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Abstract. In the present work we suggest a general method of solution of
spatial axisymmetric problems of steady liquid motion in a porous medium
with partially unknown boundaries. The liquid motion of ground waters
in a porous medium is subjected to the Darcy law. The porous medium is
undeformable, isotropic and homogeneous. The velocity potential ϕ(z, ρ)
and the flow function ψ(z, ρ) are mutually connected and separately they
satisfy different equations of elliptic type, where z is the coordinate of the
axis of symmetry, and ρ is the distance to that axis.

To the domain S(σ) of the liquid motion on the plane of complex veloc-
ity there corresponds a circular polygon. The mapping ω = ϕ+ iψ belongs
to the class of quasi-conformal mappings. Using the functions ω0(ζ) =
ϕ0(ξ, η) + iψ0(ξ, η), σ(ζ) = z(ξ, η) + iρ(ξ, η) we map conformally the half-
plane Im (ζ) > 0 onto the domains S(σ), S(ω0) and S(ω′0(ζ)/σ

′(ζ)). These
functions satisfy all the boundary conditions, and the functions ϕ1(ξ, η) =
ϕ(ξ, η) − ϕ0(ξ, η), ψ1(ξ, η) = ψ(ξ, η) − ψ0(ξ, η) satisfy the system of differ-
ential equations and also zero boundary conditions. The solution of these
equations is reduced to a system of Fredholm integral equations of second
kind which are solved uniquely by rapidly converging series.
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1. Liquid Motion with Axial Symmetry

In this paper we suggest an effective algorithm allowing one to construct
solutions of spatial axisymmetric problems of filtration with partially un-
known boundaries.

Let us consider some spatial axisymmetric problems (with partially un-
known boundaries) of the theory of steady motion of incompressible liquid
in a porous medium obeying the Darcy law. The porous medium is assumed
to be non-deformable, isotropic and homogeneous ([1]–[39]).

The liquid motion is said to be axisymmetric if all velocity vectors lie
in half-planes passing through some line which is called the symmetry axis.
The picture of the liquid flow is the same in all such planes. The field
of velocities of an axisymmetric liquid motion is completely described by
the plane field taken from any of such half-planes. The symmetry axis
is assumed to be the z-axis which is directed vertically downwards. The

distance to the oz-axis is denoted by ρ =
√
x2 + y2, vz and vρ denote the

coordinates of the vector of velocity ~v(vz , vρ) which is connected with the
velocity potential as follows: ~v(vz , vρ) = gradϕ(z, ρ) ([1]–[39]).

Of an infinite set of half-planes we select arbitrarily the one passing
through the symmetry axis on which the moving liquid occupies a certain
simply connected domain S(σ), where σ = z+iρ. Some part of its boundary
is unknown and should be defined.

The lines of intersection of the surface and the planes passing through
the oz-axis of rotation are called meridians, and the lines of intersection
with the planes perpendicular to the oz-axis are called parallels.

1.1. The Notion of a Stream Function for an Axisymmetric Flow.

Let us cite once again the definition of axisymmetric flow, analogous to that
we presented above. The flow is called axisymmetric if the stream planes
passing through the given axis, and every such plane has the same picture
of distribution of flow lines ([1]–[6]). oz is assumed to be the symmetry axis
of the cylindrical system of coordinates ρ, θ, z. Then it follows from the
definition that the component of velocity, when the liquid flow is potential,
has the form vθ = 0. Then the equation of continuity takes the form

∂(ρvz)

∂z
+
∂(ρvρ)

∂ρ
= 0. (1.1)

Differential equation of any stream line for axisymmetric flow, vρ dz −
vz dρ = 0, multiplied by ρ, is a full differential of some stream function
ψ(ρ, z), dψ = ρvρ dz − ρvz dρ. Thus vz = 1

ρ
∂ψ
∂ρ , vρ = − 1

ρ
∂ψ
∂z . On the other

hand, vz = ∂ϕ
∂z , vρ = ∂ϕ

∂ρ , and hence

vz =
∂ϕ

∂z
= +

1

ρ

∂ψ

∂ρ
, vρ =

∂ϕ

∂ρ
= −1

ρ

∂ψ

∂z
. (1.2)
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If the liquid flow is irrotational, i.e. potential, ∂vz

∂ρ =
∂vρ

∂z , then the stream

function should satisfy the equation

∂

∂z

(1

ρ

∂ψ

∂z

)
+

∂

∂ρ

(1

ρ

∂ψ

∂ρ

)
= 0. (1.3)

Recall that ϕ(z, ρ) is a harmonic function of the cylindrical system of
coordinates. Unlike the plane case, the stream function ψ(z, ρ) is not har-
monic. It follows from (1.2) that

∂ϕ

∂z

∂ψ

∂z
+
∂ϕ

∂ρ

∂ψ

∂ρ
= 0. (1.4)

The system (1.1), (1.3) can be rewritten as

∆ϕ(z, ρ) +
1

ρ

∂ϕ

∂ρ
= 0, (1.5)

∆ψ(z, ρ)− 1

ρ

∂ψ

∂ρ
= 0, (1.6)

where ∆ is the Laplace operator. We rewrite the system (1.5), (1.6) as
follows:

∂2ϕ

∂z2
+ 4α

∂2ϕ

∂α2
+ 4

∂ϕ

∂α
= 0, (1.7)

∂2ψ

∂z2
+ 4α

∂2ψ

∂α2
= 0, (1.8)

where α = ρ2.
It can be seen from (1.7) and (1.8) that for α = ρ2 6= 0 the system is

elliptic. Hence ϕ(z, ρ) = const and ψ(z, ρ) = const are orthogonal. How-
ever, the mapping f(z + iρ) = ϕ(z, ρ) + iψ(z, ρ) is not conformal. The
mappings under consideration constitute a class of quasi-conformal map-
pings. The system (1.2) is elliptic only in the domains not adjoining the
axis of rotation. The system degenerates on that axis and quasi-conformity
is violated.

When the point z + iρ approaches the axis of rotation, the ratio of half-
axes of these ellipses infinitely increases. Such violation of quasi-conformity
is a geometric criterion of degeneration of a system on the axis of rota-
tion. In the domains whose closure do not intersect the axis of rotation, the
mappings f = ϕ+ iψ satisfying the system (1.2) are quasi-conformal, pos-
sessing owing to the system (1.2) the principal properties of quasi-conformal
mappings ([1]–[39]).

A linear elliptic equation is said to be degenerated if in some part of its
domain of definition the quadratic form is defined nonpositively.

It can be seen from (1.7) and (1.8) that the given system for α = ρ2 6= 0
is elliptic.

Along the oz-axis, as α→ 0, we have

∂2ϕ

∂z2
+ 4

∂ϕ

∂α
= 0, (1.9)
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∂2ψ

∂z2
= 0. (1.10)

Along the oz-axis of symmetry we have

lim
ρ→0

∂ϕ

∂ρ
= 0, lim

ρ→0

∂ψ

∂ρ
= 0, lim

ρ→0

∂ψ

∂z
= 0,

lim
ρ→0

1

ρ

∂ϕ

∂ρ
=
∂2ϕ

∂ρ2
, lim

ρ→0

1

ρ

∂ψ

∂ρ
=
∂2ψ

∂ρ2
.

(1.11)

We map the half-plane Im(ζ) > 0 (or Im(ζ) < 0) of the complex plane
ζ = ξ + iη conformally onto the domains S(σ),

σ(ζ) = z(ξ, η) + iρ(ξ, η). (1.12)

The system (1.2) takes on the plane ξ + iη the form

∂ϕ

∂ξ
=

1

ρ(ξ, η)

∂ψ

∂η
, (1.13)

∂ϕ

∂η
= − 1

ρ(ξ, η)

∂ψ

∂ξ
, (1.14)

that is,

∂

∂ξ

[
ρ(ξ, η)

∂ϕ(ξ, η)

∂ξ

]
+

∂

∂η

[
ρ(ξ, η)

∂ϕ(ξ, η)

∂η

]
= 0, (1.15)

∂

∂ξ

[ 1

ρ(ξ, η)

∂ψ(ξ, η)

∂ξ

]
+

∂

∂η

[ 1

ρ(ξ, η)

∂ψ(ξ, η)

∂η

]
= 0. (1.16)

From (1.13) and (1.14) follows the condition (1.4).
The boundary conditions have the following forms.
(1) On the free (depression) surface:

ϕ(z, ρ)− kz = const, (1.17)

ψ(z, ρ) = const, (1.18)

where k = const is the filtration coefficient;
(2) Along the boundary of water basins:

ϕ(z, ρ) = const, (1.19)

a1z + b1ρ+ c1 = 0, a1, b1, c1 = const; (1.20)

(3) Along the leaking intervals:

ϕ(z, ρ)− kz = const, (1.21)

a2z + b2ρ+ c2 = 0, a2, b2, c2 = const; (1.22)

(4) Along the symmetry axis, when a segment of the oz-axis of symmetry
coincides with a segment of the boundary of S(σ):

ρ = 0, (1.23)

ψ(z, ρ) = 0, (1.24)
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but if the symmetry axis does not coincide with some part of the boundary
of the flow domain S(σ), then

ρ 6= 0, ρ = const, const 6= 0, (1.25)

ψ(z, ρ) = const, const 6= 0; (1.26)

(5) Along impermeable boundaries:

ψ(z, ρ) = const, (1.27)

a3z + b3ρ+ c3 = 0, a3, b3, c3 = const; (1.28)

(6) Along the impermeable boundary, the velocity vector is directed along
that boundary.

(7) The velocity vector is perpendicular to the boundary of water basins.
(8) Along the free surface (depression curve) we have

v2
z + v2

ρ − kvz = 0. (1.29)

It has been stated in our work [31] that on the plane of complex velocity
we have circular polygons of particular types. But this class of problems
is wide enough. There are axisymmetric spatial problems with partially
unknown boundaries when the boundary of the domain does not involve
the symmetry axis, but as is mentioned above, there are problems when the
boundary of the domain involves the axis of symmetry or its parts.

For circular polygons, in particular, for linear polygons, we are able to
solve plane problems of filtration with partially unknown boundaries. State-
ment and solution of the corresponding plane problems of filtration with
partially unknown boundaries can be found in [26]–[39].

Suppose we have solved the plane problem, i.e. constructed analytic
functions by which the half-plane Im(ζ) > 0 (or Im(ζ) < 0) of the plane
ζ = ξ + iη is mapped conformally onto a circular polygon.

