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Abstract. Differential equations of the type x(2n) = f(t, x, . . . , x(2n−1))
are considered. Here a positive function f satisfies local Carathéodory con-
ditions on a subset of [0, T ] × R

2n and f may be singular at the value 0
of all its phase variables. The paper presents conditions guaranteeing the
existence of a solution of the above differential equation satisfying nonlo-
cal boundary conditions whose special case are the (2p, 2n− 2p) right focal
boundary conditions x(j)(0) = 0 for 0 ≤ j ≤ 2p − 1 and x(j)(T ) = 0 for
2p ≤ j ≤ 2n− 1, where p ∈ N, 1 ≤ p ≤ n− 1.
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1. Introduction

Let T be a positive number and X = (0,∞) × (R \ {0}) ⊂ R
2. Let A

denote the set of functionals φ : C0[0, T ] → R which are

(i) continuous, φ(0) = 0 and
(ii) increasing, that is, x, y ∈ C0[0, T ], x < y on [0, T ] ⇒ φ(x) < φ(y).

Consider the differential equation

x(2n)(t) = f
(
t, x(t), . . . , x(2n−1)(t)

)
, (1.1)

where n > 1, a positive function f satisfies local Carathéodory conditions
on [0, T ]×X

n (f ∈ Car([0, T ]×X
n)) and f may be singular at the value 0

of all its phase variables.
Let p ∈ N, 1 ≤ p ≤ n− 1. In literature the equation (1.1) together with

the boundary conditions

x(i)(0) = 0, 0 ≤ i ≤ 2p− 1

x(i)(T ) = 0, 2p ≤ i ≤ 2n− 1

}
(1.2)

is called the (2p, 2n− 2p) right focal boundary value problem.
In the papers [2]–[5], [8], [10]–[12] and references therein the authors

discussed the (p, n− p) focal problem for regular differential equations ([8],
[12]) or differential equations with singularities in the phase variables ([2]–
[5], [10], [11]) or differential equations with singularities in the time variables
([1], [9]). The papers [3], [4] and [12] discuss the existence of one and
multiple solutions.

The boundary conditions (1.2) can be written in the equivalent form

x(2i0−1)(0) = 0, x(2k0−1)(T ) = 0,

where i0 ∈ {1, . . . , p}, k0 ∈ {p + 1, . . . , n},

min

{ 2p−1∑

j=0

|x(j)(t)| : 0 ≤ t ≤ T

}
= 0,

min

{ 2n−1∑

j=2p

|x(j)(t)| : 0 ≤ t ≤ T

}
= 0.





Let α, β ∈ [0, T ]. Then the boundary conditions

x(i)(α) = 0, 0 ≤ i ≤ 2p− 1

x(i)(β) = 0, 2p ≤ i ≤ 2n− 1

}
(1.3)

are a natural generalization of the focal (2p, 2n− 2p) boundary conditions
(1.2). If α = β, we obtain the initial conditions. There are two main ways
for determining α and β in (1.3). Namely, either α, β are given in advance
or α, β depend on solutions of the considered problem and their derivatives.
The second way is used in this paper. We discuss the nonlocal boundary
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conditions

φ1(x
(2i0−1)) = 0, φ2(x

(2k0−1)) = 0

where i0 ∈ {1, . . . , p}, k0 ∈ {p + 1, . . . , n} and φ1, φ2 ∈ A,

}
(1.4)

min

{ 2p−1∑

j=0

|x(j)(t)| : 0 ≤ t ≤ T

}
= 0,

min

{ 2n−1∑

j=2p

|x(j)(t)| : 0 ≤ t ≤ T

}
= 0.

(1.5)

A function x ∈ AC2n−1[0, T ] (the set of functions having absolutely con-
tinuous (2n−1)st derivatives on [0, T ]) is said to be a solution of the problem

(1.1), (1.4), (1.5) if x satisfies the boundary conditions (1.4), (1.5) and (1.1)
holds a.e. on [0, T ].

The aim of this paper is to give conditions on the function f in (1.1)
which guarantee the solvability of the problem (1.1), (1.4), (1.5) for each
p ∈ {1, . . . , n− 1}, i0 ∈ {1, . . . , p}, k0 ∈ {p + 1, . . . , n} and φ1, φ2 ∈ A.

We note that our boundary conditions are nonlocal and that all solutions
to the problem (1.1), (1.4), (1.5) and their derivatives ‘pass through’ the
singular points of f at some inner points α, β in (0, T ) depending on φ1, φ2 ∈
A and i0, k0 (of course if α, β ∈ (0, T )). Our existence result for the problem
(1.1), (1.4), (1.5) is obtained by combination of regularization and sequential
techniques. Existence results for auxiliary regular problems are proved by a

priori bounds for their solutions and the topological transversality principle
(see [6], [7]). In limit processes, a combination of the Fatou theorem with
the Lebesgue dominated convergence theorem is used.

Notice that if x is a solution of the problem (1.1), (1.4), (1.5), then (1.4)
yields x(2i0−1)(α) = 0 and x(2k0−1)(β) = 0 for some unique α, β ∈ [0, T ] (see
Lemma 3.4) and (1.5) shows that x satisfies (1.3). Also from f being positive
on [0, T ]×X

n we deduce that any solution x of the problem (1.1), (1.4), (1.5)
satisfies

min
{
x(2j)(t) : 0 ≤ t ≤ T

}
= 0 for 0 ≤ j ≤ n− 1.

We observe that the boundary conditions (1.2) are a special case of (1.4),
(1.5) with φ1, φ2 ∈ A defined by φ1(x) = x(0) and φ2(x) = x(T ) for
x ∈ C0[0, T ].

Throughout the paper we will use the following assumptions:

(H1) f ∈ Car([0, T ] × X
n) and there exists a positive constant a such

that

a ≤ f(t, x0, . . . , x2n−1)

for a.e. t ∈ [0, T ] and all (x0, . . . , x2n−1) ∈ X
n;

(H2) For a.e. t ∈ [0, T ] and all (x0, . . . , x2n−1) ∈ X
n,

f(t, x0, . . . , x2n−1) ≤

2n−1∑

j=0

hj(|xj |) + ω
(
t,

2n−1∑

j=0

|xj |
)
,
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where hj ∈C0(0,∞) is positive and nonincreasing, ω∈Car([0, T ]×
(0,∞)) is positive and nondecreasing in the second variable,

1∫

0

hj(s
2n−j) ds < ∞ for 0 ≤ j ≤ 2n− 2,

lim
u→∞

h2n−1(u) = c > 0

(1.6)

and

lim sup
u→∞

( u∫

0

ds

h2n−1(s)

)−1
T∫

0

ω(t, Qu) dt < c (1.7)

with

Q =






T 2n − 1

T − 1
if T 6= 1

2n if T = 1
. (1.8)

Remark 1.1. From the properties of the function h2n−1 given in (H2) it

follows that
b∫
0

1
h2n−1(s)

ds < ∞ for all b > 0 and

lim
→∞

1

u

u∫

0

ds

h2n−1(s)
=

1

c
.

