IVAN KIGURADZE AND ZAZA SOKHADZE

ON SOME NONLINEAR BOUNDARY VALUE PROBLEMS FOR HIGH ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS

Abstract. Sufficient conditions for solvability and unique solvability are established for the problems of the type

$$u^{(2n)}(t) = g(u)(t);$$

$$u^{(i-1)}(a) = u^{(i-1)}(b) = 0 \quad (i = 1, \dots, n);$$

$$\sum_{k=1}^{2n} \left(\alpha_{jk}(u) u^{(n+k-1)}(a) + \beta_{jk}(u) u^{(n+k-1)}(b) \right) = 0 \quad (j = 1, \dots, 2n)$$

where $g:C^n\to L$ is a continuous operator and $\alpha_{jk}:C^n\to R$ and $\beta_{jk}:C^n\to R$ are continuous functionals.

சிதித் மூழைத்திரைய

$$u^{(2n)}(t) = g(u)(t);$$

$$u^{(i-1)}(a) = u^{(i-1)}(b) = 0 \quad (i = 1, \dots, n);$$

$$\sum_{k=1}^{2n} \left(\alpha_{jk}(u) u^{(n+k-1)}(a) + \beta_{jk}(u) u^{(n+k-1)}(b) \right) = 0 \quad (j = 1, \dots, 2n)$$

სახის ამლტანუბის ამლხანადლბისა და ტალსასად ამლხანადლბის საკმარისი პირლბუბი, სადატ $g:C^n\to L$ უწყველი ლპერატორია, სოლლ $lpha_{jk}:C^n\to R$ და $eta_{jk}:C^n\to R$ ეწყვეტი ფენტტილნალებია.

2000 Mathematics Subject Classification: 34B15, 34K10.

Key words and phrases: High order nonlinear functional differential equation, boundary value problem with nonlinear conditions, solvability, unique solvability.

Let $-\infty < a < b < +\infty$, n be a natural number, C^n be the space of n times continuously differentiable functions $u:[a,b] \to R$ with the norm

$$||u||_{C^n} = \max \Big\{ \sum_{k=1}^n |u^{(k-1)}(t)| : a \le t \le b \Big\},$$

Reported on the Tbilisi Seminar on Qualitative Theory of Differential Equations on October $9,\ 2007.$

L be the space of Lebesgue integrable functions $v:[a,b]\to R$ with the norm

$$||v||_L = \int_a^b |v(t)| dt,$$

and $g: \mathbb{C}^n \to L$ be a continuous operator such that

$$g_{\rho}^* \in L \text{ for any } \rho \in]0, +\infty[$$

where

$$g_{\rho}^*(t) = \sup \{ |g(u)(t)| : u \in C^n, \|u\|_{C^n} \le \rho \}.$$

Consider the functional differential equation

$$u^{(4n)}(t) = g(u)(t) \tag{1}$$

with the boundary conditions

$$u^{(i-1)}(a) = u^{(i-1)}(b) = 0 \quad (i = 1, \dots, n),$$

$$\sum_{k=1}^{2n} \left(\alpha_{jk}(u) u^{(n+k-1)}(a) + \beta_{jk}(u) u^{(n+k-1)}(b) \right) = 0 \quad (j = 1, \dots, 2n),$$
(2)

where $\alpha_{jk}: C^n \to R$, $\beta_{jk}: C^n \to R$ (j, k = 1, ..., 2n) are functionals continuous and bounded on every bounded set of the space C^n .

We are interested in the case where for arbitrary $v \in C^n$, $x_k \in R$, $y_k \in R$ (k = 1, ..., 2n) the condition

$$\sum_{j=1}^{2n} \left| \sum_{k=1}^{2n} \left(\alpha_{jk}(v) x_k + \beta_{jk}(v) y_k \right) \right| > 0$$
for
$$\sum_{k=1}^{n} (y_{2n-k+1} y_k - x_{2n-k+1} x_k) > 0 \quad (3)$$

holds.

