aij (P25, %, f))’ <

Xlaste

< Bpo)AQuarf (1o)€” (It — 7 + |}z — ),
21 (Ql)(t ) = 3 (QlEE D) | < @ Qea (uo)e” (It =71+ | — ),

g* _ 1+ 2Oél (:U’O) ,
(ko)
we have
[Walz](t, 2) = Wa2] (£, 7) ||, < Sac(lt =] + [z — 7)),
where

Sz.c = a(po)qr (Qcay (10)€" + 1) + Buo) AQear] (10)&™ qrarf (no)e.

Let P; = P,[2](7,t,2), P; = Pi[2)(1,1, %), i = gil2)(7, t, %), Gi = gil 2 (7., ).
In the case §; < 6 < t <t we obtain

‘/Z = Aij (P) (2(7, i) — (0, )) dr—

t

Fod
3 e - 103 ] <
P

dr+

15 4y ) e - 00,0

k
d — _
Zd— A (P;) zj T,9i) — cpj(O,z)) dr+

k =t
[ (4P = 45 (P)) (24(r.90) = 93 0.0)] |+
j=1 '
Lok
+/ Z (AzJ(Pz) Az] (E)) % Zj(Tv gl) dr+
5 It

k
> di Aij(P)(2i(,91) — 2(7,55) — ¢;(0,2) + ¢;(0,7)) | dr.
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Thus
|Wal2](t, z) = Wal[2] (£, T) || < (S3.c+Sa.c+S5.04S6.c) ([t—t|+[lz—]),
where
Ss.c = cf draf (o), Sae = cdiAB(po)ay (po) (1 + Qeay (o)),
Ss.c = cdiAQcB(po) e (10)]®,  Se.c = cB7di (1 + Qe (ko).

In the other cases we obtain for ||W3[z](¢, 2)—W3[z] (%, T)|| the same estimate.
Finally the following inequality is true

ITo(2)(t,2) = To(2)(E, 7|, <

< (th + Bo (o) AcSo + ao(po) Z Sj.c) (|t =2 + [|l= —=Z]).

j=1
We assume that
d1 Z q1 —|— ﬂo(luo)ACSO —|— Oéo(lu,o) Z Sj.c- (320)
j=1
Then the condition (3.19) is satisfied.

If we assume that the inequalities (3.17) and (3.20) hold, then T, :
Co.cld] = Cyp.c[d]. O

Lemma 3.3. If the assumptions of Lemma 3.2 are satisfied, then there
are G1.c, G2, G3 € Ry such that for each ¢, % € Jp[X] and z € Cy.c[d],
Z € Cp.c[d] the following inequality is true

I Tp(2) = T(@)]|, < Guellz = Zllc + Galle = Pl% + Gsllo — Plo.c. (3.21)

Proof. Fix ¢, € Jp[X] and z € Cy..[d], Z € Cz..[d]. It follows from the
assumptions of the lemma that

WL, 2) = Walz)(t @), < Que(Kallz = 2l + Kollp — Bll% ).
W22l (t,2) - Walz)(t, )|, <
< Qa.e(K1llz = 2o + Kollp = ll% ) + aluo) (xlle — 7l + llp = Pllo.),
IWs2l(t,2) — Walz)(t, 2)]|, <
< Qs.e(Kullz = 2l + Kolle = ll% ) + e8"l12 = 2l + e xllp — Pl
where

Qro— c%jg)‘m) o) + 0/ Ba(E. o) dE(1 + AQu (110)).

Q2.c = cB(po) (1 + cAQcB1 (10)€" ) qraf (po) + copuo)q1 Qe (po) ",
Q3.c = *B*d1QcB1(10)€™ + 2¢d1B(po) o (o) (2 + cAQcB1 (o))
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Thus
T (2) = To(@)]|, < xlle — Pll% + can(po)B* ||z — 2|+

3
+(eBo(110)S0 + 0(it0) 3 Quce) (Kl = 7l + Kol — Pk )+
=1

+ao(po) (o) + ¢B8)xlle — Bll% + o (po) (o)l — Blo.c;
that is,

|1 Te(2) = To(2)|, < Grcllz = Zllc + Galle =Pl + Gslle — Plo.c,

where

3
Grc =K (Cﬂo(ﬂo )So + ao (ko Z Qi. c) + can (o) 8%, (3.22)
=1

3
G2 = Ko (Cﬂo(ﬂo)so +ao(p0) Y Qi.c)+
i=1

(3.23)
+ x + ao (o) x (a(po) + ¢B%),
Gs = ao(po)o(po)-
The proof of Lemma 3.3 is complete. O

Now we formulate the main theorem for the mixed problem (3.1), (3.2).

Theorem 3.1. Suppose that Assumptions H[X], Hp[v]|, Hple], Hp[f]
and Hp[A] are satisfied. Assume that ¢ € (0,a], d = (do,d1) € R2 satisfy
the inequalities (3.17), (3.20) and

lec < 1,
where G1. is given by (3.22). Then for each ¢ € Jp[X] there exists z =
z[¢] € Cy.c[d] which is a unique solution of (3.1), (3.2). Furthermore, if
0,0 € Ip[X], 2z = z[¢|, Z = z[g], then

Iz =2l < (Galle = 2ll% + Gslle — Plo.c) (3.24)

o
1- Gl.c
with Ga,Gs given by (3.23).

Proof. Tt follows from the assumptions of the theorem that for each ¢ €
Jp[X] the operator T, has a fixed point z[p] € Cy .[d] which is a solution
of (3.1), (3.2). The assertion (3.24) follows from Lemma 3.3. O

Remark 3.1. Theorem 3.1 extends a result obtained in [26] to quasilin-
ear systems in the Schauder canonic form with the functional dependence
Zy(t,z), Where g is a function of both variables (¢, z).



CHAPTER 4

Mixed Problems for Nonlinear Equations

4.1. Introduction

Suppose that B, E, Dy, OoFE and Elc], 0yE[c], E*[c] with ¢ € (0,a] are
the sets defined in Chapter 3. Let X be a linear normed space of functions
from B into R. Write g = E x X x R™ and suppose that the functions

f:Q—R, v:EyUIE — R,
o :[0,a] = R, ' : E— [=bb], ¥ = 1,...,10n),
are given. We write ¥(t,x) = (Yo (t), ¥1(t, ), ..., ¥u(t,x)), t € [0,a], = €
[—b,b], and we assume that 1o(t) <t for ¢ € [0,a]. Consider the nonlinear
equation

Oz(t,x) = f(t,:v,qu(t’z),amz(t, :v)) (4.1)
with the initial boundary condition
z2(t,x) = o(t,x), (t,z) € EgUOE. (4.2)

We consider weak solutions in the Cinquini-Cibrario sense. A function
Z: E*[c] = R, ¢ € (0,qa], is a C-C solution of (4.1), (4.2) provided
(i) Zy(t,e) € X for (t,2) € Elc] and 0,%(t, ) exists on Ec],
(ii) Z(-,x) : [0,c] — R is absolutely continuous on [0, ¢] for each x €
[_ba b]a
(iii) for each = € [—b,b] the equation (4.1) is satisfied for almost all
t € [0,c] and the condition (4.2) holds on Eg U 9y E.
We use the notation introduced in Chapters 1 and 2. Suppose that
Assumption H*[X] (see Section 2.1) is satisfied.
Let us denote by Jar[X] the class of all initial boundary functions ¢ :
EyUOyFE — R such that
1) o) € X for (t,2) € Dy, there exists 0z = (0uy ;- - -, O, ) ON
EoUOoE and (0z,9)(t,0) € X for (t,x) € Do, 1 <i < m,
2) there are by, bo € R4 with the properties

leta) = Lamlx < ba(t = + [l — ),

n

D N@e#) ) = Oai) @yl ¢ < b2(1t = + |z — ),

i=1
where (t,z), (t,T) € Dy,

55
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3) there are g1, g2 € R4 such that on 9y F the following estimates are
true
<aq ([t =1+ |z — =),
<@t =1+ |z —=l)).

Fix ¢ € Ju[X] and ¢ € (0,a], d, po, p1 € Ry. Denote by C’é.c[d]

the class of all functions z : E*[c] — R such that z(t,z) = ¢(t,z) for
(t,x) € Ey UJpF]c] and the estimate

|z(t, ) — 2(t,7)| < d(|t — | + ||z — 7))

holds on E[c] U9y E[c]. Let the symbol C’gw.c[po,pl] denote the class of all
functions u : E*[¢] — R™ such that u(t, z) = dp¢(t, z) for (¢,x) € EgUdyE[c]
and

lu(t, )| < po, [ult,2) —u@T)|| <pr(lt =7 + = — )
on Elc] U dyE[c]. We will prove that for sufficiently small ¢ € (0, a] there
exists a solution Z of the problem (4.1),(4.2) such that z € C% _[d] and

amz € Ogﬂp,c[p()apl]-

4.2. Properties of Bicharacteristics
We begin with the following assumptions.

Assumption Hy;[0,f]. The function f : Qy — R of the variables
(t,z,w,q) is such that

1) the derivative 9, f (¢, z, w, q) exists for (x,w,q) € [-b,b] x X x R"
and for almost all ¢ € [0, al,

2) the function 9y f (-, z,w,q) : [0,a] — R™ is measurable and there
are C, L € R, such that

||3qf(t7x7w7q)|| S 07
104 (t, 2. w,9) = 9, £ (1. 7.0, )| < L(le = + [[w — @]l x + llg —7l)

for (z,w,q), (T,w,q) € [—b,b] x X x R™ and for almost all ¢ € [0, a],
3) there is og > 0 such that for 1 <i<n

aqz'f(tﬂxuqu) > 0o, (x,w,Q) € Aj_ x X X Rn,
aqz'f(tﬂxﬂqu) < —oo, (x,w,Q) S A; x X x R"

for almost all ¢ € [0,a], where Af, A7, 1 <4 < n, are defined in
Section 3.2.

Assumption Hj[¢)]. The functions vy : [0,a] — R, ¢’ : E — [=b, ],
Y = (¢1,...,%n), are such that g(¢) <t for ¢t € [0,a] and

1) the partial derivatives [0 ,%]i j=1,...n = 0% exist on E and they
are continuous,
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2) there are s1, so € R4 with the properties
||61j¢/(t7‘r)|| < s, ||8Ij¢l(t=x) - 6%’@[/(1575)” < SQH‘T - TH

on £, 1 <5< n.

Suppose that Assumptions H*[X], Has[0,f], Ha[¢)] are satisfied and
let ¢ € Ju[X], ¢ € (0,a], z € CL [d], u € CBLM.C[pQ,pl], (t,z) € Elc].
Consider the Cauchy problem

77/(7-) = _aqf(Tu 77(7-)’ 2 (T,m(T))s U(T, 77(7-)))7 77(75) =7, (43)

and denote by g[z,u](-,t,z) its solution in the Carathéodory sense. The
function g[z, u](-, t, z) is the bicharacteristic of (4.1) corresponding to (z, u).
Let d[z, u](t, ) be the left end of the maximal interval on which the solution
glz,u](-,t,x) is defined.

