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ON THE CAUCHY TYPE PROBLEM
FOR TWO-DIMENSIONAL FUNCTIONAL
DIFFERENTIAL SYSTEMS



Abstract. In this paper, we establish new efficient conditions sufficient
for the solvability as well as unique solvability of the Cauchy type prob-
lem for two-dimensional functional differential systems in both linear and
nonlinear cases. The main results are applied in the case where the system
considered is the differential system with argument deviations.
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1. INTRODUCTION

On the interval [a, b], we consider the two-dimensional differential system
2y (t) = Fi(wy, 22)(t), 25(t) = Fa(z, 22)(t), (L.1)

where Fiy, Fy : C([a,b];R) x C([a,b];R) — L([a,b]; R) are continuous ope-
rators. By a solution to the system (1.1) we understand a pair (z1,22) of
absolutely continuous on [a, b] functions satisfying (1.1) almost everywhere
on [a, b].

Various initial and boundary value problems are studied in the literature.
We are interested in the Cauchy type problem

z1(a) = p1(z1,22), T2(a) = p2(71,72) (1.2)

for the system (1.1), where ¢1, w2 : C([a,b];R) x C([a,b];R) — R are con-
tinuous functionals. Along with the problem (1.1),(1.2), we consider the
linear problem

21 (t) = Li(z2)(t) + qr(t),  25(8) = La(@1)(t) + q2(b), (1.3)
z1(a) = c1, x2(a) = ca, (1.4)

where ¢4, ¢35 : C([a, b]; R)— L([a, b]; R) are linear bounded operators, ¢1, g2 €
L([a,b];R), and ¢1, ¢z € R.

The Cauchy problem and other types of boundary value problems for
the ordinary differential equations and their systems have been studied in
detail (see, e.g., [2], [4], [11]- [13], [27] and references therein). As for
functional differential equations, the foundations of the theory of bound-
ary value problems for a large class of such equations were constructed in
monographs [1], [10], [21], [23] (see also references therein).

The results known for ordinary differential systems were extended and
generalized for functional differential systems with the so-called Volterra
right-hand sides in the works of Kiguradze and Sokhadze (see, e.g., [17],
[18]). Efficient conditions sufficient for the solvability as well as unique
solvability of various boundary value problems for n-dimensional functional
differential systems of non-Volterra type were established, e.g., in [5], [14]-
[16], [19], [20], [22]. Note also that the Cauchy problem for scalar functional
differential equations was investigated in [3], [6], [7].

We have studied the Cauchy type problem for n-dimensional functional
differential systems in [25]. In this paper, new results are established in
this line for the two—dimensional system (1.1) in both linear and nonlinear
cases. Differential systems with argument deviations are considered in more
detail, in which case further results are obtained.

The paper is organized as follows. In Section 2, auxiliary definitions and
remarks are given. Section 3 deals with the linear problem (1.3), (1.4). The
nonlinear problem (1.1), (1.2) is studied in Section 4. By means of compar-
ison of the nonlinear problem with a suitable linear one, the solvability of
the problem (1.1), (1.2) can be proved under one-sided restrictions imposed
on the right-hand side of the system (1.1). Some of the results given in
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Sections 3 and 4 are proved using the so-called weak theorem on differential
inequalities stated in [26]. Therefore, for the sake of completeness, the main
results of [26] are discussed in Section 5. Theorems presented in this paper
are unimprovable in a certain sense, which is shown by counter-examples
constructed in Section 6.

2. NOTATION AND DEFINITIONS

The following notation is used throughout the paper.

R is the set of all real numbers, R = [0, 400[;

C(Ja, b];R) is the Banach space of continuous functions w : [a,b] — R
equipped with the norm

|ullc = max{|u(t)| s te [a,b}};
C(la,b);Ry) = {u € C([a,b];R) : u(t) >0fort € [a,b]};

C([a, b]; R) is the set of absolutely continuous functions w : [a, ] — R;
Cioc([a, b ; R) is the set of functions u : [a, b[— R such that ue C([a, 8]; R)
for every 8 €]a, b[;

L([a,b];R) is the Banach space of Lebesgue integrable functions h :

[a,b] — R equipped with the norm

b
Ihll. = / Ih(s)| ds;

L([a,b;Ry) = {h € L([a,b;R) : h(t) >0 for a.e. t € [a,b] };
Ly is the set of linear bounded operators ¢ : C([a,b]; R) — L([a, b]; R).

