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MIXED TYPE BOUNDARY VALUE
PROBLEMS IN THE LINEAR
THEORY OF ELASTIC MIXTURES
FOR BODIES WITH INTERIOR CUTS



Abstract. We consider two-dimensional mixed type boundary value
problems for the equations of the linear theory of elastic mixtures. We
assume that the elastic body under consideration contains interior cracks.
On the exterior boundary of the body the mixed Dirichlet (displacement)
and Neumann (traction) type conditions are given while on the crack sides
the stress vector is prescribed. We apply generalized Kolosov-Muskhelishvili
type representation formulas and reduce the mixed boundary value problem
to the system of singular integral equations with discontinuous coefficients.
Fredholm properties of the corresponding integral operator are studied and
the index is found explicitly. With the help of the results obtained we prove
unique solvability of the original mixed boundary value problem.
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1. INTRODUCTION

Here we treat a two-dimensional mathematical model of the linear theory
of elastic mixtures (for details concerning the mathematical and mechanical
modelling see, e.g., [6], [12], [5], [11]). The corresponding system of differ-
ential equations of statics generates a second order 4 x 4 matrix strongly
elliptic partial differential operator with constant coefficients.

Recently, in the references [2] and [3], M. Basheleishvili has constructed
representation formulas for solutions to this system by means of analytic
vector-functions. These formulas are nontrivial generalizations of the well-
known formulas of Kolosov—Muskhelishvili which played a crucial role in the
classical elasticity theory (see [9]).

With the help of the new representation formulas, the basic BVPs of the
linear theory of elastic mixtures have been investigated in [3] and [4] for
regular domains. The same problems by the potential method have been
studied in [1]. The corresponding three-dimensional problems have been
solved in [11] using the multi-dimensional boundary integral and pseudo-
differential equations technique.

In this paper we consider a general two-dimensional mixed type boundary
value problem for elastic bodies with interior cracks. The exterior boundary
of the body is divided into several disjoint parts where the Dirichlet (dis-
placement) and Neumann (traction) type conditions are given while on the
crack sides the stress vector is prescribed. We apply the representation for-
mulas obtained in [2] and reduce the mixed boundary value problem to the
system of one-dimensional singular integral equations with discontinuous
coeflicients. We study the Fredholm properties of the corresponding matrix
integral operator. The index of the operator is found explicitly. Further,
we establish that the system of integral equations is solvable and study the
smoothness of solutions, which are densities of the corresponding complex
potentials (analytic vector-functions represented as Cauchy type integrals)
involved in the general representation formulas. With the help of the results
obtained we prove unique solvability of the original mixed boundary value
problem.

2. FORMULATION OF THE PROBLEM AND GENERAL REPRESENTATION
FORMULAS OF SOLUTIONS

Let QF be a domain of finite diameter in R? and S := 9Q* be its bound-
ary of the class C%® with 1/2 < a < 1. Put QO =atus. Further, let
the contour S be divided into 2p disjoint open parts S;, j = 1,2,...,2p.
We denote the end points of the arc S; by ¢; and cj11. We set copy1 = cy.
For simplicity, in what follows we assume that S is a simple curve and the
positive direction on it is selected so that if S is went around in this di-
rection, the interior region Q7 is on the left. Thus we have the following
decomposition

SzglUgg Uggp, Fj:SjUCjUCJq_l.
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Denote
Sp=S81U - USspy 1, Spr=28U -+ USy, QO =R>*\(QTUS).

Let the region 07" be occupied by a material representing a two component
elastic mixture. Moreover, we assume that the elastic body contains an
interior crack along some simple arc ¥ € %, % < a < 1. We denote the
end points of ¥ by e; and es, and select the positive direction from e; to
e2. The totality of points {e1, ez, c1, ..., oy} will be referred to as singular
points. We assume that ¥ is a part of some closed, simple, C’2*°‘—sm0(£h
curve Sy C QF surrounding a region Qo C Q. Further, let Qf := QT \ .
The basic differential equations of statics in the linear theory of elastic
mixtures have the form (for the mechanical description of the corresponding
model see, e.g., [11], [1] and the references therein)
a1 Au' + by grad diva’ + cAu” + d grad divu” = 0, 51
cAu' + dgrad divu’ + asAu” + bg grad divu” = 0, 21)
where v/ = (u1,us) " and u” = (uz,us)' are the partial displacement vec-
tors,
= X5, b1 =1+ M+ A5 —aopapt, ag = pg — s,
c=p3+As, ba=po+Xo+As+aopip !, p=prtp2, az=A3—A1, (2.2)
d=piz+ A3 —As —2p1p” ! = pg+ M — Xs + agpap

A = 0?/0x% + 92/023 is the two dimensional Laplace operator. Here A1,
A2, A3, A4, As, p1, p2, and ps are material constants characterizing the
mechanical properties of the elastic mixture and satisfying the inequalities

@ 2
As <0, p1>0, pipo>p3, A — 2Pz | FH1 > 0,
2.3)
« 2 « 2 « 2 2 (
(/\1 _ d2p2 + —/Ll) ()\2 + 201 + _,UQ) > ()\3 _2m + —,ug) .
p 3 p 3 p 3

These conditions imply that the density of the potential energy is positive
definite with respect to the generalized deformations and the matrix differ-
ential operator generated by the left-hand side expressions in the equations
(2.1) is self-adjoint and strongly elliptic (for details see [11]).