For general discussion we assume that we have a circular polygon with
number of vertices m. To find such an analytic function, we have to solve
a nonlinear third order Schwarz differential equation whose solution is re-
duced to that of a differential Fuchs class equation. The Schwarz equation,
and hence the corresponding Fuchs class equation involves 2(m− 3) essen-
tial unknown parameters. After integration of the Schwarz equation there
appear six additional parameters of integration. To find these parameters,
we write a system of 2(m− 3) higher transcendent equations and a system
consisting of six equations. The boundary conditions for the problem of
filtration contain additional unknown parameters. Further, using the so-
lutions of the plane problems, we construct solutions ϕ(ξ, η), ψ(ξ, η) for
the systems (1.13)–(1.16) of differential equations of spatial axisymmetric
problems. They allow one to construct the functions which map quasi-
conformally the half-plane Im(ζ) ≥ 0 onto the domain of the complex po-
tential and onto the domains of the complex velocity, i.e. the onto S(ω0)
and S(ω′0(ζ)/σ

′(ζ)).



The Exact Solution of Spatial Axisymmetric Problems 99

For three analytic functions

σ(ζ) = z(ξ, η) + iρ(ξ, η), ω0(ζ) = ϕ0(ξ, η) + iψ0(ξ, η),

w0(ζ) = ω′0(ζ)/σ
′(ζ)

we introduce the notation

∆z(ζ, η) = 0, ∆ρ(ζ, η) = 0, ∆ϕ0(ζ, η) = 0,

∆ψ0(ζ, η) = 0, Im(ζ) ≥ 0,
(1.30)

which map conformally the half-plane Im(ζ) ≥ 0 onto the domain S(σ) of
liquid motion, the domains of the complex potential S(ω0) and the domains
of the complex velocity S(ω′0(ζ)/σ

′(ζ)).
Below for the half-plane we will need the Dirichlet problem. Suppose that

on the real axis there is a function u(ξ) bounded by a finite number of points
of discontinuity. To find a value at the point ζ = ξ + iη of the harmonic in
the upper half-plane function, we have to use the Poisson integral

u(ξ) =
1

π

+∞∫

−∞

u(t)
η

(t− ξ)2 + η2
dt, (1.31)

where ζ = ξ + iη.

2. Solution of the System (1.13), (1.14)

We rewrite the system (1.13), (1.14) as follows:

∆ϕ(ξ, η) + a(ξ, η)
∂ϕ

∂ξ
+ b(ξ, η)

∂ϕ

∂η
= 0, (2.1)

∆ψ(ξ, η)− a(ξ, η)
∂ψ

∂ξ
− b(ξ, η)

∂ψ

∂η
= 0, (2.2)

where

a(ξ, η) =
1

ρ(ξ, η)

∂ρ

∂ξ
, b(ξ, η) =

1

ρ(ξ, η)

∂ρ

∂η
, ∆ =

∂2

∂ξ2
+

∂2

∂η2
. (2.3)

Below we will pass to the consideration of the problem of solvability of
the system of differential equations (2.1), (2.2) with respect to the functions
ϕ(ξ, η) and ψ(ξ, η) which should satisfy both the compatibility conditions
(1.13) and (1.14) and the mixed boundary conditions (1.17)–(1.28) on the
known and unknown parts of the boundary. First of all, we replace ϕ(ξ, η)
and ψ(ξ, η) by ϕ0(ξ, η) + ϕ1(ξ, η), ψ0(ξ, η) + ψ1(ξ, η), where ϕ0(ξ, η) and
ψ0(ξ, η) are conjugate, harmonic in the domain Im(ζ) > 0 functions satis-
fying the boundary conditions. This transformation makes it possible for
the unknown functions ϕ1(ξ, η) and ψ1(ξ, η) to satisfy the zero boundary
conditions. Note that the system of equations (2.1) and (2.2) will alter
hereat.
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As is said above, a solution of the system (2.1) and (2.2) will be sought
with regard for (1.13) and (1.14) in the form

ϕ(ξ, η) = ϕ0(ξ, η) + ϕ1(ξ, η), (2.4)

ψ(ξ, η) = ψ0(ξ, η) + ψ1(ξ, η), (2.5)

where ϕ0(ξ, η), ψ0(ξ, η) are conjugate harmonic functions,

∆ϕ0(ξ, η) = 0, ∆ψ0(ξ, η) = 0, (2.6)

which satisfy the Cauchy–Riemann conditions

∂ϕ0

∂ξ
=
∂ψ0

∂η
,

∂ϕ0

∂η
= −∂ψ0

∂ζ
(2.7)

and also all the boundary conditions.
By means of the functions ω0(ξ) = ϕ0(ξ, η) + iψ0(ξ, η), σ(ζ) = z(ξ, η) +

iρ(ξ, η), the half-plane Im(ζ) > 0 (or Im(ζ) < 0) of the plane ζ = ξ + iη is,
as is said above, mapped conformally onto the domains S(ω), S(σ), S(w),
where w(ζ) = ω′(ζ)/σ′(ζ). The functions z(ξ, η) and ρ(ξ, η) should satisfy
the conditions

∆z(ξ, η) = 0, ∆ρ(ξ, η) = 0, (2.8)

∂z

∂ξ
=
∂ρ

∂η
,

∂z

∂η
= −∂ρ

∂ξ
. (2.9)

The system (2.1), (2.2) can be written with respect to ϕ1(ξ, η), ψ1(ξ, η) as
follows:

∆ϕ1(ξ, η) + a(ξ, η)
∂ϕ1(ξ, η)

∂ξ
+ b(ξ, η)

∂ϕ1(ξ, η)

∂η
=

= −
[
∆ϕ0(ξ, η) + a(ξ, η)

∂ϕ0

∂ξ
+ b(ξ, η)

∂ϕ0

∂η

]
, (2.10)

∆ψ1(ξ, η)− a(ξ, η)
∂ψ1(ξ, η)

∂ξ
− b(ξ, η)

∂ψ1(ξ, η)

∂η
=

= −
[
∆ψ0(ξ, η)− a(ξ, η)

∂ψ0

∂ξ
− b(ξ, η)

∂ψ0

∂η

]
. (2.11)

To simplify our investigation and solution of the system (2.10), (2.11), we
have deliberately left in the right-hand sides of (2.10) and (2.11) the terms
∆ϕ0(ξ, η), ∆ψ0(ξ, η) which are, according to (2.6), equal to zero.

Transforming the unknown functions ϕ1(ξ, η), ψ1(ξ, η), ϕ0(ξ, η), ψ0(ξ, η)
as

ϕ1(ξ, η) = ρ−1/2(ξ, η)ϕ2(ξ, η), ψ1(ξ, η) = ρ1/2(ξ, η)ψ2(ξ, η), (2.12)

ϕ0(ξ, η) = ρ−1/2(ξ, η)ϕ∗2(ξ, η), ψ0(ξ, η) = ρ1/2(ξ, η)ψ∗2(ξ, η), (2.13)
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we obtain

∂ϕ1

∂ξ
= −1

2
ρ−3/2 ∂ρ

∂ξ
ϕ2(ξ, η) + ρ−1/2 ∂ϕ2

∂ξ
,

∂ϕ1

∂η
= −1

2
ρ−3/2 ∂ρ

∂η
ϕ2(ξ, η) + ρ−1/2 ∂ϕ2

∂η
,

(2.14)

∂2ϕ1

∂ξ2
=

3

4
ρ−5/2

(∂ρ
∂ξ

)2

− 1

2
ρ−3/2 ∂

2ρ

∂ξ2
ϕ2−

− 1

2
ρ−3/2 ∂ρ

∂ξ

∂ϕ2

∂ξ
− 1

2
ρ−3/2 ∂ρ

∂ξ

∂ϕ2

∂ξ
+ ρ−1/2 ∂ϕ2

∂ξ2
, (2.15)

∂2ϕ1

∂η2
=

3

4
ρ−5/2

(∂ρ
∂η

)2

ϕ2 −
1

2
ρ−3/2 ∂

2ρ

∂η2
ϕ2−

− 1

2
ρ−3/2 ∂ρ

∂η

∂ϕ2

∂η
− 1

2
ρ−3/2 ∂ρ

∂η

∂ϕ2

∂η
+ ρ−1/2 ∂ϕ2

∂η2
, (2.16)

∆ϕ1 =
3

4
ρ−5/2

[(∂ρ
∂ξ

)2

+
(∂ρ
∂η

)2]
ϕ2−

− ρ−3/2
(∂ρ
∂ξ

∂ϕ2

∂ξ
+
∂ρ

∂η

∂ϕ2

∂η

)
+ ρ−1/2∆ϕ2, (2.17)

∆ϕ1 +
1

ρ

(∂ρ
∂ξ

∂ϕ2

∂ξ
+
∂ρ

∂η

∂ϕ2

∂η

)
=

3

4
ρ−5/2

[(∂ρ
∂ξ

)2

+
(∂ρ
∂η

)2]
ϕ2−

− ρ−3/2
(∂ρ
∂ξ

∂ϕ2

∂ξ
+
∂ρ

∂η

∂ϕ2

∂η

)
+ ρ−1/2∆ϕ2+

+
1

ρ

∂ρ

∂ξ

(
− 1

2
ρ−3/2 ∂ρ

∂ξ
ϕ2 + ρ−1/2 ∂ϕ2

∂ξ

)
+

+
1

ρ

∂ρ

∂η

(
− 1

2
ρ−3/2 ∂ρ

∂η
ϕ2 + ρ−1/2 ∂ϕ2

∂η

)
, (2.18)

∆ϕ1 +
1

ρ

(∂ρ
∂ξ

∂ϕ1

∂ξ
+
∂ρ

∂η

∂ϕ1

∂η

)
=

= ρ−1/2

{
∆ϕ2 +

1

4

[(∂ρ
∂ξ

)2

+
(∂ρ
∂η

)2]
ϕ2

}
, (2.19)

∆ψ1 −
1

ρ

(∂ρ
∂ξ

∂ψ1

∂ξ
+
∂ρ

∂η

∂ψ1

∂η

)
=−

[
∆ψ0−

1

ρ

(∂ρ
∂ξ

∂ψ0

∂η
+
∂ρ

∂η

∂ψ0

∂η

)]
, (2.20)

∂ψ1

∂ξ
=

1

2
ρ−1/2 ∂ρ

∂ξ
ψ2 + ρ1/2 ∂ψ2

∂ξ
,

∂ψ1

∂η
=

=
1

2
ρ−1/2 ∂ρ

∂η
ψ2 + ρ1/2 ∂ψ2

∂η
, (2.21)

