Tariel Kiguradze

ON SOLVABILITY OF ILL POSED INITIAL-BOUNDARY VALUE PROBLEMS FOR HIGHER ORDER NONLINEAR HYPERBOLIC EQUATIONS

$$
\begin{aligned}
& \text { Abstract. The necessary and sufficient conditions for unique solvability } \\
& \text { of well posed initial-boundary value problems for higher order nonlinear } \\
& \text { hyperbolic equations are studied. }
\end{aligned}
$$

2000 Mathematics Subject Classification: 35L35, 35B10.
Key words and phrases: Initial-boundary, ill-posed, higher order, nonlinear hyperbolic equation.

Let $b>0, I$ be a compact interval containing zero, $\Omega=I \times[0, b], m$ and n be natural numbers, $m_{0} \in\{0, \ldots, m-1\}, p_{m k} \in C([0, b]), p_{j k} \in C(\Omega)$ $\left(j=m_{0}+1, \ldots, m-1 ; k=0, \ldots, n\right)$ and $f: \Omega \times \mathbb{R}^{m_{0}+1} \times \mathbb{R}^{m_{0}+1 \times n} \rightarrow \mathbb{R}$ be a continuous function. In the rectangle Ω for the nonlinear hyperbolic equation

$$
\begin{align*}
u^{(m, n)}=\sum_{k=0}^{n-1} p_{m k}(y) u^{(m, k)} & +\sum_{j=m_{0}+1}^{m-1} \sum_{k=0}^{n} p_{j k}(x, y) u^{(j, k)}+ \\
& +f\left(x, y, u^{(0, n)}, \ldots, u^{\left(m_{0}, n\right)}, \mathcal{D}^{m_{0}, n-1}[u]\right) \tag{1}
\end{align*}
$$

consider the initial-boundary problem

$$
\begin{gather*}
u^{(j, 0)}(0, y)=\varphi_{j}(y) \quad\left(j=0, \ldots, m_{0}\right) \\
h_{k}\left(u^{(m, 0)}(x, \cdot)\right)(x)=\psi_{k}(x) \quad(k=1, \ldots, n) \tag{2}
\end{gather*}
$$

(If $m_{0}=m-1$, then there is no double sum in equation (1).) Here for any j and k

$$
u^{(j, k)}(x, y)=\frac{\partial^{j+k} u(x, y)}{\partial x^{j} \partial y^{k}}, \quad \mathcal{D}^{m_{0}, n-1}[u](x, y)=\left(u^{(j, k)}(x, y)\right)_{0,0}^{m_{0}, n-1}
$$

$\varphi_{j} \in C^{n}([0, b]), \psi_{k} \in C(I)$ and $h_{k}: C^{n-1}([0, b]) \rightarrow C(I)$ is a linear bounded operator.

Throughout the paper the following notations will be used.

[^0]\mathbb{R} is the set of real numbers; $\mathbb{R}^{m \times n}$ is the space of real $m \times n$ matrices
\[

Z=\left(z_{i j}\right)_{1,1}^{m, n}=\left($$
\begin{array}{ccc}
z_{11} & \ldots & z_{1 n} \\
\cdot & \ldots & \cdot \\
z_{m 1} & \ldots & z_{m n}
\end{array}
$$\right)
\]

with the norm $\|Z\|=\sum_{i=1}^{m} \sum_{j=1}^{n}\left|z_{i j}\right|$.
$C(I)$ and $C(\Omega)$, respectively, are the Banach spaces of continuous functions $z: I \rightarrow \mathbb{R}$ and $u: \Omega \rightarrow \mathbb{R}$, with the norms
$\|z\|_{C(I)}=\max \{|z(x)|: x \in I\}, \quad\|u\|_{C(\Omega)}=\max \{|u(x, y)|:(x, y) \in \Omega\}$.
$C\left(I ; \mathbb{R}^{m \times n}\right)$ is the Banach space of continuous matrix functions $Z: I \rightarrow$ $\mathbb{R}^{m \times n}$ with the norm $\|z\|_{C\left(I ; \mathbb{R}^{m \times n}\right)}=\max \{\|Z(x)\|: x \in I\}$.
$C^{k}(I)$ is the Banach space of k-times continuously differentiable functions $z: I \rightarrow \mathbb{R}$, with the norm