The partial stress tensors [7;;(u)]ax2 and [77);(u)]2x2 are related to the
partial displacement vectors by the formulas

! _ _042p2 . / 7 8_ 8’&3
Tll(u)—()\l ) )dlvu —|—( 3 )d vu' +2u e +2ugax
ouq Ous Ous ou
Tél( ) (Ml_)\5)a +(,U/1+)\5) 6 +(M3+)‘5) 6 +(M3_)‘5) amj
Ouq Ous Ous ou
T2 (u)=(t +)\5)E+(Nl—)\5) a—+(M3—)\5) a—+(M3+)\5) 8—;1’

8u4

e (24)

Ous
Téz(“):()\l - Oézppz) divu'4 ()\3— ) divu’ 4241 prs +2,u3

p
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0
) (u)= (A4+a2p2)dlvu —i—( )dvu +2u3 8—+2 gauj
Ouq Ous Jus Ouy
o1 (u)=(z+Xs) — D2 +(M3—)\5) Ry +(M2—)\5) A +(p2+As) =— o
Ouq Ous Jus Ju
5 (u)=(u3—As) 5— s L (34 Xs) o 4 (o +As) =— Ty T (1220 5 ‘1‘
Oug 0
72 ()= Ay + 222 )dlvu +(/\ —I—Tp)dvu +2u38—x2+2u2£,
where u = (u',u”) " = (u1, u2, uz,uq) "

The partial stress vectors 7' = (7, 7)) " and 7" = (7", 73") " acting on
an arc element with the normal n = (n1,n2) are calculated then as
T/ = (Tu)1 = 1{yma + 1y, Ty = (Tw)z = T{pn1 + Thona, 25)
T = (Tu)s = 1im1 + 19 ine, T3 = (Tu)s = T9n1 + Thona. '
The operator T' = T'(0,n) = [Tk;(0,n)]axa is called the stress operator in
the linear theory of elastic mixtures [11].
It is convenient to introduce the following notation

— (T, 7" = ((Tu)1, (Tu)s, (Tu)s, (Tu)s) - (2.6)

Throughout the paper we assume that n(z) = (n1(z), n2(z)) is the out-
ward normal vector on S and on Sy at the point x € S U Sy. This uniquely
defines the positive direction of the normal vector on X.

A vector u = (u/,u”) " is said to be regular in the region Qi if it satisfies
the following conditions:

(i) w € C*(QY) and w; are continuously extendable on S and on ¥ for
l=1,4;

(i) the components of the vector Tu are continuously extendable on S
and on X except possibly at the singular points eq, ez, ¢;, 7 = 1,2,...,2p; in
a neighbourhood of a singular point z¢ € {e1,e2,¢1,...,cop} the functions
(Tu(x)); admit the estimate

[Tu(@))i =0 (Jlx —20| 7)), 2€Qf, 0<B<1, 1=1,4,

where |z — x| is the Euclidian distance between the points z and .

Now we are in a position to formulate the mixed boundary value problem:
find a vector u = (u’,u”)" satisfying the system of differential equations
(2.1) in Qf and the following boundary conditions:

[t = fOt), teSp, (2.7)
[Tu]* = f®(t), te€Sr, (2.8)
[Tu]* = (1), [Tu]” = f(t), teS, (2.9)

where f® = (fiY, 137, 57 )T, k= 1,2, and f* = (F5 fy S50 )T
are given vector functions with the following smoothness properties:

e H(Sp), 0.1 € H*(Sp), P e H*(Sr), fF € H(X); (2.10)
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here O, denotes the tangential derivative (or the derivative with respect to
the arc parameter), while H and H* stand for the well known Muskhelishvili
spaces (see [9], [10]). Recall that for an open simple arc M with the end
points ¢; and ta, the symbol H(M) denotes the set of Holder continuous
functions on M with some exponent 0 < a < 1 and H*(M) denotes the set
of functions which belong to H (M) for arbitrary My C M and near the
end points ¢; and ¢y can be represented as ¢(t)|t — ¢;|7* with ¢ € H(M)
and 0 < k < 1. For open disjoint arcs M, j =1, ¢, and M = MU--- UM,
we define by H(M) and H*(M) the set of functions whose restrictions on
M belong to H(M;) and H*(M;), respectively.

The symbols [ -] s, and [-]g x denote the one-sided limits on S U ¥ from
the left and from the right, respectively, in accordance with the positive
direction chosen above.

Let us introduce the complex vectors

U = (U1,Us) := (uy + iug,ug + ’L"U,4)T,
. SNCREY
.7:U = ((fU)l, (.7:U)2) = ((T’u)g — i(T’LL)l, (Tu)4 — Z(T’LL)3) 5

where uj, j = 1,4, are real functions, the components of the partial dis-
placement vectors.
The boundary conditions (2.7)-(2.9) can be rewritten then as

U]t = FY(@), teSp, (2.12)
[FUI* = —iF®(t), te S, (2.13)
[FUE = —iF*(t), tex, (2.14)

where

FO = (£ +if0, 0+, k=12,

FE = (fEifE fE+ifd)
The Kolosov—Muskhelishvili type representation formula for a solution of
the system (2.1) obtained in [2] has the form

(2.15)