The particular case of (1) is the differential equation

$$u^{(4n)}(t) = f(t, u(t), \dots, u^{(n)}(t)),$$
 (4)

and the particular cases of (2) are the boundary conditions

$$u^{(i-1)}(a) = u^{(i-1)}(b) = 0, \quad \gamma_{1i}u^{(n+i-1)}(a) + \gamma_{2i}u^{(3n-i)}(a) = 0,$$

$$\eta_{1i}u^{(n+i-1)}(b) + \eta_{2i}u^{(3n-i)}(b) = 0 \quad (i = 1, \dots, n); \qquad (2_1)$$

$$u^{(i-1)}(a) = u^{(i-1)}(b) = 0, \quad u^{(n+i-1)}(a) = \gamma_i u^{(n+i-1)}(b),$$

$$u^{(3n-i)}(b) = \gamma_i u^{(3n-i)}(a) \quad (i = 1, \dots, n); \qquad (2_2)$$

and

$$u^{(i-1)}(a) = u^{(i-1)}(b) = 0 \quad (i = 1, \dots, n),$$

$$u^{(n+j-1)}(a) = u^{(n+j-1)}(b) \quad (i = 1, \dots, n).$$
(2₃)

Here $f:[a,b]\times R^{n+1}\to R$ is a function satisfying the local Carathéodory conditions, and $\gamma_{1i}, \gamma_{2i}, \eta_{1i}, \eta_{2i}, \gamma_i$ are constants such that

 $\gamma_{1i}\gamma_{2i} \le 0$, $\eta_{1i}\eta_{2i} \ge 0$, $|\gamma_{1i}| + |\gamma_{2i}| > 0$, $|\eta_{1i}| + |\eta_{2i}| > 0$ (i = 1, ..., n)

$$\gamma_i \neq 0 \ (i = 1, \dots, n).$$

By \widetilde{C}^{4n-1} we denote the space of functions $u:[a,b]\to R$ absolutely continuous along with their first 4n-1 derivatives.

By a solution of Eq. (1) we mean a function $u \in \widetilde{C}^{4n-1}$ satisfying this equation almost everywhere on [a,b].

A solution of Eq. (1) satisfying the conditions (2) is called a solution of the problem (1), (2).

Definition 1. We will say that a function $u:[a,b]\to R$ belongs to the set D_0^n , if $u\in \widetilde{C}^{4n-1}$ and

$$u^{(i-1)}(a) = u^{(i-1)}(b) = 0 \quad (i = 1, ..., n).$$

Definition 2. We will say that a function u belongs to the set D^n , if $u \in D_0^n$ and there exists a function $v \in C^n$, such that

$$\sum_{k=1}^{2n} \left(\alpha_{jk}(v) u^{(n+k-1)}(a) + \beta_{jk}(v) u^{(n+k-1)}(b) \right) = 0 \quad (j=1,\dots,2n).$$

Theorem 1. Let there exist $l \in]0,1[$ and $l_0 \geq 0$ such that for an arbitrary $u \in D^n$ the inequality

$$\int_{a}^{b} g(u)(t) u(t) dt \le l \int_{a}^{b} [u^{(2n)}(t)]^{2} dt + l_{0}$$
 (5)

is fulfilled. Then the problem (1), (2) has at least one solution.

Corollary 1. Let for an arbitrary $u \in D_0^n$ the inequality (5) hold, where $l \in]0,1[$ and $l_0 \geq 0$. Then for every $k \in \{1,2,3\}$ the problem $(1),(2_k)$ has at least one solution.

Theorem 2. Let there exist $l \in]0,1[$ such that for an arbitrary u and $v \in D^n$ the inequality

$$\int_{a}^{b} \left(g(u)(t) - g(v)(t) \right) \left(u(t) - v(t) \right) dt \le l \int_{a}^{b} \left| u^{(2n)}(t) - v^{(2n)}(t) \right|^{2} dt \tag{6}$$

is fulfilled. Then the problem (1), (2) has one and only one solution.

Corollary 2. If for arbitrary u and $v \in D_0^n$ the inequality (6) holds, where $l \in]0,1[$, then for every $k \in \{1,2,3\}$ the problem $(1),(2_k)$ has one and only one solution.

Theorems 1 and 2 and their corollaries are new not only in the general case, but also in the case where g is Nemytski's operator, i.e., when Eq. (1) is of the form (4) (see [1]–[5] and the references therein). We will now proceed to the consideration just of that case.