Throughout the paper ‖x‖ = max{|x(t)| : 0 ≤ t ≤ T}, ‖x‖L =
T∫
0

|x(t)| dt

and ‖x‖∞ = ess max {|x(t)| : 0 ≤ t ≤ T} stand for the norm in C0[0, T ],
L1[0, T ] and the set L∞[0, T ] of measurable and essentially bounded func-
tions on [0, T ], respectively.

The paper is organized as follows. In Section 2 we introduce a family of
auxiliary regular differential equations. Section 3 is devoted to the study of
auxiliary regular problems. We first present results (Lemmas 3.1–3.6) which
are used in the next part of this section. Then we establish a priori bounds
for solutions of auxiliary problems (Lemma 3.7) and prove their existence
(Lemma 3.8). We also show that the sequence of (2n − 1)st derivatives of
solutions to auxiliary problems is equicontinuous on [0, T ] (Lemma 3.9). Sec-
tion 4 contains the main existence results for the problem (1.1), (1.4), (1.5)
(Theorem 4.1). An example illustrates our theory (Example 4.2).

2. Auxiliary Regular Problems

Let the assumption (H1) be satisfied. For m ∈ N, define Rm and fm ∈
Car([0, T ]× R

2n) by the formulas

Rm =
(
−∞,−

1

m

]
∪

[ 1

m
,∞

)
,

fm(t, x0, x1, x2, . . . , x2n−1) =
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=






f(t, x0, x1, x2, . . . , x2n−1)

for (x0, x1, x2, . . . , x2n−1) ∈
([ 1

m
,∞

)
× Rm

)n

, t ∈ [0, T ],

f
(
t,

1

m
, x1,

1

m
, . . . , x2n−1

)
for t ∈ [0, T ], x1, x3, . . . , x2n−1 ∈ Rm,

x0, x2, . . . , x2n−2 ∈
(
−∞,

1

m

)
,

m

2

[
fm

(
t, x0,

1

m
, x2, . . . , x2n−1

)(
x1 +

1

m

)
−

−fm

(
t, x0,−

1

m
, x2, . . . , x2n−1

)(
x1 −

1

m

)]

for (t, x0, x2, . . . , x2n−1) ∈ [0, T ]× R× (R× Rm)n−1,

x1 ∈
(
−

1

m
,

1

m

)
,

...
m

2

[
fm

(
t, x0, . . . , x2i−2,

1

m
, x2i, . . . , x2n−1

)(
x2i−1 +

1

m

)
−

−fm

(
t, x0, . . . , x2i−2,−

1

m
, x2i, . . . , x2n−1

)(
x2i−1 −

1

m

)]

for (t, x0, . . . , x2i−2, x2i, . . . , x2n−1)∈[0, T ]×R
2i−1×(R×Rm)n−i,

x2i−1 ∈
(
−

1

m
,

1

m

)
,

...
m

2

[
fm

(
t, x0, x1, . . . , x2n−2,

1

m

)(
x2n−1 +

1

m

)
−

−fm

(
t, x0, x1, . . . , x2n−2,−

1

m

)(
x2n−1 −

1

m

)]

for (t, x0, x1, . . . , x2n−2) ∈ [0, T ]× R
2n−1, x2n−1 ∈

(
−

1

m
,

1

m

)
.

Then

a ≤ fm(t, x0, . . . , x2n−1) (2.1)

for a.e. t ∈ [0, T ] and all (x0, . . . , x2n−1) ∈ R
2n, m ∈ N.

Consider the family of the regular differential equations

x(2n)(t) = (1− λ)a + λfm

(
t, x(t), . . . , x(2n−1)(t)

)
(2.2)λ

m

depending on the parameters λ ∈ [0, 1] and m ∈ N. Then (see (2.1))

a ≤ (1− λ)a + λfm(t, x0, . . . , x2n−1) (2.3)

for a.e. t ∈ [0, T ] and all (x0, . . . , x2n−1) ∈ R
2n, λ ∈ [0, 1], m ∈ N. The

assumption (H2) implies that

(1−λ)a+λfm(t, x0, . . . , x2n−1) ≤

2n−1∑

j=0

hj(|xj |)+ω
(
t, 2n+

2n−1∑

j=0

|xj |
)

(2.4)

for a.e. t ∈ [0, T ] and all (x0, . . . , x2n−1) ∈ (R \ {0})2n, λ ∈ [0, 1], m ∈ N.
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3. Auxiliary Results

Let the assumption (H1) be satisfied. For m ∈ N and λ ∈ [0, 1], define
the operator Km,λ : C2n−1[0, T ]→ L1[0, T ] by the formula

(Km,λx)(t) = (1− λ)a + λfm

(
t, x(t), . . . , x(2n−1)(t)

)
. (3.1)

The following five lemmas are needed in the second part of this section.

Lemma 3.1. Let (H1) hold. Let φ2 ∈ A, m ∈ N and k ∈ {p + 1, . . . , n}.
Then for each x ∈ C2n−1[0, T ] and λ ∈ [0, 1], there exists a unique solution

β0 = β0(x, λ) ∈ [0, T ] of the equation

Sk(β; x, λ) = 0, (3.2)

where

Sk(β; x, λ) = φ2

(
1

(2n− 2k)!

t∫

β

(t− s)2(n−k)(Km,λx)(s) ds

)
. (3.3)

In addition, β0 is a continuous function of x and λ.

Proof. Choose x ∈ C2n−1[0, T ] and λ ∈ [0, 1]. By (2.3), (Km,λx)(t) ≥ a for
a.e. t ∈ [0, T ] and consequently

t∫

0

(t− s)2(n−k)(Km,λx)(s) ds ≥ 0,

t∫

T

(t− s)2(n−k)(Km,λx)(s) ds ≤ 0

for t ∈ [0, T ]. Hence Sk(0; x, λ) ≥ 0 and Sk(T ; x, λ) ≤ 0 and since Sk(· ; x, λ)
is a continuous function on [0, T ], there exists a solution β0 ∈ [0, T ] of (3.2).
In order to prove the uniqueness of β0, assume that Sk(β1; x, λ) = 0 for
some β1 ∈ [0, T ], β1 6= β0. If

t0∫

β1

(t0 − s)2(n−k)(Km,λx)(s) ds =

t0∫

β0

(t0 − s)2(n−k)(Km,λx)(s) ds

for some t0 ∈ [0, T ], then

β0∫

β1

(t0 − s)2(n−k)(Km,λx)(s) ds = 0,

contrary to (t0 − s)2(n−k)(Km,λx)(s) ≥ (t0 − s)2(n−k)a for a.e. s ∈ [0, T ].
Hence

t∫

β1

(t− s)2(n−k)(Km,λx)(s) ds−

t∫

β0

(t− s)2(n−k)(Km,λx)(s) ds 6= 0

for t ∈ [0, T ], and then Sk(β1; x, λ) 6= Sk(β0; x, λ), contrary to our assump-
tion Sk(β1; x, λ) = 0.
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Let now {(xj , λj)} ⊂ C2n−1[0, T ] × [0, 1] be convergent, lim
j→∞

(xj , λj) =

(x0, λ0). Let βj ∈ [0, T ] and β0 ∈ [0, T ] be the unique solution of
Sk(β; xj , λj) = 0 and Sk(β; x0, λ0) = 0, respectively. If {βjn

} is a con-
vergent subsequence of {βj}, lim

n→∞
βjn

= Λ, then from the continuity of φ2,

fm ∈ Car([0, T ] × R
2n) and the Lebesgue dominated convergence theorem

we get 0 = lim
n→∞

Sk(βjn
, xjn

, λjn
) = Sk(Λ; x0, λ0). Consequently Λ = β0.