$$
\|z\|_{C^{k}(I)}=\sum_{i=0}^{k}\left\|z^{(i)}\right\|_{C(I)}
$$

$C^{m, n}(\Omega)$ is the Banach space of functions $u: \Omega \rightarrow \mathbb{R}$, having continuous partial derivatives $u^{(j, k)}(j=0, \ldots, m ; k=0, \ldots, n)$, with the norm

$$
\|u\|_{C^{m, n}(\Omega)}=\sum_{j=0}^{m} \sum_{k=0}^{n}\left\|u^{(j, k)}\right\|_{C(\Omega)} .
$$

Let $\zeta_{k}: \Omega \rightarrow \mathbb{R}(k=1, \ldots, n)$ be functions continuous and n-times continuously differentiable with respect to the second argument such that $\zeta_{1}(x, \cdot), \ldots, \zeta_{m}(x, \cdot)$ is the fundamental set of solutions of the ordinary differential equation

$$
\begin{equation*}
z^{(n)}=\sum_{k=0}^{n-1} p_{m k}(y) z^{(k)} \tag{3}
\end{equation*}
$$

for an arbitrarily given value of the parameter $x \in I$. Introduce the matrix function

$$
\begin{equation*}
H(x)=\left(h_{j}\left(\zeta_{k}(x, \cdot)\right)(x)\right)_{1,1}^{n, n} \tag{4}
\end{equation*}
$$

The linear case of problem (1),(2), that is, the equation

$$
\begin{equation*}
u^{(m, n)}=\sum_{k=0}^{n-1} p_{m k}(y) u^{(m, k)}+\sum_{j=0}^{m-1} \sum_{k=0}^{n} p_{j k}(x, y) u^{(j, k)}+q(x, y) \tag{5}
\end{equation*}
$$

with conditions (2) was studied in [2] and [3]. In [2] it was established that problem (5), (2) is well-posed if and only if

$$
\begin{equation*}
\operatorname{det} H(x) \neq 0 \quad \text { for } \quad x \in I \tag{6}
\end{equation*}
$$

i.e., for any $x \in I$ equation (3) does not have a nontrivial solution satisfying the boundary conditions

$$
\begin{equation*}
h_{k}(z)(x)=0 \quad(k=1, \ldots, n) . \tag{7}
\end{equation*}
$$

Criteria for so-called μ-well-posedness of problem (5), (2) were proved in [2] for the case in which condition (6) fails but $\mu(x) \stackrel{\text { def }}{=} \operatorname{det} H(x) \not \equiv 0$.

In [5] it was proved that if (6) holds and f is Lipschitz continuous with respect to the phase variables, then problem (1), (2) is locally well-posed.

In the present paper we study problem (1), (2) in the ill-posed case $\operatorname{det} H(x) \equiv 0$. More precisely, we consider the case in which there exists $n_{0} \in\{1, \ldots, n\}$ such that for an arbitrary $x \in I$ problem (3),(7) has an n_{0}-dimensional space of solutions, i.e.,

$$
\begin{equation*}
\operatorname{rank} H(x)=n_{1} \quad \text { for } \quad x \in I, \quad \text { where } \quad n_{1}=n-n_{0} . \tag{8}
\end{equation*}
$$

In ill-posed case problem (5), (2) was studied in [3]. There was proved that without loss of generality (if necessary, considering an equivalent problem) one may assume that the matrix function $H(x)$ has the form

$$
\text { either } H(x) \equiv \Theta_{n, n} ; \text { or } n_{0}<n
$$

$$
H(x)=\left(\begin{array}{ll}
\Theta_{n_{0}, n_{0}} & \Theta_{n_{0}, n_{1}} \\
\Theta_{n_{1}, n_{0}} & H_{0}(x)
\end{array}\right) \text { and } \operatorname{det} H_{0}(x) \neq 0 \text { for } x \in I,
$$

where $\Theta_{n_{i}, n_{k}}$ is the zero $n_{i} \times n_{k}$ matrix, and $E_{n_{1}, n_{1}}$ is the unit $n_{1} \times n_{1}$ matrix.