U(z) = U(z1,x2) = mp(z) + Lz (2) + ¢¥(2), 2z =z + iz, (2.16)
where ¢ = (p1,2)" and ¢ = (11,¢2) " are arbitrary holomorphic vector
functions in O3, ¢'(2) = ¢, (2) is the derivative with respect to the complex
variable z, the over-bar denotes complex conjugation, m and ¢ are real
matrices,

mp Mo 10 s
"= {mz m;;] » £= 2 [Ls 16]
with

l4 10,2 a2—|—b2 l5 1 & C+d
b () b ()
mi 1+2 5 d2+ 4 > mo =l + +

l 1
my=ls+ 3 =3 (T+
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h = lo =— I3 =

dy’ d’ dy’
do = ajas — ¢ = Ay — Xsag > 0,

di = (a1 +bi)(az +b2) — (c+d)> =A1+a+b>0,
Ay = papg — p3 >0,
a=p11(ba — As) + pa(br — Xs) — 2us(d + As) >0,
b= (b1 — As)(ba — As) — (d+ X5)* >0,
ap = p1 + pr2 + 2pu3 = ay +az + 2¢ > 0,

Bo = by + by +2d = by — As +bo — s + 2(d + As) > 0,

AA; 420+ b — Ms(2a0 + by)

Ap :=detm = .
0 etm 1d1d; >0
For the generalized stress vector FU we have (see (2.11))
P - -
FU(2) = —— [(A —21)p(2) + Bzg(2) + 2u¢(2)} , (2.17)
07(2)
where I stands for the unit 2 x 2 matrix,
A A B1 B 1 M3]
A= —2um, B= —oul, p= .
[A3 AJ pm, [33 34] HE R LB 12
Here
0 0 0

——=N] =— —Ng —,
ot (z) ' Ozs ? dz1
where n = (n1,n2) is a unit vector. It is evident that for z € S U Sy this
operator is a tangential differentiation operator at the point z.
We can easily see that

A =2+ By +2)s a2d+c:

2
:d1+d2+a1b2—cd+>\5(a2+c+a2+b2+c+d)7

dq do dq
ay +c¢
Ay =2+ By+2X; =
do
:d1+d2+a2b1—cd+>\5(a1+c+al—l—bl—l—c—&—d)’
dq do dq
a1 +c¢ c¢by —day ar+c a1 +bi+c+d
Ay = By—2) - —A( )
2T, d; g T d;
by — d b d
A3:Bg_2)\5a2+0202 a2_)\5(a2+c+a2+ o +cC+ )
do d1 do dy

Further, det A = 4A¢A; > 0 since det p = A1 > 0 and det m = Ay > 0.
With the help of the formulas (2.16) and (2.17), we derive

2uU () = Ap(z) + Bz (2) + 20(2), (2.18)
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and

Q(z)+ D = (A—2D)p(z) + Bzy¢'(z) + 2utp(z), (2.19)

where D = (Dy, Do) " is an arbitrary constant complex vector and

Q(z): = /fU ds = (QQ(Z) —iQ1(2), Qu(z) — ng(z))T,
® (2.20)

z

Qr(z) = /(Tu)k ds, k=1,2,3,4;

Z0

here the integration is performed with respect to the arc parameter s along
an arbitrary smooth arc which lies in the domain QJEr and connects some
fixed point zg to the reference point z.

From the representations (2.16) and (2.17) we can derive the following
results:

Conclusion (i). If FU(z) = 0 in QF, then ¢(z) = §, where § = (61,62)
is an arbitrary complex constant vector, while ¢(z) = i€Rz + 7, where R
is an arbitrary real scalar constant, v = (vy1,72) " is an arbitrary complex
constant vector, and & = (£1,82) | is a real constant vector with

81 = Ay [Hi Ay — Hy(2 — Ay)], & =AY [Hi(2— Ay) — Hy A3,
Hy = (p2 + p3)(2 — Ag) — (p1 + p3) As,
Hy = (p2 + p3) Az — (p1 + p3)(2 — Aq),
Ay =det(A—21I) > 0.

Note that |Hi| + |Hz| # 0 and Hy # Hs. Therefore, without loss of gener-
ality, in what follows we assume that H; # 0. This gives us possibility to
represent the vector ¢ in the form ¢(z) = iRz +~ in Q‘EL, where R is again
an arbitrary real scalar constant, ¥ = (v1,72) is an arbitrary complex
constant vector, and ¢ = (g1,62) | with

L 1

1T A, [A2—Ho(2—A4)], &2 2= A1—HoAs], Ho=Hs[H:]™".

2

Thus we have

¢o(z) =ieRz+~, ¥(z)=24. (2.21)

Note that the vector U(z) constructed by the formula (2.16) with ¢(z) and
¥(2) as in (2.21) corresponds to the so called “rigid motion” vector in the
theory of elastic mixtures.

Conclusion (ii). If U(z) = 0 for z € QF, then ¢(z) = v and ¢¥(z) =
—27171 A5, where 7 is an arbitrary complex constant vector. Therefore,
if ¢(20) = 0 for some point zy € O, then ¢ and 1 vanish identically in Q3.
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3. GREEN’S FORMULAS AND THE UNIQUENESS RESULTS

Let Q C R? be a bounded region with a smooth boundary 9 and a real
vector-function u = (u’,u”) T be a regular solution to the system (2.1) in Q.
Then there holds the following Green’s identity

/W(u,u) dzx = /[u]+ [Tu]™ ds, (3.1)
Q [519)

where W (u,u) > 0 is the so called density of the potential energy [11], [1].
Note that here and in what follows we employ the notation

P
a-b::Zajbj for a, b€ R? or a, be CP.

j=1

The general solution of the equation W (u,u) = 0 is written as

! "

w=(u,u")", u = (Zi) + by ( ;:2> , u' = (Zi,) + by, < ;jz) , (3.2)
"
7 )
vector u = (u’,u”)" defined by (3.2) is called a generalized rigid displace-
ment vector. It is evident that if the vector (3.2) vanishes at two points,
then the constants a’;, a7/, and by are equal to zero.