We have proved that any convergent subsequence of {βj} has the same limit
β0. Therefore lim

j→∞
βj = β0, which shows that the solution of (3.2) depends

continuously on x and λ. �

Lemma 3.2. Let (H1) hold. Let φ1 ∈ A, m ∈ N, i ∈ {1, . . . , p} and

k ∈ {p + 1, . . . , n}. Then for each x ∈ C2n−1[0, T ] and λ ∈ [0, 1], there

exists a unique solution α0 = α0(x, λ) ∈ [0, T ] of the equation

Vi(α; x, λ) = 0, (3.4)

where

Vi(α; x, λ) = φ1(L(α; x, λ)), (3.5)

L(α; x, λ)(t) =
1

(2(n− p)− 1)!(2p− 2i)!
×

×

t∫

α

(t− s)2(p−i)

s∫

β0

(s− v)2(n−p)−1(Km,λx)(v) dv ds,

and β0 = β0(x, λ) ∈ [0, T ] is the unique solution of (3.2). In addition, α0 is

a continuous function of x and λ.

Proof. Choose x ∈ C2n−1[0, T ] and λ ∈ [0, 1]. (H1) and (2.1) show that
Vi(· ; x, λ) is continuous on [0, T ] and L(0; x, λ)(t) ≥ 0, L(T ; x, λ)(t) ≤ 0 for
t ∈ [0, T ]. Hence Vi(0; x, λ) ≥ 0, Vi(T ; x, λ) ≤ 0, and therefore Vi(α0; x, λ) =
0 for an α0 ∈ [0, T ]. Essentially the same reasoning as in the proof of
Lemma 3.1 implies that Vi(· ; x, λ) is injective on [0, T ], and consequently
α0 is the unique solution of (3.4).

It remains to show that α0 = α0(x, λ) depends continuously on x and λ.
Let {(xj , λj)} ⊂ C2n−1[0, T ]× [0, 1] be convergent, lim

j→∞
(xj , λj) = (x0, λ0).

Let αj be the (unique) solution of Vi(α; xj , λj) = 0. By Lemma 3.1,

lim
j→∞

β0(xj , λj) = β0(x0, λ0).

Using the Lebesgue dominated convergence theorem, we see that for any
convergent subsequence {αjn

} of {αj}, lim
n→∞

αjn
= Λ, we have

0 = lim
n→∞

Vi(αjn
, xjn

, λjn
) = Vi(Λ; x0, λ0).

Hence Λ = α0(x0, λ0) which shows that any convergent subsequence of {αj}
has the same limit equal to α0(x0, λ0). Therefore {α0(xj , λj)} is convergent
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and lim
j→∞

α0(xj , λj) = α0(x0, λ0). We have proved that α0 is a continuous

function of x and λ. �

Lemma 3.3. Let φ ∈ A and φ(x) = 0 for some x ∈ C0[0, T ]. Then there

exists ξ ∈ [0, T ] such that x(ξ) = 0.

Proof. If not, x > 0 or x < 0 on [0, T ]. Then φ(x) > φ(0) = 0 or φ(x) <

φ(0) = 0, contrary to φ(x) = 0. �

Lemma 3.4. Let (H1) hold. Let x be a solution of the problem (2.2)λ
m,

(1.4), (1.5). Then x(2j−1) is increasing on [0, T ] for 1 ≤ j ≤ n and (1.3)
is true, where α is the unique zero of x(2i0−1) and β is the unique zero of

x(2k0−1). In addition, x(2n−2j) > 0 on [0, T ] \ {β} for 1 ≤ j ≤ n − p and

x(2n−2j) > 0 on [0, T ] \ {α} for n− p + 1 ≤ j ≤ n.

Proof. Let x be a solution of the problem (2.2)λ
m, (1.4), (1.5). Lemma 3.3

and (1.4) show that x(2i0−1)(α) = 0 and x(2k0−1)(β) = 0 for some α, β ∈
[0, T ] and then from (1.5) we see that (1.3) is true. Since x(2n)(t) ≥ a for
a.e. t ∈ [0, T ] due to (2.3), x(2n−1) is increasing on [0, T ] and consequently
x(2n−1) < 0 on [0, β) (if β > 0) and x(2n−1) > 0 on (β, T ] (if β < T ).
Hence β is determined uniquely and x(2n−2)(β) = 0 implies x(2n−2) > 0 on
[0, T ] \ {β}. By this procedure we can verify that x(2j−1) is increasing on
[0, T ] for 1 ≤ j ≤ n. Consequently, α is the unique zero of x(2i0−1). Further,
x(2n−2j) > 0 on [0, T ]\{β} for 1 ≤ j ≤ n−p and x(2n−2j) > 0 on [0, T ]\{α}
for n− p + 1 ≤ j ≤ n. �

Lemma 3.5. Let (H1) hold. Then x is a solution of the problem (2.2)λ
m,

(1.4), (1.5) if and only if x is a fixed point of the operator S : C2n−1[0, T ] →
C2n−1[0, T ] defined by the formula

(Sx)(t) =
1

(2(n− p)− 1)!(2p− 1)!
×

×

t∫

α0

(t− s)2p−1

s∫

β0

(s− v)2(n−p)−1(Km,λx)(v) dv ds, (3.6)

where β0 ∈ [0, T ] is the unique solution of Sk0(β; x, λ) = 0 with Sk0 given

in (3.3), and α0 ∈ [0, T ] is the unique solution of Vi0 (α; x, λ) = 0 with Vi0

given in (3.5).

Proof. Let x be a fixed point of the operator S. By direct calculations we
can verify that x is a solution of (2.2)λ

m, x(j)(α0) = 0 for 0 ≤ j ≤ 2p − 1
and x(j)(β0) = 0 for 2p ≤ j ≤ 2n − 1. From the definition of β0 and α0 it
follows that φ1(x

(2i0−1)) = 0 and φ2(x
(2k0−1)) = 0. Hence x is a solution of

the problem (2.2)λ
m, (1.4), (1.5).