∂2ψ1

∂ξ2
= −1

4
ρ−3/2

(∂ρ
∂ξ

)2

ψ2 +
1

2
ρ−1/2 ∂

2ψ2

∂ξ2
+

1

2
ρ−1/2 ∂ρ

∂ξ

∂ψ2

∂ξ
+

+
1

2
ρ−1/2 ∂ρ

∂ξ

∂ψ2

∂ξ
+ ρ1/2 ∂

2ψ2

∂ξ2
, (2.22)
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∂2ψ1

∂η2
= −1

4
ρ−3/2

(∂ρ
∂η

)2

ψ2 +
1

2
ρ−1/2 ∂

2ψ2

∂η2
ψ2 +

1

2
ρ−1/2 ∂ρ

∂η

∂ψ2

∂η
+

+
1

2
ρ−1/2 ∂ρ

∂η

∂ψ2

∂η
+ ρ1/2 ∂

2ψ2

∂η2
, (2.23)

∆ψ1 = −1

4
ρ−3/2

[(∂ρ
∂ξ

)2

+
(∂ρ
∂η

)2]
ψ2+

+ ρ−1/2
(∂ρ
∂ξ

∂ψ2

∂ξ
+
∂ρ

∂η

∂ψ2

∂η

)
+ ρ−1/2∆ψ2, (2.24)

∆ψ1 −
1

ρ

(∂ρ
∂ξ

∂ψ1

∂ξ
+
∂ρ

∂η

∂ψ1

∂η

)
= −1

4
ρ−3/2

[(∂ρ
∂ξ

)2

+
(∂ρ
∂η

)2]
ψ2+

+ ρ−1/2
(∂ρ
∂ξ

∂ψ2

∂ξ
+
∂ρ

∂η

∂ψ2

∂η

)
+ ρ1/2∆ψ2, (2.25)

∆ψ1 −
1

ρ

∂ρ

∂ξ

(1

2
ρ−1/2 ∂ρ

∂ξ
ψ2 + ρ1/2 ∂ψ2

∂ξ

)
−

− 1

ρ

∂ρ

∂η

(1

2
ρ−1/2 ∂ρ

∂η
ψ2 + ρ1/2 ∂ψ2

∂η

)
=

= −1

4
ρ−3/2

[(∂ρ
∂ξ

)2

+
(∂ρ
∂η

)2]
ψ2+

+ ρ−1/2
(∂ρ
∂ξ

∂ψ2

∂ξ
+
∂ρ

∂η

∂ψ2

∂η

)
+ ρ1/2∆ψ2, (2.251)

∆ψ1 = ρ1/2

{
∆ψ2 −

3

4

1

ρ2

[(∂ρ
∂ξ

)2

+
(∂ρ
∂η

)2]
ψ2

}
. (2.26)

Taking into account (2.13), we represent the functions ϕ0(ξ, η) and
ψ0(ξ, η) analogously to (2.19) and (2.26) with respect to ϕ∗2(ξ, η), ψ

∗
2(ξ, η)

and obtain

∆ϕ0 +
1

ρ

(∂ρ
∂ξ

∂ϕ0

∂ξ
+
∂ρ

∂η

∂ϕ0

∂η

)
=

= ρ−1/2

{
∆ϕ∗2 +

1

4
ρ−2

[(∂ρ
∂ξ

)2

+
(∂ρ
∂η

)2]
ϕ∗2

}
, (2.27)

∆ψ0 −
1

ρ

( ∂ρ
∂ψ

∂ψ0

∂ξ
+
∂ρ

∂η

∂ψ0

∂η

)
=

= ρ1/2

{
∆ψ∗2 −

3

4
ρ−2

[(∂ρ
∂ξ

)2

+
(∂ρ
∂η

)2]
ψ∗2

}
, (2.28)

where ∆ϕ0 = 0, ∆ψ0 = 0.
Bearing in mind (2.19), (2.27), (2.26) and (2.28), we represent the system

(2.10) and (2.11) as follows:

ρ−1/2
[
∆ϕ2 + λρ1ϕ2

]
= −ρ−1/2

[
∆ϕ∗2 +

1

4
ρ1ϕ

∗
2

]
, (2.29)

ρ1/2
[
∆ψ2 − µρ1ψ2

]
= −ρ1/2

[
∆ψ∗2 −

3

4
ρ1ψ

∗
2

]
, (2.30)
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where ρ1 = 1
ρ2

[(
∂ρ
∂ξ

)2
+
(
∂ρ
∂η

)2]
, λ = 1

4 , µ = 3
4 .

The equalities (2.29) and (2.30) can be rewritten in the form

∆ϕ2 +
1

4
ρ1ϕ2 = −

[
∆ϕ∗2 +

1

4
ρ1ϕ

∗
2

]
, (2.31)

∆ψ2 −
3

4
ρ1ψ2 = −ρ−1/2

[
∆ψ∗2 −

3

4
ρ1ψ

∗
2

]
. (2.32)

Assuming that ϕ∗2(ξ, η) and ψ∗2(ξ, η) are known functions, we rewrite the
equations (2.31), (2.32) as

∆(ϕ2 + ϕ∗2) = −1

4
ρ1(ϕ2 + ϕ∗2) ≡ f∗1 (ξ, η), (2.33)

∆(ψ2 + ψ∗2) =
3

4
ρ1(ψ2 + ψ∗2) ≡ f∗2 (ξ, η). (2.34)

Consider the Poisson equation

∆u(ξ, η) = f∗1 (ξ, η), (ξ1, η1) ∈ Im(ζ) > 0. (2.35)

Define the function u(ξ, η) by the formula

u(ξ, η) = − 1

2π

∫∫

Im(ζ)>0

G(ξ, η;x, y)f1(x, y) dx dy, (2.36)

where

G(ξ, η;x, y) =
1

4π
ln

(ξ − x)2 + (η + y)2

(ξ − x)2 + (η − y)2
(2.37)

is Green’s function of the Dirichlet problem for the harmonic in Im(ζ) > 0
function, while the function f∗1 (ξ, η) is bounded and has continuous first
derivatives bounded in Im(ζ) > 0, U(ξ, η) is a regular solution of the Poisson
equation (2.35). It is proved that (2.36) satisfies the boundary condition [4]

lim
(ξ,η)→(ξ0,η0)

u(ξ, η) = 0, (ξ, η) ∈ Im(ζ) > 0, (ξ0, η0) ∈ Im(ζ0). (2.38)

Using (2.35) and (2.36) with respect to (2.33) and (2.34), we obtain

ϕ2(ξ, η) = −ϕ∗2(ξ, η) +
1

2π

∫∫

Im(ζ)>0

G(ξ, η;x, y)f∗1 (x, y) dx dy, (2.39)

ψ2(ξ, η) = −ψ∗2(ξ, η) +
1

2π

∫∫

Im(ζ)>0

G(ξ, η;x, y)f∗2 (x, y) dx dy. (2.40)

The equalities (2.39) and (2.40) can be written as follows:

ϕ2(ξ, η) = −ρ1/2ϕ0(ξ, η)+

+
1

8π

∫∫

Im(ζ)>0

G(ξ, η;x, y)ρ1(x, y)
[
ϕ2(x, y) + ρ1/2ϕ0(x, y)

]
dx dy, (2.41)
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ψ2(ξ, η) = −ψ∗(ξ, η)+

+
3

8π

∫∫

Im(ζ)>0

G(ξ, η;x, y)ρ1(x, y)
[
ψ2(x, y) + ψ∗2(x, y)

]
dx dy. (2.42)

We rewrite the equations (2.40) and (2.42) in the form

ϕ2(ξ, η) = f3(ξ, η) +
1

8π

∫∫

Im(ζ)>0

G(ξ, η;x, y)ρ1(x, y)ϕ2(x, y) dx dy, (2.43)

ψ2(ξ, η) = f4(ξ, η) +
3

8π

∫∫

Im(ζ)>0

G(ξ, η;x, y)ρ1(x, y)ψ2(x, y) dx dy, (2.44)

where

f3(ξ, η) =− ρ1/2ϕ0(ξ, η)+

+
1

8π

∫∫

Im(ζ)>0

G(ξ, η;x, y)ρ1(x, y)ρ
1/2ϕ0(x, y) dx dy, (2.45)

f4(ξ, η) =− ψ∗(ξ, η)+

+
3

8π

∫∫

Im(ζ)>0

G(ξ, η;x, y)ρ1(x, y)ψ
∗
2(x, y) dx dy. (2.46)

Thus we have obtained the second kind Fredholm’s integral equations
(2.43) and (2.44) with respect to ϕ2(ξ, η) and ψ2(ξ, η). The problems (2.33)
and (2.34) are, respectively, equivalent to the integral equations (2.43) and
(2.44) which will be solved by using exact methods.

Solutions of the integral equations (2.43) and (2.44) will be sought by
the method of successive approximations in the form of the series

ϕ2(ξ, η) =

∞∑

n=0

λnϕ2(n)(ξ, η), (2.47)

ψ2(ξ, η) =

∞∑

n=0

µnψ2(n)(ξ, η), (2.48)

where λ = 1
8π , µ = 3

8π .
Substituting the series (2.47) and (2.48) respectively into the integral

equations and equating the coefficients with the same powers of the param-
eters λ and µ, we obtain

ϕ2(0)(ξ, η) = f3(ξ, η), (2.49)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ϕ2(n)(ξ, η) =

∫∫

Im(ζ)>0

G(ξ, η;x, y)ρ1(x, y)ϕ2(n−1)(x, y) dx dy, (2.50)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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ψ2(0)(ξ, η) = f4(ξ, η), (2.51)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ψ2(n)(ξ, η) =

∫∫

Im(ζ)>0

G(ξ, η;x, y)ρ1(x, y)ψ2(n−1)(x, y) dx dy, (2.52)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n = 1, 2, 3, . . . .

The parameters λ = 1
8π and µ = 3

8π of the integral equations (2.43) and
(2.44) are small enough; this ensures the convergence of the series (2.47)
and (2.48). Recall here that as initial approximations, as usual, have been
taken the free terms f3(ξ, η) and f4(ξ, η).

Basing on (2.47)–(2.52), we can construct general formulas which allow
one to express any approximations through the free terms by means of
iterated kernels.