It can easily be shown that Green’s formula (3.1) holds also for regular
vector functions in Q;,

/W(M) i = /[u]+-[Tu]+d8+/{[u]+-[Tu]+—[u]_-[Tu]_}ds. (3.3)
of S hH)

where a’, a7/, and by are arbitrary constants (for details see [11], [1]). The

Note that u-Tu = S{U - FU} due to the equalities (2.11). Therefore, (3.3)
implies

/ W (u,u)dx = %/ {2*1u’1(A<p(t) + Bt/ (t) + QHW)}—FX

+
F s

x d[(A = 2D)p(t) + Bl (t) + 2u(t)] "

+ %E/ { [2*1/[1(/&0@) + By'(t) + 2,1;%)} T
x d[(A = 2D)p(t) + Bl (t) + 2u(t)] "

- {2_1;;_1 (Ap(t) + Bty'(t) + QMW)} X
x d[(A—2I)p(t)+Bly'(t) + 2ub(t)] } (3.4)

where here and in what follows the differential d[] is taken with respect to
the arc parameter (length) s.
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By standard arguments, from Green’s formula (3.1) we derive the follow-
ing uniqueness theorem.

Theorem 3.1. The homogeneous boundary value problem (2.1), (2.7)-
(2.9) (f®M = f@ = f+ = f= =0) has only the trivial solution.

Remark 3.2. Let a pair of functions u’ = (u1,u)" and u” = (uz,ug)"
be a solution to the system (2.1) in the exterior domain Q~ := R? \ Q.
Moreover, let they be bounded at infinity, while their first order derivatives
decay as O(]z|~2). Then there holds Green’s formula

/W(u,u) dx = — / [u]™ - [Tu]™ ds, (3.5)

Q- o0~

which implies that the homogeneous exterior Dirichlet and Neumann bound-
ary value problems (with given displacements and stresses on S, respecti-
vely) possess only the trivial solutions.

Note that if the holomorphic vector functions ¢ and 1 corresponding to
the vectors u’ = (uy,uz)" and u” = (us,us)' are bounded at infinity and
their derivatives decay as O(|z|~2), then the formula similar to (3.4) still
holds

/W(u,u) dw = —(\‘9/ [2_1M_I(Ag0(t) + Bt/ (t) + QMW)} x
o

S
xd[(A—2I)y ()+Btgp()+2m/;(t)r. (3.6)

4. REDUCTION TO A SYSTEM OF INTEGRAL EQUATIONS

With the help of the representation formulas (2.18) and (2.19) and the
boundary conditions (2.7)—(2.9) (see also (2.12)—(2.14)), the original BVP
for u = (u/,u”") " is reduced to the following problem for the holomorphic
vectors ¢ and :

[Ap(t) + Bt (D) + 200(0)] "~ = 2uF (1), t € Sp, (4.1)

[(A—2D)p(t) + Bw 0 +2u0(0)] " =

= —i/F@)(T) ds+ DY te Sy, j=T,p, (4.2)

C2j

t

[(A—20)p(t)+ Bt () + 200(D)] " _i/F+(T)ds+o+, tex, (4.3)

[(A—21)(t) + Bt (8) + 2410t )}‘:—i/F*(T)dHc: tex, (4.4)

€1
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where C* = (C’li,CQi)T and DU = (ng),Déj))T, j=1,2,...,p, are ar-
bitrary complex constant vectors.

We look for the unknown holomorphic vectors (complex potentials) ¢
and v in the form of Cauchy type integrals:

(2) L /ﬂdt—&—i/wdt—i—%[l—i—ﬂ(z)], z € OF, (4.5)

:% t—z 211 t—z 211
s )
1 [ Ag(t)— Big'(t 1 A —2D)h(t) + BIN(t
i) = g [ATO 0, L[ (A= 20R B
211 t—z 211 t—z
s 5
+i/w(t) dt—l/(%_él)dt— BMa i
2mi ) t—=z 2mi t—z 2mi(ea —e1)  z—eg
) 5
AM
+% In(z —eq), z € Q;, (4.6)

where the densities ¢ = (g1,92)", h = (h1,h2) ", and w = (wy,ws) ' are
Holder continuous vector functions and have the first order derivatives of
the class H* on S and ¥ with the nodal (singular) points {e1, e2,c1,. .., c2p}.
In addition, we assume that

h(e1) = h(e2) =0, (4.7)
w(er) =0, w(es) =—-2M, (4.8)
with
M = (M, My)" = ;_/ [FH(t) — F(t)] ds (4.9)
b))

The vector function €2(z) involved in (4.5) has the form

Q) = (z—ez)ln(z —e3) — (z —e1)In(z — e1) 7 (4.10)

€2 — €1

while the vector function y = (x1,x2)" involved in (4.6) reads as follows

A—-2I)M  BM
X = ( ) + = — . (4.11)
€9 — €1 €9 — €1

Substituting the expressions (4.5) and (4.6) into the representations (2.18)
and (2.19), we arrive at the relations

Ap(2) + Bzy/(2) + 2p9(2) =

A t—z A-2 t—z
—% g(t)dtlnz_g— o /h(f)dtlnm‘i‘
S b
A—T [ h(t) B —  (t—2z —  (t—2z
M /t—zdt_%[/g(t)dt(f—z)+/h(t)dt(¥—z)}_
) s )
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+ 5= [1+9Q(:) -InEz-2)], (412)

_i/ 9 4y A g(t)dtln;_z A- Ql/h()dt—

™ t—z 211 -z ™ t—z
S S >
A—-2] z
— h(t)d;1 —
omi / (B)diInz—
by
B —  (t—=z z
_%[/gt)dt(z—z)+/h()dt( )]‘
S b))
L[ el A
211 t—2z 211 t—72 211
by by
BM(z—el) E—EQ (A—QI)M +
1 1+Q 05 4.1
27Ti(€2—61) n7—§1+ 271 [+ ()]’ Z€3%y ( 3)

Here and in what follows we employ the notation

dt dt dt
dt  ds ds’

Using the properties of Cauchy type integrals and applying the restric-
tions (4.7) and (4.8), we can easily establish that the vector U given by
(2.18) is single valued and continuous in Q.