Let x be a solution of the problem (2.2)λ
m, (1.4), (1.5). Then Lemma 3.4

shows that x satisfies (1.3) with α∗ and β∗ instead of α and β, where α∗ and
β∗ are the unique zeros of x(2i0−1) and x(2k0−1), respectively. Hence x is
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a solution of the problem (2.2)λ
m, (1.3). Integrating the equality x(2n)(t) =

(Km,λx)(t) for a.e. t ∈ [0, T ] and using (1.3), we obtain

x(t) =
1

(2(n− p)− 1)!(2p− 1)!
×

×

t∫

α∗

(t− s)2p−1

s∫

β∗

(s− v)2(n−p)−1(Km,λx)(v) dv ds

for t ∈ [0, T ]. Now from (1.4) and Lemmas 3.1 and 3.2 we deduce that
α∗ and β∗ are the unique solutions of the equation Vi0 (α; x, λ) = 0 and
Sk0(β; x, λ) = 0, respectively. Hence α∗ = α0 and β∗ = β0, and conse-
quently x is a fixed point of the operator S. �

The following result is used in the proofs of Lemmas 3.7 and 3.9 and
Theorem 4.1.

Lemma 3.6. Let (H1) hold. Let x be a solution of the problem (2.2)λ
m,

(1.4), (1.5). Then

|x(j)(t)| ≥
a

(2n− j)!
|t− β0|

2n−j , t ∈ [0, T ], 2p ≤ j ≤ 2n− 1, (3.7)

and

|x(j)(t)| ≥






a

(2n− j)!
|t− α̃0|

2n−j for t ∈
[
0,

α̃0 + β̃0

2

]

a

(2n− j)!
|t− β̃0|

2n−j for t ∈
[ α̃0 + β̃0

2
, T

] (3.8)

for 0 ≤ j ≤ 2p − 1, where α0 and β0 are the unique zeros of x(2i0−1) and

x(2k0−1), respectively, and α̃0 = min{α0, β0}, β̃0 = max{α0, β0}.

Proof. By Lemma 3.5, x is a fixed point of the operator S defined in (3.6),
and therefore

x(t) =
1

(2(n− p)− 1)!(2p− 1)!
×

×

t∫

α0

(t− s)2p−1

s∫

β0

(s− v)2(n−p)−1(Km,λx)(v) dv ds

for t ∈ [0, T ]. Since (see (2.3)) (Km,λx)(t) ≥ a for a.e. t ∈ [0, T ], we have

|x(j)(t)| =

∣∣∣∣

t∫

β0

(t− s)2n−j−1

(2n− j − 1)!
(Km,λx)(s) ds

∣∣∣∣ ≥

≥
a

(2n− j − 1)!

∣∣∣∣

t∫

β0

(t− s)2n−j−1 ds

∣∣∣∣ =
a

(2n− j)!
|t− β0|

2n−j
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for t ∈ [0, T ] and 2p ≤ j ≤ 2n− 1, which proves (3.7).
It remains to verify (3.8). Assume for example that α0 ≤ β0 (the case

where α0 > β0 is treated similarly). Since (see (3.7) and Lemma 3.4)

x(2p)(t) ≥
a

(2n− 2p)!
(t− β0)

2(n−p) , t ∈ [0, T ],

and x(j)(α0) = 0 for 0 ≤ j ≤ 2p− 1, we have

|x(2p−1)(t)| =

∣∣∣∣

t∫

α0

x(2p)(s) ds

∣∣∣∣ ≥
a

(2n− 2p)!

∣∣∣∣

t∫

α0

(s− β0)
2(n−p) ds

∣∣∣∣ ≥

≥






a

(2n− 2p + 1)!
|t− α0|

2(n−p)+1 for t ∈
[
0,

α0 + β0

2

]

a

(2n− 2p + 1)!
|t− β0|

2(n−p)+1 for t ∈
[α0 + β0

2
, T

] .

Then

|x(2p−2)(t)| =

∣∣∣∣

t∫

α0

x(2p−1)(s) ds

∣∣∣∣ ≥

≥





a

(2n− 2p + 2)!
|t− α0|

2(n−p+1) for t ∈
[
0,

α0 + β0

2

]

a

(2n− 2p + 2)!
|t− β0|

2(n−p+1) for t ∈
[α0 + β0

2
, T

] .

Applying the above procedure repeatedly, we can verify the validity of (3.8)
for all 0 ≤ j ≤ 2p− 1. �

We are now in a position to give a priori bounds for solutions of the
problem (2.2)λ

m, (1.4), (1.5).

Lemma 3.7. Let the assumptions (H1) and (H2) be satisfied. Let x be

a solution of the problem (2.2)λ
m, (1.4), (1.5). Then there exists a positive

constant K independent of m, λ, p, i0, k0, φ1 and φ2 such that

‖x(j)‖ < K for 0 ≤ j ≤ 2n− 1. (3.9)

Proof. By Lemma 3.4, there exist a unique zero α of x(2i0−1) and a unique
zero β of x(2k0−1), and x satisfies (1.3). Hence

‖x(j)‖ ≤ T 2n−j−1‖x(2n−1)‖, 0 ≤ j ≤ 2n− 1, (3.10)

and therefore
2n−1∑

j=0

‖x(j)‖ ≤ Q‖x(2n−1)‖, (3.11)

where Q is given in (1.8). From Lemma 3.6 it follows that

|x(j)(t)| ≥
a

(2n− j)!
|t− β|2n−j , t ∈ [0, T ], 2p ≤ j ≤ 2n− 1,
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and

|x(j)(t)| ≥






a

(2n− j)!
|t− α̃|2n−j for t ∈

[
0,

α̃ + β̃

2

]

a

(2n− j)!
|t− β̃|2n−j for t ∈

[ α̃ + β̃

2
, T

]

for 0 ≤ j ≤ 2p− 1, where α̃ = min{α, β} and β̃ = max{α, β}. Set

Ij = 2n−j

√
a

(2n− j)!
for 0 ≤ j ≤ 2n− 2. (3.12)

Since the function hj is positive and nonincreasing on (0,∞) by (H2), we
have

T∫

0

hj(|x
(j)(t)|) dt ≤

T∫

0

hj

( a

(2n− j)!
|t− β|2n−j

)
dt ≤

≤
1

Ij

( Ijβ∫

0

hj(s
2n−j) ds +

Ij (T−β)∫

0

hj(s
2n−j) ds

)
<

<
2

Ij

IjT∫

0

hj(s
2n−j) ds (3.13)

for 2p ≤ j ≤ 2n− 2 and

T∫

0

hj(|x
(j)(t)|) dt ≤

≤

T∫

0

hj

( a

(2n− j)!
|t− α|2n−j

)
dt +

T∫

0

hj

( a

(2n− j)!
|t− β|2n−j

)
dt <

<
4

Ij

IjT∫

0

hj(s
2n−j) ds (3.14)

for 0 ≤ j ≤ 2p− 1. Next, by (1.6) and (2.4) we get

(0 <)
x(2n)(t)

h2n−1(|x(2n−1)(t)|)
≤

≤ 1 +
1

c

( 2n−2∑

j=0

hj(|x
(j)(t)|) + ω

(
t, 2n +

2n−1∑

j=0

|x(j)(t)|
)

