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Short Communications

Malkhaz Ashordia

ON THE SOLVABILITY OF A MULTIPOINT BOUNDARY
VALUE PROBLEM FOR SYSTEMS OF NONLINEAR

GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS

Abstract. Necessary and sufficient conditions and effective sufficient con-
ditions are given for the existence of solutions of the multipoint boundary
value problem for a system of nonlinear generalized ordinary differential
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Let σ1, . . . , σn ∈ {−1, 1}; for m ∈ {1, 2} and i, k ∈ {1, . . . , n}, amik :
[−a, a] → R be nondecreasing functions continuous at the points −a and a;

aik(t) ≡ a1ik(t)− a2ik(t),

A = (aik)n
i,k=1, Am = (amik)n

i,k=1 (m = 1, 2);

f = (fk)n
k=1 : [−a, a] × Rn → Rn be a vector-function belonging to the

Carathéodory class corresponding to the matrix-function A, and ϕi :
BVs([−a, a], Rn) → R (i = 1, . . . , n) be continuous functionals which are
nonlinear in general.

For the system of generalized ordinary differential equations

dx(t) = dA(t) · f(t, x(t)), (1)

where x = (xi)
n
i=1, consider the multipoint boundary value problem

xi(−σia) = ϕi(x1, . . . , xn) (i = 1, . . . , n). (2)

In this paper necessary and sufficient conditions as well effective sufficient
conditions are given for the existence of solutions of the boundary value
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problem (1), (2). Analogous results are contained in [1]–[4] for multipoint
boundary value problems for systems of ordinary differential equations.

The theory of generalized ordinary differential equations enables one to
investigate ordinary differential, impulsive and difference equations from a
common point of view (see [5]–[16]).

Throughout the paper the following notation and definitions will be used.
R = ]−∞, +∞[ , R+ = [0, +∞[ ; [a, b] (a, b ∈ R) is a closed segment.
Rn×m is the space of all real n × m-matrices X = (xij)

n,m
i,j=1 with the

norm

‖X‖ = max
j=1,...,m

n
∑

i=1

|xij |;

Rn×m
+ =

{

(xij )
n,m
i,j=1 : xij ≥ 0 (i = 1, . . . , n; j = 1, . . . , m)

}

.

Rn = Rn×1 is the space of all real column n-vectors x = (xi)
n
i=1; Rn

+ =

Rn×1
+ .
diag(λ1, . . . , λn) is the diagonal matrix with diagonal elements λ1, . . . , λn;

δij is the Kronecker symbol, i.e., δij = 1 if i = j and δij = 0 if i 6= j

(i, j = 1, . . . , n).
b
∨
a
(X) is the total variation of the matrix-function X : [a, b] → Rn×m,

i.e., the sum of total variations of the latter’s components.
X(t−) and X(t+) are the left and the right limits of the matrix-function

X : [a, b] → Rn×m at the point t (we will assume X(t) = X(a) for t ≤ a

and X(t) = X(b) for t ≥ b, if necessary);

d1X(t) = X(t)−X(t−), d2X(t) = X(t+)−X(t);

‖X‖s = sup
{

‖X(t)‖ : t ∈ [a, b]
}

.

BV([a, b], Rn×m) is the set of all matrix-functions of bounded variation

X : [a, b] → Rn×m (i.e., such that
b
∨
a
(X) < +∞);

BVs([a, b], Rn) is the normed space (BV([a, b], Rn), ‖ · ‖s);
If B1 and B2 are normed spaces, then an operator g : B1 → B2 (nonlin-

ear, in general) is positive homogeneous if

g(λx) = λg(x)

for every λ ∈ R+ and x ∈ B1.
An operator ϕ : BV([a, b], Rn) → Rn is called nondecreasing if for every

x, y ∈ BV([a, b], Rn) such that x(t) ≤ y(t) for t ∈ [a, b] the inequality
ϕ(x)(t) ≤ ϕ(y)(t) holds for t ∈ [a, b].
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sj : BV([a, b], R) → BV([a, b], R) (j = 0, 1, 2) are the operators defined,
respectively, by

s1(x)(a) = s2(x)(a) = 0,

s1(x)(t) =
∑

a<τ≤t

d1x(τ) and s2(x)(t) =
∑

a≤τ<t

d2x(τ) for a < t ≤ b,

and
s0(x)(t) = x(t)− s1(x)(t) − s2(x)(t) for t ∈ [a, b].