From the boundary conditions (4.3) and (4.4) along with the formula
(4.13), we get

[(A—2I)¢(t)+ Bty’ t+2ujz [((A=21)p(t)+ Bty () +2ut (1)), =

:w(t):—i/[F—i_(T)—F_(Tﬂ ds+Ct—-C~, teX.

In view of the equality (4.9), it is evident that the conditions (4.8) will be
satisfied if C* = C'~. Thus, the vector function w is defined explicitly as

t

w(t) = —i/ [Ft(r)—F(7)]ds, teXx. (4.14)

e1
Due to the relations (2.15) and (2.10), it follows from (4.14) that
we[H(D)?, W el[H (D). (4.15)

Further, upon summing of the boundary conditions (4.3) and (4.4), we
get

[(A—2D)¢(t)+Bte' (1) + 200 (1) o + [(A—2D)¢(t) + Bty (6) + 200 (1) | & =
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t
— i / [F+(r) + F~(r)] ds + 20"
e1
Applying the representation (4.13) and transferring the known terms to the
right-hand side, we arrive at the equation for the unknown vector functions
g and h:

A—1 [ ht) 1 [ g(t) A t—to
dt — — dt + = [ g(t)dyln —=2 —
pue /t—to wi) i Mt | 9D din
> S S
_A_?I/h(t)dtlnf_’fo_
21 t—to
b
B ittt — t—t
. ) dy(— ht)dy(—=2) | =
2m’[/g() t(t—to)Jr/ (*) t(t—to)]
S 2
=dW(t)+CF, toex, (4.16)
where
/ 17wl
. oo
a4 :—3/ Pt F()]ds+ — [ 2L g —
(to) = =5 [ [FT@) + F(n)]ds + 5= |
el 3
X (t—e1) - X
X T g X —
omi | T—1, p (fo—ex) +
>
BM(tO — 61) zo — €2 (A - QI)M
In - - 1+ Ot
omi(es — 1) - fo— &1 o 1+t +

AM . _
+—F 1n(t0 —Eg), to € X.
2mi

Here In(#y — &) and In(fy —€;) are the limits of the functions In(z — &) and
In(z — &), respectively, at the point ¢y € ¥ from the left.
Let us show that
oW e [HE)P, [W] € [H*(2). (4.17)

Taking into consideration the conditions (4.7), (4.8) and (4.15), we can
show that the function ®1) is continuous at the end point e;, while in a
neighbourhood of the point es we have

1
@(1)(150) =5 w(eg) — x(e2 —er) +
BM(eq —
n (e2 —e1)

—2 U AM} In(fo — ) + O(1) = O(1).
€g — €1
On the other hand,

(1) ; L
d‘I’T()(tO):—E[FJr(to)jLF‘(tO)]+{%/%dt_4/ dt N
= !
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BH t0—€2 t0—61:| @[@}71
2mi(€y —&1) Ltg —€2  to—el ) ds Lds
X BM ph—  (A-2DM | ty—e

2 27Ti(€2 —El) EO —€ B 27Ti(€2 - 61) to — €1

. (4.18)

whence (4.17) follows immediately.

We can easily show that the relations (4.16) and (4.17) imply the condi-
tions (4.7).

Rewrite the equation (4.16) in the form

A-21 g(t) h(t) I—A/ g(t)
211 |:/t—t0dt+/t—todt + ™ t—todt+

A/ £ dy1 to A— 2[/ 0_
2 g t n%—fo 27TZ 0

S b))

B — —to to
_ = t — h(t)d =

2mmi [/g()dt(t—to)+/ (*) t( to)]

S b
=W (1) +CF, thexn. (4.19)

The boundary conditions (4.1) and (4.2) along with the representations
(4.12) and (4.13) lead to the equations

A t—ty A—T [ h(t
Ag(tO)‘F%/g(t)dtln_ 04 . / (t) di —

t—to T t_to
S >
A—2f t—t
- /h(t)dtln__zo—
b
B it —tp 0]
“omi [/gt)dt(z—fo) +/h(t)dt(—_— )] =
S 2
= @(2) (fo), to € SD, (420)
1 g9(t) /h(t)
(A — Dg(to) E{ Pt [ ]
>
A t—to A—1 [ h(t)
= g(t)dyIn —= t
+2m’/g() N T T /t—tod
S b))
A—2f t—t
- h(t)dyIn —=2 —
2 /()dt — T
3
B — —tp o\| _
—%[/gt)dt( _¥0)+/h()dt( )]—
S 2

= (I)(3) (to) + D(to), to € ST, (421)
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where
<b<2>(t0):2uF<1>(t0)+i/_ 2 di — i/ (t=c1)
271, t—1o 2 t—1o
= 2
BM(tO - 61) In zo — €2 .
27Ti(€2 —El) zo — €1
AM
[1—|—Q( ) 111(0—62)} toESD,
2w
to
@@@@dfz—@/F@X)ds+—L» 1—32/’ ) i +
2mi t—to 2
C2j = 2
BM(tQ — 61) fo — 52 (A — 2I)M
In = — 14 Q(to)| —
27i(e — 1) | fo—e1 ami LT 0]
AM .
_% ln(O_EQ); t0€S2j7 j:172u"'7p7

D(to) = .D(j)7 to € Szj, ] = 172,...,])
It is evident that
e e[H(Sp))?, P e[H(Sr)?, [@P) e[H*(Sp)?, [@P)] e[H*(S)].

