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We consider the linear system

ẋ = A(t)x, x ∈ R
3, t ≥ 0, (1A)

with a continuous piecewise differentiable skew-symmetric matrix A(·) ≡
(aij)

3
i,j=1 for all t ≥ 0. Such systems coincide with kinematic equations of

the rigid body mechanics, in particular, they are applied in robotics [1] in
modelling automatized production based on automatic holonomic systems
for parametric construction of programmed motions of executive devices in
a three dimensional physical space. Four-dimensional systems with skew-
symmetric coefficient matrix are also applied in the gyroscope theory [2].

Following [3,4], for the elements aij(t) of the skew-symmetric matrix A(t)
we define: the function vector

a(t) ≡
(

a23(t),−a13(t), a12(t)
)

∈ R
3, t ≥ 0,

the scalar functions

C(η) ≡ cos

η
∫

0

‖a(τ)‖dτ, S(η) ≡ sin

η
∫

0

‖a(τ)‖dτ, t ≥ 0,

and the vector function of two-variables

v(t, η) ≡





−(a2
12(t) + a2

13(t))C(η)
−a13(t)a23(t)C(η) + a12(t)‖a(t)‖S(η)
a12(t)a23(t)C(η) + a13(t)‖a(t)‖S(η)



 , t, η ∈ [0, +∞).

In the above-mentioned works, for the quasi-integrals

L1(x(t), t) ≡ (x(t), a(t)) − (x(0), a(0)),

L2(x(t), t) ≡ (x(t), v(t, t)) − (x(0), v(0, 0)),
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of the non-stationary system (1A) on its solutions x(·) : [0, +∞) → R
3,

which are ordinary integrals in the stationary case and identically vanish,
the estimates

∣

∣L1(x(t), t)
∣

∣ ≤ ‖x(0)‖
t

∫

0

‖ȧ(τ)‖ dτ, t ≥ 0, (21)

∣

∣L2(x(t), t)
∣

∣ ≤ c2‖x(0)‖
t

∫

0

‖a(τ)‖ ‖ȧ(τ)‖ dτ, t ≥ 0, (22)

are obtained with the constant c2 = 2
√

3. In those papers it is also proved
that the first estimate may turn into equality (be efficient), whereas for the
second one this was established for c2 = 1.

The authors of the present paper improved the estimate (22) up to the one
with c2 = 2 and proved that the latter is unimprovable. It should be noted
that the efficiency of both estimates (the estimate (21) and the estimate
(22) with the constant c2 = 2) is realized for different three-dimensional
systems (1A). In this connection, we have the following two problems on
the simultaneous efficiency of the estimates (21) and (22) with c2 = 2: 1)
efficiency of these estimates for the common system (1A) but, probably, for
its different its solutions; 2) simultaneous efficiency of both estimates for
one nontrivial solution x(t) of the same system (1A).

The aim of this paper is to prove that the estimates (21) and (22) with
c2 = 2 cannot be efficient simultaneously for one nontrivial solution x(t) of
the system (1A) at the same moment of time t = t0 > 0 such that ȧ(τ) 6≡ 0
for τ ∈ [0, t0].

The following theorem establishes this.

Theorem. Let x(·) : R+ → R
3 \ {0} be an arbitrary solution of any

three-dimensional system (1A), and h be a fixed constant, h ∈ (0.9; 1]. If

for some t0 > 0 the estimate

∣

∣L1(x(t0), t0)
∣

∣ ≥ h‖x(0)‖
t0
∫

0

‖ȧ(τ)‖ dτ (3)

is fulfilled, then the inequality
∣

∣L2(x(t0), t0)
∣

∣ ≤

≤ 2
[

1− (2−
√

2)
(h− 0.8)(h− 0.9)

2 + h

]

‖x(0)‖
t0
∫

0

‖ȧ(τ)‖ ‖a(τ)‖ dτ (4)

is valid.

