Short Communications

Tariel Kiguradze

ON SOLVABILITY AND WELL－POSEDNESS OF INITIAL－BOUNDARY VALUE PROBLEMS FOR HIGHER ORDER NONLINEAR HYPERBOLIC EQUATIONS

\begin{abstract}
The sufficient conditions for unique local solvability，global solvability and of well－posedness of initial－boundary value problems for higher order nonlinear hyperbolic equations are studied．

2000 Mathematics Subject Classification：35L35，35B10．
Key words and phrases：Initial－boundary，well－posed，higher order， nonlinear hyperbolic equation．

Let $b>0, I$ be a compact interval containing zero，$\Omega=I \times[0, b], m$ and n be natural numbers and $f: \Omega \times \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ be a continuous function．In the rectangle Ω consider the nonlinear hyperbolic equation

$$
\begin{equation*}
u^{(m, n)}=f\left(x, y, u^{(m, 0)}, \ldots, u^{(m, n-1)}, u^{(0, n)}, \ldots, u^{(m-1, n)}, \mathcal{D}^{m-1, n-1}[u]\right) \tag{1}
\end{equation*}
$$

with the initial－boundary conditions

$$
\begin{gather*}
u^{(j, 0)}(0, y)=\varphi_{j}(y) \quad(j=0, \ldots, m-1), \\
h_{k}\left(u^{(m, 0)}(x, \cdot)\right)(x)=\psi_{k}(x) \quad(k=1, \ldots, n) . \tag{2}
\end{gather*}
$$

Here for any j and k

$$
u^{(j, k)}(x, y)=\frac{\partial^{j+k} u(x, y)}{\partial x^{j} \partial y^{k}}, \quad \mathcal{D}^{m-1, n-1}[u](x, y)=\left(u^{(j-1, k-1)}(x, y)\right)_{1,1}^{m, n}
$$

$\varphi_{j} \in C^{n}([0, b]), \psi_{k} \in C(I)$ and $h_{k}: C^{n-1}([0, b]) \rightarrow C(I)$ is a linear bounded operator．

The linear case of problem (1),(2), i.e., the linear hyperbolic equation

$$
\begin{equation*}
u^{(m, n)}=\sum_{k=0}^{n-1} p_{m k}(x, y) u^{(m, k)}+\sum_{j=0}^{m-1} \sum_{k=0}^{n} p_{j k}(x, y) u^{(j, k)}+q(x, y) \tag{3}
\end{equation*}
$$

with conditions (2) is studied in [3] and [4]. In [3] necessary and sufficient conditions of well-posedness and so-called μ-well-posedness of problem (3),(2) are established. In [4] a complete description of problem (3),(2) in the ill-posed case is given.

For the history of the matter see $[2-5]$ and the references quoted therein.
The general initial-boundary value problem (1),(2) has been little investigated. Namely this problem is investigated in the present paper.

Throughout the paper we will use the following notations.
\mathbb{R} is the set of real numbers; $\mathbb{R}^{m \times n}$ is the space of real $m \times n$ matrices

$$
Z=\left(z_{i j}\right)_{1,1}^{m, n}=\left(\begin{array}{ccc}
z_{11} & \ldots & z_{1 n} \\
\cdot & \ldots & \cdot \\
z_{m 1} & \ldots & z_{m n}
\end{array}\right)
$$

with the norm $\|Z\|=\sum_{i=1}^{m} \sum_{j=1}^{n}\left|z_{i j}\right|$.
$C(I)$ and $C(\Omega)$, respectively, are the Banach spaces of continuous functions $z: I \rightarrow \mathbb{R}$ and $u: \Omega \rightarrow \mathbb{R}$, with the norms

$$
\|z\|_{C(I)}=\max \{|z(x)|: x \in I\}, \quad\|u\|_{C(\Omega)}=\max \{|u(x, y)|:(x, y) \in \Omega\}
$$