Assuming that the series (2.47) and (2.48) are constructed, we can mul-
tiply them respectively by ρ−1/2 and ρ1/2. We obtain

ϕ(ξ, η) = ϕ0(ξ, η) + ϕ1(ξ, η), (2.53)

ψ(ξ, η) = ψ0(ξ, η) + ψ1(ξ, η). (2.54)

Recall that the boundary conditions along the oz-axis of symmetry, when
some parts of oz coincide with the boundary S(σ), have in the coordinates
(z, ρ) the form

ρ→ 0, α = ρ2,

∂ϕ

∂ρ
=
∂ϕ

∂α

∂α

∂ρ
=
∂ϕ

∂α
· 2ρ→ 0;

∂ψ

∂ρ
=
∂ψ

∂α

∂α

∂ρ
=
∂ψ

∂α
· 2ρ→ 0.

(2.55)

In the coordinates (ξ, η), the boundary conditions along the oz-axis have
the form

ρ(ξ, η) = 0,
∂ρ

∂ξ
= 0,

∂ρ

∂η
= 0;

(∂ϕ
∂ξ

)

ρ→0
=
(∂ϕ
∂z

∂z

∂ζ
+
∂ϕ

∂α

∂α

∂ρ

∂ρ

∂ξ

)

ρ→0
=
(∂ϕ
∂z

∂z

∂ξ

)

ρ→0
,

∣∣∣
∂ϕ

∂α

∂α

∂ρ

∂ρ

∂ξ

∣∣∣
ρ→0

→ 0,

(2.56)

(∂ϕ
∂ρ

)

ρ→0
=
(∂ϕ
∂α

∂α

∂ρ

)

ρ→0
→ 0,

(∂ϕ
∂η

)
=
(∂ϕ
∂z

∂z

∂η
+
∂ϕ

∂α

∂α

∂ρ

∂ρ

∂η

)

ρ→0
=
(∂ϕ
∂z

∂z

∂η

)

ρ→∞

∂ρ

∂η
→ 0.

(2.57)
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Suppose that the oz-axis of symmetry (or its parts) does not coincide
with the boundary of the filtration domain S(σ),

ρ = const 6= 0, α = ρ2,

∂ϕ

∂ρ
=
∂ϕ

∂α

∂α

∂ρ
=
∂ϕ

∂α
· 2ρ =

∂ϕ

∂α
· 2 const, ρ→ const .

(2.58)

(∂ψ
∂α

∂α

∂ρ

)

ρ→const
=
(∂ψ
∂α

)
· 2 const, (ψ)ρ=const = const,

(∂ψ
∂ξ

)

ρ→const
→ 0,

(∂ψ
∂η

)

ρ→const
→ 0,

(∂ϕ
∂η

)

ρ=const
=
(∂ϕ
∂z

∂z

∂η
+
∂ϕ

∂α

∂α

∂ρ

∂ρ

∂η

)

ρ=const
=
(∂ϕ
∂z

∂z

∂η

)

ρ=const
,

∂ρ

∂η
= 0.

(2.59)

Below we present another way of solution of the system (2.10) and (2.11).

10. Green’s function belongs to the class of fundamental solutions of the
Laplace equation. It is determined as a harmonic function of a pair of
points (P ;Q), is symmetric with respect to P and Q, equals to zero on the
boundary and is analytic at all points P of the domain Di, except of the
points P = Q at which it has logarithmic singularity, i.e. at the point P of
the neighborhood of Q the relation

G(P ;Q) =
1

2π
ln r(P ;Q) + g(P ;Q) (2.60)

is fulfilled, where r =
√

(x− ξ)2 + (y − η)2 is the distance between the
points P and Q. Moreover, Green’s function, as a function of P , should have
everywhere inside of Di, except the point of Q, continuous derivatives up to
the second order and satisfy the Laplace equation, while on the boundary
it should satisfy the limiting condition. Next, G(P ;Q), as function of P ,
should have singularity at the point Q corresponding to the initial charge (or
to the mass) concentrated at the point Q. Green’s function of the Laplace
operator for the plane simply connected domain under the limiting condition
U` = 0 is tightly connected with the function which transforms conformally
the above-mentioned domain onto the circle |W | ≤ 1.
G(P ;Q) is a harmonic in the domain Di function of the coordinates x

and y ([4], [17], [33]–[36]).
If d is the diameter of the domain Di, then the inequality

0 ≤ G(P ;Q) ≤ ln
(d
r

)
(2.61)

is valid. Green’s function for the circle of radius R = 1 has the form

G(P ;Q) =
1

2π
ln
(ρr1
r

)
, (2.62)
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where ρ =
√
ξ2 + η2 is the distance of the point Q(ξ, η) from the center of

the circle. r1 is defined as follows: r1 =
√

(x− ξ/ρ2)2 + (y − η/ρ2)2.

20. Consider the inhomogeneous equation

∆U(x, y) = −ϕ(x, y). (2.63)

We seek for a solution of (2.63) continuous up to the contour of the
domain and satisfying the limiting equation U

∣∣
`

= 0. There may be only

one such solution ([35]).
The unknown solution has the form

U(x, y) =

∫∫

Di

G(x, y; ξ, η)ϕ(ξ, η) dξ dη, (2.64)

that is,

U(x, y) =
1

2π

∫∫

Di

ϕ(ξ, η) ln
1

r
dξ dη+

+

∫∫

Di

g(x, y; ξ, η)ϕ(ξ, η) ln
1

r
dξ dη, (2.65)

otherwise.
The first summand of (2.65) has inside of Di continuous derivatives up

to the second order, and its Laplace operator is equal to [−ϕ(ξ, η)]. It is
proved that the second summand of (2.65) can be differentiated with respect
to the coordinates (x, y) of the point P (x, y) as many times as desired under
the integral sign. This implies that this summand is a function harmonic
inside of Di, because g(P ;Q) is a harmonic function of the point P (x, y).
g(P ;Q) is a harmonic function of the point Q with limiting values

(
1
2π ln r

)
,

where r =
√

(x− ξ)2 + (y − η)2. It is assumed that P (x, y) is inside of Di.
The formula (2.65) provides us with the solution of the equation (2.63)
satisfying the condition U

∣∣
`

= 0. Recall that there exists a generalized

solution of (2.63).

30. The linear-fractional conformal mapping of the half-plane Im(ζ) > 0
onto the circle |W | < 1 has the form

W =
1 + iζ

i+ zt
, ζ = ξ + iη, w = u+ iv. (2.66)

It follows from (2.66) that

u =
2ξ

ξ2 + (1 + η)2
, v =

ξ2 + η2 − 1

ξ2 + (1 + η)2
. (2.67)

On the other hand, from (2.66) we have

ζ =
i+ w

1 + iw
, ξ =

2u

u2 + (1− v)2
, η =

1− v2 − u2

u2 + (1− v)2
. (2.68)
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40. Harmonic and analytic functions of a complex variable.

Let

w = f(z) = u(x, y) + iv(x, y), z = x+ iy (2.69)

be some function of the complex variable z = x + iy; u and v are the
real functions of the variables x and y. The Cauchy–Riemann conditions
ux = vy, uy = −vx are necessary and sufficient for the function to be
analytic. It follows from these conditions that ∆U = 0, ∆V = 0, where ∆
is the Laplace operator.

Consider the transformation

x = x(u, v), y = y(u, v), (2.70)

u = u(x, y), v = v(x, y), (2.71)

where u(x, y), v(x, y) are conjugate harmonic functions. Then the above
transformation is equivalent to (2.69).

By virtue of the Cauchy–Riemann conditions, the relations [36]

u2
x + u2

y = u2
x + v2

x = v2
y + v2

x = |f ′(z)|2, uxvx + uyvy = 0 (2.72)

should be satisfied for the functions u and v.
Let us find out how the Laplace operator changes under that transfor-

mation. We obtain

U = U
[
x(u, v), y(u, v)

]
= Ũ(u, v), (2.73)

Uxx + Uyy = (Ũuu + Ṽuu)|f ′(z)|2, (2.74)

whence it follows that, as a result of the transformation w = f(z) = u +
iv, the function U(x, y), harmonic in the domain G, transforms into the

function Ũ = Ũ(u, v), harmonic in the domain G′, if only |f ′(z)|2 6= 0.
Consider the equations

∆ϕ+
1

4
ρ1ϕ = 0, (2.75)

∆ψ − 3

4
ρ1ψ = 0, (2.76)

where ρ1 = 1
ρ2

[(
∂ρ
∂x

)2
+
(
∂ρ
∂y

)2]
. The transformations

ϕ = ϕ
[
x(u, v), y(u, v)

]
= ϕ̃(u, v), (2.77)

ψ = ψ
[
x(u, v), y(u, v)

]
= ψ̃(u, v) (2.78)

result in the equalities

ϕxx + ϕyy +
1

4

1

ρ2(x, y)

[(∂ρ
∂x

)2

+
(∂ρ
∂y

)2]
ϕ(x, y) =

{
ϕ̃uu + ϕ̃vv+

+
1

4

1

ρ̃(u, v)

[(∂ρ̃
∂u

)2

+
(∂ρ̃
∂v

)2]
ϕ̃(u, v)

}
|f ′(z)|2 = 0, |f ′(z)|2 6= 0, (2.79)

ψxx + ψyy −
3

4

1

ρ2(x, y)

{(∂ρ
∂x

)2

+
(∂ρ
∂y

)2}
ψ(x, y) =



The Exact Solution of Spatial Axisymmetric Problems 109

=

{
ψ̃uu + ψ̃vv −

3

4

1

ρ̃(u, v)

[(∂ρ̃
∂u

)2

+
(∂ρ̃
∂v

)2]
ϕ̃(u, v)

}
|f ′(z)|2 = 0, (2.80)

since |f ′(z)| 6= 0, and hence from (2.79) and (2.80) we have

ϕ̃uu + ϕ̃vv +
1

4

1

ρ̃2

[(∂ρ̃
∂u

)2

+
(∂ρ̃
∂v

)2]
ϕ̃ = 0, (2.81)

ψ̃uu + ψ̃vv −
3

4

1

ρ̃2

[(∂ρ̃
∂u

)2

+
(∂ρ̃
∂v

)2]
ψ̃ = 0. (2.82)

It follows from the above-said that using the transformations (2.68), (2.71)
and Green’s function (2.62), we can reduce the problem (2.31) (or (2.32)) to
the solution of Fredholm’s integral equation of second kind, where the given
functions, the kernel and the right-hand side are defined in the domain of
the unit circle. In this case, for the convergence of Neumann’s series we can
indicate a simpler condition. In particular, if the kernel is bounded, then for
the convergence of Neumann’s series there exist more plausible condition.

In hydrodynamics, there exists the method of sources and channels. This
method has been for the first time applied by Rankin to the spatial problem
of body streamline. The method consists in the replacement of the body
streamline by such a system of sources and channels that the body surface
is one of the stream surfaces; note that the algebraic sum of abundance
sources should be equal to zero. The choice of a system of sources and
channels by means of a preassigned surface form of a body streamline is of
great mathematical difficulty ([1-3], [7]).