Lap is the set of operators ¢ € L4, which are strongly bounded, i.e., such

that
[6(w)(t)] < n(t)||lullc for a.e. t € [a,b] and all u € C([a,b];R)
with n € L([a, b]; R4).

K([a,b] x A;B), where A C R™ (m € N) and B C R, is the set of
functions f : [a,b] x A — B satisfying the Carathéodory conditions, i.e.,
such that

(i) f(-,z) : [a,b] — B is a measurable function for all z € A,
(ii) f(t,-) : A — B is a continuous function for almost every t € [a, b,

(ili) for every r > 0 there exists a function ¢, € L([a,b]; Ry) such that

|[f(t,x)] < ¢ (t) for a.e. t €[a,b] and all x € A, |jz| <.

Definition 2.1. An operator £ € L, is said to be nondecreasing if it
maps the set C([a, b]; R4 ) into the set L([a,b]; Ry). We denote by P,y the
class of linear nondecreasing operators. We say that an operator ¢ € L, is
nonincreasing if —€ € Pgyp.

Example 2.1. Let ¢ € L, be defined by

0(2)(t) et h(t)z(7(t)) for a.e. t € [a,b] and all z € C([a,b;R), (2.1)
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where h € L([a,b];R) and 7 : [a,b] — [a,]] is a measurable function. Then
{ € Py if and only if

h(t) > 0 for a.e. t € [a,b].

Definition 2.2. We say that ¢ € L, is an a-Volterra operator if for
every by € Ja,b] and z € C([a, b]; R) satisfying
z(t) =0 for t € [a, b
we have

£(2)(t) =0 for a.e. t € [a,bg].

Example 2.2. The operator ¢ € L, defined by (2.1) is an a-Volterra
one if and only if

|h(t)|(7-(t) - t) <0 forae. tea,b].

Definition 2.3. Let ¢ € L, and by €]a,b[. The operator £ :
C(la, bol; R) — L([a, bo]; R) defined by

070 (2)(t) 2 e(2)(t) for ace. t € [a,bo] and all z € C([a, bo];R),

where

~ o Jz(t)  for t€a,bo
A0 = {z(bo) for t € [bo,b]’

is called the restriction of the operator ¢ to the space C([a, bo]; R).
If bp < by < b and z € C([a,b1];R), then we write £9%(2) instead of
2% (2]ja,50])-

Remark 2.1. If £ is an a-Volterra operator, then it is clear that for every
by €]a,b] and z € C([a,b]; R) the condition

0% (2)(t) = £(2)(t) for a.e. t € [a,bo]
holds.

3. LINEAR PROBLEM

In this section, we establish new efficient conditions sufficient for the
unique solvability of the linear problem (1.3),(1.4). Differential systems
with argument deviations are considered in more detail, in which case fur-
ther results are obtained. Note also that the second order functional differ-
ential equation

u’(t) = L(u)(t) + q(t),
where ¢ € L4, and g € L([a,b];R), can be regarded as a particular case of

the system (1.3). A statement concerning this equation is given at the end
of the next section (see Corollary 3.2 below).
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3.1. Formulation of Results. We first formulate the main results, the
proofs being given later in Subsection 3.3.

Theorem 3.1. Let k € {1,2}, m € {0,1}, and {; = {; o — €;1 with
lij € Pap (i =1,2, 5 =0,1). Assume that there exist functions B1, B2 €
C(la, b];R) such that

Bi(t) >0 for t €la,b], i=1,2, (3.1)
B1(t) > Lro(B2)(t) + L1 (B2)(t) for a.e. t € [a,b], (3.2)
6&(0 S —fgfkyo(ﬂl)(t) — fgfkyl(ﬂl)(t) fOT a.e. t € [a, b}, (33)
b
[ tran(Bs)ds < (o) (3.4)
and ’
b b
/gs—k,m(ﬂﬂ(S) ds + /gsfk,lfm (X(Ek,lfm(BQ)))(S) ds < f(2(b), (3.5)

where the inequality (3.5) is supposed to be strict if €s_j m = 0. Here
¢
N / h(s)ds for t € [a,b], he L(la,b]:R). (3.6)

Then the problem (1.3),(1.4) has a unique solution.