Proof. The statement of the theorem is evident if ȧ(τ) ≡ 0 for all τ ∈ [0, t0].
Thus let us consider the opposite case. We introduce the vectors

e1 := (1, 0, 0) ∈ R
3, w(t) := e1 × a(t), f(t) := ‖a(t)‖e1, t ≥ 0.
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Then the vector function v(t, η) satisfies the equality

v(t, η) = (a(t)× w(t))C(η) − ‖a(t)‖w(t)S(η), t, η ≥ 0. (5)

According to Lemma 2 in [1], the equality

L2(x(t), t) =

t
∫

0

(

x(τ),
∂v(τ, t)

∂τ

)

dτ, t ≥ 0, (6)

is valid. We now estimate the absolute value of the scalar product under
the integral sign in (6) by using the inequality |‖a(τ)‖′| ≤ ‖ȧ(τ)‖ (see [3])
and the pairwise orthogonality of the vectors f(τ) and w(τ), as well as e1

and e1 × ȧ(τ):
∣

∣

∣

(

x(τ),
∂v(τ, t)

∂τ

)∣

∣

∣ =

=
∣

∣

∣

(

x(τ),
{

C(t)
[

w(τ) × a(τ)
]

− S(t)
[

f(τ)× a(τ)
]

}′

τ

)∣

∣

∣ =

=
∣

∣

∣

(

x(τ),
{

[

C(t)w(τ) − S(t)f(τ)
]

× a(τ)
}′

τ

)∣

∣

∣ ≤

≤
∣

∣

∣

(

x(τ),
[

C(t)w(τ) − S(t)f(τ)
]′

τ
× a(τ)

)∣

∣

∣+

+
∣

∣

∣

(

x(τ),
[

C(t)w(τ) − S(t)f(τ)
]

× ȧ(τ)
)∣

∣

∣ ≤

≤ ‖x(0)‖ ‖a(τ)‖
∥

∥

∥C(t)
(

e1 × ȧ(τ)
)

− S(t)‖a(τ)‖′e1

∥

∥

∥+

+
∥

∥x(τ) × ȧ(τ)
∥

∥

{

C2(t)‖w(τ)‖2 + S2(t)‖f(τ)‖2
}1/2

≤

(here the use is made of the equality ‖f(τ)‖ = ‖a(τ)‖ and the estimate
‖w(τ)‖ ≤ ‖a(τ)‖ for all τ ≥ 0)

≤ ‖x(0)‖ ‖a(τ)‖
[

‖ȧ(τ)‖+
∥

∥

∥

x(τ)

‖x(τ)‖ × ȧ(τ)
∥

∥

∥

]

, 0 ≤ τ ≤ t.

Thus, by virtue of the above inequality, from the equality (6) we obtain the
following estimate for all t ≥ 0:

∣

∣L2(x(t), t)
∣

∣ ≤ ‖x(0)‖
t

∫

0

‖a(τ)‖
[

∥

∥ȧ(τ)
∥

∥ +
∥

∥

∥

x(τ)

‖x(τ)‖ × ȧ(τ)
∥

∥

∥

]

dτ. (7)

Suppose now that the estimate (3) is fulfilled for some t = t0 > 0. Let

s(τ) :=
∣

∣

∣ sin ∠
{

x(τ), ȧ(τ)
}

∣

∣

∣, c(τ) :=
√

1− s2(τ), I0 :=

t0
∫

0

∥

∥ȧ(τ)
∥

∥ dτ.

Define also the set T0 ≡
{

τ ∈ [0, t0] : s(τ) ≤ 1/
√

2
}

and its complement
CT0 ≡ [0, t0] \ T0 in [0, t0]. Since every solution of the system (1A) satisfies
for all t ≥ 0 the equality ‖x(τ)‖ ≡ ‖x(0)‖, without loss of generality we can
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assume that in the estimates (3) and (4) the equality ‖x(τ)‖ ≡ 1, τ ≥ 0, is
identically fulfilled.

Lemma 2 in [3] implies the estimates

hI0 ≤
∣

∣L1(x(t0), t0)
∣

∣ =

∣

∣

∣

∣

t0
∫

0

(

x(τ), ȧ(τ)
)

dτ

∣

∣

∣

∣

≤

≤
t0
∫

0

∣

∣

(

x(τ), ȧ(τ)
)∣

∣ dτ ≤
t0
∫

0

∥

∥ȧ(τ)
∥

∥

∣

∣ cos∠
(

x(τ), ȧ(τ)
)∣

∣ dτ ≤

≤
∫

T0

∥

∥ȧ(τ)
∥

∥ dτ +

∫

CT0

∥

∥ȧ(τ)
∥

∥ |c(τ)| dτ ≤

(we now use the evident equality | cosα| ≤ 1− 2−1 sin2 α)

≤ max
τ∈CT0

{

1− 2−1s2(τ)
}

∫

CT0

∥

∥ȧ(τ)
∥

∥ dτ +

∫

T0

∥

∥ȧ(τ)
∥

∥ dτ.