$C\left(I ; \mathbb{R}^{m \times n}\right)$ is the Banach space of continuous matrix functions $Z: I \rightarrow$ $\mathbb{R}^{m \times n}$ with the norm $\|z\|_{C\left(I ; \mathbb{R}^{m \times n}\right)}=\max \{\|Z(x)\|: x \in I\}$.
$C^{k}(I)$ is the Banach space of k-times continuously differentiable functions $z: I \rightarrow \mathbb{R}$, with the norm

$$
\|z\|_{C^{k}(I)}=\sum_{i=0}^{k}\left\|z^{(i)}\right\|_{C(I)}
$$

$C^{m, n}(\Omega)$ is the Banach space of functions $u: \Omega \rightarrow \mathbb{R}$, having continuous partial derivatives $u^{(j, k)}(j=0, \ldots, m ; k=0, \ldots, n)$, with the norm

$$
\|u\|_{C^{m, n}(\Omega)}=\sum_{j=0}^{m} \sum_{k=0}^{n}\left\|u^{(j, k)}\right\|_{C(\Omega)} .
$$

$\widetilde{C}^{m, n}(\Omega)$ is the Banach space of functions $u: \Omega \rightarrow \mathbb{R}$, having continuous partial derivatives $u^{(j, k)}(j=0, \ldots, m ; k=0, \ldots, n ; j+k<m+n)$, with the norm

$$
\|u\|_{\widetilde{C}^{m, n}(\Omega)}=\sum_{k=0}^{n-1}\left\|u^{(m, k)}\right\|_{C(\Omega)}+\sum_{j=0}^{m-1} \sum_{k=0}^{n}\left\|u^{(j, k)}\right\|_{C(\Omega)} .
$$

If $u \in \widetilde{C}^{m, n}(\Omega)$ and $r_{0}>0$, then $\widetilde{\mathcal{B}}^{m, n}\left(z ; \Omega, r_{0}\right)=\left\{\zeta \in \widetilde{C}^{m, n}(\Omega)\right.$: $\left.\|\zeta-z\|_{\widetilde{C}^{m, n}} \leq r_{0}\right\}$.

It will be assumed that $\left(x, y, z_{1}, \ldots, z_{n+m}, Z\right) \rightarrow f\left(x, y, z_{1}, \ldots, z_{n+m}, Z\right)$ is continuous in $\Omega \times \mathbb{R}^{n+m} \times \mathbb{R}^{m \times n}$ and continuously differentiable with respect to z_{1}, \ldots, z_{n+m}.

Let $I_{0} \subset I$ be an arbitrary (not necessarily compact) set containing zero. By a solution of problem (1),(2) in the rectangle $\Omega_{0}=I_{0} \times[0, b]$ we understand a classical solution, i.e., a function $u: \Omega_{0} \rightarrow \mathbb{R}$ having the continuous partial derivatives $u^{(i, k)}(i=0, \ldots, m ; k=0, \ldots, n)$ and satisfying (1) and (2) at every point of Ω_{0}.
Definition 1. A solution u of problem (1), (2) defined on $\Omega_{0}=I_{0} \times[0, b]$ is called continuable to the right (to the left), if there exists an interval $I_{1} \supset I_{0}$ and a solution u_{1} of this problem in $\Omega_{1}=I_{1} \times[0, b]$ such that $\sup I_{1}>\sup I_{0}$ $\left(\inf I_{1}<\inf I_{0}\right)$ and

$$
u_{1}(x, y)=u(x, y) \quad \text { for } \quad(x, y) \in \Omega_{0} .
$$

u is called non-continuable if it is non-continuable both to the right and to the left.

Definition 2. A solution u of problem (1),(2) defined on $I_{0} \times[0, b]$ is a called global solution (local solution) if $I_{0}=I\left(I_{0} \neq I\right.$ is a compact interval such that $[-\varepsilon, \varepsilon] \cap I \subset I_{0}$ for any sufficiently small $\left.\varepsilon>0\right)$. Problem (1),(2) is called globally solvable (locally solvable), if it has a global (local) solution.