We prove a lemma on bicharacteristics and their domains. For z €
CL ld), ue ngic[po,pl], where ¢ € T [X], we define

[l 2]|s.1 = max {|z(s,y)| : (s,y) € E[t]U 80E[t]}, 0<t<e,
l[]le. = max {||u(s,y)|| . (s,y) € E[t] U 60E[t]}, 0<t<e

Put
Q1 = (1+C)exp(cA’L), Q2 = Lexp(cA’L),

4.4
A*=1+81(K1d+K0b1)+p17 ( )

A=JAaFuay), T'= ({0} x[-b,b]) U((0,c] x A).
i=1

Lemma 4.1. Suppose that Assumptions H*[X|, Har[0qf], Ha[y)] are
satisfied and assume that ¢, @ € T [X] are such that ||p —7||% < +o0o and
z € Oé/.c[dL S C%.c[d], u € C’aLch[po,pl], u € C’gzac[po,pl], c € (0,a].
Then for each (t,x) € E[c] the solutions g[z,u](-, t,z) and g[z,u|(-, t, z) exist
on intervals I 5 and T(t,x) such that (¢, g[z,u)(¢,t, 1)), (C,g[z,u(C,t,x)) €
T, where { = 6[z,ul(t,x), ¢ = §[Z,|(t,z). The solutions of the problems
(4.3) are unique and they satisfy the conditions

lglz, ul(r,t,2) = glz,ul(,£,7)|| < Qu(|t — | + [l - 7)), (4.5)

where (t,z), (t,T) € Elc], 7 € I(12) N 77, and

Hg[z, ul (7, t,x) — g[?,ﬂ](T,t,x)H <

t
< Qo [ (ills=#ler + Kollo -l + lu—len) g, (10)

T
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where (t,x) € Elc], T € Iyp) N 1y). Moreover, the functions 8[z,u] and
0[z,u] are continuous on Flc] and

2@1 (
o

|0[2, u](t, ) — 8[Z, @ (t, x)| <

6]z, u](t, x) — [z, u](£,Z)| < [t =1+ ||z — 7)), (4.7)

t
2Q2 _ _ _
<22 [(Kile=3lea + Kollo ~ Bl + lu-en)ds (49
0
0

on Elc].

Proof. The existence and uniqueness of a Carathéodory solution of (4.3)
follows from Assumption H/[0, f] and from the following Lipschitz condi-
tion

6q¢f(7-7 Y, Z'd}(T,y)a ’U,(T7 y)) - aqif(T7 ga Z'LL'(T@)7 U(T7§))‘ S LA*Hy - y||7

where 7 € [0,¢], y, ¥ € [—b,b]. The bicharacteristics satisfy the integral
equation

glz,ul(r,t,z) = a — /qu(P[zm](@t,m)) dg,
where t
Plz,ul(& t,x) =

= (5; g[za ’LL] (6, t7 .%')7 Zw(f,g[z,u](g,t,z))a U(g, 9[27 U](§7 t, l’))) . (49)
Then we have the integral inequality

Hg[z, ul(7,t,x) — glz,ul(T, t, E)H <

< WHO)(e=T+llo-l) +| [N lleruent. o) gl (€ 7.7

for (t,z), (t,7) € Elc], T € I(,4) N I 77, and the inequality

HQ[Z, u](T7 ta 'T) - g[E,ﬂ](T,t,x)H S

< ‘ / L(A" gLz w6 t,2) = g1z, T(E )|+

+ Killz = Zlea + Kollp — 7l + lu— e ) d

for (t,z) € Elc], 7 € I(1,q) ﬂf(m). Using the Gronwall inequality, we obtain
(4.5) and (4.6).

The continuity of [z, u] and §[z, u] follows from theorems on continuous
dependence on initial data for Carathéodory solutions of ordinary differen-
tial systems. Let (¢,z), (¢,Z) € Elc], ¢ = d[z,u|(t,z), ¢ = §[z,u](t,T). The
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estimate (4.7) is obvious in the case ( = ¢ = 0. Suppose that 0 <
Then g[z,u](¢,t,T) € A. Consider the case where g[z,u|((,t,T) €
some i € {1,...,n}. Then g;[z,u](,T,T) = b;.

Let Y= (yla s ;yn)7 g: (yla s ay’iflabiay’i+1a cee 7y'n,) We have
aqif(Ta Y, Z'LL'(T,y)u U(Tu y)) - aqif(’ra g7 Z'd}(T,g)a ’U,(T7 /:J)) ‘ S LA~ (gz - yl)

for y € [-b,b] and for almost all 7 € [0, ¢|. Thus

<<<
A fo

1
8(1if(7-7yazw(7',y)7u(7-v y)) > 5 ao

for y € [—b,b] such that E —y; < g0 with g9 = 57%=. If the points (t,x),
(t,T) are such that

g0

b8 4 e - < By with 5 = 20
E= T+l =7 <8 with & = 0

(4.10)

then

bi - gi[27u](Z7 ta (ﬁ) = gl[z,u](g,ﬂf) - gl[Z,’U/](Z7 ta (ﬁ) S €o-
We get also

00, (PL2 €. 2)) 2 5 00 > 0

and consequently g;[z,u](-,t,x) is decreasing on the interval (¢, (). There-
fore b; — gi[z, u](7,t,z) < gp and

8q7,f(P[Z’ ’LL](Tﬂf, l’)) Z
for almost all 7 € (¢, ). Then

l\DI}—l

1 —

_§UO(C - C) > = aqif(P[Zvu](T7tv 'T)) dr =

A\N

= gi[ZJU](Z7ta x) _gi['zvu](C7ta x) > gi[ZJU](Zath) _gi[z=u](2af7f) >
> —Q1 (|t — | + [l= - z]),

that is,

- <<@<|t—%|+||m—fn>-

In the case where gilz,u)(C,T,T) = —b; we proceed in the similar way.
If (t,2),(t,7) € Elc] do not satisfy (4.10), then we consider the points
(to, o), (t1,21),. .., (ts, xs) such that (tg,z0) = (¢, ), (ts,zs) = (¢, ) and
s—1
=1+ lle =2l = (1t — tysal + g — zjall),
§=0

|tj—tj+1|+||$j—$j+1|| <5~1 for 0<j<s—1.
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Then we have
s—1
‘61[2](15756) - 61[2](%35” < Z |5[Zau](tjaxj) - 5[Z7u](tj+17$j+1)‘ <
=0
2Q1 ¢ 201\, - _
— t; —t; P — T =—(|t—1 — .
< ot 2o (1 =l iy =) = 2 (1 =1+~ 31)
To prove (4.8), suppose that (t,z) € Elc], 0 < 6[z,u](t,z) < 0[z,1(t, ).
Let £ = 0[z,1](t,z), & = d[z,ul(t,x). We have g[z,u](,t,z) € A. Con-
sider the case where g[z,u]({,t,2) € A} for some i € {1,...,n}. We have
gi[Z,T)(€,t,2) = b;. If (t,z) € E[c] and (g, z,u), (B, %,7) are such that

Killz = Z[lea + Kol — Bll% + lu = Tllen < 02 (4.11)
with 52 = ﬁ@, then

gi - gi[zvu](gv L, 'T) = gi[zvﬂ](gv L, 'T) — 9ij [Z](§7tv 'T) < €o.

Thus b; — gi[2, u(7,t,x) < g0 and

6qif(P[Z7’LL](T,t7.Z’)) > —-09>0

N =

for almost all 7 € (&,€). Then

¢
3 00E -9 2 - [0 (Plulnt.0) dr =
3

= gl[zau](gut7x) - gl[zau](gutwr) Z gl[Z,U](g,tw’If) - 91[276](57 ta (E) Z
t
> =a [ (Kale = 2l + Kollo ~ Il + u =l dr,
0

that is,
0 ¢
= 2Q2 - _ _
§-¢< 22 [ (Kallz = 2o+ Kollo ~ Pl + = Wlen)
0

If (¢, z,u), (¥,Z,%) do not satisfy (4.11), then to obtain (4.8) we use the
functions (¢;,z;,u;), 0 < j < v, such that ¢; € Ju[X], z; € Cg];j.c[d],
Uy S ngsaj.c[pOapl]u 0 < .7 < vV, o =P, 20 = 2, Ug = U, Py = ¢7 2y = Z,
u, = u and

Killz = Zllex + Kollg = 2ll% + llu = llen =

1
L

=3 (Kullz = 2i4allea + Kolles = @iallk + 1wy = wisallen)

<.
Il
o
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and
Killzj—zjs1llea+Eollgs — wjalls +lws—wjsillem <2, 0<j<v—1.

This completes the proof of Lemma 4.1. O

4.3. The Sequence of Successive Approximations

We formulate further assumptions on ¢ and f. For ¢ € Ty [X] let
the symbol S, denote the set of all functions w : E*[a] — R which are
continuous and w(t,z) = ¢(t,x) for (t,z) € Ey UGyE. Let us denote by
Ja71X] the class of all initial boundary functions ¢ € Jp[X] satisfying the
condition:

1) ifw,w € S, then
f(ta zaww(t,m)v Q) = f(t7x7ajl/}(t,w)a q)

for z € A, g € R™ and for almost all ¢ € [0, a],
2) there is v: F — R", v = (71,...,7n), such that

at@(tv'r) = f(t7x7aw(t,m)77(ta .T)) (412)
for 2 € A and for almost all ¢t € [0, a], where ¢ € S, and v;(t,z) =
O, p(t, ) for i € {j : r; > 0}.

Remark 4.1. The relation (4.12) is the consistency condition and it
can be considered as an assumption on ¢ at (¢,x) such that ¢t € [0,q],
r€AFUA; and 7; > 0. Ifi € {j : 7; = 0}, then (4.12) is the equation
for vi(t,x), t €[0,a], z € AT UA;.

Assumption H[f]. The function f : Q9 — R satisfies Assumption
HM [8qf] and

1) there is C' € Ry such that |f(¢,2,w,q)| < C on € and
’f(taxawuq) - f(zai%w#})’ S C|t—Z|,

where (¢, z,w,q), (t,2,w,q) € Qo,

2) the derivative 9,f(t,x,w,q) and the Fréchet derivative
Owf(t,z,w,q) € CL(X,R) exist for (z,w,q) € [-b,b] x X x R"
and for almost all ¢ € [0, al,

3) the estimates

Hamf(tamawaQ)H <C, Hawf(t,m,w,q)H* <C
and the Lipschitz conditions
||axf(tvszvq) - aﬂﬁf(tvfa wv q)” < L(”‘T _E” + ”w - m”X + ||q - 6”)7
||8wf(tvszvq) - awf(t7f7wva H* < L(”‘T _E” + ”w - w”X + ||q - 6”)

are satisfied for (z,w, q), (T,w,q) € [-b,b] x X x R™ and for almost
all t € [0,a].
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If w=(wi,...,wp) with w; € X, 1 <i<n, and (t,z,w,q) € Qp, then
we write

Owf(t, z,w,q)(w) = ((%f(t7 T, W0, q)W1, ..., O f(t, 2, w, q)wn>.

