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MIXED TYPE BOUNDARY VALUE

PROBLEMS IN THE LINEAR

THEORY OF ELASTIC MIXTURES

FOR BODIES WITH INTERIOR CUTS



Abstract. We consider two-dimensional mixed type boundary value
problems for the equations of the linear theory of elastic mixtures. We
assume that the elastic body under consideration contains interior cracks.
On the exterior boundary of the body the mixed Dirichlet (displacement)
and Neumann (traction) type conditions are given while on the crack sides
the stress vector is prescribed. We apply generalized Kolosov–Muskhelishvili
type representation formulas and reduce the mixed boundary value problem
to the system of singular integral equations with discontinuous coefficients.
Fredholm properties of the corresponding integral operator are studied and
the index is found explicitly. With the help of the results obtained we prove
unique solvability of the original mixed boundary value problem.
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1. Introduction

Here we treat a two-dimensional mathematical model of the linear theory
of elastic mixtures (for details concerning the mathematical and mechanical
modelling see, e.g., [6], [12], [5], [11]). The corresponding system of differ-
ential equations of statics generates a second order 4 × 4 matrix strongly
elliptic partial differential operator with constant coefficients.

Recently, in the references [2] and [3], M. Basheleishvili has constructed
representation formulas for solutions to this system by means of analytic
vector-functions. These formulas are nontrivial generalizations of the well-
known formulas of Kolosov–Muskhelishvili which played a crucial role in the
classical elasticity theory (see [9]).

With the help of the new representation formulas, the basic BVPs of the
linear theory of elastic mixtures have been investigated in [3] and [4] for
regular domains. The same problems by the potential method have been
studied in [1]. The corresponding three-dimensional problems have been
solved in [11] using the multi-dimensional boundary integral and pseudo-
differential equations technique.

In this paper we consider a general two-dimensional mixed type boundary
value problem for elastic bodies with interior cracks. The exterior boundary
of the body is divided into several disjoint parts where the Dirichlet (dis-
placement) and Neumann (traction) type conditions are given while on the
crack sides the stress vector is prescribed. We apply the representation for-
mulas obtained in [2] and reduce the mixed boundary value problem to the
system of one-dimensional singular integral equations with discontinuous
coefficients. We study the Fredholm properties of the corresponding matrix
integral operator. The index of the operator is found explicitly. Further,
we establish that the system of integral equations is solvable and study the
smoothness of solutions, which are densities of the corresponding complex

potentials (analytic vector-functions represented as Cauchy type integrals)
involved in the general representation formulas. With the help of the results
obtained we prove unique solvability of the original mixed boundary value
problem.

2. Formulation of the Problem and General Representation

Formulas of Solutions

Let Ω+ be a domain of finite diameter in R2 and S := ∂Ω+ be its bound-
ary of the class C2,α with 1/2 < α < 1. Put Ω

+
= Ω+ ∪ S. Further, let

the contour S be divided into 2p disjoint open parts Sj , j = 1, 2, . . . , 2p.
We denote the end points of the arc Sj by cj and cj+1. We set c2p+1 = c1.
For simplicity, in what follows we assume that S is a simple curve and the
positive direction on it is selected so that if S is went around in this di-
rection, the interior region Ω+ is on the left. Thus we have the following
decomposition

S = S1 ∪ S2 · · · ∪ S2p, Sj = Sj ∪ cj ∪ cj+1.
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Denote

SD = S1 ∪ · · · ∪ S2p−1, ST = S2 ∪ · · · ∪ S2p, Ω− = R
2 \ (Ω+ ∪ S).

Let the region Ω
+

be occupied by a material representing a two component
elastic mixture. Moreover, we assume that the elastic body contains an
interior crack along some simple arc Σ ∈ C2,α, 1

2 < α < 1. We denote the
end points of Σ by e1 and e2, and select the positive direction from e1 to
e2. The totality of points {e1, e2, c1, . . . , c2p} will be referred to as singular

points. We assume that Σ is a part of some closed, simple, C2,α-smooth
curve S0 ⊂ Ω+ surrounding a region Ω0 ⊂ Ω+. Further, let Ω+

Σ := Ω+ \ Σ.
The basic differential equations of statics in the linear theory of elastic

mixtures have the form (for the mechanical description of the corresponding
model see, e.g., [11], [1] and the references therein)

a1∆u
′ + b1 graddiv u′ + c∆u′′ + d graddiv u′′ = 0,

c∆u′ + d graddiv u′ + a2∆u
′′ + b2 graddiv u′′ = 0,

(2.1)

where u′ = (u1, u2)
> and u′′ = (u3, u4)

> are the partial displacement vec-
tors,

a1 = µ1 − λ5, b1 = µ1 + λ1 + λ5 − α2ρ2ρ
−1, a2 = µ2 − λ5,

c=µ3+λ5, b2 =µ2+λ2+λ5+α2ρ1ρ
−1, ρ=ρ1+ρ2, α2 =λ3−λ4,

d = µ3 + λ3 − λ5 − α2ρ1ρ
−1 ≡ µ3 + λ4 − λ5 + α2ρ2ρ

−1,

(2.2)

∆ = ∂2/∂x2
1 + ∂2/∂x2

2 is the two dimensional Laplace operator. Here λ1,
λ2, λ3, λ4, λ5, µ1, µ2, and µ3 are material constants characterizing the
mechanical properties of the elastic mixture and satisfying the inequalities

λ5 < 0, µ1 > 0, µ1µ2 > µ2
3, λ1 −

α2ρ2

ρ
+

2

3
µ1 > 0,

(
λ1 −

α2ρ2

ρ
+

2

3
µ1

)(
λ2 +

α2ρ1

ρ
+

2

3
µ2

)
≥

(
λ3 −

α2ρ1

ρ
+

2

3
µ3

)2

.

(2.3)

These conditions imply that the density of the potential energy is positive
definite with respect to the generalized deformations and the matrix differ-
ential operator generated by the left-hand side expressions in the equations
(2.1) is self-adjoint and strongly elliptic (for details see [11]).