Thus, we have obtained the following system of singular integral equations
with discontinuous coefficients

A*(to)a(to)+M/ ot) dt+/K1 to, t)o(t)dt +

3 t—to

/K2 to, \If(to) + D* ( ) tg € A, (422)

where A = SU X,

A for tg € SD,

A*(fo) =< A-1 for tg€ Sy,
0 for ty € X, (4 23)
0 for tg € SD, .

B*(fo) =<1 for tg € ST,
A—2I for ty e,

o(to) {g(to) for to € S,
0 =

h(to) for tg € >, (424)

B 0

t—1o
Katto,) = 22 (200 e
2to, ) = 57 5y t—to 0
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A 0 . t—t
2 for tg,t €.,
Elml(?t ) t_/tlo 9T 9
_ — t—t
- P —_ 2 - a 1nz %0 fOI' tOES, tGZ,
Ki(to,t) =4 /74 "7 49 % " (4.25)

— t—t0+% Em nf—fo for toeX, tes,
A2l g In é — 730
2mi Ot t—to
(I)(l)(to) for to € E,
U(ty) =4 @@ (ty) for to € Sp, (4.26)
o) (to) for to € S,

for tg,t € X,

0 for tg € SD,
D*(to) = { DY for tg € Saj, j=1,...,p, (4.27)
ct for tg € X.

The theory of singular integral equations with discontinuous coefficients on
closed, smooth, simple curves is developed in the reference [7]. To apply
this theory in our case, we proceed as follows. First we extend the system
(4.22) from A = SUX to the closed curve Ag = S U Sy. We recall that ¥
is a part of the closed, simple, C?%-smooth curve Sy which lies inside the
region O (see Section 2). The extended equation reads as

Kolto) = A*(to)o(to) + @/:j—tt)odt—&-/lfl(to,t)a(t) d +
Ao

Ao

+ / Ka(to,0)o(0) dF = W(to) + D*(to), to € Ao, (4.28)
Ao

where A*, B*, K1, Ko, ¥, and D* are defined by the formulas (4.23)—(4.27)
and the relations

A*(tg) =1, B*(tp) =0, U(ty) =0,
D*(to) =0 for tg € Xp:= Sy \ i7
Kl(to,t):KQ(to,t):O for tg € X, te Ay or tQGA, t e Xg.

(4.29)

Let
S(fo) = A* (to) + B*(to), D(to) = A*(to) - B*(fo), to € Ao.
We easily derive

det A = 4A¢0A1 >0 for tg € Sp,
det(A—2I) = Ay >0 for ¢y € St,
Ay >0 for tg € X,

1>0 for tg € X,

det S(to) =
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4A0A1 >0 for tg € 57
det D(tg) = ¢ Ay >0 for ¢y € X,
1>0 for tg € Y.
From these relations it follows that the equation (4.28) is of normal type
(see [7]).
Further we have to characterize the points of discontinuity. To this end, let
us construct the characteristic equation for the unknown v,

det [GT'(t+0)G(t—0) —vI] =0 for t € {e1,e2,¢;, j=1,2p}, (4.30)

where

I for t € Sp,

B ASY(AAGA, —2A) for t € Sy,

Gl =D (D) = § T (e T2 e
I for t € Y.

From the equation (4.30) we get
det [G™"(e1 + 0)G(ey — 0) — vI] =

=det [G7"(e2+0)G(e2 — 0) —vI] = (v +1)* =0, (4.31)
det [G™ " (cj—1 +0)G(c2j—1 — 0) — vI]| =
— 2 A, - A - Ay BE0AL g oT a)
Ag A2
det [Gil(CQj + O)G(Czj — 0) — Z/I] =
4NgA1 — A1 — A A _
_ o 4Q04 1 4 2 _ -
=v SA0A, v+ 100, 0, j=1,p. (4.33)
The roots of the equation (4.31) are v; = vo = —1. The roots v3 and vy of

the quadratic equation (4.32) are negative since the discriminant and the
free term are positive and the second coefficient is negative in accordance
with the following inequalities

A;Q [(A1+A4)2—16A0A1} >0, 4A0A1A51>07 4A0A1— A1 — A4 <0.

Thus v3 < 0 and v4 < 0, and they are different from —1, in general. It is
easy to see that the roots v5 and vg of the quadratic equation (4.33) are
inverses of the roots v3 and vy, ie., v5s = 1/v3 < 0 and vg = 1/vy < 0.
Further, let

g = 21? Inv,, ¢=1,6.
Here the branch of the logarithmic function is chosen in such a way that

Roxg ==, ¢g=1,6.

We then have

1 1 . 1 . 1 . 1 .
nm=m=s, %325—1,337 %425—254, %5254—1,33, %6254-2547 (4.34)
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with
1 1
ﬁgz—lnyg 42—1HV4.
2 sl 21 [val

We remark that 03 # 0 and (84 # 0, in general. Thus, due to the general
theory developed in [13], all the points of discontinuity of the coefficients of
the integral equation (4.28), the nodal points e1, es, and ¢;, j = 1,2p, are
non-special, i.e., the corresponding numbers #s¢, are not integers.