For ¢ € J3[X] and z € CL [d], u,v € CaLw.c[po,pl] with ¢ € (0,a] we
define

Flz,u] : Elc] — R,
Glz,v,u] : E[c] = R", G|z,v,u] = (Gl[z,v7u]7...,Gn[z,uu])
in the following way

F[z7u](t7x) = @(Q[Z, u](t, l‘))—l—

t

—|—/[f (P[z, u)(7, t, a:)) —aqf(P[z, u) (7, t, z))ou(T, glz,u](7, ¢, 9:))] dr, (4.13)

0

Glz,v,u|(t,x) = 3z<p(Q[z,u](t,a:)) —I—/ {(%f(P[z,u](T,t,a:))-F
S

+8wf(P[Zv u] (7-7 ta 'T)) (vw(‘r,g[z,u](r,tw))azwl(Ta g[zv u] (T7 t’ LZJ))):| dT? (414)
where § = [z, u](t, z), Plz,u](-,t,z) is given by (4.9) and
Qlzul(t,2) = o[z ul(t, @), gLz, u (012, wl(t, ), . ) ). (4.15)

We define the sequences {z(™} and {u(™}, where 2(™ : E*[c] — R, u(™ :
E*[c] — R™, as follows. Let ¢ : E*[¢] — R be an extention of ¢ such that
()5 S Cé’c[dL 8m(ﬁ € C(%m%c[po,pl]. Put

29 =% and u® = 8,5 on E*[d].

Suppose that z(™) € CL [d] and ul™ ¢ C¥ ,.[po, p1] are known functions.
Then

1) the function u(™*Y is a solution of the problem
u= G[z(m), u(m),u], u=0zp on EqgUOyE[c], (4.16)
2) the function z(™*Y is given by
Z(m+1) = F[z(m),u(mﬂ)], M) — 5 on EyUdE|d]. (4.17)
Remark 4.2. The above defined sequences {z(™}, {u(™} are the se-
quences of succesive approximations for the system of functional integral
equations
z = Flz,u], uw=Gz,u,u] on E[] (4.18)
with initial boundary conditions

z=p, u=0yp on EyUOdyFE|c|.
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This problem is obtained by introducing an unknown function « with v =
O,z and considering the linearization of (4.1)

Ozt @) = f(t,, 2p(,2), ult, )+
+ g f (t, 2, 2 (1,00, u(t, @) © (Bpz(t, @) — u(t,z)). (4.19)

By virtue of (4.1) we get the following differential system for the unknown
function u

8tu(t,z):@zf(t,:c,zw(t@), (t, :c))—|—8 f(t T, Zy(t,2), U(t ,:c))oazu(t,z)—k
+awf(taxazw(t xz), U ( ) )) ((8962) tm)az¢ ( Y ) (420)

)
Finally we put 0,z = u in (4.20) and we consider (4.19), (4.20) along the
bicharacteristics g[z, u](-, ¢, ). Integrating from d[z, u](t, z) to t with respect
to 7, we get (4.18).

We formulate lemmas on existence of the above defined sequences {2z (™)}

and {u(m)}. We need the following assumption on the constants c, d, pg, p1.
Write

Vi :le1(1+2(1074;0)),

Vs = ¢(A*(C + Lpo) + Cpo) Q1
fo = Kipo + Kob1, i1 = Kip1 + Koba,
2(1+ C)
o0

Vs = (54—0}70)(14'%)

Ly=IN'Qi, Ly =a@i(1+ ). Lu = Qi (s2fio + stin).

Assumption Hjy,[c,d, pg, p1]. The constants ¢ € (0,al, d, po, p1 € Ry
satisfy the conditions:

3
po_d>max{q1—|—cC’ 1+ s1f00) ’ZVZ}’ (4.21)
=1
- 261
P> Lo+ e(Ly+ Lysifio+ CLy) + C(1+ ) (4.22)

If m > 1 is fixed and the functions z(™) € Ck.[d] and u m) € C§ ,.lpo, ]
are known, then we write

Gy = Glz™, u™ v, ek, [po,p1]- (4.23)

Lemma 4.2. If Assumptions H*[X], Ha[f], Hm[¥], Hule, d, po, p1]
are satisfied and ¢ € J);[X], then Gm) . ngw_c[po,pl] — ng@,c[po,pl]-
Moreover, there exists exactly one function u € ng,c[po,pl] satisfying the
equation u = G [u].

Proof. Let u € C’gmw.c[po, p1]. It follows from the assumptions of the lemma
that
||G(m)[u](t7x)H <@ +cC(l+s100) on Eld],
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and according to (4.21) we get
|G ul(t, )| < po, (t2) € Ed].
Let w™ [u](7,t,2) € X™ be given by
W™ (7, t, @) = (™) (7 gl w0t (T g2 U] (7, 8, 7).
Suppose that (t,z), (t,T) € Elc]. We have

0 f (P2 (7,1, 2)) — azf(P[z(m),u](T,f,E))H <
< Ly(|t —t| + [lz — z),
Hawf(P[zW, ul(r,t,2)) — O £ (P2, u)(r,F, 7))

< Ly ([t =t + [l — =),

(%gp(Q[z(m),u] (tmc)) — &Cg@(Q[z(m),u] (ﬂT))
lw ™l (7, t, ) — w ™ [u)(r,,7) || x < Lo (|t = + [lz — ).

IN

< Lo (It = + ||z — =),

Thus we obtain
|G [u](t, &) =G [u] (@,7) | <pr (LT + |z —Z]), (t,2), (T, 7)€ E[]

under the assumption (4.22). This proves that G(™[u] € ngw_c[po,pl].
There is 4 > 0 such that for u,u € ng,c[po,pl]

|G (8 ) = Gt )| < ?/ lu —Tulle.nd, () € Eld].
0

For u € C’aLW_C[po,pl] and for A > v we define

lully = max { ut, @) e ™ : (t,2) € Ell}.

If u,u e ng@,c[p07p1]’ then
t ~
6l )6 e, )] <3 [l € de < ] =T
0

that is,

|G [u] = G| ) < % llu =2l (5

We have § < 1 and hence there exists exactly one u € Oé%m o.c[Po; 1] satis-
fying the equation u = G(™ [u]. The proof of Lemma 4.2 is complete. [

The next lemma is important in our considerations.
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Lemma 4.3. If Assumptions H*[X], Ha[f], Hm[¥], Hule, d, po, p1]
are satisfied, o € J;[X], then for any m > 0 we have

0,2 (t,z) = u™(t,2), (t,2) € E[] (4.24)
and

2m e ¢k [d). (4.25)

Proof. We prove (4.24) by induction. Tt follows from the definition of z(®),
u(9) that (4.24) is satisfied for m = 0. Suppose that (4.24) holds for a given
m > 0. We will prove that

DpzmH) = 4+ on E[d. (4.26)
Write
At 2, T) = 2D, 7) — 2D (¢ 2) — u (8 2) o (T — ),
where (¢, ), (t,%) € E[c]. We prove that there exists Cyp € R4 such that

|A(t,2,7)| < CollT — 2. (4.27)
According to (4.16), (4.17) and (4.23) we have
Alt,z,T) =

=F [z(m),u(m+l)] (t,Z)—F [z(m),u(m+l)] (t,2) =G [u ™ V](t, z)o (Z—x).
For simplicity of notation write
g(r,t,x)= [z(m),u(erl)} (r,t,2), 0(t,x)=4 [z(m),u(erl)} (t,x),
w(r,t,z) = w™ WM (1 ¢, z), (4.28)
Q(t,x)=Q[z"™ulm V] (t,2), P(r,t,2)=P[z"™u"V](r,t,2).
Let R(s,,t,x,T) be the following intermediate point
R(s,7,t,x,T) = P(1,t,x) + S(P(T, t,T) — P(T,t,:z:)), 0<s<1.

Assume that (¢, ), (¢,T) € E[c]. Consider the case §(¢t,T) < d(t,x). Similar
arguments apply to the case §(t,T) > (¢, x). To formulate properties of A,
we define

A(t7x7f) = @(Q(LE)) - QD(Q(L.%‘)) - at(p(Q(tﬂ m))(é(hf) - (5(1573;‘))4-
—02p(Q(t, ) 0 (9(0(t, 7). £, T) — g(0(t, @), ¢, ),
B(t, z,7) = 0ip(Q(t, 7)) (d(t,7) — o(t, x))+

+0:0(Q(t, 7)) o (9( ( T),t, ) ( (t, ) ) (E—I)),
Ora(s,7,t,2,T) o f(R(s, T T)) — T,t, 1)),
Sfw(s,T,t,2,T) (R(s 7,t,%,T)) — T, t,x)),
5fq(s7'tzz (RST,t,x,x)— 2 ( T,t,f)).

We have
At,x,T) = Aq1(t, 2, T) + As(t, 2, T),
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where

Ay (t,z,T) = A(t,z,T)+

t 1

+ / /[5f.$(s777t,x,f) o (g(mt,T) — g(7,t, )+

S(t,z) O
+5f.w(57 T, ta z, T) ((Z(m))’l/}(T,g(T,t,i)) - (Z(m))w(Txg(Txt@))) +

+6¢.4(s,7,t,2,7) 0 (u(m+1)(7,g(77t,5)) — u(m“)(T,g(ﬂt, m)))} dsdr+
¢
[ st ) (G utratmamn — G otratrnan-
5(t,a)
—w(r,t,x) o (g(1,t,T) — g(Tﬂf,iL‘))) dr

and

Ao(t,z,7) = B(t, 2, T) + / [(%f(P(ﬂt,-’E)H

§(t,x)

+8wf(P(T,t7m))(w(7,t,x))) o (g(r,t,T) — g(r,t,x) — (T —x))—

- (aq F(P(r,1, 7)) — 0,f(P(rt, x))) o u ™+ (1, g(r,t, m))] dr+
6(t,x)

+ / (£(P(.8,) = 0, f (P(r,£.7)) 0 u™ V) (7, g(r, 1, 7)) ) dr.
8(t,7)

Substituting the relation
¢

g1, t,T)—g(1,t,2)— (T — x) :/(qu(P(T7 t,T))— 0y f (P(T,t, x))) dr

into Ag(t, z,T) and changing the order of integration, we obtain

AQ(t,fE7T) :C(t, )+

T, T
t
+ / (&J(P(T, t,7)) — Ogf(P(7,1, 9:))) o D(r,t,x)dr,
6(t,x)

where
6(t,x)

C(t,2,7) = / (F(P(r.t.7)) — BplQ(t, 7)) drt
5(t.7)
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é(t,x)
+ [ (2et@2) ™) (r.g(7,1.5) ) 0 0, (Plr.t.9) .
4(t,@)
D(r,t,2) = '™V (1, g(1,t,2)) + B 0(Q(t, 2))+

t

b [ (0P b)) + 0P ) wlE, 1 0)))
o(t,x)
Since g(s,T,9(7,t,x)) = g(s,t,x) and (7, g(7,t,x)) = 6(t,x) for (¢t,z) €
Elc], 7,5 € I (4 4), where I(; ; is the domain of g(-,t,x), we have

’U,(erl)(T, g(1.t,x)) = 0,p(Q(t, x))+

T

+ / (&f(P(s,t, z)) + 8wf(P(s,t,a:))(w(s,t,x))) ds,

5(t,z)
and thus

D(r,t,x) =0, (t,x) € Elc], T € Iy z).
It follows from our assumptions that there is C; € Ry such that

C(t,2,7)| < C1|7 — =|?
and, consequently,
|A2(t,z,f)} < Cy|[T —z|]? for (t,2),(t,T) € Eld. (4.29)
We estimate Aq(t,x,%). There exists C 4 € R4 such that

A(t,z,7)| < Ca|z — 2|

The terms [|07.4(s, 7, t, 2, T)||, [|07.4(s, 7, t, 2, )|, |00 (s, T, t, 2, T)||+ are bo-
unded from above by Ls||g(7,t,T) — g(7, ¢, z)| for some Ls € R.. We have
also

1™ yr gz = E™)prgirian|lx <
S 51(K1d+ K0b1)||g(77t7f) - g(T7ta‘T)||7
[V (7, g, 1, 7)) — ul™ D (7, g, 2)| < pi[lg(r,t,7) — 9,8, 2)]

It follows from the equality 9,2(™) = u(™ on El¢] that

(Z(m))w(f,g(m@)) - (Z(m))’l/}(‘r,g(‘nt,w)) —w(T,t,x)0 (9(77 t,2)—g(7,t, I)) Hx <

< (3%(K1p1 + Kobz) + s2(K1d + Kob1)> lg(r,t,7) — 9(77t>$)H2-

All the above estimates and the properties of bicharacteristics imply that
there is Co € Ry such that for (¢,x), (¢,T) € Elc|

1AL (t,2,T)| < Col|7 — 2| (4.30)
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The inequalities (4.29) and (4.30) give (4.27) and, consequently,
02TV () = u™ (¢, 2), (t,2) € E[d.