The partial stress tensors [τ ′kj(u)]2×2 and [τ ′′kj(u)]2×2 are related to the
partial displacement vectors by the formulas

τ ′11(u)=
(
λ1−

α2ρ2

ρ

)
div u′+

(
λ3−

α2ρ1

ρ

)
divu′′+2µ1

∂u1

∂x1
+2µ3

∂u3

∂x1
,

τ ′21(u)=(µ1−λ5)
∂u1

∂x2
+(µ1+λ5)

∂u2

∂x1
+(µ3+λ5)

∂u3

∂x2
+(µ3−λ5)

∂u4

∂x1
,

τ ′12(u)=(µ1+λ5)
∂u1

∂x2
+(µ1−λ5)

∂u2

∂x1
+(µ3−λ5)

∂u3

∂x2
+(µ3+λ5)

∂u4

∂x1
,

τ ′22(u)=
(
λ1−

α2ρ2

ρ

)
div u′+

(
λ3−

α2ρ1

ρ

)
divu′′+2µ1

∂u2

∂x2
+2µ3

∂u4

∂x2
, (2.4)
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τ ′′11(u)=
(
λ4+

α2ρ2

ρ

)
div u′+

(
λ2+

α2ρ1

ρ

)
divu′′+2µ3

∂u1

∂x1
+2µ2

∂u3

∂x1
,

τ ′′21(u)=(µ3+λ5)
∂u1

∂x2
+(µ3−λ5)

∂u2

∂x1
+(µ2−λ5)

∂u3

∂x2
+(µ2+λ5)

∂u4

∂x1
,

τ ′′12(u)=(µ3−λ5)
∂u1

∂x2
+(µ3+λ5)

∂u2

∂x1
+(µ2+λ5)

∂u3

∂x2
+(µ2−λ5)

∂u4

∂x1
,

τ ′′22(u)=
(
λ4+

α2ρ2

ρ

)
div u′+

(
λ2+

α2ρ1

ρ

)
divu′′+2µ3

∂u2

∂x2
+2µ2

∂u4

∂x2
,

where u := (u′, u′′)> ≡ (u1, u2, u3, u4)
>.

The partial stress vectors T ′ = (T ′1 , T
′
2 )> and T ′′ = (T ′′1 , T

′′
2 )> acting on

an arc element with the normal n = (n1, n2) are calculated then as

T ′1 ≡ (Tu)1 = τ ′11n1 + τ ′21n2, T ′2 ≡ (Tu)2 = τ ′12n1 + τ ′22n2,

T ′′1 ≡ (Tu)3 = τ ′′11n1 + τ ′′21n2, T ′′2 ≡ (Tu)4 = τ ′′12n1 + τ ′′22n2.
(2.5)

The operator T = T (∂, n) = [Tkj(∂, n)]4×4 is called the stress operator in
the linear theory of elastic mixtures [11].

It is convenient to introduce the following notation

Tu := (T ′, T ′′)> ≡
(
(Tu)1, (Tu)2, (Tu)3, (Tu)4

)>
. (2.6)

Throughout the paper we assume that n(x) = (n1(x), n2(x)) is the out-
ward normal vector on S and on S0 at the point x ∈ S ∪ S0. This uniquely
defines the positive direction of the normal vector on Σ.

A vector u = (u′, u′′)> is said to be regular in the region Ω+
Σ if it satisfies

the following conditions:
(i) ul ∈ C

2(Ω+
Σ) and ul are continuously extendable on S and on Σ for

l = 1, 4;
(ii) the components of the vector Tu are continuously extendable on S

and on Σ except possibly at the singular points e1, e2, cj , j = 1, 2, . . . , 2p; in
a neighbourhood of a singular point x0 ∈ {e1, e2, c1, . . . , c2p} the functions
(Tu(x))l admit the estimate

[Tu(x)]l = O
(
|x− x0|

−β
)
, x ∈ Ω+

Σ , 0 ≤ β < 1, l = 1, 4,

where |x− x0| is the Euclidian distance between the points x and x0.
Now we are in a position to formulate the mixed boundary value problem:

find a vector u = (u′, u′′)> satisfying the system of differential equations
(2.1) in Ω+

Σ and the following boundary conditions:

[u]+ = f (1)(t), t ∈ SD, (2.7)

[Tu]+ = f (2)(t), t ∈ ST , (2.8)

[Tu]+ = f+(t), [Tu]− = f−(t), t ∈ Σ, (2.9)

where f (k) = (f
(k)
1 , f

(k)
2 , f

(k)
3 , f

(k)
4 )>, k = 1, 2, and f± = (f±1 , f

±

2 , f
±

3 , f
±

4 )>

are given vector functions with the following smoothness properties:

f
(1)
l ∈ H(SD), ∂τf

(1)
l ∈ H∗(SD), f

(2)
l ∈ H∗(ST ), f±l ∈ H∗(Σ); (2.10)
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here ∂τ denotes the tangential derivative (or the derivative with respect to
the arc parameter), while H andH∗ stand for the well known Muskhelishvili
spaces (see [9], [10]). Recall that for an open simple arc M with the end
points t1 and t2, the symbol H(M) denotes the set of Hölder continuous
functions on M with some exponent 0 < α < 1 and H∗(M) denotes the set
of functions which belong to H(M0) for arbitrary M0 ⊂ M and near the
end points t1 and t2 can be represented as ϕ(t)|t − tj |

−κ with ϕ ∈ H(M)
and 0 ≤ κ < 1. For open disjoint arcsMj , j = 1, q, andM = M1∪· · ·∪Mq

we define by H(M) and H∗(M) the set of functions whose restrictions on
Mj belong to H(Mj) and H∗(Mj), respectively.

The symbols [ · ]+S∪Σ and [ · ]−S∪Σ denote the one-sided limits on S ∪ Σ from
the left and from the right, respectively, in accordance with the positive
direction chosen above.

Let us introduce the complex vectors

U = (U1, U2) := (u1 + iu2, u3 + iu4)
>,

FU =
(
(FU)1, (FU)2

)>
:=

(
(Tu)2 − i(Tu)1, (Tu)4 − i(Tu)3

)>
,

(2.11)

where uj , j = 1, 4, are real functions, the components of the partial dis-
placement vectors.

The boundary conditions (2.7)–(2.9) can be rewritten then as

[U ]+ = F (1)(t), t ∈ SD, (2.12)

[FU ]+ = −iF (2)(t), t ∈ ST , (2.13)

[FU ]± = −iF±(t), t ∈ Σ, (2.14)

where

F (k) =
(
f

(k)
1 + if

(k)
2 , f

(k)
3 + if

(k)
4

)>
, k = 1, 2,

F± =
(
f±1 + if±2 , f

±

3 + if±4
)>
.

(2.15)

The Kolosov–Muskhelishvili type representation formula for a solution of
the system (2.1) obtained in [2] has the form

U(z) ≡ U(x1, x2) = mϕ(z) + `zϕ′(z) + ψ(z), z = x1 + ix2, (2.16)

where ϕ = (ϕ1, ϕ2)
> and ψ = (ψ1, ψ2)

> are arbitrary holomorphic vector
functions in Ω+

Σ , ϕ′(z) = ϕ′z(z) is the derivative with respect to the complex
variable z, the over-bar denotes complex conjugation, m and ` are real
matrices,

m =

[
m1 m2

m2 m3

]
, ` =

1

2
[

[
l4 l5
l5 l6

]

with

m1 = l1+
l4
2

=
1

2

(a2

d2
+
a2 + b2
d1

)
>0, m2 = l2+

l5
2

=−
1

2

( c

d2
+
c+ d

d1

)
,

m3 = l3 +
l6
2

=
1

2

(a1

d2
+
a1 + b1
d1

)
> 0,
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l1 =
a2

d2
, l2 = −

c

d2
, l3 =

a1

d2
,

d2 = a1a2 − c2 = ∆1 − λ5a0 > 0,

d1 = (a1 + b1)(a2 + b2)− (c+ d)2 = ∆1 + a+ b > 0,

∆1 = µ1µ2 − µ2
3 > 0,

a = µ1(b2 − λ5) + µ2(b1 − λ5)− 2µ3(d+ λ5) > 0,

b = (b1 − λ5)(b2 − λ5)− (d+ λ5)
2 > 0,

a0 = µ1 + µ2 + 2µ3 ≡ a1 + a2 + 2c > 0,

b0 = b1 + b2 + 2d ≡ b1 − λ5 + b2 − λ5 + 2(d+ λ5) > 0,

∆0 := detm =
4∆1 + 2a+ b− λ5(2a0 + b0)

4d1d2
> 0.