If the operators ¢, are monotone and one of them is an a-Volterra
operator, then the assumption 3; € 6’([a,b];R) in the previous theorem
can be weakened (see Theorem 3.2). On the other hand, if both operators
{1, 05 are a-Volterra ones, then the problem (1.3), (1.4) is uniquely solvable
without any additional assumption (see, e.g., [14, § 1.2.3]).

Theorem 3.2. Letk € {1,2}, m € {0,1}, (=1)™Ly, (=1)1="l3_} € Pap,
and let the operator ls_j be an a-Volterra one. Assume that there exist

Y1 € Croc([a, b[; R) and 5 € C([a,b]; R) such that

y(t) >0 for t € [a,b], ~2(t) >0 for t € [a,b], (3.7)
Vi (t) > (=1)"™lk(y2)(t) for a.e. t € [a,b], (3.8)

and
() < (=1)"ls_r(71)(t) for a.e. t € [a,b].} (3.9)

Then the problem (1.3),(1.4) has a unique solution.

Remark 3.1. Since possibly v1(t) — 400 as t — b—, the condition (3.9)
of the previous theorem is understood in the sense that for any by €]a, b|
the relation

(E) < (—1)™E8% (1) (2) for ae. ¢ € [a, bo] (3.10)

1 See Remark 3.1.
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holds, where E?‘ff‘}g is the restriction of the operator f5_j to the space
C(la, bo]; R).

In the next statement, the solvability conditions are given in terms of
norms of the operators appearing on the right-hand side of the system (1.3).

Theorem 3.3. Let k € {1,2}, m € {0,1}, (—1)™l3_k € Pap, and £ =
Lo — lia with £y 0,061 € Pap. Assume that

A3—kAk,m <1 (3.11)

and

Az pAgi-m <4+41—As_Arm, (3.12)

where
b

b
Ag,k:/wg,k(m(s)\ds, Ak,j:/ék,j(m(s)ds for 5=0,1. (3.13)

Then the problem (1.3),(1.4) has a unique solution.

Remark 3.2. The strict inequality (3.11) in Theorem 3.3 cannot be re-
placed by the nonstrict one (see [9, Example 4.2]). Moreover, the strict in-
equality (3.12) cannot be replaced by the nonstrict one provided Ay, =0
(see [9, Example 4.3]).

Theorem 3.4 below is proved using the so-called weak theorem on diffe-
rential inequalities stated in [26]. We first give a definition.

Definition 3.1 ([26, Def. 3.2]). A pair (p, g) € Lap X Lab is said to belong
to the set S2 (a) if for any u, v € C([a, b]; R) such that
u'(t) > p)(t), o' (t) > g(u)(t) for ae. t € [a,b
and
u(a) >0, wv(a) >0
the condition
u(t) >0 for t € [a,b]
is satisfied.

If (1,02) € gfb(a), then we say that the weak theorem on differential
inequalities holds for the system (1.3).

Remark 3.3. Let (¢1,03) € gfb(a). Then it is easy to see that the homo-
geneous problem

@i (t) = b(@2)(t), @5(t) = La(21)(t), (3.14)
z1(a) =0, z2(a)=0 (3.15)
corresponding to (1.3), (1.4) has only the trivial solution. Therefore, accord-

ing to the Fredholm property of linear problems (see, e.g, [23], [16], [14], [8]),
the problem (1.3), (1.4) has a unique solution for every q1, ¢2 € L([a,b];R)
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and c¢1, co € R. However, the inclusion (¢1,43) € gSA‘fb(a) guarantees, in ad-
dition, that the unique solution (x1,x2) to this problem satisfies z1(t) > 0
for ¢ € [a, b] whenever

qr(t) >0 for ae. t€a,b], c;>0 (k=1,2).