The proof of (4.26) is complete.
It follows from (4.24) that on E[c|

10,2V (¢, z)|| < d.

Let (t,z),(t,z) € E[c]. We use the notation (4.28) and we can write the
following estimates

“P(Q(tﬂ z)) — p(Q(, CC))’ <Wilt-1,
§(t,x)

’ [ |1t~ 0,1(P(r.t.2)) 0 D (1, () |+

§(%,x)
—l—‘ / ’f(P(T,t,I)) — 0 f(P(1,t,)) 0 u(m D (T,g(T, t, z))‘ dr| <
t

t

/(}f(P(T,m))—f(P(T, )|+

5(t,x)

Ay f (P(7,t,2))oum*D (r,9(r,t,2))—

—0,f (P(1,t,2)) 0 w(m+D) (1,9(1,t,2)) D dr| < Vs|t —t|.

It follows from Assumption Hyy[c, d, po, p1] that
|2 (¢, 2) — 2HD(F, 2)| < dft —T.

Thus z(m+Y ¢ Ogé/.c[d]' This completes the proof of Lemma 4.3. O

4.4. Existence and Uniqueness of Generalized Solutions
First we prove the convergence of the sequences {z(™} and {u(™}.

Lemma 4.4. If Assumptions H*[X], Has[f], Ha [0] and Hyzle, d, po, p1]
are satisfied and ¢ € Jh[X], then the sequences {z™} and {u(™} are
uniformly convergent on Elc].

Proof. For t € [0,c] and m > 1 we write
20 = 27—, and ) = ™ "D,

The assumptions of the lemma imply the inequality

t t

Um+1(t)Sfl/(Klzm(T)+Um+1(T)) dT+K1081/Um(T)dT,
0 0
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where ¢ € [0, ¢], for some [, € R, independent of m. Thus it follows from
the Gronwall inequality that
t

Uni1(t) < fg/ (Zm(7) + U (7)) dr, (4.31)
0

where T'y = el max{Klfl, K1Cs1}. We have also
t

Zms1(t) < T3 / (K1 Zyn(7) + Upga (7)) dr + C / Uppgr (1) dr,
0 0

where t € [0, c], for some I's € R. Using (4.31), we obtain
t
Zmi1(t) < Ty / (Zm(7) + Up (7)) dr,
0

where T'y = max{fg,Kl, c(fg, + C)fz}. Put Ty = I's + [y and observe that
we have obtained the integral inequality
¢

Zoner(t) + U () < T / (Zon(r) + Un(r)) dr, t€0,d  (4.32)
0
For Z € C([0,c], R) and for A > Iy we write
|Z||x = max {|Z(t)]e * : t €[0,d}.
It follows from (4.32) that

t
Zunir(8) + Upia(®) £ To [ (12l + [Unla) " dr <
0

Ty _
< e M1 Zmlx + 1Um)-
Thus _
Ty
1Zm1llx + 1Umsrlln < == (1Zmllx + [1Umll), m 2 1.

We have also

[1Z1]Ix 4+ [Usllx < 2(de + po).
Consequently, the sequences {Z,,}, {Up,} are uniformly convergent to zero
which implies the assertion of Lemma 4.4. O

We are in a position to state the main result for the problem (4.1), (4.2).
We write

Illeay = max {lo(s, )] = (s,1) € DoElH]},
102l ey = max { N0uo(s, )| = (5,9) € Dot}
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where ¢ € J,;[X] and ¢ € [0, a.

Theorem 4.1. Suppose that Assumptions H*[X], Ha[f], Ha[o],
Has[e, d, po, p1] are satisfied. Then for each ¢ € J;;[X] there exists a solu-
tion z = z[p] : E*[c] — R to the problem (4.1), (4.2) such that

z€CL ld and 9,z € C§_, [po,p1].
Moreover, if ¢, € Jy[X] are such that || — P||% < +oo and z = z[y],
z = z[p], then there is © € Ry such that
12 = Zllea + 1022 = 02Z|c.n <

<0(llp = Blery + 109 = Bl ey + o~ ll% ). (4.33)

Proof. Lemmas 4.3 and 4.4 imply that there is z € C% .[d] such that
z(t,x) = n%gnoo 2t x), Opz(t,x) = n}gnoo uw™ (t, x)

uniformly on E[c]. Thus we get

z=Flz,0,2], 0:z=Glz,0.2,0,2] on E|c|.

Moreover,
z=¢ on EgUOdyE[c].
Thus z is a solution of the problem (4.1), (4.2) on E*[c].
To prove (4.33) with ¢, % € J,;[X] such that ||¢ — 5|% < +oo, we use
the Gronwall inequality to the following one

lz = Zl|t.1 + |02z — 02Z|tn < L0(||<P — Dl 1) + 1020 — 5m¢||(t.n)>+
t
401 [ (12 = Floa + 1052 = 03l + o = Bk ) dr

0
for some Lo, L; € R4. The proof of Theorem 4.1 is complete. 0

Remark 4.3. In our considerations we do not assume that
O0u, f(P)>0 for 1 <i<k, Ogf(P)<0 for k+1<i<nmn,
where P = (t,z,w,q) for (z,w,q) € [-b,b] x X x R™ and for almost all

t € [0,a] (see [25]). In virtue of that the functional variable in (4.1) is
defined on the set B which is the same for initial and mixed problems.



CHAPTER 5

Initial Problems on the Haar Pyramid

5.1. Lipschitz Continuous Solutions of Quasilinear Systems

We use the notation introduced in Chapter 1. Let H denote the Haar
pyramid

H— {(t,:v) ER™: te0,a], —b+h(t) <z <b-— h(t)},
where a > 0, b € R} and h € C([0,a], R}) is a nondecreasing function,
h(0) =0, b > h(a). Write
Dy = (—00,0] x [=b,b], Hy={(s,z)eH: s<t}, 0<t<a.

Let X, 0 <t < a, be a linear space consisting of functions mapping the set
Dy U H, into R*. Assume that

A:Hx Xy — Mgk, A=[Aijlij=1,. &
0:H X Xq— Mixn, 0=1[0ijli=1,.. kj=1,..n
fHxXe— R f=(fi,....fx), and ¢: Dy — RF
are given functions. Let z = (z1,...,2;) be an unknown function of the

variables (¢t,z), * = (x1,...,2,). We consider the quasilinear system of
differential functional equations in the Schauder canonic form

k n
Z Aij (t7 €, Z) (atzj (t= m) + Z Qiu(t7 €, Z)awuzj (t7 x)) = fi(t; z, Z) (5-1)

Jj=1 v=1
where 1 < i < k, with the initial condition
z(t,x) = o(t,z), (t,z) € Dy. (5.2)

Here the variable z represents the functional dependence. This model is
suitable for initial problems considered in the Haar pyramid. We consider
weak solutions of the problem (5.1),(5.2). A function z : Do UH,. — R¥,
¢ € (0,al, is a solution of (5.1), (5.2) provided
(i) Z is continuous on H,,
(ii) the derivatives 0:z;,0.2; = (Ox,Ziy---,0x,2i), 1 < i < k, exist
almost everywhere on H,,

(iii) Z satisfies the differential system for almost all (¢,z) € H. and the
condition (5.2) holds.

71
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Let t € (0,a]. For z € C(Hy, R¥) we write
||2]ls = max {||2(s,2)||oc : (s,%) € Hy}.
Denote by CF(H,, R*) the class of all z € C(H;, RF) such that

I2llf =

_ Sup{”Z(s,m) —2(3,7)| 00  (s,2), (5.7) € Hy, (5,2) # (g’f)} < too.

|s = 5] + [l — =]
For z € CE(H,, R¥) we define the norm of z by
Izlle.. = llzlle + ll217-
We formulate the following assumptions on the spaces X;, 0 <t < a.
Assumption HY[X]. For each t € [0,a] the space (X, || - |x,) is
a Banach space of functions from Dy U H; into R* and there is a linear

subspace Xy, C Xy such that (X;.1,] - ||x, ) is a Banach space. For each
t € (0, a] the spaces X; and X, 1, satisfy the following conditions:

1) if 2 : DgUH; — RF and Zp, € Xo, € O(Hy, R¥), then z € X,
and

lr,

[2llx. < Killz), I + Kol 25, [l x0

where K7 Ky € R4 are constants independent of z,
2) if z: DoUH; — RF and 2, € Xor, € CL(H, R¥), then
z € X and

2]l x0. < M|z, [l + Moll2|p, [ x0..

lre,

with the constants M7, My € R independent of z.

We give examples of spaces satisfying Assumption HZ[X].

Example 5.1. Let X be the class of all functions w : Dy — R¥ which
are bounded and uniformly continuous on Dgy. For w € X, we put

lwllx, = sup {[lw(t, @)l = (t,2) € Do} (5-3)

Let Xy, 0 < t < a, be the set of all functions z : Dy U H; — RF such that
2p, € Xo and z|,,, € C(H,, R¥) with the norm of z given by

120 = 121 X0 + [[215, lle-
Denote by Xy 1 the space of all w € X such that

lwllB, =

_ [w(t, z) = w(t, 7)o . -
= sup{ T P (t,x), (¢,T) € Do, (t,z) # (t,x)} < 400

with the norm of w given by

lwllx, . = lwllx, + w5, (5.4)



Hyperbolic Differential Functional Equations with Unbounded Delay 73
Let X;. 1, 0 <t < a, denote the space of all z € X; such that 2|, € Xo.L
and z|,, € CE(Hy, R*) with the norm of z given by

211 x2. = 1215, X0 + 1212, lle.L-
Then Assumption HE[X] is satisfied with Ky = Ko = M; = My = 1.