It turns out that, unlike to well-posed case, in ill-posed case for solvability of problem (1), (2) $\left(m-m_{0}\right) n_{0}$ compatibility conditions should be satisfied. Furthermore, additional regularity of the righthand side of equation (1) and the boundary data is also needed.

By $\zeta(\cdot, \cdot)$ denote the Cauchy function of equation (3) and set:

$$
\begin{gathered}
\Phi_{m_{0}}(y)=\left(\varphi_{j-1}^{(k-1)}(y)\right)_{1,1}^{m_{0}, n} ; \\
f_{j n}\left(x, y, z_{0}, \ldots, z_{m_{0}}, Z\right)=\frac{\partial f\left(x, y, z_{0}, \ldots, z_{m_{0}}, Z\right)}{\partial z_{j}} \quad\left(j=0, \ldots, m_{0}\right) ; \\
f_{j k}\left(x, y, z_{0}, \ldots, z_{m_{0}}, Z\right)=\frac{\partial f\left(x, y, z_{0}, \ldots, z_{m_{0}}, Z\right)}{\partial z_{j k}}, \\
p_{j k}^{0}(y)=f_{j k}\left(0, y, \varphi_{0}^{(n)}(y), \ldots, \varphi_{m-1}^{(n)}(y), \Phi_{m_{0}}(y)\right), \\
\rho_{j k}^{0}(y)=p_{j k}^{0}(y)+p_{j n}^{0}(y) p_{m k}(y) \quad\left(j=0, \ldots, m_{0} ; k=0, \ldots, n-1\right) ; \\
\eta_{j k}^{0}(y)=\int_{0}^{y} \zeta(y, t) \sum_{l=0}^{n-1} \rho_{j l}^{0}(t) \zeta_{k}^{(0, l)}(0, t) d t \quad\left(j=0, \ldots, m_{0} ; k=1, \ldots, n\right) ; \\
\lambda_{j_{i k}}^{0}=h_{i}\left(\eta_{j k}^{0}\right)(0) \quad(i, k=1, \ldots, n), \quad \Lambda_{j}^{0}=\left(\lambda_{j_{i k}}^{0}\right)_{1,1}^{n_{0}, n_{0}} \quad\left(j=0, \ldots, m_{0}\right) .
\end{gathered}
$$

Let $u \in C^{m, n}(\Omega)$ be an arbitrary function satisfying the initial conditions

$$
\begin{equation*}
u^{(j, 0)}(0, y)=\varphi_{j}(y) \quad(j=0, \ldots, m-1) \tag{9}
\end{equation*}
$$

$f\left(x, y, z_{0}, \ldots, z_{m_{0}}, Z\right)$ be $m-m_{0}$-times continuously differentiable with respect to $x, z_{0}, \ldots, z_{m_{0}}$ and Z, and let w be a solution of the ordinary
differential equation

$$
\begin{align*}
w^{(m)}= & \sum_{j=m_{0}+1}^{m-1} p_{j n}(x, y) w^{(j)}+ \\
& +f\left(x, y, u^{(0, n)}(x, y), \ldots, u^{\left(m_{0}, n\right)}(x, y), \mathcal{D}^{m_{0}, n-1}[u(x, y)]\right) \tag{10}
\end{align*}
$$

satisfying the initial conditions

$$
\begin{equation*}
w^{(j)}(0)=\varphi_{j}^{(n)}(y)-\sum_{k=0}^{n-1} p_{m k}(y) \varphi_{j}^{(k)}(y) \quad(j=0, \ldots, m-1) \tag{11}
\end{equation*}
$$