Along with (1),(2) consider the perturbed problem

$$
\begin{gather*}
v^{(m, n)}=f\left(x, y, v^{(m, 0)}, \ldots, v^{(m, n-1)}, v^{(0, n)}, \ldots, v^{(m-1, n)}, \mathcal{D}^{m-1, n-1}[v]\right)+ \\
\quad+q(x, y) \tag{4}\\
v^{(j, 0)}(0, y)=\varphi_{j}(y)+\widetilde{\varphi}_{j}(y) \quad(j=0, \ldots, m-1) \\
h_{k}\left(v^{(m, 0)}(x, \cdot)\right)(x)=\psi_{k}(x)+\widetilde{\psi}_{k}(x) \quad(k=1, \ldots, n) \tag{5}
\end{gather*}
$$

Let $I_{0} \subset I$ be a compact interval containing zero, u be a solution of problem (1),(2) in $\Omega_{0}=I_{0} \times[0, b]$, and let r_{0} be a positive constant. Introduce the following

Definition 3. Problem (1),(2) is called $\left(u ; r_{0}\right)$ well-posed if there exist positive constants δ and r such that for any $\widetilde{\varphi}_{j} \in C^{n}([0, b])(j=0, \ldots, m-$ 1), $\widetilde{\psi}_{k} \in C(I)(k=1, \ldots, n)$, and $q \in C\left(\Omega_{0}\right)$ satisfying the inequality

$$
\begin{equation*}
\sum_{j=0}^{m-1}\left\|\widetilde{\varphi}_{j}\right\|_{C^{n}([0, b])}+\sum_{k=1}^{n}\left\|\widetilde{\psi}_{k}\right\|_{C\left(I_{0}\right)}+\|q\|_{C\left(\Omega_{0}\right)} \leq \delta \tag{6}
\end{equation*}
$$

problem (4),(5) in the ball $\widetilde{\mathcal{B}}^{m, n}\left(u ; \Omega_{0}, r_{0}\right)$ has a unique solution v and the inequality

$$
\begin{equation*}
\|u-v\|_{\widetilde{C}^{m, n}(J \times[0, b])} \leq r\left(\sum_{j=0}^{m-1}\left\|\widetilde{\varphi}_{j}\right\|_{C^{n}([0, b])}+\sum_{k=1}^{n}\left\|\widetilde{\psi}_{k}\right\|_{C(J)}+\|q\|_{C(J \times[0, b)}\right) \tag{7}
\end{equation*}
$$

holds for every compact subinterval $J \subset I_{0}$ containing zero.

Definition 4. Problem (1),(2) is called well-posed if there exist positive constants δ and r such that for any $\widetilde{\varphi}_{j} \in C^{n}([0, b])(j=0, \ldots, m-1)$, $\widetilde{\psi}_{k} \in C\left(I_{0}\right)(k=1, \ldots, n)$, and $q \in C\left(\Omega_{0}\right)$ satisfying (6) problem (4),(5) has a unique solution v in Ω and estimate (7) is valid for every compact subset $J \subset I$ containing zero.

The proposed method of investigation of problem (1),(2) is based on the theory of boundary value problems for ordinary differential equations (see, e.g. [1]). For the boundary value problem

$$
\begin{equation*}
z^{(n)}=p\left(y, z, \ldots, z^{(n-1)}\right) ; \quad l_{k}(z)=c_{k} \quad(k=1, \ldots, n), \tag{8}
\end{equation*}
$$

where $l_{k}: C^{n-1}([0, b]) \rightarrow \mathbb{R}(k=1, \ldots, n)$ are linear bounded functionals and $p:[0, b] \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a continuous function having continuous partial derivatives

$$
p_{k}\left(y, z_{1}, \ldots, z_{n}\right)=\frac{\partial p\left(y, z_{1}, \ldots, z_{n}\right)}{\partial z_{k}} \quad(k=1, \ldots, n)
$$

we introduce a definition of a strongly isolated solution, which is a modification of the definition from [1].

