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Abstract. Differential equations of the type ™ = f(t,z, ..., z(27=1)
are considered. Here a positive function f satisfies local Carathéodory con-
ditions on a subset of [0,7] x R?" and f may be singular at the value 0
of all its phase variables. The paper presents conditions guaranteeing the
existence of a solution of the above differential equation satisfying nonlo-
cal boundary conditions whose special case are the (2p,2n — 2p) right focal
boundary conditions 2()(0) = 0 for 0 < j < 2p — 1 and 2U)(T) = 0 for
2p<j<2n—1,wherepe N, 1 <p<n-—1.
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1. INTRODUCTION

Let T be a positive number and X = (0,00) x (R\ {0}) C R%. Let A
denote the set of functionals ¢ : C°[0,T] — R which are
(i) continuous, ¢(0) = 0 and
(ii) increasing, that is, z,y € C°[0,T], z < y on [0,T] = ¢(x) < ¢(y).

Consider the differential equation
2@ (t) = f(ta(t), ..., a0 ()), (1.1)

where n > 1, a positive function f satisfies local Carathéodory conditions
on [0,T] x X™ (f € Car([0,T] x X™)) and f may be singular at the value 0
of all its phase variables.

Let pe N, 1 <p <n—1. In literature the equation (1.1) together with
the boundary conditions

(1.2)

z@(0)=0, 0<i<2p—1
t(T)=0, 2p<i<2n-—1

is called the (2p,2n — 2p) right focal boundary value problem.

In the papers [2]-]5], [8], [10]-[12] and references therein the authors
discussed the (p,n — p) focal problem for regular differential equations ([§],
[12]) or differential equations with singularities in the phase variables ([2]-
[5], [10], [11]) or differential equations with singularities in the time variables
([1], [9]). The papers [3], [4] and [12] discuss the existence of one and
multiple solutions.

The boundary conditions (1.2) can be written in the equivalent form

2o=D(0) =0, z-1(T)=0,
where ig € {1,...,p}, ko €{p+1,...,n},

2p—1
min{ Z 2D (@) : 0<t < T} =0,
§=0

2n—1
min{ Z 2D @) 0<t< T} = 0.

Jj=2p

Let a, 8 € [0, T]. Then the boundary conditions

zW(a)=0, 0<i<2p—1
(@) } (1.3

z@D(B) =0, 2p<i<2n-—1

are a natural generalization of the focal (2p,2n — 2p) boundary conditions
(1.2). If &« = (3, we obtain the initial conditions. There are two main ways
for determining o and § in (1.3). Namely, either «, § are given in advance
or «, # depend on solutions of the considered problem and their derivatives.
The second way is used in this paper. We discuss the nonlocal boundary
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conditions
1(z?0 D) =0, da(aro=) =0 (1.4)
where ig € {1,...,p}, ko €{p+1,...,n} and ¢1,¢da € A, .
2p—1
min{ Z |z @) : 0<t < T} =0,
§=0
o1 (1.5)
min{ Z |z (@) : 0<t < T} =0.
Jj=2p

A function z € AC?"~1[0, T (the set of functions having absolutely con-
tinuous (2n—1)st derivatives on [0, T]) is said to be a solution of the problem
(1.1),(1.4), (1.5) if x satisfies the boundary conditions (1.4), (1.5) and (1.1)
holds a.e. on [0,T].

The aim of this paper is to give conditions on the function f in (1.1)
which guarantee the solvability of the problem (1.1),(1.4),(1.5) for each
pe{l,...,n—1},ig€{1,...,p}, ko € {p+1,...,n} and ¢y, ¢2 € A.

We note that our boundary conditions are nonlocal and that all solutions
to the problem (1.1),(1.4),(1.5) and their derivatives ‘pass through’ the
singular points of f at some inner points «, §in (0, T) depending on ¢1, ¢ €
A and ig, ko (of course if a, 8 € (0,T)). Our existence result for the problem
(1.1),(1.4),(1.5) is obtained by combination of regularization and sequential
techniques. Existence results for auxiliary regular problems are proved by a
priori bounds for their solutions and the topological transversality principle
(see [6], [7]). In limit processes, a combination of the Fatou theorem with
the Lebesgue dominated convergence theorem is used.

Notice that if « is a solution of the problem (1.1),(1.4),(1.5), then (1.4)
yields 2?0~V () = 0 and 2k =1 () = 0 for some unique a, 3 € [0, 7] (see
Lemma 3.4) and (1.5) shows that x satisfies (1.3). Also from f being positive
on [0, 7] x X" we deduce that any solution x of the problem (1.1), (1.4), (1.5)
satisfies

min{x(zj)(t): OStST}:O for 0<j<n-1.
We observe that the boundary conditions (1.2) are a special case of (1.4),
(1.5) with ¢1, ¢p2 € A defined by ¢1(x) = z(0) and ¢s(x) = =(T) for
x € C°0,T).