(If $m_{0}=m-1$, then there is no sum in equation (10)). It is clear that $w \in C^{\left(2 m-m_{0}, 0\right)}(\Omega)$. Differentiating equation (10) $m-1-m_{0}$ times and taking into account (9) and (11), one can easily see that that for any $i \in$ $\left\{0, \ldots, m-1-m_{0}\right\} w^{(m+i, 0)}(0, y)$ can be expressed in terms of the functions $\varphi_{0}, \ldots, \varphi_{m-1}$. More precisely,

$$
w^{(m+i, 0)}(0, y)=\mathcal{W}_{i}\left[\varphi_{0}, \ldots, \varphi_{m-1}\right](y) \quad\left(i=0, \ldots, m-1-m_{0}\right)
$$

where $\mathcal{W}_{i}\left(i=0, \ldots, m-1-m_{0}\right)$ continuous nonlinear operators.
If $h: C^{n-1}([0, b]) \rightarrow C^{l}(I)$, then for any $i \in\{0, \ldots, l\}$ by $h^{(i)}$ denote the operator defined by the equality

$$
h^{(i)}(z)(x)=\frac{d^{i}}{d x^{i}}[h(z)(x)] .
$$

Theorem 1. Let there exist $m_{0} \in\{0, \ldots, m-1\}$ such that

$$
\begin{gather*}
p_{j k}(x, y)+p_{j n}(x, y) p_{m k}(y)=0 \\
\left(j=m_{0}+1, \ldots, m-1 ; k=0, \ldots, n-1\right),{ }^{*} \tag{12}\\
\operatorname{det} \Lambda_{m_{0}}^{0} \neq 0 \tag{13}
\end{gather*}
$$

Furthermore, let $f\left(x, y, z_{0}, \ldots, z_{m_{0}}, Z\right)$ be $m-m_{0}$-times continuously differentiable with respect to $x, z_{0}, \ldots, z_{m_{0}}$ and $Z, p_{j k} \in C^{m-m_{0}, 0}(\Omega)(j=$ $\left.m_{0}+1, \ldots, m-1, \quad k=0, \ldots, n\right), \psi_{k} \in C^{m-m_{0}}(I)(k=1, \ldots, n)$ and $h_{k}: C^{n-1}([0, b]) \rightarrow C^{m-m_{0}}(I)(k=1, \ldots, n)$ be linear bounded operators. Then problem (1), (2) has a unique local solution if and only if the following equalities hold

$$
\begin{align*}
& \sum_{i=0}^{l} \frac{l!}{i!(l-i)!} h_{k}^{(l-i)}\left(\mathcal{W}_{i}\left[\varphi_{0}, \ldots, \mathcal{W}_{m-1}\right]\right)(0)=\psi_{k}^{(l)}(0) \\
&\left(k=1, \ldots, n_{0} ; l=0, \ldots, m-1-m_{0}\right) \tag{14}
\end{align*}
$$

Remark 1. If $h_{k}: C^{n-1}([0, b]) \rightarrow \mathbb{R}(k=1, \ldots, n)$ are bounded linear functionals, then (14) receives the form

$$
h_{k}\left(\mathcal{W}_{l}\left[\varphi_{0}, \ldots, \mathcal{W}_{m-1}\right]\right)=\psi_{k}^{(l)}(0) \quad\left(k=1, \ldots, n_{0} ; l=0, \ldots, m-1-m_{0}\right)
$$

[^1]If $m_{0}=m-1$, then (14) has the form

$$
h_{k}\left(\mathcal{W}_{0}\left[\varphi_{0}, \ldots, \mathcal{W}_{m-1}\right]\right)(0)=\psi_{k}(0) \quad\left(k=1, \ldots, n_{0}\right)
$$

where

$$
\mathcal{W}_{0}(y)=\int_{0}^{y} \zeta(y, t) f\left(0, t, \varphi_{0}^{(n)}(t), \ldots, \varphi_{m_{0}}^{(n)}(t), \Phi_{m_{0}}(t)\right) d t
$$