Definition 5. A solution z of problem (8) is called strongly isolated if the problem

$$
\zeta^{(n)}=\sum_{j=1}^{n} p_{j}\left(y, z(y), \ldots, z^{(n-1)}(y)\right) \zeta^{(j-1)} ; \quad l_{k}(\zeta)=0 \quad(k=1, \ldots, n)
$$

has only a trivial solution.
Set

$$
\begin{aligned}
& \Phi(y)=\left(\varphi_{j-1}^{(k-1)}(y)\right)_{1,1}^{m, n} \\
& p_{0}\left(y, z_{1}, \ldots, z_{n}\right)=f\left(0, y, z_{1}, \ldots, z_{n}, \varphi_{0}^{(n)}(y), \ldots, \varphi_{m-1}^{(n)}(y), \Phi(y)\right) \\
& p[u]\left(x, y, z_{1}, \ldots, z_{n}\right) \\
& \quad=f\left(x, y, z_{1}, \ldots, z_{n}, u^{(0, n)}(x, y), \ldots, u^{(m-1, n)}(x, y), \mathcal{D}^{m-1, n-1}[u](x, y)\right)
\end{aligned}
$$

Theorem 1. Let z_{0} be a strongly isolated solution of the problem

$$
\begin{equation*}
z^{(n)}=p_{0}\left(y, z, \ldots, z^{(n-1)}\right), \quad h_{k}(z)(0)=\psi_{k}(0) \quad(k=1, \ldots, n) \tag{9}
\end{equation*}
$$

Then problem (1), (2) has a local solution u satisfying the condition

$$
u^{(m, 0)}(0, y)=z_{0}(y) \quad \text { for } \quad y \in[0, b]
$$

Furthermore, if $f\left(x, y, z_{1}, \ldots, z_{n+m}, Z\right)$ is locally Lipschitz continuous with respect to Z, then problem (1), (2) is $\left(u ; r_{0}\right)$-well-posed for some sufficiently small $r_{0}>0$.

Remark 1. In Theorem 1 the requirement of strong isolation of a solution z to problem (9) is essential and it cannot be replaced by the requirement of uniqueness of a solution. Indeed, consider the problem

$$
\begin{equation*}
u^{(1,1)}=\left(u^{(1,0)}\right)^{2}+x^{2} ; \quad u(0, y)=0, \quad u^{(1,0)}(x, 0)=u^{(1,0)}(x, b) \tag{10}
\end{equation*}
$$

for which problem (9) has the form

$$
\begin{equation*}
z^{\prime}=z^{2} ; \quad z(0)=z(b) \tag{11}
\end{equation*}
$$

It is clear that problem (10) has no solution. On the other hand problem (11) has only a trivial solution which is not strongly isolated.

Remark 2. Under the conditions of Theorem 1 problem (1),(2) may have an infinite set of solutions even for smooth f. Indeed, consider the problem

$$
\begin{gather*}
u^{(1,1)}=\sin \left(u^{(1,0)}\right)+x f_{0}\left(x, y, u^{(1,0)}, u^{(0,1)}, u\right) \\
u(0, y)=0, \quad u^{(1,0)}(x, 0)=u^{(1,0)}(x, b) \tag{12}
\end{gather*}
$$

where $f_{0}: \Omega \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a continuously differentiable function. For (12) problem (9) has the form

$$
z^{\prime}=\sin z ; \quad z(0)=z(b)
$$

The latter problem has a countable set of strongly isolated solutions $z_{k}=k \pi$ $(k=0, \pm 1, \ldots)$. By Theorem 1 , for every integer k there exists positive ε_{k} such that in $\Omega_{k}=I_{k} \times[0, b]$, where $I_{k}=\left[-\varepsilon_{k}, \varepsilon_{k}\right] \cap I$, problem (12) has a unique solution u_{k} satisfying the condition

$$
u_{k}^{(1,0)}(0, y)=k \pi \quad \text { for } \quad y \in[0, b]
$$

Theorem 2. Let u be a a non-continuable solution of problem (1), (2) defined in $\Omega_{0}=I_{0} \times[0, b]$. Furthermore, let for any $x_{0} \in I_{0}$ the function $z(y)=u^{(m, 0)}\left(x_{0}, y\right)$ be a strongly isolated solution of the problem

$$
\begin{gather*}
z^{(n)}=p[u]\left(x_{0}, y, z, z^{\prime}, \ldots, z^{(n-1)}\right) \tag{13}\\
h_{k}(z)\left(x_{0}\right)=\psi_{k}\left(x_{0}\right) \quad(k=1, \ldots, n) .
\end{gather*}
$$