For the generalized stress vector FU we have (see (2.11))

FU(z) =
∂

∂τ(z)

[
(A− 2I)ϕ(z) +Bzϕ′(z) + 2µψ(z)

]
, (2.17)

where I stands for the unit 2× 2 matrix,

A =

[
A1 A2

A3 A4

]
= 2µm, B =

[
B1 B2

B3 B4

]
= 2µ`, µ =

[
µ1 µ3

µ3 µ2

]
.

Here
∂

∂τ(z)
= n1

∂

∂x2
− n2

∂

∂x1
,

where n = (n1, n2) is a unit vector. It is evident that for z ∈ S ∪ S0 this
operator is a tangential differentiation operator at the point z.

We can easily see that

A1 = 2 + B1 + 2λ5
a2 + c

d2
=

=
d1 + d2 + a1b2 − cd

d1
+ λ5

(a2 + c

d2
+
a2 + b2 + c+ d

d1

)
,

A4 = 2 + B4 + 2λ5
a1 + c

d2
=

=
d1 + d2 + a2b1 − cd

d1
+ λ5

(a1 + c

d2
+
a1 + b1 + c+ d

d1

)
,

A2 = B2−2λ5
a1 + c

d2
=
cb1 − da1

d1
−λ5

(a1 + c

d2
+
a1 + b1 + c+ d

d1

)
,

A3 = B3 − 2λ5
a2 + c

d2
=
cb2 − da2

d1
−λ5

(a2 + c

d2
+
a2 + b2 + c+ d

d1

)
.

Further, detA = 4∆0∆1 > 0 since detµ = ∆1 > 0 and detm = ∆0 > 0.
With the help of the formulas (2.16) and (2.17), we derive

2µU(z) = Aϕ(z) +Bzϕ′(z) + 2µψ(z), (2.18)
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and

Q(z) +D = (A− 2I)ϕ(z) +Bzϕ′(z) + 2µψ(z), (2.19)

where D = (D1, D2)
> is an arbitrary constant complex vector and

Q(z) : =

z∫

z0

FU ds =
(
Q2(z)− iQ1(z), Q4(z)− iQ3(z)

)>
,

Qk(z) =

z∫

z0

(Tu)k ds, k = 1, 2, 3, 4;

(2.20)

here the integration is performed with respect to the arc parameter s along
an arbitrary smooth arc which lies in the domain Ω+

Σ and connects some
fixed point z0 to the reference point z.

From the representations (2.16) and (2.17) we can derive the following
results:

Conclusion (i). If FU(z) = 0 in Ω+
Σ , then ψ(z) = δ, where δ = (δ1, δ2)

>

is an arbitrary complex constant vector, while ϕ(z) = iε̃Rz + γ, where R
is an arbitrary real scalar constant, γ = (γ1, γ2)

> is an arbitrary complex
constant vector, and ε̃ = (ε̃1, ε̃2)

> is a real constant vector with

ε̃1 = ∆−1
2 [H1A2 −H2(2−A4)], ε̃2 = ∆−1

2 [H1(2−A1)−H2A3],

H1 = (µ2 + µ3)(2−A4)− (µ1 + µ3)A3,

H2 = (µ2 + µ3)A2 − (µ1 + µ3)(2−A1),

∆2 = det(A− 2I) > 0.

Note that |H1|+ |H2| 6= 0 and H1 6= H2. Therefore, without loss of gener-
ality, in what follows we assume that H1 6= 0. This gives us possibility to
represent the vector ϕ in the form ϕ(z) = iεRz+ γ in Ω+

Σ , where R is again
an arbitrary real scalar constant, γ = (γ1, γ2)

> is an arbitrary complex
constant vector, and ε = (ε1, ε2)

> with

ε1 =
1

∆2
[A2−H0(2−A4)], ε2 =

1

∆2
[2−A1−H0A3], H0 =H2[H1]

−1.

Thus we have

ϕ(z) = iεRz + γ, ψ(z) = δ. (2.21)

Note that the vector U(z) constructed by the formula (2.16) with ϕ(z) and
ψ(z) as in (2.21) corresponds to the so called “rigid motion” vector in the
theory of elastic mixtures.

Conclusion (ii). If U(z) = 0 for z ∈ Ω+
Σ , then ϕ(z) = γ and ψ(z) =

−2−1µ−1Aγ, where γ is an arbitrary complex constant vector. Therefore,
if ϕ(z0) = 0 for some point z0 ∈ Ω+

Σ , then ϕ and ψ vanish identically in Ω+
Σ .
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3. Green’s Formulas and the Uniqueness Results

Let Ω ⊂ R
2 be a bounded region with a smooth boundary ∂Ω and a real

vector-function u = (u′, u′′)> be a regular solution to the system (2.1) in Ω.
Then there holds the following Green’s identity

∫

Ω

W (u, u) dx =

∫

∂Ω

[u]+ · [Tu]+ ds, (3.1)

where W (u, u) ≥ 0 is the so called density of the potential energy [11], [1].
Note that here and in what follows we employ the notation

a · b :=

p∑

j=1

ajbj for a, b ∈ R
p or a, b ∈ C

p.

The general solution of the equation W (u, u) = 0 is written as

u = (u′, u′′)>, u′ =

(
a′1
a′2

)
+ b′0

(
−x2

x1

)
, u′′ =

(
a′′1
a′′2

)
+ b′0

(
−x2

x1

)
, (3.2)

where a′j , a
′′
j , and b′0 are arbitrary constants (for details see [11], [1]). The

vector u = (u′, u′′)> defined by (3.2) is called a generalized rigid displace-

ment vector. It is evident that if the vector (3.2) vanishes at two points,
then the constants a′j , a

′′
j , and b′0 are equal to zero.

