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ON SOLVABILITY OF ILL POSED INITIAL–BOUNDARY
VALUE PROBLEMS FOR HIGHER ORDER NONLINEAR

HYPERBOLIC EQUATIONS

Abstract. The necessary and sufficient conditions for unique solvability
of well posed initial-boundary value problems for higher order nonlinear
hyperbolic equations are studied.� � � � � � � � � � 	 � 
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Let b > 0, I be a compact interval containing zero, Ω = I × [0, b], m and
n be natural numbers, m0 ∈ {0, . . . ,m − 1}, pmk ∈ C([0, b]), pjk ∈ C(Ω)
(j = m0 + 1, . . . ,m− 1; k = 0, . . . , n) and f : Ω× R

m0+1 × R
m0+1×n → R

be a continuous function. In the rectangle Ω for the nonlinear hyperbolic
equation

u(m,n) =
n−1
∑

k=0

pmk(y)u(m,k)+
m−1
∑

j=m0+1

n
∑

k=0

pjk(x, y)u(j,k)+

+f
(

x, y, u(0,n), . . . , u(m0,n),Dm0,n−1[u]
)

(1)

consider the initial–boundary problem

u(j,0)(0, y) = ϕj(y) (j = 0, . . . ,m0),

hk(u(m,0)(x, ·))(x) = ψk(x) (k = 1, . . . , n).
(2)

(If m0 = m− 1, then there is no double sum in equation (1).) Here for any
j and k

u(j,k)(x, y) =
∂j+ku(x, y)

∂xj∂yk
, Dm0,n−1[u](x, y) =

(

u(j,k)(x, y)
)m0,n−1

0,0

ϕj ∈ C
n([0, b]), ψk ∈ C(I) and hk : Cn−1([0, b]) → C(I) is a linear bounded

operator.
Throughout the paper the following notations will be used.
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R is the set of real numbers; R
m×n is the space of real m× n matrices

Z = (zij)
m,n
1,1 =





z11 . . . z1n

· · · · ·
zm1 . . . zmn





with the norm ‖Z‖ =
∑m

i=1

∑n

j=1 |zij |.

C(I) and C(Ω), respectively, are the Banach spaces of continuous func-
tions z : I → R and u : Ω → R, with the norms

‖z‖C(I) = max{|z(x)| : x ∈ I}, ‖u‖C(Ω) = max{|u(x, y)| : (x, y) ∈ Ω}.

C(I ; Rm×n) is the Banach space of continuous matrix functions Z : I →
R

m×n with the norm ‖z‖C(I;Rm×n) = max{‖Z(x)‖ : x ∈ I}.

Ck(I) is the Banach space of k–times continuously differentiable func-
tions z : I → R, with the norm

‖z‖Ck(I) =

k
∑

i=0

‖z(i)‖C(I).

Cm,n(Ω) is the Banach space of functions u : Ω → R, having continuous
partial derivatives u(j,k) (j = 0, . . . ,m; k = 0, . . . , n), with the norm

‖u‖Cm,n(Ω) =

m
∑

j=0

n
∑

k=0

‖u(j,k)‖C(Ω).

Let ζk : Ω → R (k = 1, . . . , n) be functions continuous and n–times
continuously differentiable with respect to the second argument such that
ζ1(x, ·), . . . , ζm(x, ·) is the fundamental set of solutions of the ordinary dif-
ferential equation

z(n) =

n−1
∑

k=0

pmk(y)z(k) (3)

for an arbitrarily given value of the parameter x ∈ I . Introduce the matrix
function

H(x) =
(

hj(ζk(x, ·))(x)
)n,n

1,1
. (4)

The linear case of problem (1),(2), that is, the equation

u(m,n) =

n−1
∑

k=0

pmk(y)u(m,k) +

m−1
∑

j=0

n
∑

k=0

pjk(x, y)u(j,k) + q(x, y) (5)

with conditions (2) was studied in [2] and [3]. In [2] it was established that
problem (5), (2) is well–posed if and only if

detH(x) 6= 0 for x ∈ I, (6)

i.e., for any x ∈ I equation (3) does not have a nontrivial solution satisfying
the boundary conditions

hk(z)(x) = 0 (k = 1, . . . , n). (7)
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Criteria for so–called µ–well–posedness of problem (5), (2) were proved

in [2] for the case in which condition (6) fails but µ(x)
def
= detH(x) 6≡ 0.