Throughout the paper we will use the following assumptions:

(Hy) f € Car([0,T] x X™) and there exists a positive constant a such

that

a < f(t7l‘05 B ;I2n71)
for a.e. ¢ € [0,7T] and all (zo,...,T2,—1) € X";
(H3) For a.e. t € [0,T] and all (zg,...,Ton—1) € X",
2n—1 2n—1

f(t,wo,...,l'gn_l) < Z h](l,TJD —|—w(t, Z |{Ej|>,
j=0 j=0
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where h; € C°(0, 00) is positive and nonincreasing, w € Car([0,T] x
(0,00)) is positive and nondecreasing in the second variable,
1

/hj(sznfj)ds<oo for 0<j<2n—2,

" (1.6)
lim hop_1(u)=c>0
and
LT
lim sup (/ > /w (t,Qu)dt < c (1.7)
U— 00 hQn 1
0 0
with )
T°" -1
— i T#1
=71 "T7L (1.8)
2n if T=1

Remark 1. 1 From the properties of the function hg,_1 given in (Hs) it

follows that f e ds < oo for all b > 0 and

u

. 1 ds 1

im— [ —m =~

—oou | han—1(8) ¢
0

Throughout the paper ||z|| = max{|z(¢)|: 0 <t < T}, ||z||L = f |x(¢)| dt

and ||z|lcc = essmax {|z(t)| : 0 < ¢ < T} stand for the norm in CO[O,T],
L1[0,T] and the set Loo[0,T] of measurable and essentially bounded func-
tions on [0, 7], respectively.

The paper is organized as follows. In Section 2 we introduce a family of
auxiliary regular differential equations. Section 3 is devoted to the study of
auxiliary regular problems. We first present results (Lemmas 3.1-3.6) which
are used in the next part of this section. Then we establish a priori bounds
for solutions of auxiliary problems (Lemma 3.7) and prove their existence
(Lemma 3.8). We also show that the sequence of (2n — 1)st derivatives of
solutions to auxiliary problems is equicontinuous on [0, T'] (Lemma 3.9). Sec-
tion 4 contains the main existence results for the problem (1.1),(1.4),(1.5)
(Theorem 4.1). An example illustrates our theory (Example 4.2).

2. AUXILIARY REGULAR PROBLEMS

Let the assumption (H;) be satisfied. For m € N, define R, and f,, €
Car([0,T] x R?") by the formulas

o (o ).

fm(tv'CCO;Il;IQa v 7:627171)
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f(t,xo, 21,22, .., Tan—1)
1 n
for (zg,x1,2,...,Ton—1) € ({—,oo) X Rm) , te0,T],
m
1 1
f(t,—,(El,—,...,iUgn_l) for t € [OaT]7 T1,23y.--,T2n—1 € Rma
m m ]
0, L2,...,Tap—2 € (—oo, —),
m 1 1
_|:fm(ta$05_ax27"'7$2nfl) (-Il + _)_
2 m m
1 1
—fm(t,fcoa ——,T2,. .. ,iﬂzn—1> (!El — —)}
m m
for (t,z0,22,...,T2,-1) € [0,T] x R x (R x R,,,)"~ 1,

1 1
$1€(_—,—>,
m o m
1

m 1

- |:fm (t, Loy vy X2i—2, — 5 L2y« - - ,1172n—1) (I2i71 + —)—

2 m 1 m 1
—fm(two, ey T2, ——, T, .. 7$2n—1) (5621'—1 - —)}
for (t, Ly ooy L2—2, L2y - ,.Ign,l)e[(), T]XR2171X(RXRm)n71,

T2i—1 € (— —7—>7
m m

m 1 1
[fm(t,$0,$1,...,$2n_2, )gx2n—l+ >_
m m

2
1
_fm (taxf)u T1ye..yT2n—2, __> (!,E?n—l - _)i|
m m 1

for (t,x0,71,...,T2n_2) € [0,T] x R 29, 1 € (— — —)
m’m

Then
agfm(tv'f()v'-'v'r?nfl) (21)

for a.e. t € [0,7] and all (zg,...,22,-1) € R?", m € N.
Consider the family of the regular differential equations

(27 BO=0=Na+\fm (t, x(t),... 7.1'(27171)(15)) (2.2))

m

depending on the parameters A € [0,1] and m € N. Then (see (2.1))
a<(l=MXNa+Afm(t,zo,...,T2n-1) (2.3)

for a.e. t € [0,T] and all (zg,...,72,-1) € R?", A € [0,1], m € N. The
assumption (Hz) implies that

2n—1 2n—1
(1=Na+Afm(t, 20, 2201) < Y hj(|xj|)+w(t,2n+ 3 |xj|) (2.4)
j=0 j=0

for a.e. t € [0,7] and all (zq,...,z2,—1) € (R\ {0})?", A € [0,1], m € N.
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3. AUXILIARY RESULTS

Let the assumption (H;) be satisfied. For m € N and A € [0, 1], define
the operator Ky, » : C?"1[0,T] — L1[0,T] by the formula

(K@) (t) = (1= Na+ M (t,2(t), ..., 27D (@). (3.1)
The following five lemmas are needed in the second part of this section.

Lemma 3.1. Let (Hy) hold. Let g € A, meN andk € {p+1,...,n}.
Then for each x € C?*"10,T] and X € [0,1], there exists a unique solution
Bo = Bo(z, ) € [0,T] of the equation

Se(B;2,)\) =0, (3.2)
where

;Qk)! /(t - 3)2(71716) (ICm)\x)(s) ds). (3.3)

(2n —
B

In addition, By is a continuous function of x and .