(3.15)

for a.e. t ∈ [0, T ]. Besides, x(2n) ≥ a a.e. on [0, T ] and x(2n−1)(β) = 0 imply

‖x(2n−1)‖ = max
{
|x(2n−1(0)|, x(2n−1)(T )

}
. (3.16)
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Since

β∫

0

x(2n)(t)

h2n−1(|x(2n−1)(t)|)
dt =

β∫

0

x(2n)(t)

h2n−1(−x(2n−1)(t))
dt =

−x(2n−1)(0)∫

0

ds

h2n−1(s)
,

T∫

β

x(2n)(t)

h2n−1(|x(2n−1)(t)|)
dt =

T∫

β

x(2n)(t)

h2n−1(x(2n−1)(t))
dt =

x(2n−1)(T )∫

0

ds

h2n−1(s)
,

we have (see (3.16))

‖x(2n−1)‖∫

0

ds

h2n−1(s)
≤

T∫

0

x(2n)(t)

h2n−1(|x(2n−1)(t)|)
dt. (3.17)

Integrating (3.15) over [0, T ] and combining (3.11), (3.13), (3.14) and the
fact that ω is nondecreasing in the second variable, we get

T∫

0

x(2n)(t)

h2n−1(|x(2n−1)(t)|)
dt < T+

1

c

(
A+

T∫

0

ω
(
t, 2n+Q‖x(2n−1)‖

)
dt

)
, (3.18)

where

A = 2

2n−2∑

j=2p

1

Ij

IjT∫

0

hj(s
2n−j) ds + 4

2p−1∑

j=0

1

Ij

IjT∫

0

hj(s
2n−j) ds.

Hence (see (3.17) and (3.18))

‖x(2n−1)‖∫

0

ds

h2n−1(s)
< T +

1

c

(
A +

T∫

0

ω
(
t, 2n + Q‖x(2n−1)‖

)
dt

)
. (3.19)

From (1.7) and Remark 1.1 it follows that there exists a positive constant
S such that

u∫

0

ds

h2n−1(s)
> T +

1

c

(
A +

T∫

0

ω(t, 2n + Qu) dt

)

for all u ≥ S. Therefore (3.19) shows that ‖x(2n−1)‖ < S and, by (3.10), we
see that (3.9) is true with K = S max{1, T 2n−1}. �

We now present an existence result for the problem (2.2)1m, (1.4), (1.5).

Lemma 3.8. Let (H1) and (H2) hold. Then for each m ∈ N, p ∈
{1, . . . , n − 1}, i0 ∈ {1, . . . , p}, k0 ∈ {p + 1, . . . , n} and φ1, φ2 ∈ A, the

problem (2.2)1m, (1.4), (1.5) has a solution x satisfying (3.9), where K is the

positive constant in Lemma 3.7.
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Proof. Let K be the positive constant in Lemma 3.7 and put

Ω =
{
x ∈ C2n−1[0, T ] : ‖x(j)‖ < K for 0 ≤ j ≤ 2n− 1

}
.

Choose m ∈ N, p ∈ {1, . . . , n− 1}, i0 ∈ {1, . . . , p}, k0 ∈ {p + 1, . . . , n} and
φ1, φ2 ∈ A. Define the operator F : C2n−1[0, T ] × [0, 1] → C2n−1[0, T ] by
the formula

F(x, λ)(t) =
1

(2(n− p)− 1)!(2p− 1)!
×

×

t∫

α0(x,λ)

(t− s)2p−1

s∫

β0(x,λ)

(s− v)2(n−p)−1(Km,λx)(v) dv ds,

where α0 = α0(x, λ) and β0 = β0(x, λ) are the unique solutions of the
equation Vi0(α; x, λ) = 0 with Vi0 given in (3.5) (see Lemma 3.2) and the
equation Sk0(β; x, λ) = 0 with Sk0 given in (3.3) (see Lemma 3.1), respec-
tively, and Km,λ is given in (3.1). Lemma 3.5 shows that x is a solution
of the problem (2.2)λ

m, (1.4), (1.5) if and only if x is a fixed point of the
operator F(· , λ). Hence our lemma will be proved if the operator F(· , 1)
has a fixed point in Ω. In order to prove the existence of a fixed point of
F(· , 1), we use the topological transversality principle. Let F∗ = F|Ω×[0,1]

denote the restriction of F on the set Ω× [0, 1]. It suffices to verify that

(i) F∗(· , 0) is a constant operator on Ω and F∗(x, 0) ∈ Ω for x ∈ Ω,
(ii) F∗ is a compact operator and
(iii) F∗(x, λ) 6= x for all (x, λ) ∈ ∂Ω× [0, 1].

Since (Km,0x)(t) = a for t ∈ [0, T ], we have

F∗(x, 0)(t) =
a

(2(n− p)− 1)!(2p− 1)!
×

×

t∫

α0(x,0)

(t− s)2p−1

s∫

β0(x,0)

(s− v)2(n−p)−1 dv ds =

=
a

(2n− 2p)!(2p− 1)!

t∫

α0(x,0)

(t− s)2p−1(s− β0(x, 0))2(n−p) ds,

where β0 = β0(x, 0) is the unique solution of the equation

φ2

( a

(2(n− k0) + 1)!
(β − t)2(n−k0)+1

)
= 0

and α0 = α0(x, 0) is the unique solution of the equation

φ1

(
a

(2n− 2p)!(2p− 2i0)!

t∫

α

(t− s)2(p−i0)(s− β0)
2(n−p) ds

)
= 0.

From the above two equation we see that β0 and α0 are independent of x and
therefore F∗(· , 0) is a constant operator. In addition, (F∗(x, 0))(j)(α0) =
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0 for 0 ≤ j ≤ 2p − 1, (F∗(x, 0))(j)(β0) = 0 for 2p ≤ j ≤ 2n − 1 and
(F∗(x, 0))(2n)(t) = a for t ∈ [0, T ]. Hence F∗(x, 0)(t) is a solution of the
problem (2.2)0m, (1.4), (1.5) and consequently F∗(x, 0) ∈ Ω for x ∈ Ω due
to Lemma 3.7, which proves (i).

For (ii), we first note that fm ∈ Car([0, T ] × R
2n), and therefore there

exists γ ∈ L1[0, T ] such that

a ≤ (1− λ)a + λfm(t, x0, . . . , x2n−1) ≤ γ(t) (3.20)

for a.e. t ∈ [0, T ] and all λ ∈ [0, 1], |xj | ≤ K (0 ≤ j ≤ 2n − 1). Let

{(xk, λk)} ⊂ Ω × [0, 1] be a convergent sequence, lim
k→∞

(xk, λk) = (x0, λ0).