It can easily be shown that Green’s formula (3.1) holds also for regular
vector functions in Ω+

Σ ,
∫

Ω+

Σ

W (u, u) dx =

∫

S

[u]+ · [Tu]+ ds+

∫

Σ

{
[u]+ · [Tu]+− [u]− · [Tu]−

}
ds. (3.3)

Note that u ·Tu = ={U · FU} due to the equalities (2.11). Therefore, (3.3)
implies

∫

Ω+

Σ

W (u, u) dx = =

∫

S

[
2−1µ−1

(
Aϕ(t) +Btϕ′(t) + 2µψ(t)

)]+

×

× d
[
(A− 2I)ϕ(t) +Btϕ′(t) + 2µψ(t)

]+

+ =

∫

Σ

{[
2−1µ−1

(
Aϕ(t) +Bϕ′(t) + 2µψ(t)

)]+

×

× d
[
(A− 2I)ϕ(t) +Btϕ′(t) + 2µψ(t)

]+

−
[
2−1µ−1

(
Aϕ(t) +Btϕ′(t) + 2µψ(t)

)]−
×

× d
[
(A− 2I)ϕ(t)+Btϕ′(t) + 2µψ(t)

]−
}
, (3.4)

where here and in what follows the differential d[·] is taken with respect to
the arc parameter (length) s.
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By standard arguments, from Green’s formula (3.1) we derive the follow-
ing uniqueness theorem.

Theorem 3.1. The homogeneous boundary value problem (2.1), (2.7)–
(2.9) (f (1) = f (2) = f+ = f− = 0) has only the trivial solution.

Remark 3.2. Let a pair of functions u′ = (u1, u2)
> and u′′ = (u3, u4)

>

be a solution to the system (2.1) in the exterior domain Ω− := R2 \ Ω+.
Moreover, let they be bounded at infinity, while their first order derivatives
decay as O(|x|−2). Then there holds Green’s formula

∫

Ω−

W (u, u) dx = −

∫

∂Ω−

[u]− · [Tu]− ds, (3.5)

which implies that the homogeneous exterior Dirichlet and Neumann bound-
ary value problems (with given displacements and stresses on S, respecti-
vely) possess only the trivial solutions.

Note that if the holomorphic vector functions ϕ and ψ corresponding to
the vectors u′ = (u1, u2)

> and u′′ = (u3, u4)
> are bounded at infinity and

their derivatives decay as O(|z|−2), then the formula similar to (3.4) still
holds

∫

Ω−

W (u, u) dx = −=

∫

S

[
2−1µ−1

(
Aϕ(t) +Btϕ′(t) + 2µψ(t)

)]−
×

×d
[
(A− 2I)ϕ(t) +Btϕ′(t) + 2µψ(t)

]−
. (3.6)

4. Reduction to a System of Integral Equations

With the help of the representation formulas (2.18) and (2.19) and the
boundary conditions (2.7)–(2.9) (see also (2.12)–(2.14)), the original BVP
for u = (u′, u′′)> is reduced to the following problem for the holomorphic
vectors ϕ and ψ:

[
Aϕ(t) +Btϕ′(t) + 2µψ(t)

]+
= 2µF (1)(t), t ∈ SD, (4.1)

[
(A− 2I)ϕ(t) +Btϕ′(t) + 2µψ(t)

]+
=

= −i

t∫

c2j

F (2)(τ) ds +D(j), t ∈ S2j , j = 1, p, (4.2)

[
(A−2I)ϕ(t)+Btϕ′(t)+2µψ(t)

]+
=−i

t∫

e1

F+(τ) ds+C+, t∈Σ, (4.3)

[
(A−2I)ϕ(t)+Btϕ′(t)+2µψ(t)

]−
=−i

t∫

e1

F−(τ) ds+C−, t∈Σ, (4.4)
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where C± = (C±1 , C
±

2 )> and D(j) = (D
(j)
1 , D

(j)
2 )>, j = 1, 2, . . . , p, are ar-

bitrary complex constant vectors.
We look for the unknown holomorphic vectors (complex potentials) ϕ

and ψ in the form of Cauchy type integrals:

ϕ(z) =
1

2πi

∫

S

g(t)

t− z
dt+

1

2πi

∫

Σ

h(t)

t− z
dt+

M

2πi
[1 + Ω(z)], z ∈ Ω+

Σ , (4.5)

2µψ(z) =
1

2πi

∫

S

Ag(t)−Btg′(t)

t− z
dt−

1

2πi

∫

Σ

(A− 2I)h(t) +Bth′(t)

t− z
dt+

+
1

2πi

∫

Σ

ω(t)

t− z
dt−

χ

2πi

∫

Σ

(t− e1)

t− z
dt−

BMe1
2πi(e2 − e1)

ln
z − e2
z − e1

+

+
AM

2πi
ln(z − e2), z ∈ Ω+

Σ , (4.6)

where the densities g = (g1, g2)
>, h = (h1, h2)

>, and ω = (ω1, ω2)
> are

Hölder continuous vector functions and have the first order derivatives of
the classH∗ on S and Σ with the nodal (singular) points {e1, e2, c1, . . . , c2p}.
In addition, we assume that

h(e1) = h(e2) = 0, (4.7)

ω(e1) = 0, ω(e2) = −2M, (4.8)

with

M = (M1,M2)
> =

i

2

∫

Σ

[
F+(t)− F−(t)

]
ds. (4.9)

The vector function Ω(z) involved in (4.5) has the form

Ω(z) =
(z − e2) ln(z − e2)− (z − e1) ln(z − e1)

e2 − e1
, (4.10)

while the vector function χ = (χ1, χ2)
> involved in (4.6) reads as follows

χ =
(A− 2I)M

e2 − e1
+

BM

e2 − e1
. (4.11)

Substituting the expressions (4.5) and (4.6) into the representations (2.18)
and (2.19), we arrive at the relations

Aϕ(z) +Bzϕ′(z) + 2µψ(z) =

=
A

2πi

∫

S

g(t) dt ln
t− z

t− z
−
A− 2I

2πi

∫

Σ

h(t) dt ln
t− z

t− z
+

+
A− I

πi

∫

Σ

h(t)

t− z
dt−

B

2πi

[ ∫

S

g(t) dt

( t− z

t− z

)
+

∫

Σ

h(t) dt

( t− z

t− z

)]
−

−
1

2πi

∫

Σ

ω(t)

t− z
dt+

χ

2πi

∫

Σ

(t− e1)

t− z
dt−
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−
BM(z − e1)

2πi(e2 − e1)
ln
z − e2
z − e1

+
AM

2πi

[
1 + Ω(z)− ln(z − e2)

]
, (4.12)

(A− 2I)ϕ(z) +Bzϕ′(z) + 2µψ(z) =

−
1

πi

∫

S

g(t)

t− z
dt+

A

2πi

∫

S

g(t) dt ln
t− z

t− z
+
A− 2I

πi

∫

Σ

h(t)

t− z
dt−

−
A− 2I

2πi

∫

Σ

h(t) dt ln
t− z

t− z
−

−
B

2πi

[ ∫

S

g(t) dt

( t− z

t− z

)
+

∫

Σ

h(t) dt

( t− z

t− z

)]
−

−
1

2πi

∫

Σ

ω(t) dt

t− z
+

χ

2πi

∫

Σ

(t− e1) dt

t− z
−
AM

2πi
ln(z − e2)−

−
BM(z−e1)

2πi(e2−e1)
ln
z−e2
z−e1

+
(A−2I)M

2πi
[1+Ω(z)], z∈Ω+

Σ . (4.13)

Here and in what follows we employ the notation

dt

dt
=
dt

ds
:
dt

ds
.