Proof. Choose z € C?"~10,T] and A € [0,1]. By (2.3), (K x2)(t) > a for
a.e. t € [0,T] and consequently

Sk(B;z,A) =¢2<

t t

/ (t — 5)2 =B (KC,, Az)(s) ds > 0, / (t — 5)2 =B (K, Az)(s)ds < 0

0 T
for t € [0,T]. Hence Si(0;2,A) > 0 and Sk(T;z,A) < 0 and since Sk(-;z,A)
is a continuous function on [0, T'], there exists a solution fy € [0, 7] of (3.2).
In order to prove the uniqueness of (y, assume that Si(f1;2,\) = 0 for

some 3y € [0,T], By # fo. If

to to
/ (to — )2 R (K, az)(s) ds = / (to — 8)2" R (K, az)(s) ds
B1 Bo
for some to € [0, T, then
Bo
/(to — 8)2("_k) (Kmaz)(s)ds =0,
B1

contrary to (tg — )2 F) (I, ax)(s) > (to — 8)2(*Fa for a.e. s € [0,T).
Hence
¢

/(t — 5)2("*’“) (Kmaz)(s)ds —
B Bo

for ¢t € [0,T], and then Sk (81;x,\) # Sk(Bo; z, A), contrary to our assump-
tion Sk(0B1;x,\) = 0.

(t — 5)2 =R (K, az)(s) ds # 0

—
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Let now {(z;,;)} € C**71[0,T] x [0,1] be convergent, lim (z;,);) =
J—00
(x0,Ao0). Let B; € [0,T7] and By € [0,7] be the unique solution of
Se(B;z5,A;) = 0 and Si(8;x0, o) = 0, respectively. If {f;,} is a con-
vergent subsequence of {#;}, lim §;, = A, then from the continuity of ¢2,
fm € Car([0,T] x R?") and the Lebesgue dominated convergence theorem
we get 0 = lim Si(05,,%).,N\;,.) = Sk(A;z0,A0). Consequently A = .
We have proved that any convergent subsequence of {3;} has the same limit
Bo. Therefore lim B; = By, which shows that the solution of (3.2) depends
j—oo

continuously on x and . ]
Lemma 3.2. Let (Hy) hold. Let o1 € A, m € N, ¢ € {1,...,p} and

ke {p+1,...,n}. Then for each x € C*"70,T] and X\ € [0,1], there
exists a unique solution ag = ag(x, A) € [0,T] of the equation

Vilasz, ) =0, (3.4)
where
Vilas 2, A) = ¢1 (L2, N)), (3.5)
1
Elase, V) = G = = Diep =21 <
X / (t — 5)2P—D / (s —0)2 P, \2)(v) dvds,
a Bo

and By = Po(z, A) € [0,T] is the unique solution of (3.2). In addition, ayg s
a continuous function of x and A.

Proof. Choose z € C?"~1[0,T] and X € [0,1]. (H;) and (2.1) show that
Vi(-;x, \) is continuous on [0,T] and L£(0;z,\)(t) > 0, L(T;x,\)(¢) <0 for
t € [0,T]. Hence V;(0;2,\) > 0, V;(T;z,\) <0, and therefore V;(ap; z, ) =
0 for an ag € [0,7]. Essentially the same reasoning as in the proof of
Lemma 3.1 implies that V;(-; 2, \) is injective on [0,T], and consequently
ayp is the unique solution of (3.4).

It remains to show that ap = ap(z, A) depends continuously on z and .
Let {(z;,);)} € C?"71]0,T] x [0, 1] be convergent, lim (x;,\;) = (0, \o)-

J— 00

Let «; be the (unique) solution of V;(c; x;, A;) = 0. By Lemma 3.1,
Jin o, Aj) = fo(wo, Ao)-

Using the Lebesgue dominated convergence theorem, we see that for any
convergent subsequence {«;, } of {e;}, lim «a;, = A, we have
n—oo
0 = hm %(ajn7xjn ) Ajn) = ‘/;(A7 xo’ AO)'
n—oo

Hence A = ag(zo, Ao) which shows that any convergent subsequence of {a;}
has the same limit equal to ag(xo, Ag). Therefore {ag(z;, \;)} is convergent
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and lim ag(z;, ;) = ao(zo, Ao). We have proved that ag is a continuous
J—00
function of x and A. (Il

Lemma 3.3. Let ¢ € A and ¢(z) = 0 for some x € C°[0,T]. Then there
exists £ € [0,T) such that z(§) = 0.

Proof. If not, x > 0 or x < 0 on [0,T]. Then ¢(z) > ¢(0) = 0 or ¢(z) <
¢(0) = 0, contrary to ¢(z) = 0. O

Lemma 3.4. Let (Hy) hold. Let z be a solution of the problem (2.2)),,
(1.4), (1.5). Then 221=Y s increasing on [0,T] for 1 < j < n and (1.3)
is true, where « is the unique zero of (2~ and 3 is the unique zero of
(ko= In addition, z>*=2)) > 0 on [0,T]\ {8} for 1 < j < n —p and
2(7=27) > 0 on [0,T)\ {a} forn —p+1<j<n.