Example 5.2. Let v : (—00,0] — (0,400) be continuous and nonin-
creasing. We define X as the space of all continuous functions w : Dy — R
such that

G Y € [~b,b],
t==o0 (t)
with the norm of w given by
[w(t, )]0
—oup {160y e )
el = sup { T (62) € Do

Let X;, 0 < t < a, be the set of the functions z : Dy U H; — RF such that
Zp, € Xo and z),, € C(Hy¢, RF). For 2 € X, we put

121lx0 = 1210, 1 x0 + 1215, ll2-

Denote by Xo. 1, the space of all w € Xg such that |lw||}, < 400 with the
norm of w given by (5.4). Let X; 1, 0 < t < a, denote the space of all
z € Xy such that 2|, € Xo.r, and 2|4, € CL(Ht,Rk) with the norm of z
given by

21l x2. = 1215, X0 + 1212, lle.L-

Then Assumption HY[X] is satisfied with K; = 'y(l_O)’ Ko=M, =My=1.

Suppose that Assumption HY[X] is satisfied. Fix ¢ € X1, ¢ € (0,q]
and d = (do,d1) € R%. Denote by ch.c[d] the class of all functions z :
Do U H. — R such that z(¢,z) = ¢(t,x) for (t,z) € Do and

12(t, 2)[|oo < do, ||2(t,x) — 2(5,T)|| < di(Jt =7+ [z —Z]) on He.
We prove that there is a solution of (5.1), (5.2) in Ké.c[d] for sufficiently
small ¢ € (0,a] and for some d € R3. Write

Sy =[—b+h(t),b—h(t)], tel0,a,
Iz ={te[0,a]: (t,x) e H}, =€ [-b,b].
We adopt the following assumptions on o.

Assumption H%Y[g]. The function o : H x X, — Mjxs is such that
o(-,z,w) is measurable on I[x] for every (z,w) € [=b,b] x Xq, o(t,-) is
continuous on Sy x X, for almost all ¢ € [0, a] and

1) there is § € C([0,a], R™), § = (41, ...,0,) such that

|Qij(t7'r7w)|§5j(t)v 1§’LS]€, 1§]Sna tE[O,a], (Iaw)EStXXt;
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h(t) = /5(5) ds, t€l0,qa],
0

2) there is 81 € A such that
|o(t, z,w) — o(t,Z,W)|| _ < Bu(t, 1) (lz — = + [|[w — | x,)

for (x,w), (z,w) € St x Xy 1[p] and for almost all ¢ € [0, a], where
X¢.p[p] is defined by (1.9).

Remark 5.1. Tf Assumption HE[g] is satisfied, then the function o sat-
isfies the following Volterra condition: if (t,z) € H, z, z € X, and z(s,y) =
Z(s,y) for (s,y) € Do UHy, then o(t,x,z) = o(t, z,%).

Let the symbol J7[X] denote the class of all initial functions ¢ : Dy —
RF such that ¢ € Xg.1, and there are by, b1, cg, ¢; € Ry with the properties

lellxo <bo, llllxo, < b1,
(0, 2)loe < co,  [|(0,2) — (0, Z)[| , < exlle —Z on [-b,b].
Suppose that Assumptions HZ[X], HE[g] are satisfied and ¢ € JL[X],
ce (0,a], z € K% [d], (t,x) € He, 1 <i < k. Consider the Cauchy problem
77/(7—) = Qi(T7n(T)7 2)7 U(t) =z, (55>

where 0; = (0i1,- - ., 0in)- Let us denote by g¢;[2](-, ¢, ) the solution of (5.5)
and by [0, 0;[z](t, )] the maximal interval on which g;[2](-, ¢, z) exists.

Lemma 5.1. Suppose that Assumptions H'[X], HE o] are satisfied and
¢, pe JVX], z e KL |, ze KL [d], c € (0,a]. Then for each (t,x) €
He, 1 < i <k, the unique solutions ¢;[z](-,t,x) and g;[Z](-,t, ) exist on
[0, 04[2](t, x)] and [0, 0;[Z](¢, z)], respectively. Moreover,

lgilz)(m. t. 2) = gilel(m, £, 2) || < 60 Qe(lt —F| + = —=ll)  (5.6)
on [0, min{o;[2](t, z), 0:[2](t,Z)}] x He, and

Hgi[z](75t7x) - gi[g](Tv 2 'T)H < Qe

[ocma-l=-3lx. 61

on [0, min{c;[z|(¢t, z), 0;[Z](t, x)}] X H., where
§¢ =1+60, 0o =max{[|d(s)]: s€[0,a]},

Qc = exp (/51(§,u1)d§), p1 = Mi(do + d1) + Mob;.
0

Proof. Assumption H”[p] and the following Lipschitz condition

||Qi(7—7yaz) - Qi(T7§a Z)H < 51(7—7 Ml)Hy - y||7 Y, :l_/ € ST7
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imply the existence of a unique Caratheodory solution of (5.5). It follows
from the integral equation

T

gildl(rto) =z + / 0:(€. gilA) (€.t 2), =) de
that

Hgi[z](Tv 2 JC) - gi[z](ﬂ%vi) H <

w
&)

<63 (1t~ + |z — =) +\/ms,mugi[z]<s,m> ail21(

lg:2)(7. 1, @) — gilz) (7,1, )| <

T

<| [ o (loBle 1) — el + 1 =3l ) e
t
Thus we get (5.6) and (5.7) by using the Gronwall inequality. O

Now we formulate assumptions on f and A.

Assumption HL[f]. The function f : H x X, — RF is such that
f(-,z,w) is measurable on I[z]| for every (z,w) € [—b,b] X Xq, f(t,-) is
continuous on Sy x X, for almost all ¢ € [0, a] and

1) there is ay € ¥ such that
||f(ta €T, w)”OO < QQ(U)

for (z,w) € St x X¢[p] and for almost all ¢ € [0, a],
2) there is B2 € ¥ such that

for (z,w), (T,w) € Sy x X; r[p] and for almost all ¢ € [0, a].

Assumption H%[A]. The function A : H x X, — My}, satisfies the
conditions:

1) there are o, 3 € ¥ such that
A, 2, w)lloo < a(u), te€[0,a], (z,w)e S x Xiful,
A, 2, w) — AR, 2, w)|, < B(u)t —7]
for t,t € [0,al, (z,w) €S~><X;L[ ], t = max{t, 1},
HA (t,z,w) — A(t,Z,w H (||17—1:|| + ||lw — w||Xt)

for t € [0,a], (x,w), (m,w) € St x X[y,
2) for each (t,z,w) € H x X,[u] there exists the inverse matrix
A7Y(t, x,w) and there are ag, By € ¥ such that

||A71(t7'r7w)||00 < O‘O(,UJ), te [O,Cl], (I,UJ) € St X Xt[:u‘]a
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A7 ¢ 2, w) = ATHE 2, w) || < Bo(p)lt — 1
for t, t € [0, a] (;1: w) € Sy x X; ;[u], t = max{t,},
A7 (¢t 2, w) — A7) || < Bolw) ([l —Z + [Jw — | x,)
for ¢ € [O,a], (z,w), (Z,w) € St x X¢.p[u].

Assume that ¢ € J*[X], c € (0,a], z € K} [d], (t,2) € He, 1 <i <k,
Write
Alz [Aij (7, gil 2] (7, t7x)72)}i,j:1 ..... Kk
[gp (0, g;[2](7, t, x))]m.:l 777
[2i(7, g;[2)(7, t ‘T))L,jzl,...7k’

[fi(T7 gi['z] (T7 t, x)’ Z)]jzl

where g;[2](-, t, z) is a solution of (5.5) and 7 € [0, 0;[2](t, z)]. Define T,,(2) :
Do UH, — RF in the following way

T@(Z)(t, 'T) = @(t’z)a (tax) € Dy,

Z[Z)(r,t,x

J(rt,2) =
D[z](7,t,x) =
J(rt,2) =
)=

fl2](m t, x

.....

3

Ty(2)(t,z) = (0, z) + Ail(tmc7 z) Z Vilz](t, z), (t,z) € He,

where

Val2](t, z) = A[2](0,t,z) * (®[2](0,¢,z) — ®[2](¢, ¢, 2)),

t

Va[z](t, z) = /% Al2](7,t, ) * (Z[z] (1,t,2) — @[z](t,t,x)) dr.
0

We prove that T, has a fixed point Z € K [d] for some ¢ and d. This Z is
a solution of (5.1), (5.2).

5.2. The Theorem on Existence and Uniqueness
We formulate the following lemmas on the operator T,.

Lemma 5.2. If Assumptions HE[X], HE[o], HE[f], HE[A] are satisfied,
then there are ¢ € (0,a], d = (do,d1) € R% such that for each ¢ € J*[X]
the operator T, maps the set K [d] into itself.

Proof. Let ¢ € J¥[X] and z € K[ [d]. Tt is easy to see that

va (t,2)]|oo < €V,
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where

V = as(po) + apo)crdo + cB(p1)dg (di + c160), po = Kido + Kobo.
We assume that

do > co + cap(po)V (5.9)
and we obtain the estimate
|1 To(2)(¢, x)Hoo <dp on H..
Let (¢,2), (¢,T) € H.. The assumptions of the lemma imply that
[Vil](t,2) = Vil (£, D)|| . < vie(lt —E| + |z =), i=1,2,3,
where
v1e = aa(po) + cB2(11)05 Qe

cB(p1)dg Qeerdo + alpo)er (1 + 85 Qe),
= /()0 (dr + €100) + cB(11)d3 (di + Qecrdo)+
+ cA(1)Qedi (7) + cB(p1)dg (d1Q.5g + c1).
In this way we obtain

[T ()t 2) = To(t,7)]| , < du(t = + [l2 = 7)),

V2.c
V3.c

where
dy > 1+ cfBo(p1)V + ao(io) Z Vi c- (5.10)
i=1
The above considerations imply that for ¢ € (0,a] and d = (do,d1) € R%

such that the inequalities (5.9), (5.10) hold the operator T, maps the set
KL [d] into itself. O

Put
lells = max {[l¢(0,2)lloc : = € [-b,b]},
where ¢ € JE[X].

Lemma 5.3. Suppose that the assumptions of Lemma 5.2 are satisfied.
Ifo,pe T X] and z € K [d], Z € Ké.c[d], then there are G1..,G2,G3 €
Ry such that

[|To(2) = T(2)|, < Grellz = Zlle + Galle = Blix, + Gsllo = Dl (5.11)
Proof. Fix p,p € J"[X] and z € KL [d],Z € Ké.c[d]' It easily follows that
[Val2l(t, 2) = VAEl(t o) | o, < Orellz = Z]lx..