Using the properties of Cauchy type integrals and applying the restric-
tions (4.7) and (4.8), we can easily establish that the vector U given by
(2.18) is single valued and continuous in Ω+

Σ .
From the boundary conditions (4.3) and (4.4) along with the formula

(4.13), we get
[
(A−2I)ϕ(t)+Btϕ′(t)+2µψ(t)

]+
Σ
−

[
(A−2I)ϕ(t)+Btϕ′(t)+2µψ(t)

]−
Σ

=

= ω(t) = −i

t∫

e1

[
F+(τ) − F−(τ)

]
ds+ C+ − C−, t ∈ Σ.

In view of the equality (4.9), it is evident that the conditions (4.8) will be
satisfied if C+ = C−. Thus, the vector function ω is defined explicitly as

ω(t) = −i

t∫

e1

[
F+(τ)− F−(τ)

]
ds, t ∈ Σ. (4.14)

Due to the relations (2.15) and (2.10), it follows from (4.14) that

ω ∈ [H(Σ)]2, ω′ ∈ [H∗(Σ)]2. (4.15)

Further, upon summing of the boundary conditions (4.3) and (4.4), we
get

[
(A−2I)ϕ(t)+Btϕ′(t)+2µψ(t)

]+
Σ

+
[
(A−2I)ϕ(t)+Btϕ′(t)+2µψ(t)

]−
Σ

=
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= −i

t∫

e1

[
F+(τ) + F−(τ)

]
ds+ 2C+.

Applying the representation (4.13) and transferring the known terms to the
right-hand side, we arrive at the equation for the unknown vector functions
g and h:

A− I

πi

∫

Σ

h(t)

t− t0
dt−

1

πi

∫

S

g(t)

t− t0
dt+

A

2πi

∫

S

g(t) dt ln
t− t0
t− t0

−

−
A− 2I

2πi

∫

Σ

h(t) dt ln
t− t0
t− t0

−

−
B

2πi

[∫

S

g(t) dt

( t− t0
t− t0

)
+

∫

Σ

h(t) dt

( t− t0
t− t0

)]
=

= Φ(1)(t0) + C+, t0 ∈ Σ, (4.16)

where

Φ(1)(t0) = −
i

2

t0∫

e1

[
F+(τ) + F−(τ)

]
ds+

1

2πi

∫

Σ

ω(t)

t− t0
dt−

−
χ

2πi

∫

Σ

(t− e1)

t− t0
dt−

χ

2
(t0 − e1) +

+
BM(t0 − e1)

2πi(e2 − e1)
ln
t0 − e2
t0 − e1

−
(A− 2I)M

2πi
[1 + Ω(t0)] +

+
AM

2πi
ln(t0 − e2), t0 ∈ Σ.

Here ln(t0− e2) and ln(t0− e1) are the limits of the functions ln(z− e2) and
ln(z − e1), respectively, at the point t0 ∈ Σ from the left.

Let us show that

Φ(1) ∈ [H(Σ)]2, [Φ(1)]′ ∈ [H∗(Σ)]2. (4.17)

Taking into consideration the conditions (4.7), (4.8) and (4.15), we can
show that the function Φ(1) is continuous at the end point e1, while in a
neighbourhood of the point e2 we have

Φ(1)(t0) =
1

2πi

[
ω(e2)− χ(e2 − e1) +

+
BM(e2 − e1)

e2 − e1
+ AM

]
ln(t0 − e2) +O(1) = O(1).

On the other hand,

dΦ(1)(t0)

dt0
= −

i

2

[
F+(t0) + F−(t0)

]
+

{
1

2πi

∫

Σ

ω′(t)

t− t0
dt−

χ

2πi

∫

Σ

dt

t− t0
+
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+
BM

2πi(e2 − e1)

[ t0 − e2
t0 − e2

−
t0 − e1
t0 − e1

]} dt0
ds

[dt0
ds

]−1

−

−
χ

2
+

BM

2πi(e2 − e1)
ln
t0 − e2
t0 − e1

−
(A− 2I)M

2πi(e2 − e1)
ln
t0 − e2
t0 − e1

, (4.18)

whence (4.17) follows immediately.
We can easily show that the relations (4.16) and (4.17) imply the condi-

tions (4.7).
Rewrite the equation (4.16) in the form

A− 2I

2πi

[ ∫

S

g(t)

t− t0
dt+

∫

Σ

h(t)

t− t0
dt

]
+
I −A

πi

∫

S

g(t)

t− t0
dt+

+
A

2πi

∫

S

g(t) dt ln
t− t0
t− t0

−
A− 2I

2πi

∫

Σ

h(t) dt ln
t− t0
t− t0

−

−
B

2πi

[∫

S

g(t) dt

( t− t0
t− t0

)
+

∫

Σ

h(t) dt

( t− t0
t− t0

)]
=

= Φ(1)(t0) + C+, t0 ∈ Σ. (4.19)

The boundary conditions (4.1) and (4.2) along with the representations
(4.12) and (4.13) lead to the equations

Ag(t0) +
A

2πi

∫

S

g(t) dt ln
t− t0
t− t0

+
A− I

πi

∫

Σ

h(t)

t− t0
dt−

−
A− 2I

2πi

∫

Σ

h(t) dt ln
t− t0
t− t0

−

−
B

2πi

[∫

S

g(t) dt

( t− t0
t− t0

)
+

∫

Σ

h(t) dt

( t− t0
t− t0

)]
=

= Φ(2)(t0), t0 ∈ SD, (4.20)

(A− I)g(t0)−
1

πi

[ ∫

S

g(t)

t− t0
dt+

∫

Σ

h(t)

t− t0
dt

]
+

+
A

2πi

∫

S

g(t) dt ln
t− t0
t− t0

+
A− I

πi

∫

Σ

h(t)

t− t0
dt−

−
A− 2I

2πi

∫

Σ

h(t) dt ln
t− t0
t− t0

−

−
B

2πi

[∫

S

g(t) dt

( t− t0
t− t0

)
+

∫

Σ

h(t) dt

( t− t0
t− t0

)]
=

= Φ(3)(t0) +D(t0), t0 ∈ ST , (4.21)
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where

Φ(2)(t0) = 2µF (1)(t0) +
1

2πi

∫

Σ

ω(t)

t− t0
dt−

χ

2πi

∫

Σ

(t− e1)

t− t0
dt+

+
BM(t0 − e1)

2πi(e2 − e1)
ln
t0 − e2
t0 − e1

−

−
AM

2πi

[
1 + Ω(t0)− ln(t0 − e2)

]
, t0 ∈ SD,

Φ(3)(t0) dt = −i

t0∫

c2j

F (2)(τ) ds +
1

2πi

∫

Σ

ω(t)

t− t0
dt−

χ

2πi

∫

Σ

(t− e1)

t− t0
dt+

+
BM(t0 − e1)

2πi(e2 − e1)
ln
t0 − e2
t0 − e1

−
(A− 2I)M

2πi

[
1 + Ω(t0)

]
−

−
AM

2πi
ln(t0 − e2), t0 ∈ S2j , j = 1, 2, . . . , p,

D(t0) = D(j), t0 ∈ S2j , j = 1, 2, . . . , p.