Theorem 3.4. Let k € {1,2}, m € {0,1}, (—1)"4), € Pas, and let there
exist operators gg € Lqp and g1 € Pap such that

((_1)7”[/@790) € gfb(a)7 ((_l)mgkng + gl) € gfb(a) (3'16)
and the inequality
‘Kgfk(z)(t) + (—1)1_mgo(z)(t)‘ < q1(|z])(t) for a.e. t € [a,] (3.17)

holds on the set {z € C([a,b];R) : z(a) =0}. Then the problem (1.3),(1.4)
has a unique solution.

Remark 3.4. The assumption (3.16) in the previous theorem can be re-
placed neither by the assumption

(=1)™Lks 90) €85 (@), (1) (1=£1)k, (1=22)(go+g1)) €Ss3(a), (3.18)
nor by the assumption
(=)™ (1—€1)lk, (1—e2)g0) € S3(a), ((—=1)"lr, go+g1) € S3(a), (3.19)

no matter how small £1,e2 € [0, 1] with &1 + &2 > 0 are (see Examples 6.1
and 6.2).

Theorem 3.4 yields

Corollary 3.1. Let k € {1,2}, m € {0,1}, (=1)"ly € Pap, and let
l3_p = l3_p,0 — l3—p,1 with l3_p0,03—k1 € Pap. If

~ 1 ~
(-1l larm) € S3(@) ((~1)t, =5 laram ) € S(a), (3:20)

then the problem (1.3),(1.4) has a unique solution.

Remark 3.5. In [26] the following assertion is proved: If {1 € Pgp and
by = 6270 — 6271 with €210,€211 € P are such that

(61, 020) € S2(a), (01, ~L21) € S3(a),

then (¢1,02) € gSA‘aQb(a) as well. Tt is easy to find operators £1,fs € Lgp such
that under the assumption

~ 1 ~
(b, 20) € S5(@), (61,—3 fon) € ()

the weak theorem on differential inequalities does not hold for the system
(1.3). However, Corollary 3.1 guarantees that the problem (1.3),(1.4) re-
mains to be uniquely solvable.
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As it was said above, the Cauchy problem for second order functional
differential equations can be regarded as a particular case of (1.3), (1.4).
As an example, we consider the problem

¢

w1 d2(7(s)) — daa(Xs)
2"(t) = (1_t),,0/ s ds+q(t), t€[0,1], (3.21)

z(0) =c1, 2'(0) =cy, (3.22)
where di,dy € Ry, v < 1, A € [0,1], 7 : [0,1] — [0,1] is a measurable
function, g € L([0,1];R), and ¢;, c2 € R.

Corollary 3.2. Let at least one of the following conditions be fulfilled:

(a) The deviation T is a delay, i.e.,
7(t) <t for a.e. t€[0,1];
(b) The numbers di and dy satisfy
di < (3=2v)(2-v), d2<2(3-2v)(2-v). (3.23)
Then the problem (3.21), (3.22) has a unique solution.

3.2. Systems with Argument Deviations. In this section, we give some
corollaries of Theorems 3.1-3.4 for systems with deviating arguments. All
statements formulated below are proved in Subsection 3.3.

Consider the differential system

21 (t) = hi(O2(n (1) + 1 (t),  25(t) = ha(t)z1(r2(t)) + g2(t),  (3.24)
where hq1, ha, ¢1, g2 € L([a,b];R) and 7, 72 : [a,b] — [a,b] are measurable

functions.
In order to simplify the formulation of the following statement, we put

hio 2 [hils, hin = [hi_ for i=1,2. (3.25)
Theorem 3.1 implies

Corollary 3.3. Let k € {1,2}, m € {0,1}, and let the functions h; ;
(i =1,2, j = 0,1) be defined by (3.25). Assume that there exist numbers
a; ERy (i =1,...,4), at least one of which is positive, and X € [0, 1] such
that