Proof. Let x be a solution of the problem (2.2)},(1.4), (1.5). Lemma 3.3
and (1.4) show that (2~ (a) = 0 and (k=1 (8) = 0 for some «, 3 €
[0, 7] and then from (1.5) we see that (1.3) is true. Since z(>™)(t) > a for
a.e. t € [0,T] due to (2.3), 2"~ is increasing on [0, T] and consequently
(=1 < 0 on [0,8) (if 8 > 0) and 22D > 0 on (3,T] (if 8 < T).
Hence £ is determined uniquely and z(2"~2) (8) = 0 implies z(?"=2) > 0 on
[0, 7]\ {B}. By this procedure we can verify that 2(2=1) is increasing on
[0, 7] for 1 < j < n. Consequently, a is the unique zero of z(*0—1 . Further,
2(27=27) > 0 on [0,T]\{B} for 1 <j <n—pand 2?*=2) > 0on [0,T]\{a}
forn—p+1<j5<n. O

Lemma 3.5. Let (Hy) hold. Then z is a solution of the problem (2.2)},,

(1.4), (1.5) if and only if x is a fived point of the operator S : C*"~1[0,T] —
C?"=10,T) defined by the formula

1
S0 = G —p - i -1
x [ (t =) [ (s —0)?! P, \z)(v) duds, (3.6)
Jemr]

where By € [0,T] is the unique solution of Sk,(B;x,\) = 0 with Sy, given
in (3.3), and ag € [0,T) is the unique solution of Vi, (a;z, N) = 0 with V;,
given in (3.5).

Proof. Let x be a fixed point of the operator §. By direct calculations we
can verify that z is a solution of (2.2)}, () (ag) = 0 for 0 < j < 2p — 1
and 2U)(By) = 0 for 2p < j < 2n — 1. From the definition of By and «yp it
follows that ¢ (z(20~Y) = 0 and ¢q(x(20~1) = 0. Hence z is a solution of
the problem (2.2)}, (1.4), (1.5).

Let x be a solution of the problem (2.2)2 . (1.4), (1.5). Then Lemma 3.4
shows that x satisfies (1.3) with «, and f, instead of « and 3, where . and
B, are the unique zeros of (20~ and z(2k0—1)  respectively. Hence x is
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a solution of the problem (2.2)), (1.3). Integrating the equality =(>™(t) =
(K az)(t) for a.e. t € [0,T] and using (1.3), we obtain

2(t) = ! x
2(n —p) = 1!(2p—1)!
x [ (t—s)?"1 [ (s —v)2 P 7HIC,, \x)(v) dvds
Jeom

for t € [0,7]. Now from (1.4) and Lemmas 3.1 and 3.2 we deduce that
oy and B, are the unique solutions of the equation Vj,(a;x,\) = 0 and
Sko(B;2,A) = 0, respectively. Hence a. = ap and S, = [y, and conse-
quently x is a fixed point of the operator S. 0

The following result is used in the proofs of Lemmas 3.7 and 3.9 and
Theorem 4.1.

Lemma 3.6. Let (Hy) hold. Let x be a solution of the problem (2.2)),,
(1.4), (1.5). Then

, a _; )
2 @) 2 @n—j)! t—5o*"™7, te[0,T], 2p<j<2n-1, (3.7)
and
a 2n—j ao +§0
_ m |t — Qg | fOT te {0, T:|
129 (8)] > J S0+ (3.8)
a = 12n—q (7] 0
B for te [P0 g
(2n—j)!| fol Jor 6{ 2 }

for 0 < j < 2p—1, where ag and By are the unique zeros of 0= gnd
x(2ko=1) " respectively, and ap = min{ayg, fo}, Bo = max{ao, Bo}.
Proof. By Lemma 3.5, z is a fixed point of the operator S defined in (3.6),

and therefore
1

T Rh-p-DiZp—1)

y / (t — 521 / (5 — )2 P11, 2) (v) do ds
ag Bo

for t € [0,T]. Since (see (2.3)) (K 2x)(t) > a for a.e. t € [0,T], we have

t—S 2n—j—1
J) — >
t)| = '/ G =1 (ICW)\;E)(S) ds| >

|t _ ﬁ0|2n—j

a . a
> @ 0@ _ 2n—j—1 -
-w%—¢4ﬂ!“s> = G
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for t € [0,T] and 2p < j < 2n — 1, which proves (3.7).
It remains to verify (3.8). Assume for example that ag < [y (the case
where ag > y is treated similarly). Since (see (3.7) and Lemma 3.4)

2P (t) > (t — Bo)> " P) | telo,T],

(2n — 2p)
and ) (ag) = 0 for 0 < j < 2p — 1, we have

_ _a e
o
a 2 a0 + Bo
g for e [0, %)
- (2n—2p—|—1)!| ol orte 2
J P Bol? Pt for t e 2o +5 ﬁO,T
(2 2p + 1)! 2
n—2p !
Then
t
(0| = [ (s)as| >
%)
a 2(n—p+1) [ Qo + 50}
—_—— |t — for ¢ 0
- Gn oo Tl orre P
T AN TS
n—2p !
Applying the above procedure repeatedly, we can verify the validity of (3.8)
forall0 <j<2p—1. O

We are now in a position to give a priori bounds for solutions of the
problem (2.2)},, (1.4), (1.5).