Then I_{0} is an open set in I. Moreover, if $a^{*}=\sup I_{0} \notin I_{0}$, then

$$
\begin{equation*}
\limsup _{x \rightarrow a^{*}}\left(\left\|u^{(m, 0)}(x, \cdot)\right\|_{C^{n-1}([0, b])}+\sum_{j=0}^{m-1}\left\|u^{(j, 0)}(x, \cdot)\right\|_{C^{n}([0, b])}\right)=+\infty \tag{14}
\end{equation*}
$$

and if $a_{*}=\inf I_{0} \notin I_{0}$, then

$$
\begin{equation*}
\liminf _{x \rightarrow a_{*}}\left(\left\|u^{(m, 0)}(x, \cdot)\right\|_{C^{n-1}([0, b])}+\sum_{j=0}^{m-1}\left\|u^{(j, 0)}(x, \cdot)\right\|_{C^{n}([0, b])}\right)=+\infty \tag{15}
\end{equation*}
$$

Remark 3. In Theorem 2 the requirement of strong isolation of the solution $z(y)=u^{(m, 0)}\left(x_{0}, y\right)$ of problem (13) for every $x_{0} \in I_{0}$ is essential and it cannot be weakened. As an example in the rectangle $[-2,2] \times[0, b]$ consider the problem

$$
u^{(1,1)}=|u| u^{(1,0)}+u, \quad u(0, y)=1, \quad u^{(1,0)}(x, 0)=u^{(1,0)}(x, b) .
$$

This problem has a non-continuable solution $u(x, y)=1-x$ defined on the set $[-2,1] \times[0, b]$. Indeed, supposing that u can be continued to the right, by continuity of u and $u^{(1,0)}$ we will have

$$
u^{(1,0)}(x, y)<0, \quad u(x, y)<0 \quad \text { for } \quad(x, y) \in(1,1+\delta] \times[0, b]
$$

for some sufficiently small $\delta>0$. Consequently
$u^{(1,1)}(x, y)=|u(x, y)| u^{(1,0)}(x, y)+u(x, y)<0 \quad$ for $\quad(x, y) \in(1,1+\delta] \times[0, b]$.
But the latter inequality contradicts to the periodicity of $u^{(1,0)}$ with respect to the second argument. Consequently (14) does not hold for u. The reason for this is that problem (13) has the form

$$
z^{\prime}=\left|1-x_{0}\right| z+1-x_{0}, \quad v(0)=v(b),
$$

and $z(y)=-1$ is a strongly isolated solution of this problem for every $x_{0}<1$, but not for $x_{0}=1$.

Definition 6. We say that the function f belongs to the set $S_{h_{1}, \ldots, h_{n}}$ if there exist functions $p_{i k} \in C(\Omega)(i=1,2 ; k=1, \ldots, n)$ such that:

$$
\begin{gather*}
p_{1 i}(x, y) \leq f_{z_{i}}\left(x, y, z_{1}, \ldots, z_{n+m}, Z\right) \leq p_{2 i}(x, y) \tag{i}\\
\text { for }(x, y) \in \Omega(i=1, \ldots, n)
\end{gather*}
$$

(ii) for any $x \in I$ and measurable functions $p_{i}:[0, b] \rightarrow \mathbb{R}(i=1, \ldots, n)$ satisfying inequalities $p_{1 i}(x, y) \leq p_{i}(y) \leq p_{2 i}(x, y) \quad$ for $\quad(x, y) \in \Omega \quad(i=$ $1, \ldots, n$) the problem

$$
\zeta^{(n)}=\sum_{j=1}^{n} f_{j}(y) \zeta^{(j-1)} ; \quad h_{k}(\zeta)(x)=0 \quad(k=1, \ldots, n)
$$

has only a trivial solution.
Theorem 3. Let there exist a positive constant l_{0} such that

$$
\begin{gather*}
f \in S_{h_{1}, \ldots, h_{n}}, \tag{16}\\
\left|f\left(x, y, z_{1}, \ldots, z_{n+m}, Z\right)\right| \leq l_{0}\left(1+\sum_{k=1}^{n+m}\left|z_{k}\right|+\|Z\|\right) . \tag{17}
\end{gather*}
$$

Then problem (1), (2) is globally solvable. Furthermore, if $f\left(x, y, z_{1}, \ldots\right.$, $\left.z_{n+m}, Z\right)$ is locally Lipschitz continuous with respect to Z, then problem (1), (2) is well-posed.