Remark 2. Let $\Omega_{-}=\{(x, y) \in \Omega: x \leq 0\}, \Omega_{+}=\{(x, y) \in \Omega: x \geq 0\}$, $m_{1}=m-m_{0}$ and $\alpha_{j}\left(j=0, \ldots, m_{1}\right)$ are the natural numbers defined by the identity

$$
(z+1)(z+2) \ldots\left(z+m_{1}\right)=\sum_{j=0}^{m_{1}} \alpha_{j} z^{j}
$$

By Theorem 1 in [5], conditions (12),(13) ensure that that for an arbitrarily small $\varepsilon \neq 0$ the differential equation

$$
\begin{align*}
u^{(m, n)}=\sum_{k=0}^{n-1} p_{m k}(y) u^{(m, k)} & +\sum_{j=0}^{m-1} \sum_{k=0}^{n} p_{j k}(x, y) u^{(j, k)}+ \\
& +\frac{1}{m_{1}!} \sum_{j=1}^{m_{1}} \sum_{k=0}^{n-1} \alpha_{j} \varepsilon^{j} \rho_{m_{0} k}(x, y) u^{\left(m_{0}+j, k\right)}+ \\
& +f\left(x, y, u^{(0, n)}, \ldots, u^{\left(m_{0}, n\right)}, \mathcal{D}^{m_{0}, n-1}[u]\right)
\end{align*}
$$

has a unique local solution u_{ε} satisfying the initial-boundary conditions (2). In fact we show that if along with the above mentioned conditions equalities (14) hold, then

$$
\begin{aligned}
& u_{\varepsilon}(x, y) \rightarrow u(x, y) \text { uniformly on } \Omega_{+} \text {as } \varepsilon \downarrow 0 \\
& u_{\varepsilon}(x, y) \rightarrow u(x, y) \text { uniformly on } \Omega_{-} \text {as } \varepsilon \uparrow 0
\end{aligned}
$$

where u is a solution of problem (1), (2).
Set

$$
\begin{aligned}
p_{j k}[u](x, y)= & f_{j k}\left(x, y, u^{(0, n)}(x, y), \ldots, u^{(m-1, n)}(x, y), \mathcal{D}^{m-1, n-1}[u](x, y)\right), \\
\rho_{j k}[u](x, y)= & p_{j k}[u](x, y)+p_{j n}[u](x, y) p_{m k}(y) \\
& \left(j=0, \ldots, m_{0} ; k=0, \ldots, n-1\right) ; \\
\eta_{j k}[u](x, y)= & \int_{0}^{y} \zeta(y, t, x) \sum_{l=0}^{n-1} \rho_{j l}[u](x, t) \zeta_{k}^{(0, l)}(x, t) d t \\
& \left(j=0, \ldots, m_{0} ; k=1, \ldots, n\right) ; \\
\lambda_{j_{i k}}[u](x)= & h_{i}\left(\eta_{j k}[u](x, \cdot)\right)(x) \quad(i, k=1, \ldots, n), \\
\Lambda_{j}[u](x)= & \left(\lambda_{j_{i k}}[u](x)\right)_{1,1}^{n_{0}, n_{0}} \quad\left(j=0, \ldots, m_{0}\right) .
\end{aligned}
$$

Theorem 2. Let all of the conditions of Theorem 1 hold and u_{0} : $I_{0} \times[0, b] \rightarrow \mathbb{R}$ be a non-continuable solution of problem (1), (2) such that

$$
\begin{equation*}
\operatorname{det} \Lambda_{m_{0}}[u](x) \neq 0 \quad \text { for } \quad x \in I_{0} \tag{15}
\end{equation*}
$$