Lemma 3.7. Let the assumptions (Hy) and (Hs) be satisfied. Let x be
a solution of the problem (2.2)), (1.4), (1.5). Then there exists a positive
constant K independent of m, \, p, ig, ko, 1 and ¢2 such that

|29 < K for 0<j<2n—1. (3.9)

Proof. By Lemma 3.4, there exist a unique zero a of (=1 and a unique
zero 3 of (%01 and x satisfies (1.3). Hence

29| < T2 la@n ), 0 < < 20— 1, (3.10)
and therefore
2n—1
> 1) < @V, (3.11)
=0

where @ is given in (1.8). From Lemma 3.6 it follows that

129 (1) > [t—BP"7, te0,T], 2p<j<2n-—1,

@n—))!
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and
Y p—aPi o for te [0, M}
29 (1) > (2n —j)! 2
[ T ath
=) [t — 5 for te[ 5 ,T]

for 0 < j <2p—1, where @ = min{a, f} and B= max{«, 3}. Set

_ a .
I; = 2n7</(2n——j)! for 0 <j<2n-—2. (3.12)

Since the function h; is positive and nonincreasing on (0, 00) by (H2), we
have

T T
(1) < (% 4 _ g <
[t ond< [ n (Gt le=pen ) ar <
0 0
. LB 1;(T—B)
< 7(/hj(s2"—j)ds+ / hj(s2"_j)ds> <
’ 0 0
LT
2 )
< —/hj(s%ﬂ)ds (3.13)
I
0
for 2p < j<2n—2and
T
J st @ ar <
0
T T
a . a .
< [ hj( |t —a* ) dt hi —— [t —B]*"7 ) dt
-g/ﬂ(@n—ﬁﬂ ol )d*ﬂ/ﬂ(@n—ﬁﬂ Al )d<
0 0
LT
<4 / hi(s*"7)ds (3.14)
I;

0
for 0 < j < 2p—1. Next, by (1.6) and (2.4) we get

x(?n) (t) -
han—1(lzr=D(t)]) ~

2n—2 2n—1

<142 (Xm0 @) +w(tom+ Y O@)  (315)
=0 =0

0<)

for a.e. t € [0,T]. Besides, (") > g a.e. on [0,T] and "~V (8) = 0 imply
"=V = max {|2*"~1(0)[, 2" (T) }. (3.16)
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Since

s s —x"=1(0)

22 (t) B (1) (t) B ds
/h2n—1(|ff(2"_1)(f)|) “ _O/h%—l(_w(z"_l)(t)) "= / hon-1(s)’

0 0
T

/ :E(2n)(t) ”

J han—1(Jz"=D(#)])

2= (T)

T
/ (27 (¢) g / ds
] hap—1(zn=D(t)) ) hon—1(s)’

we have (see (3.16))

[Ea |

T
ds 117(2n)(t)
) m S / h’2n71(|$(2n71)(t)|) dt. (317)

Integrating (3.15) over [0,7] and combining (3.11), (3.13), (3.14) and the
fact that w is nondecreasing in the second variable, we get

T T
() (t) 1
dt <T+= [ A t,2 Gn=D1)dt ), (3.18
/h2n1(|x(2"1)(t)|) +c< +/w( n+Q|lz H) ( )
0 0
where
o2 | I,T w1 I,T |
A=2>" E hi(s2 ) ds +4 ) I—/hj(s%—ﬂ)ds.
J=2p 0 7=0 0
Hence (see (3.17) and (3.18))

@ =

T
L() <T+- (A+/w(t,2n+@||l‘(2”1)||)dt). (3.19)
0

hon—1(s

From (1.7) and Remark 1.1 it follows that there exists a positive constant
S such that

u

T
ds
O/M>T—|— <A+O/w(tv2”+Qu)dt>

for all u > S. Therefore (3.19) shows that ||22"~D|| < S and, by (3.10), we
see that (3.9) is true with K = Smax{1, 72" 1}. O

We now present an existence result for the problem (2.2)% | (1.4), (1.5).

Lemma 3.8. Let (Hy) and (Hz) hold. Then for each m € N, p €
{1,...,n =1}, 40 € {1,...,p}, ko € {p+ 1,...,n} and ¢1,¢2 € A, the
problem (2.2)% ) (1.4), (1.5) has a solution = satisfying (3.9), where K is the
positive constant in Lemma 3.7.
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Proof. Let K be the positive constant in Lemma 3.7 and put
Q={zeC™0,T]: |zV| < Kfor 0<j<2n—1}.
Choose me N, pe{l,....,.n—1},ip € {1,...,p}, ko € {p+1,...,n} and

¢1,¢2 € A. Define the operator F : C?"~1[0,T] x [0,1] — C?"~1[0,T] by
the formula

1
Fe N0 = G- i =11
X / (t— )t /(s_v)ﬂ"*p)*l(/cm,m(v) dv ds,
ag(z,\) Bo(z,\)

where ag = ag(z,\) and By = Bo(x,A) are the unique solutions of the
equation V;,(a;z, A) = 0 with Vj, given in (3.5) (see Lemma 3.2) and the
equation Sk, (8;x,\) = 0 with Sk, given in (3.3) (see Lemma 3.1), respec-
tively, and /Cy,, » is given in (3.1). Lemma 3.5 shows that z is a solution
of the problem (2.2)},, (1.4), (1.5) if and only if = is a fixed point of the
operator F(-,A). Hence our lemma will be proved if the operator F(-,1)
has a fixed point in 2. In order to prove the existence of a fixed point of
F(-,1), we use the topological transversality principle. Let F, = F |§X[071]
denote the restriction of F on the set  x [0, 1]. It suffices to verify that
(i) F.(-,0) is a constant operator on Q and F.(z,0) € Q for x € Q,
(ii) Fi is a compact operator and
(ili) Fi(x,A) # z for all (z,A) € 092 x [0,1].
Since (K, 0x)(t) = a for ¢t € [0,T], we have

a
Fu(x,0)(t) = X
(=00 = G —p — Diep—1)
t s
X (t —s)?~1 (s —v)2 =P~ gy ds =
ap(z,0) Bo(x,0)
t
a