Remark 4. In Theorem 3 condition (16) is optimal and it cannot be weakened. Indeed, in the rectangle $[-\pi, \pi] \times[0, b]$ consider the problem

$$
\begin{align*}
& u^{(1,1)}=\arctan \left(u^{(1,0)}\right)-\arctan \left(1+u^{2}\right) ; \\
& u(0, y)=0, \quad u^{(1,0)}(x, 0)=u^{(1,0)}(x, b), \tag{18}
\end{align*}
$$

for which condition (17) holds but condition (16) is violated. As a result problem (18) has a unique solution $u(x, y) \equiv \tan (x)$, which cannot be continued outside the rectangle $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times[0, b]$.

Below separately consider the case, where the righthand side of equation (1.1) does not contain the derivatives $u^{(m, k)}(k=1, \ldots, n-1)$, i.e., where equation (1.1) has the form

$$
\begin{equation*}
u^{(m, n)}=g\left(x, y, u^{(m, 0)}, u^{(0, n)}, \ldots, u^{(m-1, n)}, \mathcal{D}^{m-1, n-1}[u]\right) \tag{19}
\end{equation*}
$$

where $\left(x, y, z_{1}, \ldots, z_{m+1}, Z\right) \rightarrow g\left(x, y, z_{1}, \ldots, z_{m+1}, Z\right)$ is continuous in $\Omega \times$ $\mathbb{R}^{m+1} \times \mathbb{R}^{m \times n}$ and continuously differentiable with respect to z_{1}, \ldots, z_{m+1}. We also assume that the function g is sublinear, i.e., for some constant $l_{0}>0$ g satisfies the inequality

$$
\left|g\left(x, y, z_{1}, \ldots, z_{m+1}, Z\right)\right| \leq l_{0}\left(1+\sum_{k=1}^{m+1}\left|z_{k}\right|+\|Z\|\right)
$$

in $\Omega \times \mathbb{R}^{m+1} \times \mathbb{R}^{m \times n}$.
Corollaries $1-3$ concern the case, where (2) is either the initial-Dirichlet

$$
\begin{gather*}
u^{(j, 0)}(0, y)=\varphi_{j}(y) \quad(j=0, \ldots, m-1) \\
u^{(m, i-1)}\left(x, y_{1}(x)\right)=\psi_{1 i}(x) \quad\left(i=1, \ldots, n^{*}\right) \tag{20}\\
u^{(m, k-1)}\left(x, y_{2}(x)\right)=\psi_{2 k}(x) \quad\left(k=1, \ldots, n-n^{*}\right),
\end{gather*}
$$

or the initial-periodic conditions

$$
\begin{gather*}
u^{(j, 0)}(0, y)=\varphi_{j}(y) \quad(j=0, \ldots, m-1) \\
u^{(m, k-1)}\left(x, y_{1}(x)\right)=u^{(m, k-1)}\left(x, y_{2}(x)\right)+\psi_{k}(x) \quad(k=1, \ldots, n) \tag{21}
\end{gather*}
$$

where n^{*} is the integer part of $n / 2, \varphi_{j} \in C^{n}([0, b]), \psi_{k} \in C(I), \psi_{1 k}, \psi_{2 k} \in$ $C(I), y_{1}, y_{2} \in C(I), 0 \leq y_{1}(x)<y_{2}(x) \leq b$ for $x \in I$.