Theorem 3. Let on the set $[a,b] \times \mathbb{R}^{n+1}$ the inequality

$$f(t, x_1, \dots, x_{n+1}) \operatorname{sgn} x_1 \le \sum_{k=1}^{n+1} l_k |x_k| + h(t)$$
 (7)

hold, where $h \in L$ and l_k (k = 1, ..., n + 1) are nonnegative constants such that

$$\sum_{k=1}^{n+1} \left(\frac{b-a}{\pi}\right)^{4n-k+1} l_k < 1. \tag{8}$$

Then the problem (4), (2) has at least one solution.

Corollary 3. If the conditions of Theorem 3 hold, then for every $k \in \{1,2\}$ the problem $(4),(2_k)$ has at least one solution.

Theorem 4. Let on the set $[a,b] \times \mathbb{R}^{n+1}$ the condition

$$[f(t, x_1, \dots, x_{n+1}) - f(t, y_1, \dots, y_{n+1})] \operatorname{sgn}(x_1 - y_1) \le \sum_{k=1}^{n+1} l_k |x_k - y_k|$$
 (9)

hold, where l_k (k = 1, ..., n + 1) are nonnegative constants satisfying the inequality (8). Then the problem (4), (2) has one and only one solution.

Corollary 4. If the conditions of Theorem 4 hold, then for every $k \in \{1,2\}$ the problem $(4),(2_k)$ has one and only one solution.

The following two theorems deal with the problem $(4), (2_3)$.

Theorem 5. Let on the set $[a,b] \times R^{n+1}$ the inequality (7) hold, where $h \in L$ and l_k (k = 1, ..., n + 1) are nonnegative constants such that

$$\sum_{k=1}^{n+1} \left(\frac{b-a}{\pi}\right)^{4n-k+1} l_k < 4^n. \tag{10}$$

Then the problem $(4), (2_3)$ has at least one solution.

Theorem 6. Let on the set $[a,b] \times R^{n+1}$ the condition (9) hold, where l_k $(k=1,\ldots,n+1)$ are nonnegative constants satisfying the inequality (10). Then the problem $(4),(2_3)$ has one and only one solution.

As an example, we consider the linear differential equation

$$u^{(4n)}(t) = \sum_{k=1}^{n+1} p_k(t)u^{(k-1)}(t) + q(t), \tag{11}$$

where

$$p_k \in L \ (k = 1, \dots, n), \ q \in L.$$

From Theorems 4 and 6 we have

Corollary 5. Let almost everywhere on [a, b] the inequalities

$$p_1(t) \le l_1, \quad |p_k(t)| \le l_k \quad (k = 2, \dots, n+1)$$

hold, where l_k (k = 1, ..., n + 1) are nonnegative constants satisfying the inequality (8) (the inequality (10)). Then each of the problems (11), (2); (11), (2₁) and (11), (2₂) (the problem (11), (2₃)) has one and only one solution.

In the case n = 1 the above theorems and corollaries generalize the results of the paper [6].

ACKNOWLEDGEMENT

This work is supported by the Georgian National Science Foundation (Grant No. GNSF/ST06/3-002).

References

- 1. R. P. Agarwal, Boundary value problems for higher order differential equations. World Scientific, Singapore, 1986.
- R. P. AGARWAL, Focal boundary value problems for differential and difference equations. Kluwer Academic Publishers, Dordrecht-Boston-London, 1998.
- 3. S. R. Bernfeld and V. Lakshmikantham, An introduction to nonlinear boundary value problems. *Academic Press Inc.*, *New York and London*, 1974.
- I. KIGURADZE, Some singular boundary value problems for ordinary differential equations. (Russian) Tbilisi University Press, Tbilisi, 1975.
- I. KIGURADZE, On nonlinear boundary value problems for higher order ordinary differential equations. Proceedings of the Conference on Differential & Difference Equations and Applications, Hindawi Publ. Corp., 2006, 526-540.
- I. KIGURADZE AND B. PůžA, On some boundary value problems for fourth order functional differential equations. Mem. Differential Equations Math. Phys. 35 (2005), 55–64

(Received 17.07.2007)

Authors' addresses:

I. Kiguradze

A. Razmadze Mathematical Institute

1, M. Aleksidze St., Tbilisi 0193

Georgia

E-mail: kig@rmi.acnet.ge

Z. Sokhadze

A. Tsereteli Kutaisi State University

59, Queen Tamar St., Kutaisi 4600

Georgia

E-mail: z.soxadze@atsu.edu.ge