= (2n — 2p)!(2p — 1)! / (t— 3)21’*1(8 — Bo(x, 0))2(71710) ds,
Ot()(;E,O)

where By = Go(z,0) is the unique solution of the equation

¢2(m (6 —t)2<n—ko>+1> 0

and ap = ap(z,0) is the unique solution of the equation

- — §)2(—i0) (g — 3.)2(n=P) g | = 0.
¢1<(2n—2p)!(2p—2i0)!/(t ) (s = Po) d) 0

(e

From the above two equation we see that 5y and o are independent of x and
therefore F,(-,0) is a constant operator. In addition, (F,(x,0))") (ap) =
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0for 0 <j < 2p—1, (Fulz,0)9(By) = 0 for 2p < j < 2n — 1 and
(Fu(z,0))2™)(t) = a for t € [0,T]. Hence F,(z,0)(t) is a solution of the
problem (2.2)% , (1.4), (1.5) and consequently F,(x,0) € Q for z € Q due
to Lemma 3.7, which proves (i).

For (ii), we first note that f,, € Car([0,T] x R*"), and therefore there

exists v € L1]0,T] such that

a<(1=MNa+ Afm(t,zo,...,Ton-1) < () (3.20)
for a.e. t € [0,7] and all A € [0,1], |z;| < K (0 < j < 2n —1). Let
{(zk, M)} C © x [0,1] be a convergent sequence, klim (g, A\&) = (20, Xo)-
Then

im (Ko ) (8) = (Ko oxo 0) (1)
for a.e. ¢t € [0,T], a < (K, 2k)(t) < 7(t) for a.e. ¢t € [0,7] and all
k € N, and (see Lemmas 3.1 and 3.2) klim Bo(xk, A) = Bo(xo, Ao) and
klim ao(zk, Ak) = ao(xo, Ag). Hence F, is a continuous operator by the
Lebesgue dominated convergence theorem. Let {(x;, \;)} € 2% [0,1]. Then
(see (3.20))
|(Feli, A) B (0)] < 4(2)
for a.e. t € [0,7] and all ¢ € N, and since
(Fuli, M) D (g (s, M) =0 for 0<j<2p—1
and _
(Fulzi, M) (Bo(zi, M) =0 for 2p<j<2n—1,

we see that {F.(w;,\;)} is bounded in C?"71[0,7] and also that
{(Fu(xi, M) 2D} is equicontinuous on [0, T]. Hence by the Arzela-Ascoli
theorem there exists a convergent subsequence of { F,(z;, A;)} in C?"~1[0, T7.
We have proved that F, is a compact operator.

Finally, assume that F,(z.,\:) = z,. for some (z.,\) € Q x [0,1].
Then z, is a solution of the problem (2.2)2+, (1.4), (1.5) and so x. € Q by
Lemma 3.7. Hence F.(z,\) # « for each (z,A) € 9Q x [0, 1], which proves
the property (iii). O

The next result is needed in the proof of Theorem 4.1.

Lemma 3.9. Let the assumptions (Hy) and (Hz) be satisfied. Let x.,, be

a solution of the problem (2.2)% . (1.4), (1.5) for m € N. Then {x%"il)} is
equicontinuous on [0, T].

Proof. By Lemma 3.8 we have

2] < K for meN, 0<j<2n-1, (3.21)
where K is a positive constant. Hence (see (3.15))
(2n)
m (T

han—1(Jz" V(@) ~
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2n—2

1 .
<1+4- ( 3 by (1)) + w(t, 2n(K + 1))) (3.22)
c
=0
for a.e. t € [0,T] and all m € N. Let a,, and f3,,, be the unique zeros of
xsyzfofl) and x%ko*l), respectively. Then Lemma 3.6 shows that
) (1)] >
a on—iq .
> Y 1 — 8.2, tel0,T), 2p<j<2n—1, meN, (3.23
> g = Bl tE0.T] 2SS0, meN, (329
and
} or— e Pt —am [P for t e [0, L—;ﬂm}
2 ()] = { 2 —3)! G+ 3 (3.24)
a ~ o O, .
0 G g v [Fnt g
@n =gyt~ Pnl R

for 0 < j < 2p—1, where &, = min{a,,, B} and Bm = max{am, Bm}. Set
h ds
—_— for u € (0,00
/ han-1(s) | )
H(u) =

—Uu

ds .
— [ ———— for u € (—00,0
b/hzn1(5) ( )

Then H € C°[0,T] is an increasing and odd function. Since 23" <0 on
[0, Bn) (if B € (0,T]) and 22" > 0 on (B, T (if B € [0,T)), we have

(2n)
/ Im(2n(t—)1) dt =
hon—1(lzm " (t)])

t1

i (29
ds
- if 0<t1 <ty <fm
han—1(s) BE=n 255
—x " (t2)
—23m V(1) w(Zn D (ts)
ds ds
= 4 —— 0t <P <ta<T-
han—1(s) han—1(s) ' ’
0 0
EIS (7)) J
s
_ if B <t1<ta<T
h2n_1(8) if B <11 2 S
wsznfl)(tl)

Consequently,

han-1 (2"~ (@)]) : .