Corollary 1. Let there exist a nonnegative function $p_{0} \in C(\Omega)$ and a positive number ε such the condition

$$
\begin{gathered}
-p_{0}(x, y) \leq(-1)^{n-n^{*}}\left(y-y_{1}(x)\right)^{n-2 n^{*}} g_{z_{1}}\left(x, y, z_{1}, \ldots, z_{m+1}, Z\right) \leq \\
\leq \frac{\alpha_{n}-\varepsilon}{4}\left(\frac{2 \pi}{y_{2}(x)-y_{1}(x)}\right)^{2 n^{*}}
\end{gathered}
$$

holds in $\Omega \times \mathbb{R}^{m+1} \times \mathbb{R}^{m \times n}$, where $\alpha_{n}=1$ for $n=2 n^{*}$, and $\alpha_{n}=n / 2$ for $n=2 n^{*}+1$. Then problem (19), (20) is globally solvable. Furthermore, if $f\left(x, y, z_{1}, \ldots, z_{m+1}, Z\right)$ is locally Lipschitz continuous with respect to Z, then problem (19), (20) is well-posed.

Corollary 2. Let there exist nonnegative functions $p_{i} \in C(\Omega)(i=0,1)$ such that

$$
\int_{y_{1}(x)}^{y_{2}(x)} p_{1}(x, y) d y>0 \quad \text { for } \quad x \in I
$$

and the condition

$$
-p_{0}(x, y) \leq \sigma g_{z_{1}}\left(x, y, z_{1}, \ldots, z_{m+1}, Z\right) \leq-p_{1}(x, y)
$$

holds in $\Omega \times \mathbb{R}^{m+1} \times \mathbb{R}^{m \times n}$, where

$$
\sigma=(-1)^{n^{*}} \text { for } n=2 n^{*}, \quad \text { and } \sigma \in\{-1,1\} \text { for } n=2 n^{*}+1
$$

Then problem (19), (21) is globally solvable. Furthermore, if $g\left(x, y, z_{1}, \ldots\right.$, $\left.z_{m+1}, Z\right)$ is locally Lipschitz continuous with respect to Z, then problem (19), (21) is well-posed.

Corollary 3. Let $n=2 n^{*}$, and let there exist a positive number ε and a nonnegative function $p_{1} \in C(\Omega)$ satisfying inequality (1.41) such the condition

$$
p_{1}(x, y) \leq(-1)^{n^{*}} g_{z_{1}}\left(x, y, z_{1}, \ldots, z_{m+1}, Z\right) \leq\left(\frac{2 \pi-\varepsilon}{y_{2}(x)-y_{1}(x)}\right)^{n}
$$

holds in $\Omega \times \mathbb{R}^{m+1} \times \mathbb{R}^{m \times n}$. Then problem (19), (21) is globally solvable. Furthermore, if $g\left(x, y, z_{1}, \ldots, z_{m+1}, Z\right)$ is locally Lipschitz continuous with respect to Z, then problem $(19),(21)$ is well-posed.

References

1. I. T. Kiguradze, Boundary value problems for systems of ordinary differential equations. (Russian) Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat. Noveishie Dostizh. 30 (1987), 3-103; English transl.: J. Sov.Math. 43 (1988), No. 2, 2259-2339.
2. T. Kiguradze, Some boundary value problems for systems of linear partial differential equations of hyperbolic type. Mem. Differential Equations Math. Phys. 1 (1994), 1-144.
3. T. Kiguradze and T. Kusano, On well-posedness of initial-boundary value problems for higher order linear hyperbolic equations with two independent variables. (Russian) Differentsial'nye Uravneniya 39 (2003), No. 4, 516-526.
4. T. Kiguradze and T. Kusano, On ill-posed initial-boundary value problems for higher order linear hyperbolic equations with two independent variables. (Russian) Differentsial'nye Uravneniya 39 (2003), No. 10, 1379-1394.
5. T. Kiguradze and T. Kusano, On bounded and periodic in a strip solutions of nonlinear hyperbolic systems with two independent variables. Comput. and Math. 49 (2005), 335-364.
(Received 12.06.2007)
Author's address:
Florida Institute of Technology
Department of Mathematical Sciences
150 W. University Blvd.
Melbourne, Fl 32901
USA
E-mail: tkigurad@fit.edu