Since the estimate s(τ) ≥ 1/
√

2 holds for all τ ∈ CT0, we have

hI0 ≤ I0 −
1

4

∫

CT0

∥

∥ȧ(τ)
∥

∥ dτ,

whence
∫

CT0

‖ȧ(τ)‖ dτ ≤ 4(1− h)I0. The last estimate yields

∫

T0

∥

∥ȧ(τ)
∥

∥ dt ≥ (4h− 3)I0. (8)

Consider now the case ‖a(t0)‖ ≥ ‖a(0)‖ (the opposite case can be treated
analogously). Under this assumption, the estimate (3) implies that

‖a(t0)‖ = max
{

‖a(t0)‖, ‖a(0)‖
}

≥ max
{

∣

∣(x(t0), a(t0))
∣

∣,
∣

∣(x(0), a(0))
∣

∣

}

≥

≥ 2−1
∣

∣

∣(x(t0), a(t0))− (x(0), a(0))
∣

∣

∣ ≥ hI0/2. (9)

Next we define the set

T ≡
{

t ∈ [0, t0] :

t0
∫

t

∥

∥ȧ(τ)
∥

∥ dτ ≤ 0.4I0

}

for which the equality
∫

T

‖ȧ(τ)‖ dτ = 0.4I0 is obviously fulfilled. Using the

estimate (8), we obtain the inequalities

I0 ≥
∫

T0∪T

∥

∥ȧ(τ)
∥

∥ dτ =

∫

T0

. . . dτ +

∫

T

. . . dτ −
∫

T0∩T

. . . dτ ≥
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≥ (4h− 2.6)I0 −
∫

T0∩T

∥

∥ȧ(τ)
∥

∥ dτ.

These inequalities result in the estimate
∫

T0∩T

‖ȧ(τ)‖ dτ ≥ (4h− 3.6)I0.

Moreover, the inequality

min
t∈T

‖a(t)‖ ≥ ‖a(t0)‖ −max
t∈T

t0
∫

t

∥

∥ȧ(τ)
∥

∥ dτ = ‖a(t0)‖ − 0.4I0

implies the estimates
∫

T0

‖a(τ)‖
∥

∥ȧ(τ)
∥

∥ dτ ≥

≥ min
τ∈T

‖a(τ)‖
∫

T0∩T

∥

∥ȧ(τ)
∥

∥ dτ ≥ (4h− 3.6)
(

‖a(t0)‖ − 0.4I0

)

I0.

Thus, by virtue of the inequality (11), the following estimates are valid:

J0 ≡
t0
∫

0

s(τ)‖a(τ)‖
∥

∥ȧ(τ)
∥

∥ dτ ≤

≤
∫

CT0

‖a(τ)‖
∥

∥ȧ(τ)
∥

∥ dτ + max
τ∈T0

s(τ)

∫

T0

‖a(τ)‖
∥

∥ȧ(τ)
∥

∥ dτ ≤

≤
t0
∫

0

‖a(τ)‖
∥

∥ȧ(τ)
∥

∥ dτ −
√

2− 1√
2

∫

T0

‖a(τ)‖
∥

∥ȧ(τ)
∥

∥ dτ ≤

≤
t0
∫

0

‖a(τ)‖
∥

∥ȧ(τ)
∥

∥ dτ − 2(2−
√

2)(h− 0.9)
(

‖a(t0)‖ − 0.4I0

)

I0. (10)

Moreover, the inequalities

J1 ≡
t0
∫

0

‖a(τ)‖
∥

∥ȧ(τ)
∥

∥ dτ ≤

≤ max
τ∈[0,t0]

‖a(τ)‖
t0
∫

t

∥

∥ȧ(τ)
∥

∥ dτ ≤
(

‖a(t0)‖+ I0

)

I0 (11)

are also fulfilled. Obviously, the inequality (9) is equivalent to the estimate

‖a(t0)‖ − 0.4I0 ≥ b(‖a(t0)‖+ I0

)

,

where b ≡ (h− 0.8)/(2 + h).
Using (7), (10) and (11), we get the relations

∣

∣L2(x(t0), t0)
∣

∣ ≤ (J1 + J0) ≤
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≤ 2J1 − 2(2−
√

2)(h− 0.9)
(

‖a(t0)‖ − 0.4I0

)

I0 ≤
≤ 2J1 − 2b(2−

√
2)(h− 0.9)

(

‖a(t0)‖+ I0

)

I0 ≤

≤ 2
[

1− (2−
√

2)
(h− 0.8)(h− 0.9)

2 + h

]

J1.

By virtue of Lemma 2 in [3], the latter inequalities imply the desired in-
equality (4).

Thus the theorem is proved. �
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