Below we will present an algorithm of finding the functions ϕ0(ξ, η),
ψ0(ξ, η), z(ξ, η) and ρ(ξ, η). Recall that the plane of liquid motion coincides
with that of the complex variable σ = z + iρ, i = −

√
−1.

In the domain S(σ) with the boundary `(σ) we seek for a complex
potential (i.e., a potential divided by the filtration coefficient) ω(σ) =
ϕ0(z, ρ)+ iψ0(z, ρ). The velocity potential ϕ0(z, ρ) and the stream function
ψ0(z, ρ) satisfy the Cauchy–Riemann conditions and the boundary condi-
tions

akjϕ0(z, ρ)+ak2ψ0(z, ρ)+ak3z+ak4ρ = fk, k = 1, 2, (z, ρ) ∈ `(σ), (2.83)

where akj , fk, k = 1, 2, j = 1, . . . , n, are given piecewise constant real
functions; fk, k = 1, 2, depend on an unknown parameter Q of the filtrated
liquid discharge.

Using (2.60), we can find a part of the boundary `(ω0) of S(ω0) and the
boundary `(w0) of the domain of complex velocity S(w0), where w0(z) =

dω0/dσ =
ω′

0
(ζ)

σ′(ζ) , excluding some coordinates of those vertices of circular

polygons which are connected with cut ends. By means of the functions
ω0(σ) and w(σ), we map conformally the domain `(σ) with the boundary
`(σ) onto the domains S(ω0) and S(w). The domain S(w) is a circular
polygon.
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Angular points of the boundaries `(σ), `(ω0) and `(w) which can be
encountered at least at one of them when passing in the positive direction
we denote by Ak, k = 1, . . . , n.

The half-plane Im(ζ) > 0 of the plane ζ = ξ + iη is mapped conformally
onto the domains S(σ), S(ω0) and S(w0). We denote the corresponding
mapping functions by σ(ζ), ω0(ζ), w(ζ0) = ω′0(ζ)/σ

′(ζ), dω0(ζ)/dζ = ω′0(ζ),
dσ(ζ)/dζ = σ′(ζ). To the angular points Ak, k = 1, . . . , n, there correspond
the points ζ = ek, k = 1, . . . , n, along the axis t with −∞ < e1 < e2 < · · · <
en−1 < en < +∞, and ξ = en+1 = 0 is mapped into the nonangular point
A∞ of the boundary `(σ) which is located between the points An and A1.

3. Construction of the Functions dω0(ζ)/dσ(ζ), ω0(ζ), σ(ζ)

We denote by σ(ξ) = z(ξ) + iρ(ξ), ω0(ξ) = ϕ0(ξ) + iψ0(ξ), w0(ξ) =
u0(ξ) + iv0(ξ) the boundary values of the functions σ(ζ), ω0(ζ) and w0(ζ)
as ζ → ξ, ζ ∈ Im(ζ) > 0. By σ(ξ), ω0(ξ) and w0(ξ) we denote the complex
conjugate functions corresponding to the functions σ(ξ), ω0(ξ) and w0(ξ).

Introduce the vectors Φ0(ξ)=[ω0(ξ), σ(ξ)], Φ0(ξ)= [ω0(ξ), σ(ξ)], Φ′0(ξ) =
[ω′0(ξ), σ

′(ξ)], Φ0
′(ξ) = [ω0

′(ξ), σ ′(ξ)], f(ξ) = [f1(ξ), f2(ξ)]. Then the
boundary conditions ([26]–[31])

Φ0(ξ) = g(ξ)Φ0(ξ) + i · 2G−1f(ξ), −∞ < ξ < +∞, (3.1)

where G−1(ξ)G(ξ) = g(ξ) is a piecewise constant nonsingular second rank
matrix with the points of discontinuity ξ = ek, k = 1, . . . , n; G−1(ξ) and
G(ξ) are, respectively, the inverse and complex conjugate matrices to the
matrix G(ξ), and the vector f(ξ) is defined by means of (2.83).

Differentiating (3.1) along the boundary ξ, we obtain

Φ′0(ξ) = g(ξ)Φ′0(ξ), −∞ < ξ < +∞. (3.2)

It can be verified that the equality g(ξ) = G
−1

(ξ)G(ξ) holds. For the points
ξ = ej , j = 1, . . . , n, let us consider the characteristic equation ([1]–[31])

det
[
g−1
j+1(ej + 0)gj(ej − 0)− λE

]
(3.3)

with respect to the parameter λ, where E is the unit matrix, gj(ξ), ej < ξ <

ej+1, g
−1
j+1(ej +0), gj(ej−0) are the limiting values of the matrices g−1

j+1(ξ),

gi(ξ) at the point ξ = ej from the right and from the left, respectively.
By means of the roots λkj of the equation (3.3) we define uniquely the

numbers αkj = (2πi)−1 lnλkj , k = 1, 2; j = 1 . . . , n ([1]–[30]).
Suppose that among the points Ak, k = 1 . . . , n, of the boundaries `(σ)

and `(ω0) there exist removable points to which on the boundary `(w0) of
S(w0) there correspond regular nonangular points ([26]–[30]).

For the sake of simplicity we assume that the removable singular point
coincides with the point ξ = ej to which on the boundaries `(σ) and `(ω0)
there correspond the angles π/2, while on the boundary `(w0) the angle π.
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To remove this point from the homogeneous boundary conditions (3.2), we
introduce a new unknown vector Φ1(ξ) ([26]–[30])

Φ′0(ξ) = χ
1
(ξ)Φ1(ξ), (3.4)

where

χ
1
(ξ =

√
ξ − ej−1

ξ − ej
. (3.5)

After the passage from the vector Φ′(ξ) to Φ1(ξ), we multiply the matrix
gi(ξ) by (−1).

The boundary conditions with respect to Φ1(ξ) take the form

Φ1(ξ) = g∗(ξ)Φ1(ξ), (3.6)

where

g∗(ξ) = [χ
1
(ξ)]−1g(ξ)[χ

1
(ξ)]. (3.7)

On the contour `(w0) we renumerate singular points and denote them by
aj , j = 1, . . . ,m. We denote the characteristic points defined uniquely and
corresponding to the points t = aj again by αkj , k = 1, 2, j = 1, . . . ,m.
They satisfy the Fuchs condition.

Now we write the Fuchs class equation ([1]–[39])

u′′(ξ) + p(ξ)u′(ζ) + g(ξ)u(ξ) = 0, (3.8)

where

p(ξ) =
m∑

j=1

(1− α1j − α2j)(ξ − aj)
−1, (3.9)

q(ξ) =

m∑

j=1

[
α1jα2j(ξ − aj)

−2 + cj(ξ − aj)
−1
]
, (3.10)

where cj are unknown real accessory parameters satisfying the conditions

N1 =
m∑

j=1

cj = 0. (3.11)

By means of matrices, we write the equation (3.8) in the form of the
system ([26]–[39)]

χ′(ξ) = χ(ξ)Φ(ξ), (3.12)

χ(ξ) =

(
u1(ξ) u′1(ξ)
u2(ξ) u′2(ξ)

)
, Φ(ξ) =

(
0 −g(ξ)
1 −p(ξ)

)
. (3.13)

Further, using linearly independent solutions u1(ξ) and u2(ξ) of the equation
(3.8), we construct the general solution

w(ξ) =
pu1(ξ) + qu2(ξ)

ru1(ξ) + su2(ξ)
, (3.14)
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of the Schwarz equation ([26]–[30])

{w; ξ} =
w′′′(ξ)

w′(ξ)
− 1, 5

(w′(ξ)
w′(ξ)

)2

= R(ξ), (3.15)

where

R(ξ) = 2q(ξ)− p′(ξ)− 0, 5[p(ξ)]2 =

=

m∑

j=1

{
0, 5
[
1− (α1j − α2j)

2
]
(ζ − aj)

−2 + c∗j (ξ − aj)
−1

}
, (3.16)

α1j − α2j = νj , j = 1, . . . ,m,

c∗j = 2ci − βj

m∑

k=1, k 6=j

βk(aj − ak)
−1,

βk = 1− a1k − a2k, k = 1, . . . ,m,

(3.17)

p, q, r and s are constants of integration of (3.14) which satisfy the condition
ps−rq 6= 0, πνj is the interior angle at the vertex Bj of the circular polygon.

Using (3.14), we map conformally the half-plane Im(ζ) > 0 (or Im(ζ) < 0)
onto the domain S(w) with the boundary `(w). Expanding the functions
R(ζ) into the serie of powers of 1/ζ, we obtain

R(ζ) =

∞∑

k=1

Mkζ
−k . (3.18)

Since the point ζ = ∞ is the image of the nonsingular point of the boundary
`(σ), the conditions ([1]–[31])

M1 =

m∑

k=1

c∗k = 0, (3.19)

M2 =

m∑

k=1

[
akc

∗
k + 0, 5(1− ν2

k)
]

= 0, (3.20)

M3 =

m∑

k=1

[
a2
kc
∗
k + ak(1− ν2

k)
]

= 0 (3.21)

should be fulfilled. From the condition (3.19) follows (3.11), and vice versa.
We can obtain the conditions (3.20) and (3.21) in somewhat different way
and in another form. Taking into account (3.12), the conditions (3.19)–
(3.21) allow one to define three parameters cj , j = 1, 2, 3, of the parameters
cj , j = 1, . . . ,m. Moreover, we choose arbitrarily three of the parameters
t = aj , j = 1, . . . ,m and fix them according to the Riemann theorem.
Therefore R(ζ) defined by the formula (3.16) will depend on 2(m − 3) un-
known parameters aj , cj , j = 1, . . . ,m − 3. The equation (3.18) near the
point ξ = aj can be rewritten as [26–31]

(ζ − aj)
2u′′(ξ) + (ξ − aj)pj(ξ)u

′(ξ) + qj(ξ)u(ξ) = 0, (3.22)
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where

pj(ξ) = p0j +

∞∑

n=1

pnj(ξ − aj)
n, (3.23)

pnj = (−1)n−1
m∑

k=1, k 6=j

βk(aj − ak)
−n, βk = 1− α1k − al2k, (3.24)

qj = α1jα2j + cj(ξ − aj) +
∞∑

n=2

qnj(ξ − aj)
n, (3.25)

qnj = (−1)n−2
m∑

k=2, k 6=j

[
α1kα2k(n− 1)+

+ ck(aj − ak)
]
(aj − ak)

−n, n = 2, 3, . . . , (3.26)

q0j = α1jα2j , q1j = cj , j = 1, . . . ,m. (3.27)

4. Local Solutions

Local solutions of the equation (3.32) for the points ξ = aj , j = 1, . . . ,m,
are sought in the form

uj(ξ) = (ξ − aj)
αj ũj(ξ), ũj(ξ) = 1 +

∞∑

n=1

γnj(ξ − aj)
n, (4.1)

where γ0j , n = 1, . . . ,∞, j = 1, . . . ,m, are defined by the recurrence for-
mulas ([26]–[31])

f0j(αj) = αj(αj−1) + pnjαj + q0j = 0, (4.2)

γ1jf0j(αj + 1) + f1j(αj) = 0, (4.3)

γ2jf0j(αj + 2) + γ1jf1j(αj + 1) + f2j(αj) = 0, (4.4)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where

fn(αj) = α1jpnj + qnj . (4.5)

If the difference α1j − α2j , j = 1, . . . ,m, is noninteger, then using the
formulas (4.3)–(4.5), we construct the linearly independent solutions (3.32),

uki(ξ) = (ξ − aj)
αkj ũkj(ξ),

ũkj(ξ) = 1 +

∞∑

n=1

γknj(ξ − aj)
n, k = 1, 2, j = 1, . . . ,m.