Denote by hopio :=h(ci, ¢, ..., cop, €1, €2) the subclass of vector func-
tions with components from H*(Ag) which are bounded at the nodal points
€1,C2, ..., Cap, €1, €2 (for details see [10], [13]).

Applying the embedding results obtained in [7] for solutions of singular
integral equations with discontinuous coefficients, we conclude that if the
equation (4.28) has a solution ¢ of the class ho, o, then

o € [H(A)]?, 0o € [H*(A))* (4.35)

Evidently, we have the similar inclusions for the vectors g and h in view
of (4.24) (see also (4.15)). Therefore, we can show that the vector functions

Ap(2)+ Bz (2)+2u(2), (A—2D)p(2)+Bz¢'(2)+2mp(2), €9,

where (z) and ¥(z) are constructed by means of the densities ¢, h and w in
accordance with the formulas (4.5) and (4.6), are continuously extendable
on SUY due to (4.12) and (4.13). Moreover, the corresponding partial
displacement vectors u’ = (uy,u2)" and u” = (u3,us)’ defined with the
help of (2.11) are regular in Q3.

Thus, the main problem now is to show the solvability of the integral
equation (4.28) in the space hapyo.

In the next section we will study some properties of the integral operator
K defined by (4.28) and establish the corresponding existence and regularity
results for the original boundary value problem.

5. EXISTENCE RESULTS

Here we show that for an arbitrary vector function ¥(tyg) we can chose
a piecewise constant vector D*(ty) in such a way that the equation (4.28)
becomes solvable.

To this end, first we investigate the null spaces of the operator K in hgp 2
and its adjoint one, K’. Due to the general theory it is well known that the
index of the operator K is

indK:=q—q¢ =—-4(p+1), (5.1)

where ¢ = dimker € in hypio and ¢’ = dimker K’ in the space of vector
functions hy, , adjoint to ha,42 (see [7], [8]).
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Now we prove that ¢ = 0, i.e., the homogeneous equation Ko = 0 pos-
sesses only the trivial solution. Let o¢ € hy,42 be a solution to this equation,

go for teS,
oo(t) =< hy for te€ X, (5.2)
0 for teXp.

Remark that actually we have a higher regularity property for the vectors
go and hg due to (4.35).

Further we construct the complex potentials pg(z) and 1g(z) by means
of the formulas (4.5) and (4.6) with w = 0, and go and hg for g and h,

respectively,
1 go(?) 1 /ho(t) +
= — dt+ — | —=dt Q .
#o(2) 2m'/t—z Yo ) =z PN (53)
s b
1 [ Ago(d) — Blgh(t)
2 e dt —
wpo(z) 27”./ o
s
_ N
_i/ (A = 21)ho(t) + Bthy(t) dt, =€ QL. (5.4)
271 t—z
®

We easily verify that there hold the following boundary conditions

[Apo(t) + Btgh(t) + 2utho(t)] " =0, t € Sp,
[(A = 21)o(t) + Bty (t) + 2ubo(t)] =0, t € Sr, (5.5)
[(A = 2D)po(t) + Btgp(D) + 2ubo(D)] = =0, te.

(
By (2.18) and (2.19) along with (2.11), (2.17) and (2.20), we conclude that
the partial displacement vectors v’ = (uy,u)’ and u” = (uz,u4)", corre-
sponding to the complex potentials ¢y and g, are regular and consequently
Green’s formulas (3.3) and (3.4) hold. Therefore W (u,u) = 0 in Q3 , whence

ot INT r_ all ;) [ —X2 " _ a/ll ;[ —X2
u=(u,u")", u_<a’2>+b0<:1:1>’ u _<a’2’ + bp o ) (5.6)

and due to the homogeneous Dirichlet condition on Sp we get v’ = u”’ =0
in QF.

In accordance with the remarks at the end of Section 2 (see Conclusion
(ii)), we have ¢o(z) = v and ¥o(z) = —271p71 A7 in Qf, where v is an
arbitrary complex constant vector. But then from the second equation in
(5.5) we conclude that v = 0 and, consequently, ¢o(z) = 0 and ¥y(z) = 0
in QF.

Therefore

[eo(t)]T = [@o(t)]™ = ho(t) =0 for t €%, (5.7)
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due to the Plemelj—Sokhotski formula [10]. In view of (5.3) and (5.4) we
arrive at the equations

L [ go(t)
= dt = ot .
wo(2) 5 / P— 0, z€QT, (5.8)
5
_ 1 [Ag(®) - Big(t) , _ +
Q/Mbo(z)—%/ — dt=0, z€ Q. (5.9)
s
It is evident that the Cauchy type integrals in (5.8) and (5.9) define holo-
morphic vector functions in the exterior domain Q= = R?\ Q+ which vanish

at infinity. In what follows we show that these functions identically vanish
in Q7 as well. To this end, let us introduce the vector functions

1 t
wy(z) = —%/fo_(idt, z€Q, (5.10)
S
1 [ Ago(t) — Btgj(t
2;@5(2):—%/ 9o )t_z 900 e (5.11)
S

Evidently, p(co) = 0 and 9§(c0) = 0. Moreover, the Plemelj—Sokhotski
formula and the equalities (5.8) and (5.9) yield that

(05 ()] =igo(t) for t €S,

rNT— -, (5.12)
21045 (1)]~ = i[Ago(D) — Bigh(t)] for ¢ € 5.
From these relations we see that
[Aps(t) + Btleg(t)] + 2upg(t)] =0, teS. (5.13)