Then
lim

m→∞
(Km,λk

xk)(t) = (Km,λ0x0)(t)

for a.e. t ∈ [0, T ], a ≤ (Km,λk
xk)(t) ≤ γ(t) for a.e. t ∈ [0, T ] and all

k ∈ N, and (see Lemmas 3.1 and 3.2) lim
k→∞

β0(xk, λk) = β0(x0, λ0) and

lim
k→∞

α0(xk, λk) = α0(x0, λ0). Hence F∗ is a continuous operator by the

Lebesgue dominated convergence theorem. Let {(xi, λi)} ⊂ Ω× [0, 1]. Then
(see (3.20)) ∣∣(F∗(xi, λi))

(2n)(t)
∣∣ ≤ γ(t)

for a.e. t ∈ [0, T ] and all i ∈ N, and since

(F∗(xi, λi))
(j)(α0(xi, λi)) = 0 for 0 ≤ j ≤ 2p− 1

and
(F∗(xi, λi))

(j)(β0(xi, λi)) = 0 for 2p ≤ j ≤ 2n− 1,

we see that {F∗(xi, λi)} is bounded in C2n−1[0, T ] and also that
{(F∗(xi, λi))

(2n−1)} is equicontinuous on [0, T ]. Hence by the Arzelà–Ascoli
theorem there exists a convergent subsequence of {F∗(xi, λi)} in C2n−1[0, T ].
We have proved that F∗ is a compact operator.

Finally, assume that F∗(x∗, λ∗) = x∗ for some (x∗, λ∗) ∈ Ω × [0, 1].
Then x∗ is a solution of the problem (2.2)λ∗

m , (1.4), (1.5) and so x∗ ∈ Ω by
Lemma 3.7. Hence F∗(x, λ) 6= x for each (x, λ) ∈ ∂Ω× [0, 1], which proves
the property (iii). �

The next result is needed in the proof of Theorem 4.1.

Lemma 3.9. Let the assumptions (H1) and (H2) be satisfied. Let xm be

a solution of the problem (2.2)1m, (1.4), (1.5) for m ∈ N. Then {x
(2n−1)
m } is

equicontinuous on [0, T ].

Proof. By Lemma 3.8 we have

‖x(j)
m ‖ < K for m ∈ N, 0 ≤ j ≤ 2n− 1, (3.21)

where K is a positive constant. Hence (see (3.15))

(0 <)
x

(2n)
m (t)

h2n−1(|x
(2n−1)
m (t)|)

≤
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≤ 1 +
1

c

( 2n−2∑

j=0

hj(|x
(j)
m (t)|) + ω(t, 2n(K + 1))

)
(3.22)

for a.e. t ∈ [0, T ] and all m ∈ N. Let αm and βm be the unique zeros of

x
(2i0−1)
m and x

(2k0−1)
m , respectively. Then Lemma 3.6 shows that

|x(j)
m (t)| ≥

≥
a

(2n− j)!
|t− βm|

2n−j , t∈ [0, T ], 2p≤j≤2n−1, m∈N, (3.23)

and

|x(j)
m (t)| ≥






a

(2n− j)!
|t− α̃m|

2n−j for t ∈
[
0,

α̃m + β̃m

2

]

a

(2n− j)!
|t− β̃m|

2n−j for t ∈
[ α̃m + β̃m

2
, T

] (3.24)

for 0 ≤ j ≤ 2p− 1, where α̃m = min{αm, βm} and β̃m = max{αm, βm}. Set

H(u) =





u∫

0

ds

h2n−1(s)
for u ∈ [0,∞)

−

−u∫

0

ds

h2n−1(s)
for u ∈ (−∞, 0)

.

Then H ∈ C0[0, T ] is an increasing and odd function. Since x
(2n−1)
m < 0 on

[0, βm) (if βm ∈ (0, T ]) and x
(2n−1)
m > 0 on (βm, T ] (if βm ∈ [0, T )), we have

t2∫

t1

x
(2n)
m (t)

h2n−1(|x
(2n−1)
m (t)|)

dt =

=





−x(2n−1)
m (t1)∫

−x
(2n−1)
m (t2)

ds

h2n−1(s)
if 0 ≤ t1 < t2 ≤ βm

−x(2n−1)
m (t1)∫

0

ds

h2n−1(s)
+

x(2n−1)
m (t2)∫

0

ds

h2n−1(s)
if 0 ≤ t1 < βm < t2 ≤ T

x(2n−1)
m (t2)∫

x
(2n−1)
m (t1)

ds

h2n−1(s)
if βm ≤ t1 < t2 ≤ T

.

Consequently,

t2∫

t1

x
(2n)
m (t)

h2n−1(|x
(2n−1)
m (t)|)

dt = H
(
x(2n−1)

m (t2)
)
−H

(
x(2n−1)

m (t1)
)
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for 0 ≤ t1 < t2 ≤ T and m ∈ N. Integrating (3.22) over [t1, t2] ⊂ [0, T ]
yields

H
(
x(2n−1)

m (t2)
)
−H

(
x(2n−1)

m (t1)
)
≤

≤ t2−t1+
1

c

(2n−2∑

j=0

t2∫

t1

hj(|x
(j)
m (t)|) dt+

t2∫

t1

ω(t, 2n(K + 1)) dt

)
. (3.25)

Since ω(· , 2n(K+1)) ∈ L1[0, T ], (3.25) shows that {H(x
(2n−1)
m )} is equicon-

tinuous on [0, T ] if

{ t∫

0

hj(|x
(j)
m (s)|) ds

}

is equicontinuous on [0, T ] for j = 0, 1, . . . , 2n − 2. To prove this property
of

{ t∫

0

hj(|x
(j)
m (s)|) ds

}
,

let 0 ≤ t1 < t2 ≤ T and let the constant Ij be given in (3.12). If 2p ≤ j ≤
2n− 2, then (see (3.23))

t2∫

t1

hj(|x
(j)
m (t)|) dt ≤

t2∫

t1

hj

( a

(2n− j)!
|t− βm|

2n−j
)

dt =

=





1

Ij

Ij (βm−t1)∫

Ij(βm−t2)

hj(s
2n−j) ds if 0 ≤ t1 < t2 ≤ βm

1

Ij

( Ij (βm−t1)∫

0

hj(s
2n−j) ds +

Ij (t2−βm)∫

0

hj(s
2n−j) ds

)

if 0 ≤ t1 < βm < t2 ≤ T

1

Ij

Ij (t2−βm)∫

Ij(t1−βm)

hj(s
2n−j) ds if βm ≤ t1 < t2 ≤ T

.