(4.6)

However, if α1j − α2j = n, n = 0, 1, 2, then u1j(ξ) is constructed by the
formulas (4.3)–(4.5), while u2j(ξ) by the Frobenius method ([24], [26]–[31]).
Note that for α1j − α2j = 0, the function u2j(ζ) has the form

u2j(ξ) = u1j(ξ) ln(ξ − aj) + (ξ − aj)
α1j

∞∑

n=1

γ2
nj(ξ − aj)

n, (4.7)
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where

γ2
nj =

{dγ1j(αj)

dαj

}

αj=α2j

.

If α1j − α2j = n, n = 1, 2, then for the construction of u2j(ξ) we have to
differentiate the equality

u2j(ξ) = (ξ − aj)
αj

[
αj − α2j +

∞∑

n=1

γ2
nj(ξ − aj)

n
]

(4.8)

with respect to αj , then take αj → α2j , and obtain

u2j(ξ) = (ξ − aj)
α2j

[ ∞∑

n=1

lim
αj→α2j

γnj(αi)(t− aj)
n
]
ln(t− aj)+

+ (t− aj)
α2j

{
1 +

∞∑

n=1

[dγ1j(αj)

dαj

]

αj=α2j

(t− aj)
n
}
. (4.9)

P. Ya. Polubarinova–Kochina has proved that a solution for the cut
end u2j(ξ), where α1j − α2j = 2, does not involve a logarithmic term.
Moreover, for such points she also obtained an algebraic equation connecting
the parameters aj , cj , j = 1, . . . ,m. To construct u2j(ξ) uniquely, we
suggested in our works the following method. For the point t = aj , the
equality (4.4) fails to be fulfilled since

f0j(αj + 2) = 0, αj → α2j . (4.10)

For the equality (4.4) to take place as αj → α2j , it will be necessary and
sufficient to require the condition

γ1jf1(αj + 1) + f2(αj) = 0, α1j → α2j + 2. (4.11)

After simplification, (4.11) takes the form ([26]–[31])

q2j + q21j + q1jp1j = 0. (4.12)

To construct u2j(ξ) uniquely, it suffices to construct γ2
2j(α2j) and then

make use of the formulas (4.3)–(4.5) ([26]–[39]). Indeed, suppose α1j 6= α2j .
Then using (4.4), we find γ2j(αj) and obtain

γ2j(αj) = −γ1j(αj)f1j(αj + 1) + f2j(αj)

f0(αj + 2)
. (4.13)

In the formula (4.13) we remove uncertainty and then pass to the limit
αj → α2j . We have

γ2
2j = −0, 5

[
p1j(p1j + 2q1j) + p2j

]
. (4.14)

Then we define local solutions near the point t = ∞. The functions p(ξ)
and q(ξ) near the point t = ∞ can be represented in the form

p(ξ) = ξ−1
∞∑

n=0

pn∞ξ
−4, q(ξ) = ξ−2

∞∑

n=0

qn∞ξ
−n, (4.15)
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where

pn∞ =
m∑

k=1

βka
n
k , p0∞ = 6, (4.16)

qn∞ =

m∑

k=1

[
α1kα2k(n+ 1) + ckak

]
ank . (4.17)

Local solutions near the point ξ = ∞ have the form

u∞(ξ) = ξ−∞
∞∑

n=1

γn∞ξ
−(α∞+n), (4.18)

where γn∞, n = 1, . . . ,∞, are defined by the formulas

f0∞(α∞) = α∞(α∞ + 1)− p0∞α∞ + q0∞ = 0, (4.19)

α1∞f0∞(α∞ + 1)− p1∞α∞ + q1∞ = 0, (4.20)

α2∞f0∞(α∞ + 2) + γ1∞(α∞ + 1)− p2∞α∞ + q2∞ = 0, (4.21)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where

fk∞ = qk∞ − (α∞ + k)pk∞. (4.22)

Since t = ∞ is the image of the nonangular point, the equation (4.19)
should have the roots α1∞ = 3, α2∞ = 2. Consequently,

q0∞ =

m∑

k=1

[
α1kα2k + akck

]
= 6. (4.23)

As far as α1∞−α2∞ = 1, the equations (4.20)–(4.22) allow one to define
only one solution u1∞(ξ). To find u2∞(ξ) as α∞ → α2∞, it is necessary and
sufficient that the condition

q1∞ − p1∞α2∞ = 0 (4.24)

takes place. To determine γ2
1∞, we act as follows. By virtue of (4.20), for

α1∞ 6= α2∞, we find γ1∞ and obtain

γ1∞ =
p1∞α∞ − q1∞
f0∞(α∞ + 1)

. (4.25)

Since the numerator and the denominator in (4.25) vanish as α∞ → α2∞,
we have to remove uncertainty. We obtain ([26]–[31]) uniquely

γ2
1∞ = p1∞. (4.26)

Having defined γ2
1∞, we can find the remaining γ2

n∞, n = 2, . . . ,∞, by
using the formulas (4.20)–(4.22). Consequently, u2∞(ξ) is defined uniquely.
Finally, we obtain

uk∞(ξ) = ξ−αk∞ +

∞∑

n=1

γkn∞ξ
−αk∞−n, k = 1, 2. (4.27)
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The system (3.19), (3.20), (3.21) coincides respectively with the system
(3.11), (4.23), (4.24), and vice versa.

Local solutions ukj(ξ), k = 1, 2, j = 1, . . . ,m, contain multi-valued func-
tions of which we choose one-valued branches

exp
[
βkj ln(ξ − aj)

]
> 0, t > aj ,

{
exp

[
αkj ln(ξ − aj)

]}−1

= exp
[
iπαkj

]{
exp ln(aj − ξ)

}
, aj − ξ > 0,

{
exp

[
αkj ln(ξ − aj)

]}−1

= exp
[
− iπαkj

]{
exp

[
αkj ln(aj − ξ)

]}
,

aj − t > 0.

For the equation (3.8), in the neighborhood of every singular point ξ =
aj , j = 1, . . . ,m + 1, and in the neighborhood of the points t = a∗1 =
(aj + aj+1)/2, j = 1, . . . ,m− 1, we construct respectively ukj(ξ), k = 1, 2,
j = 1, . . . ,m+ 1 and γkj(ξ), k = 1, 2, j = 1, . . . ,m− 1.

A solution of (3.6) is sought by means of the matrix TX(ξ), where χ(ξ)
is a solution of (3.12). If χ(ξ) is a solution of (3.12), then TX(ξ) is likewise
a solution of (3.12), where the constant matrix is defined as

T =

(
p q
r s

)
, detT 6= 0, (4.28)

p, q, r and s are constants of integration of the equation (3.14).

5. Fundamental Matrices

The local fundamental matrices Θj(ξ), σj(ξ), Θ∗j (ξ), Θj(ξ), where Θj(ξ)
is the matrix complex-conjugate to the matrix Θj(ξ), are defined as follows:

Θj(ξ) =

(
u1j(ξ) u′1j(ξ)
u2j(ξ) u′2j(ξ)

)
, aj < ξ < aj+1, j = 1, . . . , j − 1, (5.1)

Θ∗j (ξ) =

(
u∗1j(ξ) u

′∗
1j(ξ)

u∗2j(ξ) u
′∗
2j(ξ)

)
, aj−1 < ξ < aj , (5.2)

σj(ξ) =

(
σ1j(ξ) σ′1j(ξ)
σ2j(ξ) σ′2j(ξ)

)
, ξ=

aj+aj+1

2
=a∗j , j=1, . . . ,m−1, (5.3)

Θ∗j (ξ) = ϑ±j Θ∗j (ξ), aj−1 < ξ < aj , (5.4)

Θ∞(ξ) =

(
u1∞(ξ) u′1∞(ξ)
u2∞(ξ) u′2∞(ξ)

)
, (5.5)

ϑ±j =

(
exp(±iπα1j) 0

0 exp(±iπα2j)

)
,

ϑ
+

j = ϑ−j , α1j − α2j 6= n, n = 0, 1, 2,

(5.6)

while if α1j − α2j = n, n = 0, 1, 2, we have

ϑ±j = exp
[
± iπα2j

]( 1 0
±iπ 1

)
, n = 0, 2, (5.7)



The Exact Solution of Spatial Axisymmetric Problems 117

ϑ±j = exp
[
± iπα2j

](−1 0
∓πi 1

)
, n = 1. (5.8)

One Essential Remark. The fact that the series ukj(ξ), k = 1, 2, j =
1, . . . ,m, converge weakly, makes the process of calculations difficult. To
remove this drawback, we act as follows ([26]–[31]). We replace the series
ukj(ξ), k = 1, 2, j = 1, . . . ,m + 1, by strongly and uniformly convergent
functional series. Towards this end, it suffices to write the series ukj(ξ),
k = 1, 2, j = 1, . . . ,m+ 1, in a somewhat different form:

ukj(ξ) = (ξ − aj)
αkj ũkj(ξ − aj),

ũkj(ξ − aj) = 1 +
∞∑

n=1

γknj(ξ − aj), k = 1, 2; j = 1, . . . ,m,
(5.9)

uk∞(ξ) = ξ−αk∞

(
1 +

∞∑

n=1

γkn∞(ξ)
)
, (5.10)

where γknj , γ
k
n∞ are defined through fnj(αj) and fk∞(αj) as follows:

fnj
[
(ξ − aj), βk

]
= αkjpnj(ξ − aj) + qmj(ξ − aj), (5.11)

pnj(ξ − aj) = −
m∑

k=0, k 6=j

βj

( ξ − aj
aj − ak

)n
, n = 1, 2, . . . , (5.12)

q1j(ξ − aj) = cj(ξ − aj), (5.13)

qnj(ξ − aj) = (−1)n−2
m∑

k=1, k 6=j

[
α1kα2k(n− 1) + ck(aj − ak)

]
×

×
( ξ − aj
aj − ak

)n
, n = 1, 2, . . . , (5.14)

∣∣∣
ξ − aj
aj − ak

∣∣∣ < 1, k 6= j,

pn∞(ξ) =
∞∑

k=1

βk

(ak
ξ

)n
,

qn∞(ξ) =

∞∑

k=1

[
α1jα2j(n+ 1) + ckak

](ak
ξ

)n
, n = 01, 2, . . . .