If g : [a, b] → R is a nondecreasing function, x : [a, b] → R and a ≤ s <

t ≤ b, then

t
∫

s

x(τ) dg(τ) =

=

∫

]s,t[

x(τ) dS0(g)(τ) +
∑

s<τ≤t

x(τ)d1g(τ) +
∑

s≤τ<t

x(τ)d2g(τ),

where
∫

]s,t[

x(τ) ds0(g)(τ) is the Lebesgue–Stieltjes integral over the open

interval ]s, t[ with respect to the measure µ0(s0(g)) corresponding to the
function S0(g).

If a = b, then we assume

b
∫

a

x(t) dg(t) = 0,

and if a > b, then we assume

b
∫

a

x(t) dg(t) = −

a
∫

b

x(t) dg(t).

If g(t) ≡ g1(t)− g2(t), where g1 and g2 are nondecreasing functions, then

t
∫

s

x(τ) dg(τ) =

t
∫

s

x(τ) dg1(τ)−

t
∫

s

x(τ) dg2(τ) for s ≤ t.

L([a, b], R; g) is the set of all functions x : [a, b] → R measurable and
integrable with respect to the measures µ(gi) (i = 1, 2), i.e. such that

b
∫

a

|x(t)| dgi(t) < +∞ (i = 1, 2).

A matrix-function is said to be continuous, nondecreasing, integrable,
etc., if each of its components is such.

If G = (gik)l,n
i,k=1 : [a, b] → Rl×n is a nondecreasing matrix-function

and D ⊂ Rn×m, then L([a, b], D; G) is the set of all matrix-functions X =
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(xkj)
n,m
k,j=1 : [a, b] → D such that xkj ∈ L([a, b], R; gik) (i = 1, . . . , l; k =

1, . . . , n; j = 1, . . . , m);

t
∫

s

dG(τ) ·X(τ) =

( n
∑

k=1

t
∫

s

xkj(τ)dgik(τ)

)l,m

i,j=1

for a ≤ s ≤ t ≤ b,

Sj(G)(t) ≡
(

sj(gik)(t)
)l,n

i,k=1
(j = 0, 1, 2).

If D1 ⊂ Rn and D2 ⊂ Rn×m, then K([a, b]×D1, D2; G) is the Carathé-
odory class, i.e., the set of all mappings F = (fkj)

n,m
k,j=1 : [a, b] ×D1 → D2

such that for each i ∈ {1, . . . , l}, j ∈ {1, . . . , m} and k ∈ {1, . . . , n}:

a) the function fkj(·, x) : [a, b] → D2 is µ(gik)-measurable for every
x ∈ D1;

b) the function fkj(t, · ) : D1 → D2 is continuous for µ(gik)-almost
every t ∈ [a, b], and

sup
{

|fkj(·, x)| : x ∈ D0

}

∈ L([a, b], R; gik)

for every compact D0 ⊂ D1.

If Gj : [a, b] → Rl×n (j = 1, 2) are nondecreasing matrix-functions,
G = G1 −G2 and X : [a, b] → Rn×m, then

t
∫

s

dG(τ) ·X(τ) =

t
∫

s

dG1(τ) ·X(τ)−

t
∫

s

dG2(τ) ·X(τ) for s ≤ t,

Sk(G) = Sk(G1)− Sk(G2) (k = 0, 1, 2),

L([a, b], D; G) =

2
⋂

j=1

L([a, b], D; Gj),

K([a, b]×D1, D2; G) =

2
⋂

j=1

K([a, b]×D1, D2; Gj).