It is evident that

Φ(2)∈ [H(SD)]2, Φ(3)∈ [H(ST )]2, [Φ(2)]′∈ [H∗(SD)]2, [Φ(3)]′∈ [H∗(ST )]2.

Thus, we have obtained the following system of singular integral equations
with discontinuous coefficients

A∗(t0)σ(t0) +
B∗(t0)

πi

∫

Λ

σ(t)

t− t0
dt+

∫

Λ

K1(t0, t)σ(t) dt +

+

∫

Λ

K2(t0, t)σ(t) dt = Ψ(t0) +D∗(t0), t0 ∈ Λ, (4.22)

where Λ = S ∪ Σ,

A∗(t0) =





A for t0 ∈ SD ,

A− I for t0 ∈ ST ,

0 for t0 ∈ Σ,

B∗(t0) =





0 for t0 ∈ SD,

−I for t0 ∈ ST ,

A− 2I for t0 ∈ Σ,

(4.23)

σ(t0) =

{
g(t0) for t0 ∈ S,

h(t0) for t0 ∈ Σ,

K2(t0, t) =
B

2πi

∂

∂t

( t− t0
t− t0

)
, t, t0 ∈ Λ,

(4.24)



84 David Natroshvili and Shota Zazashvili

K1(t0, t) =





A

2πi

∂

∂t
ln
t− t0
t− t0

for t0, t ∈ S,

A−I

πi

1

t−t0
−
A−2I

2πi

∂

∂t
ln
t−t0
t−t0

for t0∈S, t∈Σ,

I−A

πi

1

t−t0
+

A

2πi

∂

∂t
ln
t−t0
t−t0

for t0∈Σ, t∈S,

−
A− 2I

2πi

∂

∂t
ln
t− t0
t− t0

for t0, t ∈ Σ,

(4.25)

Ψ(t0) =






Φ(1)(t0) for t0 ∈ Σ,

Φ(2)(t0) for t0 ∈ SD ,

Φ(3)(t0) for t0 ∈ ST ,

(4.26)

D∗(t0) =





0 for t0 ∈ SD ,

D(j) for t0 ∈ S2j , j = 1, . . . , p,

C+ for t0 ∈ Σ.

(4.27)

The theory of singular integral equations with discontinuous coefficients on
closed, smooth, simple curves is developed in the reference [7]. To apply
this theory in our case, we proceed as follows. First we extend the system
(4.22) from Λ = S ∪ Σ to the closed curve Λ0 = S ∪ S0. We recall that Σ
is a part of the closed, simple, C2,α-smooth curve S0 which lies inside the
region Ω+

Σ (see Section 2). The extended equation reads as

Kσ(t0) ≡ A∗(t0)σ(t0) +
B∗(t0)

πi

∫

Λ0

σ(t)

t− t0
dt+

∫

Λ0

K1(t0, t)σ(t) dt+

+

∫

Λ0

K2(t0, t)σ(t) dt = Ψ(t0) +D∗(t0), t0 ∈ Λ0, (4.28)

where A∗, B∗, K1, K2, Ψ, and D∗ are defined by the formulas (4.23)–(4.27)
and the relations

A∗(t0) = I, B∗(t0) = 0, Ψ(t0) = 0,

D∗(t0) = 0 for t0 ∈ Σ0 := S0 \ Σ,
(4.29)

K1(t0, t) = K2(t0, t) = 0 for t0 ∈ Σ0, t ∈ Λ0 or t0 ∈ Λ, t ∈ Σ0.

Let

S(t0) := A∗(t0) +B∗(t0), D(t0) := A∗(t0)−B∗(t0), t0 ∈ Λ0.

We easily derive

detS(t0) =





detA = 4∆0∆1 > 0 for t0 ∈ SD,

det(A− 2I) = ∆2 > 0 for t0 ∈ ST ,

∆2 > 0 for t0 ∈ Σ,

1 > 0 for t0 ∈ Σ0,
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detD(t0) =





4∆0∆1 > 0 for t0 ∈ S,

∆2 > 0 for t0 ∈ Σ,

1 > 0 for t0 ∈ Σ0.

From these relations it follows that the equation (4.28) is of normal type
(see [7]).
Further we have to characterize the points of discontinuity. To this end, let
us construct the characteristic equation for the unknown ν,

det
[
G−1(t+ 0)G(t− 0)− νI

]
= 0 for t ∈ {e1, e2, cj , j = 1, 2p}, (4.30)

where

G(t) = D−1(t)D(t) =





I for t ∈ SD,

∆−1
2 (4∆0∆1 − 2A) for t ∈ ST ,

−I for t ∈ Σ,

I for t ∈ Σ0.

From the equation (4.30) we get

det
[
G−1(e1 + 0)G(e1 − 0)− νI

]
=

= det
[
G−1(e2 + 0)G(e2 − 0)− νI

]
= (ν + 1)2 = 0, (4.31)

det
[
G−1(c2j−1 + 0)G(c2j−1 − 0)− νI

]
=

= ν2 −
2

∆2
(4∆0∆1 −A1 −A4)ν +

4∆0∆1

∆2
= 0, j = 1, p, (4.32)

det
[
G−1(c2j + 0)G(c2j − 0)− νI

]
=

= ν2 −
4∆0∆1 −A1 −A4

2∆0∆1
ν +

∆2

4∆0∆1
= 0, j = 1, p. (4.33)

The roots of the equation (4.31) are ν1 = ν2 = −1. The roots ν3 and ν4 of
the quadratic equation (4.32) are negative since the discriminant and the
free term are positive and the second coefficient is negative in accordance
with the following inequalities

∆−2
2

[
(A1+A4)

2−16∆0∆1

]
>0, 4∆0∆1∆

−1
2 >0, 4∆0∆1−A1−A4<0.

Thus ν3 < 0 and ν4 < 0, and they are different from −1, in general. It is
easy to see that the roots ν5 and ν6 of the quadratic equation (4.33) are
inverses of the roots ν3 and ν4, i.e., ν5 = 1/ν3 < 0 and ν6 = 1/ν4 < 0.
Further, let

κq =
1

2πi
ln νq, q = 1, 6.