(5.15)

The local matrix Θ−j (ξ) is complex conjugate to the matrix Θ+
j (ξ). The

real matrices Θj(ξ), Θ∗j (ξ) are local solutions of the system of equations

(3.22). Suppose that the elements of these matrices converge on some part
of the interval aj−1 < ξ < aj , on which the matrices Θ∗j (ξ) and Θj−1(ξ) are

connected by the following matrix identity ([26]–[31]):

Θ∗j (ξ) = Tj−1Θj−1(ξ), j = m,m− 1, . . . , 2, (5.16)
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from which the matrices Tj−1 are defined uniquely. Assume also that the
domains of convergence of the matrices Θ∗j (ξ) and Θj−1(ξ) do not intersect.
In this case, we construct at the point ξ = a∗j = (aj−1 + aj)/2 the matrix

σj(ξ) which converges in the interval aj−1 < ξ < aj . It is seen that one can
always pass from the matrix Θ∗j (ξ) to the matrix Θj−1(ξ) with the following
sequence:

Θ∗j (ξ) = Taj
σj(ξ), σj(ξ) = T ∗j−1(ξ)Θj−1(ξ). (5.17)

It follows from the above-said that Θm(ξ) can be analytically continued
along the whole axis ξ.

To define the functions ω′0(ξ) and z′(ξ) in the interval (−∞,+∞), we
consider the matrices ([26]–[31])

χ±(ξ) = TΘ∗m(ξ), ξ > am; Θ+
m(ξ) = Θ−m(ζ), am < ξ < +∞. (5.18)

From (5.18) we have T = T .
We continue the matrix (5.18) along the real axis ξ and use the notation

χ∗(ξ) = χ(ξ), ϑ+
j = ϑj .

We obtain

χ(ξ) = TϑmΘ∗m(ξ), am−1 < ξ < am,

χ(ξ) = TϑmTm−1Θm−1(ξ), am−1 < ξ < am,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

χ(ξ) = TϑmTm−1ϑm−1Θ
∗
m−1(ξ) · · ·T1ϑ1Θ

∗
1(ξ), ξ < a1,

χ(ξ) = TϑmTm−1ϑm−1 · · ·T1ϑ1T−∞Θ∞(ξ), −∞ < ξ <∞,

(5.19)

where
Θ∗m(ξ) = Tm−1Θm−1(ξ), am−1 < ξ < am,

Θ∗m−1(ξ) = Tm−2Θm−2(ξ), am−2 < ξ < am−1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Θ∗2(ξ) = T1Θ1(ξ), a1 < ξ < a2,

Θ∗1(ξ) = T−∞Θ∞(ξ), −∞ < ξ < a1,

Θm(ξ) = TmΘ∞(ξ), am < ξ < +∞.

(5.20)

(5.20) allows one to determine the matrices T1, T2, . . . , Tm−1, T−∞, T+∞.
Substituting the matrices (5.19) into the boundary conditions (3.6) and then
multiplying successively every matrix equality from the left by [Θ∗

j (ξ)]
−1,

j = m,m− 1, . . . , 1, we obtain the system of matrix equations ([26]–[31])

Tϑm = gm−1Tϑ
−
m, ξ = am,

TϑmTm−1ϑm−1 = gm−2TϑmTm−1ϑm−1, t = am−1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TϑmTm−1ϑm−1 · · ·T1ϑ1 = TϑmTm−1ϑm−1 · · ·T1ϑ1, ξ = a1.

(5.21)

The number of matrix equations is m. Every matrix equation gives two real
equations. Consequently, we obtain the system consisting of 2m equations
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with respect to the parameters p, q, r, s, aj , cj , j = 1, . . . ,m. From the
system (5.20) we define the elements of the matrices Tj , j = 1, . . . ,m − 1,
and substitute them in (5.21).

According to Riemann’s theorem, we can choose arbitrarily three of the
parameters ξ = aj , j = 1, . . . ,m, and fix them. Thus we obtain the system
of equations (3.11), (4.23, (4.25).

Suppose that one of the vertices of the circular polygon has a cut with
the angle 2π at the cut end. If to that point on the contour `(σ) there
corresponds a regular nonangular point, then instead of two equations we
have only one, (4.12). Under such an assumption we will have a system of
2(m+1) equations with respect to 2m+1 parameters (aj , j = 1, . . . ,m−3,
cj , j = 1, . . . , j, p, q, r, s).

From the system (3.19), (4.23), (4.24), (4.12) we can define four accessory
parameters and then substitute them in the remaining equations.

For the sake of simplicity, we assume that on the plane of complex velocity
there is a circular pentagon whose one vertex has a cut with the angle 2π
at the cut end. In this case, the homogeneous problem (3.6) is reduced to
a system of three higher transcendent equations. It is assumed that such a
system of equations has a solution.

If we denote v1(ξ) and v2(ξ), where

v1(ξ) = pu1(ξ) + qu2(ξ), (5.22)

v2(ξ) = ru1(ξ) + su2(ξ) (5.23)

are the components of the vector Φ(ξ), or what comes to the same thing,
the components of the first row of the matrix χ(ξ), then by the formula

w(ξ) =
v1(ξ)

v2(ξ)
(5.24)

we obtain the general solution (3.14). The components ω′(z) and z′(ξ) of
the vector Φ′(ξ) are defined by the equalities

dω0(ξ) = v1(ξ)χ1
(ξ)dξ, −∞ < ξ < +∞, (5.25)

dσ(ξ) = v2(ξ)χ1
(ξ)dξ, −∞ < ξ < +∞, (5.26)

where v1(ξ)χ1
(ξ), v2(ξ)χ1

(ξ) satisfy the boundary conditions (3.1) and those
at the singular points ξ = ej , j = 1, . . . , n, ξ = ∞. The integration of (5.25)
and (5.26) in the intervals (−∞ < ξ), (ej , ξ), j = 1, . . . , n, provides us with

ω0(ξ) =

ξ∫

−∞

v1(ξ)χ1
(ξ) dξ + ω(−∞), (5.27)

σ(ξ) =

ξ∫

−∞

v2(ξ)χ1
(ξ) dξ + σ(−∞), (5.28)
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ω(ξ) =

ξ∫

ej

v1(ξ)χ1
(ξ) dξ + ω(ej+), (5.29)

σ(ξ) =

ξ∫

ej

v2(ξ)χ1
(ξ) dξ + σ(ej ,+0). (5.30)

Considering (5.29) and (5.30) for ξ = ej+1, we obtain a system of equations
with respect to the removable singular points ξ = ej+1 and another unknown
parameters. The equations (5.29) and (5.30) allow one to determine the
parametric equation of the depression curve.

6. One Essential Remark

Consider one simplest integral Fredholm equation of the second kind
([33]–[39])

u(x)− λ

b∫

a

k(x, t)u(t) dt = f(x), (6.1)

where the unknown function u(x) depends on the real variable x which
changes in the same interval [a, b] as the integration variable t; this require-
ment refers to all classes of integral equations we deal with in the present
work. The interval may be finite or infinite. The functions k(x, t) and f(x)
are assumed to be known and defined almost everywhere respectively in the
square a ≤ x ≤ b, a ≤ t ≤ b and in the interval [a, b]. The function k(x, t)
is called the kernel of the integral equation. It is assumed that the kernel
k(x, t) of Fredholm’s equation satisfies the inequality

b∫

a

b∫

a

|k(x, t)|2 dx dt <∞, (6.2)

while the free term of Fredholm’s equation satisfies the inequality

b∫

a

|f(x)|2 dx <∞. (6.3)

It is necessary to consider Fredholm’s equations of more general type.
Let Ω− be a measurable set in the space of any number of variables, x

and t be points of that set, and µ be a nonnegative measure defined in Ω.
The equation

u(x)− λ

∫

Ω

k(x, t)u(t) dµ(t) = f(x) (6.4)
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is likewise called the Fredholm equation whose kernel k(x, t) and free term
f(x) satisfy respectively the inequalities

∫

Ω

∫

Ω

|k(x, t)|2 dµ(x) dµ(t) < 0,

∫

Ω

|f(x)|2 dµ(x) <∞. (6.5)

The kernel k(x, t) satisfying (6.5) is called the Fredholm one.
The unknown function u(x) is quadratically summable in (a, b), and

hence belongs to the functional space L2(a, b). A solution of the equation
(6.4) belongs to the space L2(µ,Ω) of functions which are quadratically
summable with respect to µ. The inequalities (6.3) and (6.5) imply that
the free term of the equation belongs to the same space. The parameter λ
may take both real and complex values.

Denote the volume element by dx, and the integral (6.5) by B2
k:

∫

Ω

∫

Ω

|k(x, t)|2 dx dt = B2
k. (6.6)

As is known, Fredholm’s equation has either finite, or countable set of char-
acteristic numbers; if there is a countable set of numbers, then they tend to
infinity. But there are kernels which have no characteristic numbers at all,
for example, Volterra kernels. A complete characteristic of such kernels is
given in the following Lalesko’s theorem. Let k(x, t) be a Fredholm kernel
and kn(x, t) be its iteration. For the kernel k(x, t) to have no characteristic
numbers, it is necessary and sufficient that

An =

∫

Ω

kn(x, x) dx = 0, n = 3, 4, 5, . . . . (6.7)

Note that the numbers An are called the traces of the kernel k(x, t). Lalesko
has proved his theorem for bounded kernels, and a general proof has been
given by S. N. Krachkovskĭı ([33]–[39]).