If G(t) ≡ diag(t, . . . , t), then we omit G in the notation containing G.
The inequalities between the vectors and between the matrices are un-

derstood componentwise.
A vector-function x ∈ BV([−a, a], Rn) is said to be a solution of the

system (1) if

x(t) = x(s) +

t
∫

s

dA(τ) · f(τ, x(τ)) for − a ≤ s ≤ t ≤ a.

By a solution of the system of generalized ordinary differential inequalities

dx(t) ≤ dA(t) · f(t, x(t)) (≥)
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we mean a vector-function x ∈ BV([−a, a], Rn) such that

x(t) ≤ x(s) +

t
∫

s

dA(τ) · f(τ, x(τ)) (≥) for − a ≤ s ≤ t ≤ a.

If s ∈ R and β ∈ BV[a, b], R) are such that

1 + (−1)jdjβ(t) 6= 0 for (−1)j(t− s) < 0 (j = 1, 2),

then by γβ(·, s) we denote the unique solution of the Cauchy problem

dγ(t) = γ(t) dβ(t), γ(s) = 1.

It is known (see [6], [8]) that

γβ(t, s) =



























































exp(s0(β)(t) − s0(β)(s))
∏

s<τ≤t

(1− d1β(τ))−1×

×
∏

s≤τ<t

(1 + d2β(τ)) for t > s,

exp(s0(β)(t) − s0(β)(s))
∏

t<τ≤s

(1− d1β(τ))×

×
∏

t≤τ<s

(1 + d2β(τ))−1 for t < s,

1 for t = s.

(3)

Definition 1. Let σ1, . . . , σn ∈ {−1, 1}. We say that the pair
((cil)

n
i,l=1; ϕ0i)

n
i=1) consisting of a matrix-function (cil)

n
i,l=1∈BV([a, b],Rn×n)

and a positive homogeneous nondecreasing operator (ϕ0i)
n
i=1 :BVs([a, b],Rn

+)
→ Rn

+ belongs to the set Uσ1,...,σn if the functions cil (i 6= l; i, l = 1, . . . , n)
are nondecreasing on [a, b] and continuous at the point ti = −σia,

djcii(t) ≥ 0 for t ∈ [−a, a] (j = 1, 2; i = 1, . . . , n)

and the problem

σidxi(t) ≤

n
∑

l=1

xl(t)dcil(t) for t ∈ [−a, a] \ {−σia} (i = 1, . . . , n),

(−1)jdjxi(−σia) ≤ xi(−σia)djcii(−σia) (j = 1, 2; i = 1, . . . , n);

xi(−σia) ≤ ϕ0i

(

|x1|, . . . , |xn|
)

(i = 1, . . . , n)

has no nontrivial non-negative solution.

The set Uσ1,...,σn has been introduced by I. Kiguradze for ordinary dif-
ferential equations (see [1], [2]).

Theorem 1. The problem (1), (2) is solvable if and only if there ex-

ist vector-functions αm = (αmi)
n
i=1 ∈ BV ([−a, a], Rn) (m = 1, 2) and
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matrix-functions (βmik)n
i,k=1 : [−a, a] → Rn×n (m = 1, 2) such that βmik ∈

L([−a, a], R; ajik) (m, j = 1, 2; i, k = 1, . . . , n),

αmi(t)≡αmi(−σia) +

n
∑

k=1

(

t
∫

−σia

βmik(τ) da1ik(τ)−

t
∫

−σia

β3−mik(τ) da2ik(τ)

)

(m = 1, 2; i = 1, . . . , n),

α1(t) ≤ α2(t) for t ∈ [−a, a], (4)

(−1)mσi

(

fk(t, x1, . . . , xi−1, αji(t), xi+1, . . . , xn)− βmik(t)
)

≤ 0

for µ(a1+|m−j|ik)-almost every t ∈ [−a, a],

α1(t) ≤ (xl)
n
l=1 ≤ α2(t) (m, j = 1, 2; i, k = 1, . . . , n),

(−1)m

(

xi−(−1)j

n
∑

k=1

fk(t, x1, . . . , xn)djaik(t)−αmi(t)−(−1)jdjαmi(t)

)

≤

≤ 0 for t ∈ [−a, a], α1(t) ≤ (xl)
n
l=1 ≤ α2(t),

(−1)jσi > 0 (m, j = 1, 2; i = 1, . . . , n) (5)

and the inequalities

α1i(−σia) ≤ ϕi(xl, . . . , xn) ≤ α2i(−σia) (i = 1, . . . , n) (6)

are fulfilled on the set {(xl)
n
l=1 ∈ BV([a, b], Rn), α1(t) ≤ (xl)

n
l=1 ≤ α2(t) for

t ∈ [−a, a]}.