In [5] it was proved that if (6) holds and f is Lipschitz continuous with
respect to the phase variables, then problem (1), (2) is locally well–posed.

In the present paper we study problem (1), (2) in the ill–posed case
detH(x) ≡ 0. More precisely, we consider the case in which there ex-
ists n0 ∈ {1, . . . , n} such that for an arbitrary x ∈ I problem (3),(7) has an
n0–dimensional space of solutions, i.e.,

rankH(x) = n1 for x ∈ I, where n1 = n− n0. (8)

In ill–posed case problem (5), (2) was studied in [3]. There was proved
that without loss of generality (if necessary, considering an equivalent prob-
lem) one may assume that the matrix function H(x) has the form

either H(x) ≡ Θn,n; or n0 < n,

H(x) =

(

Θn0,n0
Θn0,n1

Θn1,n0
H0(x)

)

and detH0(x) 6= 0 for x ∈ I,

where Θni,nk
is the zero ni × nk matrix, and En1,n1

is the unit n1 × n1

matrix.
It turns out that, unlike to well–posed case, in ill–posed case for solv-

ability of problem (1), (2) (m − m0)n0 compatibility conditions should be
satisfied. Furthermore, additional regularity of the righthand side of equa-
tion (1) and the boundary data is also needed.

By ζ(·, ·) denote the Cauchy function of equation (3) and set:

Φm0
(y) =

(

ϕ
(k−1)
j−1 (y)

)m0,n

1,1
;

fjn(x, y, z0, . . . , zm0
, Z) =

∂f(x, y, z0, . . . , zm0
, Z)

∂zj

(j = 0, . . . ,m0);

fjk(x, y, z0, . . . , zm0
, Z) =

∂f(x, y, z0, . . . , zm0
, Z)

∂zjk

,

p0
jk(y) = fjk

(

0, y, ϕ
(n)
0 (y), . . . , ϕ

(n)
m−1(y),Φm0

(y)
)

,

ρ0
jk(y) = p0

jk(y) + p0
jn(y)pmk(y) (j = 0, . . . ,m0; k = 0, . . . , n− 1);

η0
jk(y) =

y
∫

0

ζ(y, t)

n−1
∑

l=0

ρ0
jl(t)ζ

(0,l)
k (0, t) dt (j = 0, . . . ,m0; k = 1, . . . , n);

λ0
jik

= hi(η
0
jk)(0) (i, k = 1, . . . , n), Λ0

j =
(

λ0
jik

)n0,n0

1,1
(j = 0, . . . ,m0).

Let u ∈ Cm,n(Ω) be an arbitrary function satisfying the initial conditions

u(j,0)(0, y) = ϕj(y) (j = 0, . . . ,m− 1), (9)

f(x, y, z0, . . . , zm0
, Z) be m−m0–times continuously differentiable with re-

spect to x, z0, . . . , zm0
and Z, and let w be a solution of the ordinary
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differential equation

w(m) =

m−1
∑

j=m0+1

pjn(x, y)w(j)+

+ f(x, y, u(0,n)(x, y), . . . , u(m0,n)(x, y),Dm0,n−1[u(x, y)]) (10)

satisfying the initial conditions

w(j)(0) = ϕ
(n)
j (y)−

n−1
∑

k=0

pmk(y)ϕ
(k)
j (y) (j = 0, . . . ,m− 1). (11)

(If m0 = m − 1, then there is no sum in equation (10)). It is clear that
w ∈ C(2m−m0,0)(Ω). Differentiating equation (10) m − 1 − m0 times and
taking into account (9) and (11), one can easily see that that for any i ∈
{0, . . . ,m−1−m0} w

(m+i,0)(0, y) can be expressed in terms of the functions
ϕ0, . . . , ϕm−1. More precisely,

w(m+i,0)(0, y) = Wi[ϕ0, . . . , ϕm−1](y) (i = 0, . . . ,m− 1−m0),

where Wi (i = 0, . . . ,m− 1−m0) continuous nonlinear operators.
If h : Cn−1([0, b]) → C l(I), then for any i ∈ {0, . . . , l} by h(i) denote the

operator defined by the equality

h(i)(z)(x) =
di

dxi

[

h(z)(x)
]

.