The determinant and Fredholm’s minors are represented as a quotient of
two entire functions of λ. Note that the poles of the resolvent, the charac-
teristic numbers of the kernel k(x, t), do not depend on x and t. Thus the
resolvent should be of the form

Γ(x, t;λ) =
D(x, t;λ)

D(λ)
, (6.8)

where D(x, t;λ) and D(λ) are entire functions of λ. If we succeed in con-
structing these functions, then we will be able to find the resolvent, and
a solution of the integral equation will be constructed by the well-known
formula. For the numerator and the denominator of the fraction in (6.8) we
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give representations in the form of the so-called Fredholm series

D(x, t;λ) =
∞∑

n=1

(−1)n

n!
Bn(x, t)λ

n,

D(λ) =

∞∑

n=0

(−1)n

n!
Cnλ

n,

(6.9)

where the formulas

C0 = 1, B0(x, t) = k(x, t), Cn =

∫

Ω

Bn−1(x, x) dx, n > 0,

Bn = Cnk(x, t)− n

∫

Ω

k(x, τ)Bn−1(τ, t) dτ

(6.10)

allow one to calculate recursively the coefficients Bn(x, t) and Cn.
Below, we will need the well-known formula ([33]–[39])

D′(λ)

D(λ)
= −

∞∑

n=1

Anλ
n−1, (6.11)

where

An =

∫

Ω

kn(x, x) dx, n = 1, 2, 3, . . . , (6.12)

are the traces of the kernel k(x, t) mentioned above.
If the kernel is not continuous having second order discontinuities, then

the integrals (6.12) defining the coefficients c1, c2, c3, . . . from the formulas
(6.10), make no sense. For example, when the kernel k(x, t) contains as a
multiplier Green’s function G[P,Q] of the Dirichlet problem for harmonic
functions which is symmetric with respect to P and Q, equals to zero on
the boundary C and is analytic at all points P of the domain D except the
points P = Q where it has logarithmic singularity, the kernel k(x, t) will
have logarithmic singularity as well. Then the integral

∫
Ω

k(x, x) dx defining

the coefficient c1 makes no sense. This difficulty can be disregarded by
putting, for example, the density c1 = 0.

The iterated kernel k2(s, t) has the form

k2(s, t) =

b∫

a

k(s, t1)k(t1, t) dt1. (6.13)

The integral k2(s, t) has sense for any s and t from [a, b] since in the unfa-
vorable case, when s and t coincide, we have the following estimate of the
integrand:

∣∣k(s, t1k(t1, s)
∣∣ ≤ M1

|s− t1|ε1
, ε1 > 0. (6.14)
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It is proved that the function k2(s, t) is continuous in the square a ≤ x ≤ b,
a ≤ t1 ≤ b. The functions

kn(s, t) =

b∫

a

k(s, t1)kn−1(t1, t) dt1, n = 1, 2, 3, . . . , (6.15)

∣∣k(s, t1kn−1(t1, t)
∣∣ < Mn−1

|s− t1|ε1
, εn−1 > 0, (6.16)

are estimated analogously. The integral kn(s, t), n = 1, 2, 3 . . . , makes sense
for any positions s and t from [a, b], and the estimates of the integrand have
the form (6.16). Thus we have to put

An =

∫

Ω

kn(s, s) ds = 0, n = 1, 2, 3, . . . , n, (6.17)

and then kn(x, x) = 0, n = 1, 2, 3, . . ., cn = 0, n = 1, 2, 3, . . . , n. Taking into
account (6.17), we obtain from (6.11) that

D′(λ) = 0, (6.18)

and from (6.18) we have

D(λ) = 1. (6.19)

Consequently, the kernel of the integral equation (2.43) has no character-
istic numbers. Analogously, one can prove that the considered in our work
[39] kernel of the integral equation (3.35) has no characteristic numbers.

Acknowledgement

The paper was supported by the Georgian National Science Foundation
(Grant # GNSF/ST06/1-006).

References

1. N. E. Kochin, I. A. Kibel’, and N. V. Roze, Theoretical hydromechanics. (Trans-
lated from the Russian) Interscience Publishers John Wiley & Sons, Inc. New York–
London–Sydney, 1964; Russian original: Moscow, 1955.

2. J. Happel and H. Brenner, Low Reynolds number hydrodynamics with special
applications to particulate media. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965;
Russian transl.: Mir, Moscow, 1976.

3. M. A. Lavrent’ev and B. V. Shabat, Methods of the theory of functions of a
complex variable. (Russian) Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1958.

4. A. V. Bitsadze, Equations of mathematical physics. Nauka, Moscow, 1982.
5. I. N. Vekua, Generalized analytic functions. (Russian) Gosudarstv. Izdat. Fiz.-Mat.

Lit., Moscow, 1959.
6. M. A. Lavrent’ev and B. V. Shabat, Problems of hydrodynamics and their math-

ematical models. (Russian) Nauka, Moscow, 1973.
7. I. N. Vekua, New Methods for Solving Elliptic Equations. (Russian) OGIZ, Moscow–

Leningrad, 1948.
8. C. Miranda, Equazioni alle derivate parziali di tipo ellittico. (Italian) Ergebnisse

der Mathematik und ihrer Grenzgebiete (N.F.), Heft 2. Springer-Verlag, Berlin–
Göttingen–Heidelberg, 1955; Russian transl.: Izd. Inostr. Lit., Moscow, 1957.



124 Avtandil Tsitskishvili

9. A. Wangerin, Reduction der Potentialgleichung fur gewisse Rotationskorper auf eine
gewohnliche Differentialgleichung. Preisschr. der Jabl. Ges. Leipzig, 1875.

10. G. Bateman and A. Erdelyi, Higher transcendental functions. Elliptic and modular
functions. Lame and Mathieu functions. (Translated from the English into Russian)
Nauka, Moscow, 1967.

11. M. M. Smirnov, Equations of mixed type. (Russian) Vyssh. Shkola, Moscow, 1985.
12. V. F. Piven’, The method of axisymmetric generalized analytic functions in the

investigation of dynamic processes. (Russian) Prikl. Mat. Mekh. 55 (1991), No. 2,
228–234; English transl.: J. Appl. Math. Mech. 55 (1991), No. 2, 181–186 (1992).

13. V. M. Radygin and O. V. Golubeva, Application of functions of a complex variable
to problems of physics and technology. Textbook. (Russian) Vyssh. Shkola, Moscow,
1983.

14. P. Ya. Polubarinova-Kochina, The theory of underground water motion. 2nd ed.
(Russian) Moscow, Nauka, 1977.

15. P. Ya. Polubarinova-Kochina, Circular polygons in filtration theory. (Russian)
Problems of mathematics and mechanics, 166–177, “Nauka”, Sibirsk. Otdel., Novosi-
birsk, 1983.

16. P. Ya. Polubarinova-Kochina, Analytic theory of linear differential equations in
the theory of filtration. Mathematics and problems of water handling facilities. Col-

lection of scientific papers, 19–36. Naukova Dumka, Kiev, 1986.
17. Ya. Bear, D. Zaslavskii, and S. Irmey, Physical and mathematical foundations of

water filtration. (Translated from English) Mir, Moscow, 1971.
18. N. I. Muskhelishvili, Singular integral equations. Boundary value problems in the

theory of function and some applications of them to mathematical physics. 3rd
ed. (Russian) Nauka, Moscow, 1968; English transl.: Wolters-Noordhoff Publishing,
Groningen, 1972.

19. N. P. Vekua, Systems of singular integral equations and certain boundary value
problems. 2nd ed. (Russian) Nauka, Moscow, 1970.

20. E. L. Ince, Ordinary Differential Equations. Dover Publications, New York, 1944.
Russian transl.: ONTI, State Scientific Technical Publishing House of Ukrtaine,
Kharkov, 1939.

21. A. Hurwitz and R. Courant, Theory of functions. (Translation from German)
Nauka, Moscow, 1968.

22. G. N. Goluzin, Geometrical theory of functions of a complex variable. 2nd ed. (Rus-
sian) Nauka, Moscow, 1966.

23. V. V. Golubev, Lectures in analytical theory of differential equations. 2nd ed. (Rus-
sian) Gostekhizdat, Moscow-Leningrad, 1950.

24. E. A. Coddington and N. Levinson, Theory of ordinary differential equations.
McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955.

25. W. von Koppenfels and F. Stallmann, Praxis der konformen Abbildung. Die
Grundlehren der mathematischen Wissenschaften, Bd. 100, Springer-Verlag, Berlin-
Göttingen-Heidelberg, 1959; Russian transl.: Izd. Inostr. Lit., Moscow, 1963.

26. A. P. Tsitskishvili, Conformal mapping of a half-plane on circular polygons. (Rus-
sian) Trudy Tbiliss. Univ. Mat. Mekh. Astronom. 185(1977), 65–89.

27. A. P. Tsitskishvili, On the conformal mapping of a half-plane onto circular polygons
with a cut. (Russian) Differentsial’nye Uravneniya 12(1976), No. 1, 2044–2051.

28. A. Tsitskishvili, Solution of the Schwarz differential equations. Mem. Differential
Equations Math. Phys. 11(1997), 129–156.

29. A. R. Tsitskishvili, Construction of analytic functions that conformally map a half
plane onto circular polygons. (Russian) Differentsial’nye Uravneniya 21(1985), No. 4,
646–656.

30. A. Tsitskishvili, Solution of some plane filtration problems with partially unknown
boundaries. Mem. Differential Equations Math. Phys. 15(1998), 109–138.



The Exact Solution of Spatial Axisymmetric Problems 125

31. A. Tsitskishvili, Solution of Spatial Axially Symmetric Problems Of The Theory Of
Filtration With Partially Unknown Boundaries. Mem. Differential Equations Math.
Phys. 39(2006), 105–140.

32. G. M. Položĭı, The theory and application of p-analytic and and (p, q)-analytic
functions. Generalization of the theory of analytic functions of a complex variable.
(Russian) Second edition, revised and augmented. Izdat. “Naukova Dumka”, Kiev,
1973.

33. V. I. Smirnov, The course of higher mathematics. T. II. 11th edition. Gos. Izdat.
Tekhniko-Teoretich. Lit. Moscow–Leningrad, 1952.

34. V. I. Smirnov, The course of higher mathematics. T. III, Part 2, 5th edition. Gos.
Izdat.Tekhniko-Teoretich. Lit. Moscow–Leningrad, 1952.

35. V. I. Smirnov, The course of higher mathematics. T. IV, 2nd edition. Gos.
Izdat.Tekhniko-Teoretich. Lit. Moscow–Leningrad 1952.
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