Corollary 1. Let the matrix-function A(t) = (aik)n
i,k=1 be nondecreas-

ing on [−a, a]. Then the problem (1), (2) is solvable if and only if there

exist vector-functions αm = (αmi)
n
i=1 ∈ BV([−a, a], Rn) (m = 1, 2) and

matrix-functions (βmik)n
i,k=1 : [−a, a] → Rn×n (m = 1, 2) such that βmik ∈

L([−a, a], R; aik) (m = 1, 2; i, k = 1, . . . , n),

αmi(t) ≡ αmi(−σia) +
n

∑

l=1

(

t
∫

−σia

βmik(τ)daik(τ)

)

(m = 1, 2; i, k = 1, . . . , n),

the conditions (4)–(6) hold, and the inequalities

(−1)mσi

(

fk(t, x1, . . . , xi−1, αji(t), xi+1, . . . , xn)− βjik(t)
)

≤ 0

(j = 1, 2; i, k = 1, . . . , n)

are fulfilled for µ(aik)-almost every t ∈ [−a, a] and α1(t) ≤ (xl)
n
l=1 ≤ α2(t).

Theorem 2. Let the condition

(−1)m+1σifk(t, x1, . . . , xn) sgnxi ≤

n
∑

l=1

pmikl(t)|xl|+ qk(t)

for µ(amik)-almost every t ∈ [−a, a] (m = 1, 2; i, k = 1, . . . , n) (7)
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be fulfilled on Rn, and let the inequalities

|ϕi(x1, . . . , xn)| ≤ ϕ0i

(

|x1|, . . . , |xn|
)

+ ζi (i = 1, . . . , n)

be fulfilled on BV ([−a, a], Rn), where (pmikl)
n
k,l=1 ∈ L([−a, a], Rn×n; Am)

(m=1, 2; i = 1, . . . , n), qk = (qki)
n
i=1 ∈ L([−a, a], Rn

+; Am) (m = 1, 2), ζi ∈
R+ (i = 1, . . . , n). Let, moreover, there exist a matrix-function (cil)

n
i,l=1 ∈

BV ([−a, a], Rn×n) such that
(

(cil)
n
i,l=1; (ϕ0i)

n
i=1

)

∈ Uσ1,...,σn

and

2
∑

m=1

n
∑

k=1

t
∫

s

pmikl(τ)damik(τ) ≤ cil(t)− cil(s)

for − a ≤ s < t ≤ a (i, l = 1, . . . , n).

Then the problem (1), (2) is solvable.

Corollary 2. Let there exist m, m1 ∈ {1, 2} such that m + m1 = 3 and

the conditions (7) and

(−1)m1+1σifk(t, x1, . . . , xn) sgn xi ≤

n
∑

l=1

ηil|xl|+ qk(t)

for µ(am1ik)-almost every t ∈ [−a, a] (i, k = 1, . . . , n)

are fulfilled on Rn, the inequalities

|ϕi(x1, . . . , xn)| ≤ µi|xi(si)|+ ζi (i = 1, . . . , n) (8)

be fulfilled on BVs([a, b], Rn), and let

0 ≤ djαi(t) < |ηii|
−1 for (−1)j(t + σia) > 0 (j = 1, 2; i = 1, . . . , n) (9)

and

µiγi(si,−σia) < 1 (i = 1, . . . , n), (10)

where (pmikl)
n
k,l=1 ∈ L([−a, a], Rn×n

+ ; Am) (i = 1, . . . , n), ηil ∈ R+ (i 6= l;

i, l = 1, . . . , n), ηii < 0 (i = 1, . . . , n), qk = (qki)
n
k=1 ∈ L([−a, a], Rn