t1
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for 0 < t; < te < T and m € N. Integrating (3.22) over [t1,t2] C [0,T]
yields

H( (2n71)( )) —H( (2n71)(t1)) <

< ty—ty+- (Z/ dt+/w(t,2n(K+1))dt). (3.25)

t1

Since w(-,2n(K +1)) € L1[0,T], (3.25) shows that {H(w%nil))} is equicon-

tinuous on [0, T if
¢
{ / (129 (s) S}
0

is equicontinuous on [0,7] for j = 0,1,...,2n — 2. To prove this property

of
{ / e o)) s .

let 0 <t; <ty <T and let the constant I; be given in (3.12). If 2p < j <
2n — 2, then (see (3.23))

to to

Jrstiawnar < [ (Gt o= 87 de =

t1 t1
I (Bm—t1)
T hi(s* ) ds if 0<t; <ty < fBm
I (Bm —t2)
I (Bm—t1) Ii(t2—Bm)

T ( / hi(s*" ) ds + / hi(s*"7) ds)
/ 0 0
if 0<ty <ﬁm<t2§T
Ij (tQ_Bwn)
r h,j(82n7j)d5 if ﬂm <t1 <ty <T
L1t =Bum)

If 0 <j <2p—1, then (see (3.24))
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1 Ij(am_tl)
— hi(s* ) ds if 0<t; <ty < dm

i
Ij(amftQ)
I; (G —t1) I;(ta—oum)

T ( / hj(s* ) ds + / hj(s"7) ds)
/ 0 0o _
if 0§t1<am<t2§%

Ij(tz—am)
7 h,j(82n7j)d5 if a, <t1 <ty <
1t =an) N
) Ij(ti—am) I (t2—Bm)
T ( / h; (s*"79) ds + / hj(s2”7j) ds)
=¢ 0 0

o~ a

if o, <t1 < T
1 (Bm—t1)

hj(s*7)ds if

Am + O
2

~| =

M§t1<t2§§m

Q)\'|’_‘

Ij(Bnl_NtQ) _
Ii(Bm —t1) Ij(t2—Bm)
— ( / h; (s*"79) ds + / hj(s2”7j) ds>
0 _ 0
o O + B
g Gm T Pm
S
1 Ij(tQ_ﬁm)
A / hi(s*" ) ds if By <t1 <tz <T

J _
Ij (tl _Bnl)

<t <Bm<ts <T

Summarizing, we have

2}

Vo

_ 9 _
[usta@@nar< 2 [ as
0 J 0 (3.26)
for 0<j7<2n—-2, meN,

where 0 <1y <1y < IjT, vo — 1 < Ij(tQ — tl).
Since h;(s*"77) € L1(I;T) for j = 0,1,...,2n—2 by (H>) (see Remark 1.1),
t .
(3.26) shows that { [ hj(|x5%)(s)|) ds} is equicontinuous on [0, 7] for 0 < j <
0

2n — 2. We have proved that {H(xssnfl))} is equicontinuous on [0, 7],

and from H being continuous and increasing on R we see that {x%nil)} is
O

equicontinuous on [0, 7] as well.
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4. AN EXISTENCE RESULT AND AN EXAMPLE

‘We now state our main result.

Theorem 4.1. Let (Hy) and (Hz) hold. Then, for each p € {1,...,n—
1}, 90 € {1,...,p}, ko € {p+1,...,n} and ¢1, 2 € A, there exist a solution
x of the problem and o, B € [0,T] such that x*) > 0 on [0,T]\ {a} for
0<j<p—1andx®) >0 on[0,T)\{B} forp<j<n-—1.

Proof. Choose p € {1,...,n—1}, 49 € {1,...,p}, ko € {p+1,...,n} and
o1, P2 € A. By Lemma 3.8, for each m € N there exists a solution x,, of the
problem (2.2)},, (1.4), (1.5) such that (3.21) is true, where K is a positive

TL—l)}

constant and {xg is equicontinuous due to Lemma 3.9. In addition

(see Lemma 3.5),
! X
(2(n —p) = D!(2p - 1)!

X /(t —5)%P71) /(s — )2 PN 1) () du ds

QAm ﬁm

Tm(t) =

for t € [0,T] and m € N, where 3, and «,, are the unique solutions in [0, T]
of the equation S, (83;m,1) = 0 and Vi, (a; zm, 1) = 0, respectively. Here
Sk, and V;, are defined in (3.3) and (3.5). Besides, the inequalities (3.23)
and (3.24) are true, where &,, = min{ay,, 8m}, Em = min{«a,,, Bm }. Hence
(see Lemma 3.4)

23 (o) =0 for 0<j<2p—1,

29 (B) =0 for 2p<j <2n—1,

| (4.1)
237 5 0 texton [0,T)\ {Bm} for 1<j<n—p,
22" >0 on [0,T)\ {am} for n—p+1<j<n.