Here the branch of the logarithmic function is chosen in such a way that

<κq =
1

2
, q = 1, 6.

We then have

κ1 =κ2 =
1

2
, κ3 =

1

2
−iβ3, κ4 =

1

2
−iβ4, κ5 =

1

2
+iβ3, κ6 =

1

2
+iβ4, (4.34)
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with

β3 =
1

2π
ln |ν3|, β4 =

1

2π
ln |ν4|.

We remark that β3 6= 0 and β4 6= 0, in general. Thus, due to the general
theory developed in [13], all the points of discontinuity of the coefficients of
the integral equation (4.28), the nodal points e1, e2, and cj , j = 1, 2p, are
non-special, i.e., the corresponding numbers <κq are not integers.

Denote by h2p+2 := h(c1, c2, . . . , c2p, e1, e2) the subclass of vector func-
tions with components from H∗(Λ0) which are bounded at the nodal points
c1, c2, . . . , c2p, e1, e2 (for details see [10], [13]).

Applying the embedding results obtained in [7] for solutions of singular
integral equations with discontinuous coefficients, we conclude that if the
equation (4.28) has a solution σ of the class h2p+2, then

σ ∈ [H(Λ0)]
2, ∂tσ ∈ [H∗(Λ0)]

2. (4.35)

Evidently, we have the similar inclusions for the vectors g and h in view
of (4.24) (see also (4.15)). Therefore, we can show that the vector functions

Aϕ(z)+Bzϕ′(z)+2µψ(z), (A−2I)ϕ(z)+Bzϕ′(z)+2µψ(z), z∈Ω+
Σ ,

where ϕ(z) and ψ(z) are constructed by means of the densities g, h and ω in
accordance with the formulas (4.5) and (4.6), are continuously extendable
on S ∪ Σ due to (4.12) and (4.13). Moreover, the corresponding partial
displacement vectors u′ = (u1, u2)

> and u′′ = (u3, u4)
> defined with the

help of (2.11) are regular in Ω+
Σ .

Thus, the main problem now is to show the solvability of the integral
equation (4.28) in the space h2p+2.

In the next section we will study some properties of the integral operator
K defined by (4.28) and establish the corresponding existence and regularity
results for the original boundary value problem.

5. Existence Results

Here we show that for an arbitrary vector function Ψ(t0) we can chose
a piecewise constant vector D∗(t0) in such a way that the equation (4.28)
becomes solvable.

To this end, first we investigate the null spaces of the operator K in h2p+2

and its adjoint one, K′. Due to the general theory it is well known that the
index of the operator K is

indK := q − q′ = −4(p+ 1), (5.1)

where q = dim kerK in h2p+2 and q′ = dim kerK′ in the space of vector
functions h′2p+2 adjoint to h2p+2 (see [7], [8]).
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Now we prove that q = 0, i.e., the homogeneous equation Kσ = 0 pos-
sesses only the trivial solution. Let σ0 ∈ h2p+2 be a solution to this equation,

σ0(t) =






g0 for t ∈ S,

h0 for t ∈ Σ,

0 for t ∈ Σ0.

(5.2)

Remark that actually we have a higher regularity property for the vectors
g0 and h0 due to (4.35).

Further we construct the complex potentials ϕ0(z) and ψ0(z) by means
of the formulas (4.5) and (4.6) with ω = 0, and g0 and h0 for g and h,
respectively,

ϕ0(z) =
1

2πi

∫

S

g0(t)

t− z
dt+

1

2πi

∫

Σ

h0(t)

t− z
dt, z ∈ Ω+

Σ , (5.3)

2µψ0(z) =
1

2πi

∫

S

Ag0(t)−Btg′0(t)

t− z
dt−

−
1

2πi

∫

Σ

(A− 2I)h0(t) +Bth′0(t)

t− z
dt, z ∈ Ω+

Σ . (5.4)

We easily verify that there hold the following boundary conditions

[
Aϕ0(t) +Btϕ′0(t) + 2µψ0(t)

]+
= 0, t ∈ SD,

[
(A− 2I)ϕ0(t) +Btϕ′0(t) + 2µψ0(t)

]+
= 0, t ∈ ST ,

[
(A− 2I)ϕ0(t) +Btϕ′0(t) + 2µψ0(t)

]±
= 0, t ∈ Σ.

(5.5)

By (2.18) and (2.19) along with (2.11), (2.17) and (2.20), we conclude that
the partial displacement vectors u′ = (u1, u2)

> and u′′ = (u3, u4)
>, corre-

sponding to the complex potentials ϕ0 and ψ0, are regular and consequently
Green’s formulas (3.3) and (3.4) hold. ThereforeW (u, u) = 0 in Ω+

Σ , whence

u = (u′, u′′)>, u′ =

(
a′1
a′2

)
+ b′0

(
−x2

x1

)
, u′′ =

(
a′′1
a′′2

)
+ b′0

(
−x2

x1

)
, (5.6)

and due to the homogeneous Dirichlet condition on SD we get u′ = u′′ = 0
in Ω+

Σ .
In accordance with the remarks at the end of Section 2 (see Conclusion

(ii)), we have ϕ0(z) = γ and ψ0(z) = −2−1µ−1Aγ in Ω+
Σ , where γ is an

arbitrary complex constant vector. But then from the second equation in
(5.5) we conclude that γ = 0 and, consequently, ϕ0(z) = 0 and ψ0(z) = 0
in Ω+

Σ .
Therefore

[ϕ0(t)]
+ − [ϕ0(t)]

− = h0(t) = 0 for t ∈ Σ, (5.7)



88 David Natroshvili and Shota Zazashvili

due to the Plemelj–Sokhotski formula [10]. In view of (5.3) and (5.4) we
arrive at the equations

ϕ0(z) =
1

2πi

∫

S

g0(t)

t− z
dt = 0, z ∈ Ω+, (5.8)

2µψ0(z) =
1

2πi

∫

S

Ag0(t)−Btg′0(t)

t− z
dt = 0, z ∈ Ω+. (5.9)

It is evident that the Cauchy type integrals in (5.8) and (5.9) define holo-

morphic vector functions in the exterior domain Ω− = R2\Ω+ which vanish
at infinity. In what follows we show that these functions identically vanish
in Ω− as well. To this end, let us introduce the vector functions

ϕ∗0(z) = −
1

2π

∫

S

g0(t)

t− z
dt, z ∈ Ω−, (5.10)

2µψ∗0(z) = −
1

2π

∫

S

Ag0(t)−Btg′0(t)

t− z
dt, z ∈ Ω−. (5.11)

Evidently, ϕ∗0(∞) = 0 and ψ∗0(∞) = 0. Moreover, the Plemelj–Sokhotski
formula and the equalities (5.8) and (5.9) yield that

[ϕ∗0(t)]
− = ig0(t) for t ∈ S,

[2µψ∗0(t)]− = i
[
Ag0(t)−Btg′0(t)

]
for t ∈ S.