Then I_{0} is an open set in I. Moreover, if $a^{*}=\sup I_{0} \notin I_{0}$, then

$$
\lim _{x \rightarrow a^{*}} \sup \left\{\sum_{j=0}^{m_{0}}\left\|u_{0}^{(j, 0)}(x, \cdot)\right\|_{C^{n}([0, b])}: y \in[0, b]\right\} \rightarrow+\infty
$$

and if $a_{*}=\inf I_{0} \notin I_{0}$, then

$$
\lim _{x \rightarrow a_{*}} \sup \left\{\sum_{j=0}^{m_{0}}\left\|u_{0}^{(j, 0)}(x, \cdot)\right\|_{C^{n}([0, b])}: y \in[0, b]\right\} \rightarrow+\infty
$$

Remark 3. In Theorems 1 and 2 conditions (13) and (15) are sharp and cannot be weakened. Indeed in the rectangle $\left[0, m_{0}!\right] \times[0, b]$ consider the initial-periodic problem

$$
\begin{gather*}
u^{(m, n)}=|u|^{2 m+1} u^{\left(m_{0}, 0\right)}+u^{2 m+1} \tag{16}\\
u^{(j, 0)}(0, y)=c_{j} \quad(j=0, \ldots, m-1) \\
u^{(m, k-1)}(x, 0)=u^{(m, k-1)}(x, \pi) \quad(k=1, \ldots, n) \tag{17}
\end{gather*}
$$

where $c_{0}=1, c_{m_{0}}=-1$ and $c_{j}=0$ for $j \in\{1, \ldots, m-1\} \backslash\left\{m_{0}\right\}$. By Theorem 1, problem (16),(17) has a unique local solution u, which is independent of y (due to uniqueness). Therefore u is a solution to the initial value problem ordinary differential equation

$$
\begin{equation*}
z^{\left(m_{0}\right)}=-\operatorname{sgn}(z) ; \quad z^{(j)}(0)=c_{j} \quad\left(j=0, \ldots, m_{0}-1\right) . \tag{18}
\end{equation*}
$$

But one can easily see that problem (18) has a unique non-continuable solution

$$
z(x)=1-\frac{x^{m_{0}}}{m_{0}!}
$$

defined on $\left[0,\left(m_{0}!\right)^{\frac{1}{m_{0}}}\right]$.

Corollary 1. Let all of the conditions of Theorem 1 hold, and let there exist $\delta>0$ such that

$$
\left|\operatorname{det} \Lambda_{m_{0}}[v](x)\right| \geq \delta \quad \text { for } \quad x \in I
$$

for any $v \in C^{m_{0}, n}(\Omega)$ and

$$
\left|f\left(x, y, z_{0}, \ldots, z_{m_{0}}, Z\right)\right| \leq \delta^{-1}\left(1+\sum_{i=0}^{m_{0}}\left|z_{i}\right|+\|Z\|\right)
$$

Then problem (1), (2) has a unique solution in Ω if and only if (14) holds.

Finally for the equation

$$
\begin{equation*}
u^{(m, 2)}=-u^{(m, 0)}+f\left(x, y, u^{(0, n)}, \ldots, u^{(m-1, n)}, \mathcal{D}^{m_{0}, n-1}[u]\right) \tag{19}
\end{equation*}
$$

consider the initial-Dirichlet and initial-periodic problems

$$
\begin{align*}
& u^{(j, 0)}(0, y)=\varphi_{j}(y) \quad(j=0, \ldots, m-1) \\
& u^{(m, 0)}(x, 0)=0, \quad u^{(m, 0)}(x, \pi)=0 \tag{20}
\end{align*}
$$

and

$$
\begin{align*}
& u^{(j, 0)}(0, y)=\varphi_{j}(y) \quad(j=0, \ldots, m-1) \\
& u^{(m, k)}(x, 0)=u^{(m, k)}(x, 2 \pi) \quad(k=0,1) \tag{21}
\end{align*}
$$

Corollary 2. Let $f\left(x, y, z_{0}, \ldots, z_{m_{0}}, Z\right)$ be continuously differentiable with respect to $x, z_{0}, \ldots, z_{m-1}$ and Z, and let

$$
\int_{0}^{\pi}\left(\left(p_{m-10}^{0}(t)-p_{m-12}^{0}(t)\right) \sin ^{2} t+p_{m-11}^{0}(t) \cos t \sin t\right) d t \neq 0
$$