Further, we construct the vectors v’ = (u1,us) and u” = (u3,us)" in ac-
cordance with the formulas (2.11) and the representation (2.16) with ¢ and
¥} for ¢ and ¢. Evidently, v’ and u” solve the system (2.1), vanish at infin-
ity along with their first order derivatives as O(|z| ') and O(|z|~2), respec-
tively, and satisfy the homogeneous exterior Dirichlet boundary condition
on S in view of (5.13). Therefore by the uniqueness theorem (see Remark
3.2) v/ and u” vanish in Q7. Consequently, ¢§(z) = 0 and ¥g(z) = 0 for
z € Q due to Conclusion (ii) in Section 2. By (5.12) this yields go(t) =0
for t € S. This proves that the homogeneous equation K¢ = 0 has only the
trivial solution. Therefore, ¢’ = dimker K’ = 4p + 4, i.e., the homogeneous
equation K'¢C = 0 has 4p + 4 linearly independent solutions in the space
h,.,. We denote them by {¢(0)}7P4%.

A sufficient condition of solvability of the equation (4.28) in the space
hy, 12 reads then as follows (see [7]):

3%/ [(T(t) +D*1)]¢V(t)dt =0, j=1,2,....4(p+1). (5.14)
Ao
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This can be treated as a system of linear algebraic equations with respect
to the real and imaginary parts of the arbitrary complex constant vectors
C*t and D9, g =1,p (see (4.27) and (4.29)). Thus, (5.14) represents 4p +4
simultaneous equations with the 4p 4+ 4 unknowns.

Let us show that the determinant of the system is different from zero,
i.e., the homogeneous system

R [ D*(t)¢Y9) (t)dt =
[

_:%{ZD@)/<<J'>(t)dt+o+/<<j>(t)dt]_o, j=1,4(p+1), (5.15)
Saq b))

q=1

has only the trivial solution.

Let D@ and C* be some solution of the homogeneous system (5.15).
Then the integral equation (4.28) with the right-hand side defined by (4.27)
and (4.29) is solvable in hy,1o. Note that we assume ¥ = 0 on Ag. Denote
this solution by oy which can be written again in the form (5.2).

Further, as above we construct the complex potentials ¢g(z) and 1g(z)
by means of the formulas (4.5) and (4.6) with w = 0, and g¢ and hg for g
and h, respectively. Thus we have again the formulas (5.3) and (5.4) for
©o(z) and 1y(z) which along with the integral equation Ko = D* now lead
to the boundary conditions

[Ago(t) + Btop(t) + 2ubo(t)] " =0, t € Sp,
[(A —2D)go(t) + Btigg(t) + 2utbo(t)] " = D9, t € Say, q=T,p, (5.16)
[(A—2D)o(t) + Btgh(t) + 2uvo(t)] = CF, tex.

By the same arguments as above and with the help of Green’s formula,
we derive that the partial displacement vectors u’ = (uj,u2)' and u” =
(uz,uq) " corresponding to the complex potentials ¢g and 1 vanish in Q3.
Therefore due to Conclusion (ii) in Section 2 we have ¢ (z) = v and g (z) =
—271u~1 A5, where v = (71,72) " is an arbitrary complex constant vector.
From the third and second equations in (5.16) we have

1
”Y:—gch’ DW =ct, ¢=T1,p. (5.17)
Thus
1 + () 1 + +
wo(z) =v= ~3 C™, 2uio(z) =—-Ay= §AC , 2 € Q5. (5.18)
From (5.3) we derive

[o(M]" = [o(t)]™ = ho(t) =0 for t €. (5.19)
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Therefore finally we get from (5.3) and (5.4)
_ 1 go(t) . 1 +
SDO(Z)_Qm'/t—zdt_ 20, zeQT, (5.20)
5
1 Ago(t) — Btgy(t) . 1 o L
2upo(2) = 2771'/ P dt = 5 AC*, ze Q™. (5.21)
5

Let us introduce holomorphic vector functions ¢* and ¥* in 0~ defined by
the formulas

% _ 1 go(f) _ ) + _
wy(z) = 27r/t—zdt 2C’, z€Q, (5.22)
s
w1 [ Ago(t) — Btgyl(t) e -
2ug(z) = 271_/ P dt + 2AC , 2€Q7. (5.23)
s
Evidently,
#3(00) = =5 CF, 2uii(oc) = 7 ACT. (5.24)

Moreover, the Plemelj—Sokhotski formula and the equalities (5.20) and (5.21)
yield that

[p5 ()] =igo(t) for t €S,

(2005 (8)] ™ = i[Ag(t) — Bigh(1)] for t € 5,

whence we get

[Apg(t) + Btog (t) + 2ug(t)] =0, teS. (5.25)
Taking into consideration the behaviour of the vectors ¢f and g, using
word for word the arguments applied after the formula (5.13) and with the
help of Remark 3.2 we conclude that

wi(2) = _%ct 28 (2) = %Ac_+, 2. (5.26)

But then from (5.25) we derive CT = 0 since det A > 0. Consequently, by
(5.17) we have D@ = 0 for ¢ = 1,2,...,p. Thus we have shown that the
homogeneous system (5.15) possesses only the trivial solution and therefore
the non-homogeneous system (5.14) is uniquely solvable for arbitrary vector
function ¥. Thus, for arbitrary ¥ we can chose the constant complex vectors
C*tand D9, q=1,2,...,p, insuch a way that the integral equations (4.28)
would be solvable. Finally we can formulate the following existence result
for the original mixed BVP.

Theorem 5.1. The mized boundary value problem (2.1), (2.7)—(2.9) is
uniquely solvable in the class of regular vector functions if the conditions

(2.10) hold.
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