N ds (b— a)l=>
2

/a1+(a2+a3)s+a4s2> 1—-X 7 (3.26)
T37k(t) d
s

al(b—t)/\( / (b_S)A)|h3_k(t)|§

t

< ag [1 + C fgs))\ ds] for a.e. t €a,b], (3.27)
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t

(b—t)*hs_1(t)] < ay [1 + / (ba—?’))\ds} for a.e. t € [a,b], (3.28)
—s
T3k (t)
Tk(t)
(b—t) M) < [1 + / (biyiz))\ ds] for a.e. t € la,b], (3.29)
t
and
/ d
b—t)> ") ()] <
044( ) (/ (b_s))\)l k()l—
Tk(t)
Tk(t)
< ag {1 + (bfiQs))‘ ds] for a.e. t€la,b], (3.30)
where wy = ||hk,1-m||L and wa has the following properties:

(i) If hig1—m =0 and hg_gm =0, then we = +00;
(i) If hg1—m =0 and hz_pm # 0, then wo = ||ha_kmll;*;
(iii) Ifhk,lfm ?é 0 and hgfkym ?é 0, then ”hk,lmeL <wy < ||h37k,m||21
and

T3k (8)

/bh3k,1m(8)( / hk,lm(é)d§> ds <

b
Qg + awa
< (1= wallh3—gmllz) exp ( - / =D dS)? (3.31)
(iv) If hg1—m #£ 0 and ha—gm =0, then ||hp1—mllL < w2 < +00 and

T37k(5)

/bhs—k,l—m(S)( / hi1—m () dﬁ) ds<exp (—/b% dS)- (3.32)

a a a

Then the problem (3.24), (1.4) has a unique solution.

If neither of the functions h; and hg changes its sign and at least one
of the deviations 71 and 75 is a delay, then we can derive the following
statement from Theorem 3.2.

Corollary 3.4. Let k € {1,2}, m € {0,1},
(=)™ hg(t) >0, (=1)'"""h3_4(t) >0 for a.e. t € [a,b], (3.33)

and
|hs—k(t)|(T3—k(t) —t) <O for a.e. t € [a,b)]. (3.34)
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Assume that there exist numbers oy, ae, ag € Ry at least one of which is
positive, A € [0,1[, and v € [0, \] such that
+oo

ds (b—a)=*
/ a1 + ags + ags? = 1—x 7 (3.35)
(b— )M |he(t)| <y for a.e. t € [a,b], (3.36)
as(b— ) [h(0)|(t — (1)) < s + W for ae. t€[a,b], (3.37)

and

(b=t lha—r(t)] <

t

< ag [1 + o3_k(t) / (bzs + G i@s)/\) ds] for a.e. t € la,b], (3.38)
T3k (t)

where

o3—k(t) def % (1 +sgn(t —m3-x(t))) for a.e. t€ la,b].

Then the problem (3.24), (1.4) has a unique solution.
Corollary 3.4 implies
Corollary 3.5. Let
hi(t) >0, ho(t) <0 for a.e tE€ [a,b].

Assume that there exist numbers o, f € Ry, XA € [0,1], and v € [0, ] such

that
—+o0

/ ds S (b—a)'=>
o+ Bs? 1-X 7

0

and let either
hi(t)(mi(t) —t) <0, |ho(t)|(2(t) —t) > 0 for a.e. t € [a,b],
(b=t "hi(t) < B, (b—t) " |ha(t)| < a for ae. t € [a,b]
or
hi(t)(mi(t) —t) >0, |ho(t)|(2(t) —t) <O for a.e. t € [a,b],
(b=t Vh(t) <a, (b—t) |ho(t)]| < 3 for a.e. t € [a,b]
be satisfied. Then the problem (3.24), (1.4) has a unique solution.

In order to illustrate Theorems 3.3 and 3.4, we consider the differential
system
2y (t) = f()w2(u(t) + qi(t),
2y(t) = ho(t)z1(10(t)) — hi(t)21 (71 (1)) + ¢2(1),
where f, ho, h1 € L([a,b;R), p, 70, 71 : [a,b] — [a,b] are measurable
functions and ¢1, ¢2 € L([a, b]; R).