+; Am)
(m = 1, 2), ζi ∈ R+ (i = 1, . . . , n), µi ∈ R+ and si ∈ [−a, a], si 6= −σia

(i = 1, . . . , n),

αi(t) ≡

n
∑

k=1

am1ik(t) (i = 1, . . . , n),

γi(t, s) ≡ γai
(t, s) (i = 1, . . . , n),

ai(t) ≡ ηiiσi

(

αi(t)− αi(−σia)
)

(i = 1, . . . , n),

and the functions γai
(i = 1, . . . , n) are defined according to (3). Let, more-

over,

gii < 1 (i = 1, . . . , n)
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and the real part of every characteristic value of the matrix (ξil)
n
i,l=1 be

negative, where

ξil = ηil

(

δil + (1− δil)hi

)

− ηiigil (i, l = 1, . . . , n),

gil = µi

(

1− µiγi(si,−σia)
)−1

γil(si)+

+ max
{

γil(−a), γil(a)
}

(i, l = 1, . . . , n),

γil(−σia) = 0, γil(t) =
∣

∣βil(t)− βil(−σia)
∣

∣− (1− δil)djβil(−σia)

for (−1)j(t + σia) > 0 (j = 1, 2; i, l = 1, . . . , n),

βil(t) ≡

n
∑

k=1

t
∫

−a

pmikl(τ)damik(τ) (i = 1, . . . , n),

hi = 1 for µi ≤ 1 and

hi = 1 + (µi − 1)(1− µiγi(si,−σia))−1 for µi > 1 (i = 1, . . . , n).

Then the problem (1), (2) is solvable.

Remark 1. In Corollary 2 as the matrix-function C = (cil)
n
i,l=1 we take

cil(−σia) = 0 (i, l = 1, . . . , n),

cil(t) = ηil

(

αi(t)− αi(−σia)− (−1)jdjαi(−σia)
)

+

+βil(t)− βil(−σia)− (−1)jdjβil(−σia)

for (−1)j(t + σia) > 0 (j = 1, 2; i, l = 1, . . . , n).

If the matrix-function A = (aik)n
i,k=1 : [−a, a] → Rn×n is nondecreasing,

then Corollary 2 has the following form.

Corollary 3. Let the matrix-function A = (aik)n
i,k=1 : [−a, a] → Rn×n

be nondecreasing, the conditions (8)–(10) hold, the condition

σifk(t, x1, . . . , xn) sgnxi ≤

n
∑

l=1

ηil|xl|+ qk(t)

for µ(aik)-almost every t ∈ [−a, a] (i, k = 1, . . . , n) (11)

be fulfilled on Rn and let the real part of every characteristic value of the

matrix
(

ηil(δil + (1− δil)hi)
)n

i,l=1
be negative, where

αi(t) ≡

n
∑

k=1

aik(t) (i = 1, . . . , n),

and the functions γi(t, s) (i = 1, . . . , n) and ai(t) (i = 1, . . . , n) and the

numbers hi (i = 1, . . . , n) are defined as in Corollary 2. Then the problem

(1), (2) is solvable.

Corollary 4. Let the matrix-function A = (aik)n
i,k=1 : [−a, a] → Rn×n

be nondecreasing and continuous from the left, the conditions (8), (10), (11)
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and

0 ≤ d2αi(t) < |ηii|
−1 for t ∈]− a, a[ (i = 1, . . . , n)

hold and let the real part of every characteristic value of the matrix
(

ηil(δil +

(1−δil)hi)
)n

i,l=1
be negative, where the functions αi(t) (i = 1, . . . , n), γi(t, s)

(i = 1, . . . , n) and ai(t) (i = 1, . . . , n) and the numbers hi (i = 1, . . . , n) are

defined as in Corollary 3. Then the problem (1), (2) is solvable.
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