[Vale](t, ) = ValZ](t, )|, < Oz.cllz = Zlx. + 20(po) ¢ — 5,
[Va[2](t,2) = Vs[Z] (8, 2) || <
< O3.cllz — Zllx. + cB(m)dg (12 = Zle + e — 21l5),
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where

01.c = cfB2(p1)0", ba.c=cB(p1)0"cido + a(uo)lec/ﬁl(fa p) dé,
0

03.c = cB(p1) <55rd1Qc/51 (&, p1)dE 4 dy + 0" (c160 + d155r)>
0
and
0" =1+ Qc [ Bi(& 1) dE.
/

Thus we obtain
| T (z) — Tv(7)||c < 0|z — 7zl x, + caolpo)B(p1)dg ||z — 2|+

+ (14 cao(io) B4m)3g -+ 2a(m)ao(io) )l = 5,

where
3
Oc = Bo(p1)cV + ao(po) Z Oi.c-
i=1

Therefore the estimate (5.11) is true for

Gi..= K0, + cao(,uo)ﬁ(,ul)éa', (512)

Go = Kofle, Gz =1+ cag(uo)B(p1)dg + 2a(po)ao (o), (5.13)

which completes the proof of Lemma 5.3. O

Now we are ready to prove a theorem on solution of the problem
(5.1),(5.2).

Theorem 5.1. Suppose that Assumptions HE[X], HE[o], HE[f], HE[A]
are satisfied. Assume that the constants ¢ € (0,a], d = (do,d1) € R% satisfy
the inequalities (5.9), (5.10) and

Gic <1, (5.14)

where G1... is given by (5.12). Then for each ¢ € JY[X] there exists z =
z[p] € KL [d] which is a unique solution of (5.1), (5.2). Furthermore, if

¢, 0 € TE[X], z = z[¢], Z = 2[@], then

(G2l = Plx, + Galle — 1), (5.15)

1
Iz =2l <
1_G1.c

where Ga, Gs are given by (5.13).
Proof. In virtue of (5.9), (5.10) and (5.14) the operator T, : K% [d] —

KL [d] is a contraction for each ¢ € J*[X]. Thus it has a fixed point z =
z[p]e KL [d]. The inequality (5.15) immediately follows from Lemma 5.3. O]
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5.3. Solutions Satisfying Generalized Lipschitz Condition

Now we consider a special case of the problem (5.1), (5.2). Assume that

0:Hx Xy — Mixk, 0=/0ijli=1,...kj=1,....,ns
f:HxXa—>Rk, =01 fr) <p:D0—>Rk
and
A:H x RF — Myyr, A=[Aijlije1, .k

are given functions. We consider the following initial problem

v=1

k n
Z Aii(tyz, z(t, x)) (Btzj (t,x) + Z oiv(t,x, 2)03, 2 (t, m)) =
j=1

= fit,z,2), 1<i<k, (5.16)
z(t,z) = p(t,z) (t,x) € Dy. (5.17)

The matrix A in (5.16) does not depend on the functional variable z(-).
We look for solutions of (5.16), (5.17) in the class of functions satisfying the
Lipschitz condition with respect to « and the generalized integral Lipschitz
condition with respect to t.

We formulate new assumptions on the spaces X, 0 < t < a. Denote by
CL" (Hy, RF) the class of all z € C(H;, R*) such that

* 2(s, ) —2(5,7)|lco _ _
l|z||F :sup{” ( ”)z_;n ) : (s,x), (8,T) € Hy, :1075:10}<+oo.

For z € O (H,, R¥) we put

zlle.c- = llelle + 12l

Assumption HY[X]. For each t € [0,a] the space (X, | - |x,) is
a Banach space of functions from Dy U H; into R* and there is a linear
subspace X; p« C X; such that (X¢r-,| - |x,,.) is a Banach space. For
each t € (0, a] the spaces X; and X; - satisfy the following conditions:
1) if 2 : DgUH; — RF and 2 p, € Xo, € O(Hy, R¥), then z € X,
and

lre,

2]l x: < K1ll2)y, It + Koll2|p, [ x50

where K7, Ky € R4 are constants independent of z,
2) if z: Do UH; — RF and 2 p, € Xo.L+s 2|y, € CL*(Ht,Rk), then
z € X4+ and

12llx, e < Millzppy, It + Moll2) 5, | x, .-
with the constants M7, My € Ry independent of z.

We give examples of spaces satisfying Assumption HE[X].
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Example 5.3. Let the spaces (X, || - ||x,), t € [0, a], be defined as in
Example 5.1. Denote by Xg. 1« the space of all w € X such that

* w(t,z) —w(t, T
||w||%o _ Sllp{” ( ) ( )HOO

|z — |
with the norm of w given by

: (t,x), (t,T) € Do, x #T} < +00

lwllxy - = lwllxg + w5,
Let X; 1+, 0 <t < a, denote the space of all z € X; such that 2|p, € Xo.+
and z|,, € CE(H,, R*) with the norm of z given by
2115, e = 12104 10 10+ 11215, 122+
Then Assumption HY[X] is satisfied with Ky = Ko = My = My = 1.

Example 5.4. Let the spaces (X, || - |x,), t € [0,a], be defined as in
Example 5.2. Denote by Xy 1« the space of all w € X such that

* w(t,x)—w(t, T
Y(®)[lz—=|
with the norm of w given by

: (t,2), (t,7) € Do, a:;éT}<+oo

A
lwllxo e = lwllxe + lwlip,

Let X;. 1+, 0 <t < a, denote the space of all z € X; such that 2p, € Xo.r+
and z|,, € CE(Hy, R*) with the norm of z given by

2115, e = 12104 10 10+ 11215, 122+

Then Assumption HY[X] is satisfied with Ky = M; = ﬁ, Ko=M,=1.

Let the symbol J¢[X] denote the class of all initial functions ¢ : Dy —
R* such that ¢ € Xp.~ and there are by, by, cg, c1 € Ry with the properties

lellxo < bos llpllxg - < b1,
1200, 2)lloo < co, [I0(0,2) = 9(0, 7)o < crllz = on [-b,0].
Suppose that Assumption HY[X] is satisfied and ¢ € J¢[X], ¢ € (0, al,
d = (do,d1) € R%, X € L([0,c], Ry). Let the symbol K, [d, )] denote
the class of all functions z : Dy UH. — RF such that z(t,z) = ¢(t,x) for
(t,x) € Do and

t
Ja(t,0)ow <o [2(t,2) ~2(E.7) | <| [NTIar] +s o] on .
t

We prove that there is a solution of (5.16), (5.17) in K, .[d, A] for suffi-
ciently small ¢ € (0,a] and for some d € R%, X € L([0,c], R+). We formulate
the following assumptions on g.

Assumption H[p]. The function ¢ : H x X, — Mp.x} is such that
o(-,x,w) is measurable on I[z] for every (x,w) € [—b,b] X X,, o(t,) is
continuous on Sy x X, for almost all ¢ € [0, a] and
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1) there is 6 € L([0,a], R"), 6 = (01,...,6,) such that

|Qij(t7$7w)|§gj(t)v 1§’LSI€, 1§]§TL, tE[O,a], (zaw)EStXXt;

h(t) = /g(s) ds, t€l0,qa],
0

2) there is 81 € A such that
for (z,w), (T,w) € Sy x X;.r+[u] and for almost all ¢ € [0, a].
Suppose that Assumptions HY[X], HY[g] are satisfied. Fix ¢ € J¢[X],

z € Ky.ld, A, ¢c € (0,a], (t,x) € He, 1 <@ < k and consider the Cauchy
problem

7 (1) = ai(m,n(r), 2), n(t) ==, (5.18)
with the solution g;[2](, ¢, z) defined on the interval [0, o;[2](t, )].

Lemma 5.4. Suppose that Assumptions HE[X], H o] are satisfied
and 0,0 € JYX], 2 € Ky.c[d, N, Z € Kz.c[d,\], c € (0,a]. Then for each
(t,x) € He, 1 < i <k, the unique solutions g;[z](-,t,x) and ¢;[Z](-, t, x) exist
on [0,0;[2](t,x)] and [0, 0;[Z](t, x)], respectively. Moreover,

ool ) - il 2 < 2 | [ 181 e+ 1o~
on [0, min{o;[2](¢t, x), 0:[2](t,ZT)}] X He, and

Hgi[z](T7 2 'T) - gi[f](T,t,JC)H < QZ

t
[ otennyag] ==,
on [0, min{c;[2](¢t, z), 0;[Z](t, 2)}] X H., where
Qc =exp (/51(&#?) dé), pi = Mi(do + di) + Mobs.
0

We omit the simple proof of Lemma 5.4. We formulate the following
assumptions on f and A.

Assumption HE[f]. The function f : H x X, — RF is such that
f(-,z,w) is measurable on I[z] for every (z,w) € [=b,b] x X,, f(t,-) is
continuous on Sy x X, for almost all ¢ € [0, a] and

1) there is ay € A such that

||f(tu z, w)”oo < O[g(f, ,u)
for (z,w) € Sy x X;[u] and for almost all ¢ € [0, al,
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2) there is B2 € A such that
£t z,w) = f(t.7,@)]| , < Bo(t, ) (|2 = 7] + w - W x,)
for (z,w), (T,w) € St x X¢.p~[1] and for almost all ¢ € [0, a].

Assumption HY[A]. The function A : H x R¥ — M,y satisfies the
conditions:

1) there are o, 8 € ¥ and v € A such that
[A(t 2, p)lloo < alp),

|At.2.0) = ACTD). < 80)(le 7 + I~ Fllc) +| [ (€. de

for (¢,z,p), (,7,p) € H x RF[u],
2) for each (t,r,p) € H x RF[u] there exists the inverse matrix
A~Y(t,x,p) and there are ag, 3y € ¥ and vy € A such that

AT, 2, p) |0 < a0(p),

47t 2,0) A7 @D < o) (] + [p-Blloc) + | folé ) de

for (¢,z,p), (t,7,p) € H x R¥[u].

Fix p € JY[X], c € (0,a], z € Ky.c[d,\] and (t,z) € H.. Write

Qilzl(r.t. ) = (r.gile)(m t,2), 2(m gile)(m 8, 2)), 1< <,
A*[2)(7,t,2) = [Ai(Qilz](7,t, z))]i,jzl ..... k>
o[2)(r,t,2) = [0, sl (m t,2))], )
Z)(r t @) = [zil(m, gil2l(r 6 2))], oy
fl(r ) = [ﬁ(ngi[z](r,t,z),z]; ,,,,, o

where g;[2](-, ¢, z) is a solution of (5.18) and 7 € [0, 0;[2](t, z)]. We define

T;(Z)(t7x) = (p(t,l‘), (tw%') € Dy,
3
T;(2)(t,x) = (0,2) + A7tz 2(t, ) ZWi[z](t,x), (t,z) € He,

where

Wal2](t, ) = A*[2](0,t,2) * (®[2](0,t,2) — ®[2](¢, t, ),

T
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Wyl2](t 2) = / diT Aty ) * (Z[2)(m t, ) — B8, 1, 7)) d.

5.4. The Existence and Uniqueness Result
We begin with formulation of lemmas on the integral operator.

Lemma 5.5. If Assumptions HC[X], H o], HC[f], HY[A] are satis-
fied, then there are ¢ € (0,a], d = (do,d1) € R2 and X € L([0,c], R}) such
that for each o € JC[X] the operator T} maps the set K, c[d, \] into itself.