If 0 ≤ j ≤ 2p− 1, then (see (3.24))

t2∫

t1

hj

(
|x(j)

m (t)|
)
dt =
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=





1

Ij

Ij(α̃m−t1)∫

Ij(α̃m−t2)

hj(s
2n−j) ds if 0 ≤ t1 < t2 ≤ α̃m

1

Ij

( Ij(α̃m−t1)∫

0

hj(s
2n−j) ds +

Ij (t2−α̃m)∫

0

hj(s
2n−j) ds

)

if 0 ≤ t1 < α̃m < t2 ≤
α̃m + β̃m

2

1

Ij

Ij(t2−α̃m)∫

Ij(t1−α̃m)

hj(s
2n−j) ds if α̃m ≤ t1 < t2 ≤

α̃m + β̃m

2

1

Ij

( Ij(t1−α̃m)∫

0

hj(s
2n−j) ds +

Ij (t2−β̃m)∫

0

hj(s
2n−j) ds

)

if α̃m ≤ t1 <
α̃m + β̃m

2
< t2 ≤ T

1

Ij

Ij(β̃m−t1)∫

Ij(β̃m−t2)

hj(s
2n−j) ds if

α̃m + β̃m

2
≤ t1 < t2 ≤ β̃m

1

Ij

( Ij(β̃m−t1)∫

0

hj(s
2n−j) ds +

Ij(t2−β̃m)∫

0

hj(s
2n−j) ds

)

if
α̃m + β̃m

2
≤ t1 < β̃m < t2 ≤ T

1

Ij

Ij(t2−β̃m)∫

Ij(t1−β̃m)

hj(s
2n−j) ds if β̃m ≤ t1 < t2 ≤ T

.

Summarizing, we have

t2∫

t1

hj(|x
(j)
m (t)|) dt ≤

2

Ij

ν2∫

ν1

hj(s
2n−j) ds

for 0 ≤ j ≤ 2n− 2, m ∈ N,

where 0 ≤ ν1 < ν2 ≤ IjT, ν2 − ν1 ≤ Ij(t2 − t1).





(3.26)

Since hj(s
2n−j) ∈ L1(IjT ) for j = 0, 1, . . . , 2n−2 by (H2) (see Remark 1.1),

(3.26) shows that {
t∫
0

hj(|x
(j)
m (s)|) ds} is equicontinuous on [0, T ] for 0 ≤ j ≤

2n − 2. We have proved that {H(x
(2n−1)
m )} is equicontinuous on [0, T ],

and from H being continuous and increasing on R we see that {x
(2n−1)
m } is

equicontinuous on [0, T ] as well. �
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4. An Existence Result and an Example

We now state our main result.

Theorem 4.1. Let (H1) and (H2) hold. Then, for each p ∈ {1, . . . , n−
1}, i0 ∈ {1, . . . , p}, k0 ∈ {p+1, . . . , n} and φ1, φ2 ∈ A, there exist a solution

x of the problem and α, β ∈ [0, T ] such that x(2j) > 0 on [0, T ] \ {α} for

0 ≤ j ≤ p− 1 and x(2j) > 0 on [0, T ] \ {β} for p ≤ j ≤ n− 1.

Proof. Choose p ∈ {1, . . . , n − 1}, i0 ∈ {1, . . . , p}, k0 ∈ {p + 1, . . . , n} and
φ1, φ2 ∈ A. By Lemma 3.8, for each m ∈ N there exists a solution xm of the
problem (2.2)1m, (1.4), (1.5) such that (3.21) is true, where K is a positive

constant and {x
(2n−1)
m } is equicontinuous due to Lemma 3.9. In addition

(see Lemma 3.5),

xm(t) =
1

(2(n− p)− 1)!(2p− 1)!
×

×

t∫

αm

(t− s)2p−1)

s∫

βm

(s− v)2(n−p)−1(Km,1xm)(v) dv ds

for t ∈ [0, T ] and m ∈ N, where βm and αm are the unique solutions in [0, T ]
of the equation Sk0(β; xm, 1) = 0 and Vi0(α; xm, 1) = 0, respectively. Here
Sk0 and Vi0 are defined in (3.3) and (3.5). Besides, the inequalities (3.23)

and (3.24) are true, where α̃m = min{αm, βm}, β̃m = min{αm, βm}. Hence
(see Lemma 3.4)

x
(j)
m (αm) = 0 for 0 ≤ j ≤ 2p− 1,

x
(j)
m (βm) = 0 for 2p ≤ j ≤ 2n− 1,

x
(2n−2j)
m > 0 texton [0, T ] \ {βm} for 1 ≤ j ≤ n− p,

x
(2n−2j)
m > 0 on [0, T ] \ {αm} for n− p + 1 ≤ j < n.






(4.1)

By the Arzelà–Ascoli theorem and the compactness principle, passing
if necessary to subsequences, we may assume that {xm} converges in
C2n−1[0, T ] and {αm}. {βm} in R. Let lim

m→∞
xm = x, lim

m→∞
αm = α∗ and

lim
m→∞

βm = β∗. Then x ∈ C2n−1[0, T ], φ1(x
(2i0−1)) = 0, φ2(x

(2k0−1)) = 0,

|x(j)(t)| ≥
a

(2n− j)!
|t− β∗|

2n−j for t ∈ [0, T ], 2p ≤ j ≤ 2n− 1,

and

|x(j)(t)| ≥





a

(2n− j)!
|t− α̃∗|

2n−j for t ∈
[
0,

α̃∗ + β̃∗

2

]

a

(2n− j)!
|t− β̃∗|

2n−j for t ∈
[ α̃∗ + β̃∗

2
, T

] (4.2)
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for 0 ≤ j ≤ 2p− 1, where α̃∗ = min{α∗, β∗}, β̃∗ = max{α∗, β∗}. Therefore,
β∗ is the unique zero of x(j) for 2p ≤ j ≤ 2n− 1 and from (4.1) and (4.2)
we deduce that α∗ is the unique zero of x(j) for 0 ≤ j ≤ 2p − 1. Besides,
x(2n−2j) > 0 on [0, T ]\{β∗} for 1 ≤ j ≤ n−p and x(2n−2j) > 0 on [0, T ]\{α∗}
for n− p + 1 ≤ j < n. Consequently

lim
m→∞

fm

(
t, xm(t), . . . , x(2n−1)

m (t)
)

=

= f
(
t, x(t), . . . , x(2n−1)(t)

)
for a.e. t ∈ [0, T ],

and then from the boundedness of {x
(2n−1)
m (0)}, {x

(2n−1)
m (T )} and the equal-

ity

x(2n−1)
m (T ) = x(2n−1)

m (0) +

T∫

0

fm

(
t, xm(t), . . . , x(2n−1)

m (t)
)
dt

we see that f(t, x(t), . . . , x(2n−1)(t)) ∈ L1[0, T ] by the Fatou theorem. Wit-
hout loss of generality we can assume that for example α∗ ≤ β∗. Consider
the intervals [0, α∗] (if α∗ > 0), [α∗, β∗] (if α∗ < β∗) and [β∗, T ] (if β∗ < T ).
Let [η, τ ] be an arbitrary but fixed from the above intervals. From (2.4)
with λ = 1 and the Lebesgue dominated convergence theorem it follows
that letting m →∞ in

x(2n−1)
m (t) = x(2n−1)

m

(η + τ

2

)
+

t∫

(η+τ)/2

fm

(
s, xm(s), . . . , x(2n−1)

m (s)
)
ds,

we get

x(2n−1)(t) = x(2n−1)
(η + τ

2

)
+

t∫

(η+τ)/2

f
(
s, x(s), . . . , x(2n−1)(s)

)
ds (4.3)

for t ∈ (η, τ). We know that x ∈ C2n−1[0, T ] and f(t, x(t), . . . , x(2n−1)(t)) ∈
L1[0, T ]. Consequently, (4.3) is true even for t ∈ [η, τ ]. This shows that

x(2n−1)(t) = x(2n−1)(0) +

t∫

0

f
(
s, x(s), . . . , x(2n−1)(s)

)
ds for t ∈ [0, T ].