By the Arzela—Ascoli theorem and the compactness principle, passing
if necessary to subsequences, we may assume that {z,,} converges in
C?=10,T) and {am}. {Bm} in R. Let hm T = @, hm am = o, and

lim B, = B«. Then z € C*"~1[0,T], (;51(;5(210 Dy =0, ¢2( (2ko=1)) = ,

|29 ()] > mu_m% I for t€[0,T), 2p<j<2n-—1,
and
P e L R U
29 (1)] > JU (4.2)
a Qy + ﬁ*

t— B2 for te [ ,T}

(2n — j)! 2
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for 0 < j <2p—1, where o, = min{a, s}, B* = max{as, B« }. Therefore,
. is the unique zero of 2) for 2p < j < 2n — 1 and from (4.1) and (4.2)
we deduce that «, is the unique zero of () for 0 < 7 < 2p — 1. Besides,
2(7=27) > 0on [0, T]\{B.} for 1 < j < n—pand 22"=2%) > 0on [0, T]\{a.}
for n —p+1 < j < n. Consequently

lgn Im (t; T (t);-- -, Ignil)(t)) =
= f(t,z(t),.. .,x(%_l)(t)) for a.e. t € (0,77,

and then from the boundedness of {z{2" " (0)}, {z{2" " (T)} and the equal-
ity

T
xgn_l)(T) = xgn—l)(o) + /fm (ta xm(t)7 s 71'57%"_1) (t)) dt
0

we see that f(t,z(t),...,?*=1(t)) € L,[0,T] by the Fatou theorem. Wit-
hout loss of generality we can assume that for example a, < (. Consider
the intervals [0, a.] (if . > 0), [, Bi] (if o < Bi) and [B, T (if Bs < T).
Let [n,7] be an arbitrary but fixed from the above intervals. From (2.4)
with A = 1 and the Lebesgue dominated convergence theorem it follows
that letting m — oo in

¢

o200 = () b [ o) o) ds
(n+7)/2
we get
t

2D () = x(2n1) (%) + / f(s,a(s),... 736(2"_1)(5)) ds (4.3)
(n+7)/2
for t € (n,7). We know that x € C?"~10,T] and f(t,z(t),...,z?*D(t)) €

L1[0,T]. Consequently, (4.3) is true even for ¢ € [n, 7]. This shows that

t
2D (1) = =1 (0) + /f(s,x(s), ce m(%_l)(s)) ds for t € [0,T].
0

Hence z € AC?"7'[0,T] and z is a solution of the problem (1.1),(1.4),

(L.5). O
Example 4.2. Consider the differential equation
2n—1 b (t) 2n—1 )
2@ = q(t) + ZO Ol ZO c; (O, (4.4)
j= j=

where ¢,b; € Loo[0,T], ¢; € L1]0,T] are nonnegative for 0 < j < 2n — 1,
q(t) > a > 0 for a.e. ¢t € [0,T] and ~,; € (0, ﬁ) for 0 < j < 2n—2,
Yan—1 >0, 0; € (0,1) for 0 < j <2n —1.
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The equation (4.4) is a special case of (1.1) with

2n—1 2n—1

f(t7.%'0,.. , Top— 1 Z |I |’Y Z j(t)lmj|5j

satisfying (H7). Put L = max{||b;||cc : 0 <j <2n —2} and 6 = max{J; :
0<j<2n-—1} <1. Since

2n—1 2n—1 2n—1 2n—1 2n—1

Z (t)|2;]% < Zc] Z|x % < ch (2n—|—2|x]|)

Jj=

< Mi:l ¢i(t)(2n + (271)1—‘5(%21 |xj|)6),
=0 =0

2n—1
where the inequality Y b% < (2n)17¢( 330" b;)? (b; > 0, 0 € (0,1]) is
j=0

used, we have

f(t,xo, ..., xon—1) <

2n—1 2n—1 2n—1 5
<||q||oo+LZ| +ch ) (20 + (20)' 5(Z|fﬂ))-
7=0
Hence
2n—1 2n—1
o, wz1) £ 3 hillagl) +ew(t D ),
=0 =0

where h;(u) = Lu™ for 0 < j < 2n — 2, hop—1 = ||q||oc + Lu~ 72"~ and
2n—1

w(t,u) = > ¢;(t)(2n+ (2n)'~°u’). Then
=0

1 1

/hj(s2"_j)ds = /57% ds < oo

0 0

for 0 <j <2n—2and
lim hap—1(u) = |q/|co-

U— 00

Since

/ ds §v2n-1 ds > 1 / d u—1
% 2 s> g— —— =
, han—1(s) , llglloos2m—2 + L llalloo + L 1 lgllec + L
for u > 1 and

2n—1

T
/w t,Qu)dt = (2n+ (2n)'~°(Qu)° Z llesllL
0
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where @ is given in (1.8), we have

u T
lim w(t,Qu
u—00 (/ han-1( > / Qu)
0 0

and therefore f satisfies (Hz). Now Theorem 4.1 guarantees that for each
p € {1,...,71— 1}, g € {1,...,])}, ko € {p—|— 1,...,71} and ¢1, ¢p2 € A
there exists a solution of the problem (4.4), (1.4), (1.5). Hence, since the
functionals ¢1, ¢o : C°[0,7] — R defined by

T
o1(x) = /<w(s>>3 ds, ¢a(x) =x(tr) +e"™ =1, t, 12 €[0,T],
0
belong to A, for each p € {1,...,n — 1}, ig € {1,...,p} and kg € {p +
1,...,n} there exists a solution = of (4.4) such that
T
/($(2i0_1)(8))3 dS =0 .T(2k0_1)(t1) + ew(2ko*1)(t2) =1
0

and (%) >0 on [0,T]\ {a} for 0<j <p—1,23) > 0o0n [0,T]\ {8} for
p <j<n-—1, where o and 3 are the unique zeros of z(20—1) and z(2ko—1)
respectively.
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