Proof. Let ¢ € J9[X] and z € K, .[d, A]. In the sequel we use the following
estimates

|2 (7, gil2) (7., 2)) — (0, )] / d§+c1/|\5

0

| (. ilelr )| < A) + ),

e, <

where ¢(7) = vy(7,do) + ﬂ(do)((l +d1)||6(7)|| + A(7)). Since

Z [Wil2](t, )]0 < W,

where
We = [ as(& ) dE+ alco)er [ [16(€)]| dé+
/ /
+f qm( [redcve | |5<5)||d5) dr,
0 0 T
o = Kido + Kobo,
we obtain

HT:;(Z)(ta m)”oo <o+ aO(dO)WC on H..
Fix (t,z), (t,T) € H,. Tt easily follows that

|Wil2)(t, 2) = Wil2) 6, 7). < ‘/Ai,C(T)dT}+wm|\x—f||, i=1,2,3,
where

=Qc /ﬁz(&ﬂ’{)d& Me() = wicl|8(7)]| + aalr, 1),
0
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Wa.c = C1 <a(60)(1 + Q) + Bleo)(1 4 c1)Qq / 15 d€>,
0

Aoo(r) = Q8 (a<co> + a1+ [15©) dg) 151
0
and

W3.c = M +c1 Q(ﬁ) dga
/

Az.e(T) = 776”5 ) +alr ) + 01”5 ” dg,
!
5(d) [ (14 d)NO) + (1 + e Q2O ) d+
0
B+ Q! [ (NE) + B de +an@; [ ate) de.
0 0

Thus

|
+<50(d0)(1 +dp)||x — | +ﬂo(d0)‘ /)\(T) dr‘ + ’ /”yo(r, do)dTDWd—

t

Ty(2)(t,x) — T;(E,E)Hoo < cllz =T+

+ap(do) (’ /g&.c(ﬂ dT’ + ngcnx - f“)

Assume that the constants ¢ € (0,a], d = (do,d1) € R3 and the function
A € L(]0, ¢], Ry4) satisfy the conditions

do Z co + Oéo(do)wc, (519)
3
di > c1+ ﬁo(do)(l + dl)Wc + ao(do) Z Wi, (5.20)
=1
3
A(T) 2 (Bo(do)A(T) + v0(7,do))We + ao(do) Z&c (5.21)
=1
Then T (2) € Ky c[d, A] and the proof of Lemma 5.5 is complete. O

Lemma 5.6. Suppose that the assumptions of Lemma 5.5 are satis-
fied. If 0,5 € JC[X] and z € K,.[d,\], Z € Kgp.c[d, )], then there are
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Gi ., G5,G5 € Ry such that
|T5(2) = T5(@)|, < Gicllz =2 + Galle = Bllx, + Gille — Bllg. (5.22)

Proof. Let ¢, € JC[X] and 2 € K, [d, \], Z € K5.[d, \]. Put

ore— <1 Lo m@,ur)ds) Bl ) e,
[iesirae) |

rre=erQ: [ (6 ) de (ﬁ(Co)(l ve [ ||5<5>||d5+a<co>),
0 0

— m(@ﬁ)ds(ﬁ(cochl)cl 15(0)]| de+
/ /

c C

+ar [ a(€ds + 301+ ) / (@) + B s ),

0
c

ne= [ ate d§+/3d0/ &) + di|3(6)])) de.

0 0
c

n=[ a€)ds+ Blco)er [ [5(€)]l dE.
/ /
It follows from the estimates

[Wilz)(t, 2) = W[E]( 7)< ovellz = 2] x..

|[Wal2](t, x) = Wa[Z](t,2) ||, < o2.cll2 =2l x. + 2a(co) ¢ — 25,

[Wsl2)(t, 2) = Wa[2)(t, 2)|| < o3.cllz = ZlIx. + nellz = Zlle + 1l — Pl
that

1T5(2) = TE) ||, < Il = Bll5 + Boldo)Wellz = Z]| o+

3
+ ao(u0) (12 = Zlx. 3 o+ nell= = e + (2aleo) + )l — 7).
i=1

Thus the assertion (5.22) holds for the following constants

3
G = Bo(do)We + ne + Kiao(do) > i (5.23)
=1
and
3
G; = K()Oéo(do) Z Ti.cy G§ =1+ QOZQ(CZQ)OZ(CQ) + n. (524)
i=1

Now we prove a theorem on solution of the problem (5.16), (5.17). O
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Theorem 5.2. Suppose that Assumptions HY[X], HY o], HE[f], HY[A]
are satisfied. Assume that ¢ € (0,a], d = (do,d1) € R%, X € L([0,¢c], Ry)
satisfy the inequalities (5.19)—(5.21) and

I.<1, (5.25)
where G% _ is given by (5.23). Then for each ¢ € JC[X] there exists z =
z[¢] € Ky .cld, \] which is a unique solution of (5.16), (5.17). Furthermore,
if ¢, 7 € TONX], 2 = 2lyl, 2= 2[@], then

—= 1 * — * — || *
lz =2l < ——= (Gsle - Pl + Gillo —l)  (5.26)
1-G;.
with G2, Gs given by (5.24).
Proof. Tt follows from Lemmas 5.5 and 5.6 that for each ¢ € J¢[X] and
for ¢, d, A satisfying (5.19)—(5.21), (5.25) the operator Ty : Ky [d,\] —
K, .c[d, ] is a contraction. Thus there exists z = z[¢] € K, .[d, A] such that

z = T}(z) and this 2 is a solution of (5.16), (5.17). Lemma 5.6 implies the
inequality (5.26) and the proof of Theorem 5.2 is complete. O

5.5. Initial Problems for Nonlinear Systems

Let H, Dy and S;, H¢, 0 <t < a, be the sets defined in Section 5.1 with

h(t) = Mt, where M = (My,...,M,) € R}. Let X;, 0 <t < a, be a linear
space of functions from Dy U H; into R*. Suppose that

F:HxX,xR'— Rt F=(F,....,F), and ¢:Dy— RF

are given functions. We deal with the Cauchy problem for the nonlinear
partial differential functional system

Ozt x) = Fi(t,x,2,0,2(t, 2)), 1<i <k, (5.27)
z(t, ) = p(t, z), (t,z) € D, (5.28)
where z = (z1,...,2;) is an unknown function of the variables (¢,z), x =

(1,...,2n). We consider classical solutions of the problem (5.27), (5.28).

Let C’l(Ht, Rk) denote the class of all functions z : H; — R* which are
of class C' on H;. For z € CY(Hy, RF), 2 = (21,...,2x), 1 < i < k and
(s,x) € H; we put

821'(8,17):(8t21'(5,5€)78m2i(5,56)), ||62’1(S,I)||:latzl(S,Iﬂ—F”ale(S,I)”,
201 = Izl + max {[9z:(s, )| : 1< <k, (s,2) € Ha .

Denote by C'L(H;, R¥) the set of all functions z € C''(H;, R¥) such that
Lip[0z], =

:sup{Hazi(&w)_azi(g’f)n 2 1<i<k, (s,z), (3,T) €Hy, (s7x)7é(§,f)}

|s =3[+ ||z —=|
is finite. For 2 € C'(H;, RF) we define the norm of z by
Izl = = ll=lli + Liploz]:.
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We formulate the following assumptions on the spaces X;, 0 <t < a.

Assumption HV[X]. For each t € [0,a] the space (X4 | - |x,) is
a Banach space of functions from Dy U H, into R¥ and there are linear
subspaces X{L ¢ X! C X; such that (X/,]| - lx7)s (XIL - [ xz.c) are
Banach spaces. For each ¢ € (0,a] the spaces X;, X/ and X/-L satisfy the
following conditions:
1) if z: DgUH; — R* and 2|p, € Xo,
and

€ C(Hy, R¥), then z € X,

lre

12l x. < Killz), It + Kol 2 5, [l x0
where K1, Ky € R4 are constants independent of z,
2) if z : Dy UH; — R* and 2 p, € X, 2|y, € C*(Hi, R¥), then
z € X} and
Izl xr < Mallzp,,, ] + Moll25, [l x5
where M;, My € Ry are constants independent of z,
3) if z: DoUH; — R" and 2, € X§F, 2, € C'F(H,;, RY), then
z € XL and
Izl xr2 < Nillz,, 11 + Nollzp, llxz2

where Ny, Ny € R, are constants independent of z.

Examples of spaces satisfying Assumption HY¥ [X] are the following.

Example 5.5. Let (X, |||l x,), 0 <t < a, be defined as in Example 5.1.
Denote by X! the set of all w € Xo, w = (wy,...,wy), such that the
derivatives dw; = (Qyw;, O, w;), 1 < i < k, exist and they are bounded and
uniformly continuous on Dy. For w € X{ we put

leollxg = llwlx, +sup {[owilt, )] : 1< <k, (t2) € Do}.

Let X/, 0 < t < a, be the set of all z € X; such that 2|p, € X{ and

2y, € C' (M, R*¥) with the norm of z given by
2l = 1210 1xz + 1215, 17
Let X{-" be the space of all w € X{ such that

Lip[ow] =

— aup {J0ul0.0) 00,07
|t—t]+ [l —7]
is finite. We define the norm of w € X{-* by

L 1<i<k, (t,z), (I, %) €Dy, (t,x);é(fj)}

[wllxgr = llwllxg + Lip[ow].

Denote by X/-L, 0 < t < a, the space of all z € X} such that 2|, € Xt
and 2|, € CYE(Hy, R¥). For z € X]'L we write

2l -2 = N2, lxzos + 1215, Il
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Then Assumption HV[X] is satisfied with K; = Ko = My = My = Ny =
Ny =1.

Example 5.6. Let (X4, ||]lx,), 0 <t < a, be defined as in Example 5.2.
Denote by X{! the class of all w € Xo, w = (wy,...,w), such that the
derivatives dw; = (Opw;, Dyw;), 1 <4 < k, exist and they are continuous on
Dy and

dw;(t, .
fim 227 o zel-bb, 1<i<k.
t==c0 ()
For w € X! we put
8wi t,CC .
Jaollxg = ol +sup { G 1 < i < b (ta) € Do}

Let X/, 0 < t < a, be the set of all z € X; such that 2|p, € X{ and

2|y, € C'(H;, R*) with the norm of z given by

2l xz = 1210 lLxg + 1215, Il

Let X{F be the space of all w € X{ such that Lip[dw] < +o0o. We define
the norm of w € X{-L by

[wllxgr = l[wllxg + Lip[ow].

Denote by X% 0 < t < a, the space of all z € X/ such that 2|, € Xt
and 2|, € CHE(Hy, R¥). For z € X}-L we write

2l xz = 1121 Iz + Nz, Nl

Then Assumption HY[X] is satisfied with K; = M; = ﬁ, Ko = My =
Ny =Ny =1.

5.6. Existence and Uniqueness of Classical Solutions

The method used in the existence result for (5.27), (5.28) is based on
the theorem on solution of the following differential problem without the
functional dependence. Suppose that g : H X R™ — R, w : [-b,b] — R are
given functions and consider the nonlinear partial differential equation

du(t,z) = g(t, z, 0u(t, x)) (5.29)
with the initial condition
u(0,2) = w(x), x € [-b,bl. (5.30)

To state a theorem on solution of the above problem, we formulate the
following assumptions on g and w.