(5.12)

From these relations we see that
[
Aϕ∗0(t) +Bt[ϕ∗0(t)]

′ + 2µψ∗0(t)
]−

= 0, t ∈ S. (5.13)

Further, we construct the vectors u′ = (u1, u2)
> and u′′ = (u3, u4)

> in ac-
cordance with the formulas (2.11) and the representation (2.16) with ϕ∗0 and
ψ∗0 for ϕ and ψ. Evidently, u′ and u′′ solve the system (2.1), vanish at infin-
ity along with their first order derivatives as O(|x|−1) and O(|x|−2), respec-
tively, and satisfy the homogeneous exterior Dirichlet boundary condition
on S in view of (5.13). Therefore by the uniqueness theorem (see Remark
3.2) u′ and u′′ vanish in Ω−. Consequently, ϕ∗0(z) = 0 and ψ∗0(z) = 0 for
z ∈ Ω− due to Conclusion (ii) in Section 2. By (5.12) this yields g0(t) = 0
for t ∈ S. This proves that the homogeneous equation Kσ = 0 has only the
trivial solution. Therefore, q′ = dim kerK′ = 4p+ 4, i.e., the homogeneous
equation K′ζ = 0 has 4p + 4 linearly independent solutions in the space
h′2p+2. We denote them by {ζ(j)}4p+4

j=1 .

A sufficient condition of solvability of the equation (4.28) in the space
h2p+2 reads then as follows (see [7]):

<

∫

Λ0

[
Ψ(t) +D∗(t)

]
ζ(j)(t) dt = 0, j = 1, 2, . . . , 4(p+ 1). (5.14)
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This can be treated as a system of linear algebraic equations with respect
to the real and imaginary parts of the arbitrary complex constant vectors
C+ and D(q), q = 1, p (see (4.27) and (4.29)). Thus, (5.14) represents 4p+4
simultaneous equations with the 4p+ 4 unknowns.

Let us show that the determinant of the system is different from zero,
i.e., the homogeneous system

<

∫

Λ

D∗(t)ζ(j)(t) dt ≡

=≡ <

[ p∑

q=1

D(q)

∫

S2q

ζ(j)(t) dt+C+

∫

Σ

ζ(j)(t) dt

]
=0, j=1, 4(p+ 1), (5.15)

has only the trivial solution.
Let D(q) and C+ be some solution of the homogeneous system (5.15).

Then the integral equation (4.28) with the right-hand side defined by (4.27)
and (4.29) is solvable in h2p+2. Note that we assume Ψ = 0 on Λ0. Denote
this solution by σ0 which can be written again in the form (5.2).

Further, as above we construct the complex potentials ϕ0(z) and ψ0(z)
by means of the formulas (4.5) and (4.6) with ω = 0, and g0 and h0 for g
and h, respectively. Thus we have again the formulas (5.3) and (5.4) for
ϕ0(z) and ψ0(z) which along with the integral equation Kσ = D∗ now lead
to the boundary conditions

[
Aϕ0(t) +Btϕ′0(t) + 2µψ0(t)

]+
= 0, t ∈ SD,

[
(A− 2I)ϕ0(t) +Btϕ′0(t) + 2µψ0(t)

]+
= D(q), t ∈ S2q , q = 1, p,

[
(A− 2I)ϕ0(t) +Btϕ′0(t) + 2µψ0(t)

]±
= C+, t ∈ Σ.

(5.16)

By the same arguments as above and with the help of Green’s formula,
we derive that the partial displacement vectors u′ = (u1, u2)

> and u′′ =
(u3, u4)

> corresponding to the complex potentials ϕ0 and ψ0 vanish in Ω+
Σ .

Therefore due to Conclusion (ii) in Section 2 we have ϕ0(z) = γ and ψ0(z) =
−2−1µ−1Aγ, where γ = (γ1, γ2)

> is an arbitrary complex constant vector.
From the third and second equations in (5.16) we have

γ = −
1

2
C+, D(q) = C+, q = 1, p. (5.17)

Thus

ϕ0(z) = γ = −
1

2
C+, 2µψ0(z) = −Aγ =

1

2
AC+, z ∈ Ω+

Σ . (5.18)

From (5.3) we derive

[ϕ0(t)]
+ − [ϕ0(t)]

− = h0(t) = 0 for t ∈ Σ. (5.19)
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Therefore finally we get from (5.3) and (5.4)

ϕ0(z) =
1

2πi

∫

S

g0(t)

t− z
dt = −

1

2
C+, z ∈ Ω+, (5.20)

2µψ0(z) =
1

2πi

∫

S

Ag0(t)−Btg′0(t)

t− z
dt =

1

2
AC+, z ∈ Ω+. (5.21)

Let us introduce holomorphic vector functions ϕ∗ and ψ∗ in Ω− defined by
the formulas

ϕ∗0(z) = −
1

2π

∫

S

g0(t)

t− z
dt−

i

2
C+, z ∈ Ω−, (5.22)

2µψ∗0(z) = −
1

2π

∫

S

Ag0(t)−Btg′0(t)

t− z
dt+

i

2
AC+, z ∈ Ω−. (5.23)

Evidently,

ϕ∗0(∞) = −
i

2
C+, 2µψ∗0(∞) =

i

2
AC+. (5.24)

Moreover, the Plemelj–Sokhotski formula and the equalities (5.20) and (5.21)
yield that

[ϕ∗0(t)]
− = ig0(t) for t ∈ S,

[2µψ∗0(t)]− = i
[
Ag0(t)−Btg′0(t)

]
for t ∈ S,

whence we get
[
Aϕ∗0(t) +Btϕ∗

′

0 (t) + 2µψ∗0(t)
]−

= 0, t ∈ S. (5.25)

Taking into consideration the behaviour of the vectors ϕ∗0 and ψ∗0 , using
word for word the arguments applied after the formula (5.13) and with the
help of Remark 3.2 we conclude that

ϕ∗0(z) = −
i

2
C+, 2µψ∗0(z) =

i

2
AC+, z ∈ Ω−. (5.26)

But then from (5.25) we derive C+ = 0 since detA > 0. Consequently, by
(5.17) we have D(q) = 0 for q = 1, 2, . . . , p. Thus we have shown that the
homogeneous system (5.15) possesses only the trivial solution and therefore
the non-homogeneous system (5.14) is uniquely solvable for arbitrary vector
function Ψ. Thus, for arbitrary Ψ we can chose the constant complex vectors
C+ andD(q), q = 1, 2, . . . , p, in such a way that the integral equations (4.28)
would be solvable. Finally we can formulate the following existence result
for the original mixed BVP.

Theorem 5.1. The mixed boundary value problem (2.1), (2.7)–(2.9) is

uniquely solvable in the class of regular vector functions if the conditions

(2.10) hold.
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