Then problem (19), (20) is locally uniquely solvable if and only if

$$
\int_{0}^{\pi} f\left(0, t, \varphi_{0}^{(n)}(t), \ldots, \varphi_{m-1}^{(n)}(t), \Phi_{m-1}(t)\right) \sin t d t=0
$$

Corollary 3. Let $f\left(x, y, z_{0}, \ldots, z_{m_{0}}, Z\right)$ be continuously differentiable with respect to $x, z_{0}, \ldots, z_{m-1}$ and Z, and let

$$
\operatorname{det}\left(\begin{array}{ll}
\lambda_{11} & \lambda_{12} \\
\lambda_{21} & \lambda_{22}
\end{array}\right) \neq 0
$$

where

$$
\begin{aligned}
& \lambda_{11}=\int_{0}^{2 \pi}\left(\left(p_{m-12}^{0}(t)-p_{m-12}^{0}(t)\right) \sin ^{2} t+p_{m-11}^{0}(t) \cos t \sin t\right) d t, \\
& \lambda_{12}=\int_{0}^{2 \pi}\left(\left(p_{m-12}^{0}(t)-p_{m-12}^{0}(t)\right) \cos t \sin t-p_{m-11}^{0}(t) \sin ^{2} t\right) d t, \\
& \lambda_{21}=\int_{0}^{2 \pi}\left(\left(p_{m-12}^{0}(t)-p_{m-12}^{0}(t)\right) \cos t \sin t+p_{m-11}^{0}(t) \cos ^{2} t\right) d t, \\
& \lambda_{22}=\int_{0}^{2 \pi}\left(\left(p_{m-12}^{0}(t)-p_{m-12}^{0}(t)\right) \cos ^{2} t-p_{m-11}^{0}(t) \cos t \sin t\right) d t .
\end{aligned}
$$

Then problem (19), (21) is locally uniquely solvable if and only if

$$
\begin{aligned}
& \int_{0}^{2 \pi} f\left(0, t, \varphi_{0}^{(n)}(t), \ldots, \varphi_{m-1}^{(n)}(t), \Phi_{m-1}(t)\right) \sin t d t=0, \\
& \int_{0}^{2 \pi} f\left(0, t, \varphi_{0}^{(n)}(t), \ldots, \varphi_{m-1}^{(n)}(t), \Phi_{m-1}(t)\right) \cos t d t=0 .
\end{aligned}
$$

References

1. T. Kiguradze, Some boundary value problems for systems of linear partial differential equations of hyperbolic type. Mem. Differential Equations Math. Phys. 1 (1994), 1-144.
2. T. Kiguradze and T. Kusano, On well-posedness of initial-boundary value problems for higher order linear hyperbolic equations with two independent variables. (Russian) Differentsial'nye Uravneniya 39 (2003), No. 4, 516-526.
3. T. Kiguradze and T. Kusano, On ill-posed initial-boundary value problems for higher order linear hyperbolic equations with two independent variables. (Russian) Differentsial'nye Uravneniya 39 (2003), No. 10, 1379-1394.
4. T. Kiguradze and T. Kusano, On bounded and periodic in a strip solutions of nonlinear hyperbolic systems with two independent variables. Comput. and Math. 49 (2005), 335-364.
5. T. Kiguradze, On solvability of well posed initial-boundary value problems for higher order nonlinear hyperbolic equations. Mem. Differential Equations Math. Phys. 42 (2007), 145-152.
(Received 26.06.2007)
Author's address:
Florida Institute of Technology
Department of Mathematical Sciences
150 W. University Blvd.
Melbourne, Fl 32901
USA
E-mail: tkigurad@fit.edu

[^0]: Reported on the Tbilisi Seminar on Qualitative Theory of Differential Equations on July 27, 2007.

[^1]: * If $m_{0}=m-1$, then this condition is omitted.