Theorem 1. Let there exist m0 ∈ {0, . . . ,m− 1} such that

pjk(x, y) + pjn(x, y)pmk(y) = 0

(j = m0 + 1, . . . ,m− 1; k = 0, . . . , n− 1), ∗ (12)

det Λ0
m0

6= 0. (13)

Furthermore, let f(x, y, z0, . . . , zm0
, Z) be m −m0–times continuously dif-

ferentiable with respect to x, z0, . . . , zm0
and Z, pjk ∈ Cm−m0,0(Ω) (j =

m0 + 1, . . . ,m − 1, k = 0, . . . , n), ψk ∈ Cm−m0(I) (k = 1, . . . , n) and

hk : Cn−1([0, b]) → Cm−m0(I) (k = 1, . . . , n) be linear bounded operators.

Then problem (1), (2) has a unique local solution if and only if the following

equalities hold

l
∑

i=0

l!

i!(l − i)!
h

(l−i)
k (Wi[ϕ0, . . . ,Wm−1])(0) = ψ

(l)
k (0)

(k = 1, . . . , n0; l = 0, . . . ,m− 1−m0). (14)

Remark 1. If hk : Cn−1([0, b]) → R (k = 1, . . . , n) are bounded linear
functionals, then (14) receives the form

hk(Wl[ϕ0, . . . ,Wm−1]) = ψ
(l)
k (0) (k = 1, . . . , n0; l = 0, . . . ,m− 1−m0).

∗ If m0 = m− 1, then this condition is omitted.
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If m0 = m− 1, then (14) has the form

hk(W0[ϕ0, . . . ,Wm−1])(0) = ψk(0) (k = 1, . . . , n0),

where

W0(y) =

y
∫

0

ζ(y, t) f
(

0, t, ϕ
(n)
0 (t), . . . , ϕ(n)

m0
(t),Φm0

(t)
)

dt.

Remark 2. Let Ω− = {(x, y) ∈ Ω : x ≤ 0}, Ω+ = {(x, y) ∈ Ω : x ≥ 0},
m1 = m −m0 and αj (j = 0, . . . ,m1) are the natural numbers defined by
the identity

(z + 1)(z + 2) . . . (z +m1) =

m1
∑

j=0

αjz
j .

By Theorem 1 in [5], conditions (12),(13) ensure that that for an arbitrarily
small ε 6= 0 the differential equation

u(m,n) =
n−1
∑

k=0

pmk(y)u(m,k)+
m−1
∑

j=0

n
∑

k=0

pjk(x, y)u(j,k)+

+
1

m1!

m1
∑

j=1

n−1
∑

k=0

αjε
jρm0k(x, y)u(m0+j,k)+

+f(x, y, u(0,n), . . . , u(m0,n),Dm0,n−1[u]) (1ε)

has a unique local solution uε satisfying the initial–boundary conditions (2).
In fact we show that if along with the above mentioned conditions equalities
(14) hold, then

uε(x, y) → u(x, y) uniformly on Ω+ as ε ↓ 0,

uε(x, y) → u(x, y) uniformly on Ω− as ε ↑ 0,

where u is a solution of problem (1), (2).

Set

pjk [u](x, y) = fjk

(

x, y, u(0,n)(x, y), . . . , u(m−1,n)(x, y),Dm−1,n−1[u](x, y)
)

,

ρjk [u](x, y) = pjk[u](x, y) + pjn[u](x, y)pmk(y)

(j = 0, . . . ,m0; k = 0, . . . , n− 1);

ηjk [u](x, y) =

y
∫

0

ζ(y, t, x)

n−1
∑

l=0

ρjl[u](x, t)ζ
(0,l)
k (x, t) dt

(j = 0, . . . ,m0; k = 1, . . . , n);

λjik
[u](x) = hi(ηjk [u](x, ·))(x) (i, k = 1, . . . , n),

Λj [u](x) =
(

λjik
[u](x)

)n0,n0

1,1
(j = 0, . . . ,m0).
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Theorem 2. Let all of the conditions of Theorem 1 hold and u0 :
I0 × [0, b] → R be a non–continuable solution of problem (1), (2) such that

det Λm0
[u](x) 6= 0 for x ∈ I0. (15)

Then I0 is an open set in I. Moreover, if a∗ = sup I0 6∈ I0, then

lim
x→a∗

sup
{

m0
∑

j=0

‖u
(j,0)
0 (x, ·)‖Cn([0,b]) : y ∈ [0, b]

}

→ +∞,

and if a∗ = inf I0 6∈ I0, then

lim
x→a∗

sup
{

m0
∑

j=0

‖u
(j,0)
0 (x, ·)‖Cn([0,b]) : y ∈ [0, b]

}

→ +∞.