Hence x ∈ AC2n−1[0, T ] and x is a solution of the problem (1.1), (1.4),
(1.5). �

Example 4.2. Consider the differential equation

x(2n) = q(t) +

2n−1∑

j=0

bj(t)

|x(j)|γj
+

2n−1∑

j=0

cj(t)|x
(j)|δj , (4.4)

where q, bj ∈ L∞[0, T ], cj ∈ L1[0, T ] are nonnegative for 0 ≤ j ≤ 2n − 1,
q(t) ≥ a > 0 for a.e. t ∈ [0, T ] and γj ∈ (0, 1

2n−j ) for 0 ≤ j ≤ 2n − 2,

γ2n−1 > 0, δj ∈ (0, 1) for 0 ≤ j ≤ 2n− 1.
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The equation (4.4) is a special case of (1.1) with

f(t, x0, . . . , x2n−1) = q(t) +

2n−1∑

j=0

bj(t)

|xj |γj
+

2n−1∑

j=0

cj(t)|xj |
δj

satisfying (H1). Put L = max{‖bj‖∞ : 0 ≤ j ≤ 2n− 2} and δ = max{δj :
0 ≤ j ≤ 2n− 1} < 1. Since

2n−1∑

j=0

cj(t)|xj |
δj ≤

2n−1∑

j=0

cj(t)
2n−1∑

j=0

|xj |
δj ≤

2n−1∑

j=0

cj(t)
(
2n +

2n−1∑

j=0

|xj |
δ
)
≤

≤

2n−1∑

j=0

cj(t)
(
2n + (2n)1−δ

( 2n−1∑

j=0

|xj |
)δ)

,

where the inequality
2n−1∑
j=0

b
%
j ≤ (2n)1−%

( ∑2n−1
j=0 bj

)%
(bj ≥ 0, % ∈ (0, 1]) is

used, we have

f(t, x0, . . . , x2n−1) ≤

≤ ‖q‖∞ + L

2n−1∑

j=0

1

|xj |γj
+

2n−1∑

j=0

cj(t)
(
2n + (2n)1−δ

( 2n−1∑

j=0

|xj |
)δ)

.

Hence

f(t, x0, . . . , x2n−1) ≤

2n−1∑

j=0

hj(|xj |) + ω
(
t,

2n−1∑

j=0

|xj |
)
,

where hj(u) = Lu−γj for 0 ≤ j ≤ 2n − 2, h2n−1 = ‖q‖∞ + Lu−γ2n−1 and

w(t, u) =
2n−1∑
j=0

cj(t)(2n + (2n)1−δuδ). Then

1∫

0

hj(s
2n−j) ds =

1∫

0

s−
γj

2n−j ds < ∞

for 0 ≤ j ≤ 2n− 2 and

lim
u→∞

h2n−1(u) = ‖q‖∞.

Since
u∫

0

ds

h2n−1(s)
=

u∫

0

sγ2n−1

‖q‖∞sγ2n−1 + L
ds >

1

‖q‖∞ + L

u∫

1

ds =
u− 1

‖q‖∞ + L

for u ≥ 1 and

T∫

0

ω(t, Qu) dt =
(
2n + (2n)1−δ(Qu)δ

) 2n−1∑

j=0

‖cj‖L,
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where Q is given in (1.8), we have

lim
u→∞

( u∫

0

1

h2n−1(s)
ds

)−1
T∫

0

ω(t, Qu) dt = 0,

and therefore f satisfies (H2). Now Theorem 4.1 guarantees that for each
p ∈ {1, . . . , n − 1}, i0 ∈ {1, . . . , p}, k0 ∈ {p + 1, . . . , n} and φ1, φ2 ∈ A
there exists a solution of the problem (4.4), (1.4), (1.5). Hence, since the
functionals φ1, φ2 : C0[0, T ] → R defined by

φ1(x) =

T∫

0

(x(s))3 ds, φ2(x) = x(t1) + ex(t2) − 1, t1, t2 ∈ [0, T ],

belong to A, for each p ∈ {1, . . . , n − 1}, i0 ∈ {1, . . . , p} and k0 ∈ {p +
1, . . . , n} there exists a solution x of (4.4) such that

T∫

0

(x(2i0−1)(s))3 ds = 0 x(2k0−1)(t1) + ex(2k0−1)(t2) = 1

and x(2j) > 0 on [0, T ] \ {α} for 0 ≤ j ≤ p− 1, x(2j) > 0 on [0, T ] \ {β} for
p ≤ j ≤ n− 1, where α and β are the unique zeros of x(2i0−1) and x(2k0−1),
respectively.

Acknowledgement

Supported by grant No. 201/04/1077 of the Grant Agency of Czech
Republic and by the Council of Czech Government MSM 6198959214.

References

1. R. P. Agarwal and I. Kiguradze, Two-point boundary value problems for higher-
order linear differential equations with strong singularities. Bound. Value Probl.
2006, Art. ID 83910, 1–32.

2. R. P. Agarwal and D. O’Regan, Right focal singular boundary value problems.
ZAMM Z. Angew. Math. Mech. 79(1999), No. 6, 363–373.

3. R. P. Agarwal and D. O’Regan, Twin solutions to singular boundary value prob-
lems. Proc. Amer. Math. Soc. 128(2000), No. 7, 2085–2094.

4. R. P. Agarwal and D. O’Regan, Multiplicity results for singular conjugate, focal,
and (n, p) problems. J. Differential Equations 170(2001), No. 1, 142–156.

5. R. P. Agarwal, D. O’Regan, and V. Lakshmikantham, Singular (p, n − p) focal
and (n, p) higher order boundary value problems. Nonlinear Anal. 42(2000), No. 2,
Ser. A: Theory Methods, 215–228.

6. A. Granas, R. Guenther, and J. Lee, Nonlinear boundary value problems for
ordinary differential equations. Dissertationes Math. (Rozprawy Mat.) 244(1985),
1–128.

7. A. Granas, R. B. Guenther, and J. W. Lee, Some general existence principles in
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