Assumption H[g,w]. The functions g : H x R" — Rand w: [-b,b] —
R satisfy the conditions:
1) the function g of the variables (¢,z,q), ¢ = (¢1,---,qn), is contin-
uous and bounded on H x R", the derivatives 0,9, 0q9 exist and
they are continuous on H x R"™,



Hyperbolic Differential Functional Equations with Unbounded Delay 89

2) there are Cy, Ly € Ry such that
1029(¢,2,9)[| < Co,
1029(t, 2, q) — 029(t, %, 9)|| < Lo(lz — || + llg — 7ll),
1049(t, 2, q) = Dy9(t,7,9)|| < Lo(llz —Z| + llg —dll),
where (t,z,q), (t,7,q) € H x R", and
105, 9(t, 2, q)| < My, 1<j<n, (t,z,q) €H x R",

3) the function w : [~b,b] — R is of class C! and there are Ay, By €
R, such that

[|Ow(z)|| < Ao, ||Oew(z) — Opw(T)|| < Bollz — Z|| on [—b,b],

4) |g(0,z,q)| < Ap for (x,q) € [—b,b] x R™, and the derivative O;g
exists on ‘H x R™ and

|(9tg(t,:v,q)| S CO on H x R™.

Now we state the auxiliary theorem.

Theorem 5.3. If Assumption H[g,w]| is satisfied, then there ezists a
unique solution u of the problem (5.29), (5.30) defined on Hs, where

1
6 = min {a7 m}.
Moreover, the solution w satisfies the conditions
l0.a(t, z)|| < Ao + Cot,
|07(t, x) — D,u(t, T)|| < T(t)||z — =, (5.31)
|0, x) — 0,a(E, 2)|] < (Co+ | MIT®)}t — 7]
and
|a < 2] < Ao + Cot,
|Oa(t, t,7)| < (Co+IM|T(H)) [z 7], (5.32)
it @) - 0l 2)| < (Co+ M| (Co + 1M T®))) 1t -,

where (t,z), (t,7), (,x) € Hs and

Lo(l + Bo)t + By
1—Lo(1+ Bo)t ’

The existence of a solution of (5.29), (5.30) on Hs and the estimates
(5.31) are proved in [35]. The conditions 1)-3) of Assumption H[g,w] are
sufficient. If we additionally assume the condition 4) of H[g,w], then we
prove the estimates (5.32) by applying the theorem on weak partial differ-
ential inequalities (for details see [22]).

We adopt the following assumptions on F'.

I(t) =

€ [0, 4].
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Assumption HY[F]. The function F : H x X, x R* — Rk, F =
(Fy,..., Fy), of the variables (¢, z,w, q), x = (x1,...,2Zpn), w = (w1, ..., W),
qg=1(q1,...,qn), is continuous and it satisfies the conditions:

1) there are @ : Ry — Ry and d > 0 such that
[E @z, w,q)|lec < alp), t€[0,a], (z,w,q) €Sex Xi[u] x R,
and
|F(t 2w, q) - F(t,x,@,q)Hoo <d|lw — vl x,

for t € [0,q], (z,w,q),(x,w,q) € St x X¢ x R™,
2) for each P = (t,z,w,q), where t € [0,a], (z,w,q) € S; x X} x R",
there exist the derivatives

i=1,..., k,j=1,....n
[an'Fi(P)]i:1,,..,k,j:1,...,n = 0,F (P

and they are continuous on H x X! x R",
3) there exist positive constants dg, d; such that

||6tF(ta‘TuwaQ)"oo S dO +Mdlu HawF(ta(anaQ)Hoo S d0+Md1

~—

for t € [0,a], (z,w,q) € S¢ x X[[u] x R™ and
Haqu(t,z,w,q)HOOSJ\A/[/j, 1<j<n, t€l0,a], (z,w,q)€S; xX]xR",
4) there is §: Ry — (0,+00) such that
|0 F(t, 2, w,q) — (2,7, 0,) |, < B(s) (= — 71| + lg — 3,
[0 (t, 2w, q) — 83 F(t.7,w,9)|| . < B(w) (I — 7l + la —all).
where t € [0,a], (x,w,q), (T,w,q) € St x X/ L[u] x R™.

Let JV[X] denote the set of all initial functions ¢ : Dy — RF, ¢ =
(¢1,- -, ¢k), such that ¢ € XIF and

1) for x € [—b,b] there exist the derivatives
at(p(ou (E), [awj %‘(Oa (E)]

and they are continuous on [—b, b],
2) there are by, b, o, c1, ca € Ry with the properties

i=1,...k, j=1,...,n

lollxz < b1, [lollxie < ba,
[0, 2)[|oc < o, [|02(0,2)]|0c < 1,
Hamgo(Om) — 8190(0797)“@ < ol —T|| on [-b,b],
3) the consistency condition
Orpi(0,2) = fi((),z,cp,(?m%((),z)), 1< <k,
is satisfied for x € [—b, ).
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Put
lplls = max {[l¢(0,2)llo : = € [-,0]},
where p € TV [X].
The main theorem for the problem (5.27), (5.28) is the following.

Theorem 5.4. If Assumptions HY[X] and HY[F| are satisfied, then
there exists ¢ € (0, a] such that for each ¢ € JN[X] the problem (5.27), (5.28)
has exactly one classical solution Z defined on H.. Moreover, if p, @ €
INIX] and w, v : H. — R* are the solutions of (5.27), (5.28) with the

initial functions ¢ and @ respectively, then

[w—=vlle < Gille =7l + G2l — @llx, (5.33)
for some Gy, G2 € R
Proof. Assume that A\ > K d. Let us denote by Cy(H,, R*), 0 < ¢ < a, the

Banach space of all continuous functions z : H, — R¥ with the norm of z
given by

2l = max { e 2t @)1+ (1,2) € He.
Fix ¢ € JV[X]. Let W,.. be the set of all functions z : Do UH, — R* such

that 2 is of class C! on H. and z(t,z) = ¢(t,z) for (t,x) € Dy. Denote by
W the set of all 2|, with 2 € W,.. Write

do + p1
(2+a)di My’
w1 = Mi(Aa + ¢co + 2A) + Moyby,
B =dy +dypn + | M|[(1+2¢c2), C=do+dip + ||M|B,
p2 = Ni(Aa+co+ 244 2B+ C +2co + 1) + Noba

p1 = diMico + diMoby, A=2c; +

and
1 1

a, , .
2ﬁ(M2)(1+02) 2(2+a)d1M1}
Let W,.. with the above given ¢ be the set of all functions z € W . such

c:min{

p.c
that

10:2(t, 2)||oo < A, [|0p2(t,2)|0o < A4, (5.34)

022(t, 2) — 0,2(1,T)|| < Blt — T + (22 + 1)|| — T, (5.35)

|0e2(t, ) — 8&@,?)”00 < C|t —t|+ Bljlz — 7| (5.36)

on H.. The set W, is a closed subset of the Banach space C(He, RF).
Fix u € Wy, 1 < i < k, and consider the initial problem (5.29), (5.30),
where

g(t,x,q) = Fy(t,x,u,q) on H. X R", w(x)=¢(0,2) on [-b,b], (5.37)

and u(t,z) = u(t,x) on He, u(t,z) = @(t,x) on Dy. We will prove that
there exists a unique solution z;[u] : H. — RF of the problem (5.29), (5.30)
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with the above given g,w and the function z[u] = (z1[u],. .., zi[u]) satisfies
the conditions (5.34)—(5.36).
Since u € W,,.., we have

lulle < Aa+co, ullx; <, llx;e < pa, t€0,c]
It follows from Assumption HY [F] that
|atg(t7x7 Q)| < dO + dllu‘la ||8Ig(t7x7 Q)” < dO + dlul

and the terms ||6Ig(tazaq) - azg(ta Ea a)”? ||aqg(taz7q) - aqg(tvaa)” are
bounded from above by B3(u2)(||z — Z|| + |l¢ — @l|). Let

= Blp2)(I+ea)t +eo
L) = 1= B(u2)(1+c2)t

Theorem 5.3 implies that there is on H. the solution z;[u] of the problem
(5.29), (5.30) with g,w given by (5.37) and

102l () — ol ()| < (do-+ i + | MIT(E)) e+ (1)),
|8tzi[u](t,:c) — Opzi[ul (f,f)} <

< (do +dypis + | M (do + dp + [ MIT() ) It = 1+
+(do + drn + |MIT(®)) 1 ~ 7]

te€0,c.

and
|0uzifu](t, 2)|| < 1+ (do + dipa)t,  |Oezifu](t, )| < 1+ (do + dip)t
on H.. The above estimates and the condition f(c) < 2¢o + 1 imply that
002 1ul(t.2) — Ouzul 67| < Blt 7]+ (262 + )z~
|0y 2i[u] (t, 2) — Oz [u](£,7)| < C|t —t| + Bllz — Z|.
Since 2(2 + a)d1 Myc < 1 and
1+ (do+dipn )t <er+(do+p1)e+(2+a)d; MicA<2¢1 +2(dg+p1)c< A,

we get
|0 2i[ul(t, 2)|| < A, |dpzlu](t,z)] <A on H.

Thus z[u] = (z1]u], ..., zx[u]) is an element of W, . and the operator u +—
z[u] maps the set W, . into itself. We prove that it is contractive. Let
u, v € Wy It follows from Assumptions HY [F] and HV[X] that

0y (zilul (t, ) — z:[v] (¢, x))‘ <

< dKq|lu—vf + Y M,

j=1

0y, (z[ul(t, 7) — 2]t 7)) \ <

< dKyeM|u— vl + Y M,

Jj=1

On, (alul(t,2) = zol(t )|, 1< <k,
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on H.. We have also z[u](0,z) — z[v](0,z) = 0, x € [-b, b]. By theorems on
partial differential inequalities we get

dK
|| 2[u](t, ) — z[v](tx)Hm < Tle)‘tHu — vy on He.
Thus iK
1
12[u] = 2[ollly < == llu = vllpy-

Since dK; < A, the Banach fixed point theorem implies that there exists
u* € Wy, . such that u* = z[u*]. Let Z(t,x) = u*(t,z) on H. and Z(t,z) =
@(t,x) on Dy. The function z is a solution of the problem (5.27), (5.28).

Let o, € JV[X] and w,v : H, — R*, w = (wy,...,wp), v =
(v1,...,v5), satisfy (5.27), (5.28) with ¢ and @ respectively. Assumptions
HY[F] and HY[X] imply the following differential inequalities

0y (w;(t, ) — vi(t, :c))’ <

< de* (Kuw = ollpy + Kollg ~ Fllx, ) + > M

j=1

Or, (wilt 2) = vilt, 7)),
where 1 < i <k, (t,2) € H.. Thus

d _ %
= vllpg < $ (Kallw = vlloy + Kollo = 7llx, ) + e = 2.

Since [[w — v[|c < e*¢||w — v||[5], we obtain the assertion (5.33) for

dK1\~1 dK
Gi=c*(1-52) L G= 6
The proof of Theorem 5.4 is complete. O

Remark 5.2. As a special case of (5.27), (5.28), we obtain the following
general problem

Oz(t,x) = ﬁ(t, z,(Vz)(t,x),0.2(t,2)), (5.38)
z(t,x) = ¢(t,x), (t,z) € Dy, (5.39)

whereﬁ:HxRanﬁR,V:XGHR,G:DOHR. A result for
Cinquini-Cibrario solutions of (5.38), (5.39) is obtained in [33].
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