Remark 3. In Theorems 1 and 2 conditions (13) and (15) are sharp and
cannot be weakened. Indeed in the rectangle [0,m0!] × [0, b] consider the
initial–periodic problem

u(m,n) = |u|2m+1u(m0,0) + u2m+1; (16)

u(j,0)(0, y) = cj (j = 0, . . . ,m− 1),

u(m,k−1)(x, 0) = u(m,k−1)(x, π) (k = 1, . . . , n),
(17)

where c0 = 1, cm0
= −1 and cj = 0 for j ∈ {1, . . . ,m − 1} \ {m0}. By

Theorem 1, problem (16),(17) has a unique local solution u, which is inde-
pendent of y (due to uniqueness). Therefore u is a solution to the initial
value problem ordinary differential equation

z(m0) = − sgn(z); z(j)(0) = cj (j = 0, . . . ,m0 − 1). (18)

But one can easily see that problem (18) has a unique non-continuable
solution

z(x) = 1−
xm0

m0!

defined on [0, (m0!)
1

m0 ].

Corollary 1. Let all of the conditions of Theorem 1 hold, and let there

exist δ > 0 such that

| det Λm0
[v](x)| ≥ δ for x ∈ I

for any v ∈ Cm0,n(Ω) and

|f(x, y, z0, . . . , zm0
, Z)| ≤ δ−1

(

1 +

m0
∑

i=0

|zi|+ ‖Z‖
)

.

Then problem (1), (2) has a unique solution in Ω if and only if (14) holds.
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Finally for the equation

u(m,2) = −u(m,0) + f(x, y, u(0,n), . . . , u(m−1,n),Dm0,n−1[u]), (19)

consider the initial–Dirichlet and initial–periodic problems

u(j,0)(0, y) = ϕj(y) (j = 0, . . . ,m− 1),

u(m,0)(x, 0) = 0, u(m,0)(x, π) = 0
(20)

and

u(j,0)(0, y) = ϕj(y) (j = 0, . . . ,m− 1),

u(m,k)(x, 0) = u(m,k)(x, 2π) (k = 0, 1).
(21)

Corollary 2. Let f(x, y, z0, . . . , zm0
, Z) be continuously differentiable

with respect to x, z0, . . . , zm−1 and Z, and let

π
∫

0

((

p0
m−1 0(t)− p0

m−1 2(t)
)

sin2 t+ p0
m−1 1(t) cos t sin t

)

dt 6= 0.

Then problem (19), (20) is locally uniquely solvable if and only if

π
∫

0

f(0, t, ϕ
(n)
0 (t), . . . , ϕ

(n)
m−1(t),Φm−1(t)) sin t dt = 0.

Corollary 3. Let f(x, y, z0, . . . , zm0
, Z) be continuously differentiable

with respect to x, z0, . . . , zm−1 and Z, and let

det

(

λ11 λ12

λ21 λ22

)

6= 0,

where

λ11 =

2π
∫

0

((

p0
m−1 2(t)− p0

m−1 2(t)
)

sin2 t+ p0
m−1 1(t) cos t sin t

)

dt,

λ12 =

2π
∫

0

((

p0
m−1 2(t)− p0

m−1 2(t)
)

cos t sin t− p0
m−1 1(t) sin2 t

)

dt,

λ21 =

2π
∫

0

((

p0
m−1 2(t)− p0

m−1 2(t)
)

cos t sin t+ p0
m−1 1(t) cos2 t

)

dt,

λ22 =

2π
∫

0

((

p0
m−1 2(t)− p0

m−1 2(t)
)

cos2 t− p0
m−1 1(t) cos t sin t

)

dt.
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Then problem (19), (21) is locally uniquely solvable if and only if

2π
∫

0

f(0, t, ϕ
(n)
0 (t), . . . , ϕ

(n)
m−1(t),Φm−1(t)) sin t dt = 0,

2π
∫

0

f(0, t, ϕ
(n)
0 (t), . . . , ϕ

(n)
m−1(t),Φm−1(t)) cos t dt = 0.
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