(3.39)



88 Jii i Sremr

In the next corollary of Theorem 3.3, the solvability conditions are given
in terms of norms of the functions f, hg, and h;.

Corollary 3.6. Let
PGy <1 (3.40)

PGy < 44 4y/1—= PGy, (3.41)

and

where
b

b
P:/f(s) ds, G;= /hi(s) ds for i=0,1. (3.42)

a

Then the problem (3.39), (1.4) has a unique solution.

The following statements can be derived from Theorem 3.4 and the results
given in [26] (see also Section 5).

Corollary 3.7. Let
p(t) <t, m1(t) <t for ae. tE€]la,b, (3.43)

and let the functions f, u, ho, 7o satisfy at least one of the following condi-
tions:

(a)
7o(t)
w(s)ds < é for a.e. t € [a,b],
where t
w(t) ¥ max{f(t), ho(t)} for a.e. t€ [a,b]; (3.44)
(b)
b b o(s)
/cosh (/w(g) d§>h0(5)01(5)< / f(6 d§>ds <1,

where the function w is defined by (3.44) and

o) = 1 (1 + sgn(ro(t) — t)) for a.e. t € [a,b];

2
(c) either
To u(s)
/ﬂﬁ(/m&ﬂﬁw<1
. 7 To(s)

[ ([ serae)as <.

a a
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where
75 =esssup {mo(t) : t € [a,b]}, p* =esssup{u(t): t € [a,b]}.
Furthermore, assume that the functions f, u, hi, 71 satisfy at least one of
the following conditions with v* = 2:
(A)
n(s)

/bf(S)(/hl(§)d§) ds <%

(B) there exist numbers a1, ag € Ry, ag >0, A € [0,1], and v € [0, A]
such that (3.35) holds and

t
1% a9

(b—t) Y F(t)<as [H—ag(t) / (b — s+ = s)/\) ds] for a.e. t€][a,b],
n(t)
(b=t MVhi(t) < v oq for a.e. t € [a,b],

az(b—t)"h(t)(t — (1)) < (a2 + ) for a.e. t € la,b],

v
(b—t)1—A
where

oa(t) def % (1 +sgn(t — pu(t))) for ae. t€ [a,b].

Then the problem (3.39), (1.4) has a unique solution.

3.3. Proofs. Now we prove the statements formulated above. We first note
that the linear problem (1.3), (1.4) has the so-called Fredholm property, i.e.,
the following lemma holds (see, e.g, [23], [16], [14], [8]).

Lemma 3.1. The problem (1.3),(1.4) has a unique solution for every
q1, g2 € L([a,b];R) and c1, c2 € R if and only if the corresponding homoge-
neous problem (3.14), (3.15) has only the trivial solution.

Remark 3.6. It is clear that (z1,22) is a solution to the problem (3.14),
(3.15) if and only if (—x1,x2) is a solution to the problem

ui(t) = —li(u2)(t), uy(t) = —Lla(u1)(t),

ui(a) =0, wg(a) =0.
To prove Theorem 3.1, we need the following lemmas.
Lemma 3.2. Let {; = {; 0 — {; 1 with EZLO’ li1 € Pop (i=1,2). Assume
that there exist functions oy, ag, B1, B2 € C([a,b];R) such that
a;(t) < Bi(t) for t €la,b], i=1,2, ( )
ay(t) < lyolaz)(t) —01.1(B2)(t) for a.e. t € [a,b], (3.46)
ab(t) > lao(Br)(t) — la1(ar)(t) for a.e. t € [a,b], (3.47)
Br(t) > £1,0(B2)(t) — l1,1(a2)(t) for a.e. t € [a,b], (3.48)
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and
ﬂé(t) < Egyo(al)(t) — 3271(51)(15) fOT a.e 1€ [a, b] (349)
Then for arbitrary c¢1 € [a1(a),B1(a)] and ca € [aa(b), B2(b)] the system
(3.14) has at least one solution (x1,x2) satisfying x1(a) = c¢1, x2(b) = ca,
and
a;(t) < zi(t) < Bi(t) for t €a,b], i=1,2. (3.50)

Proof. For k =1,2 and z € C([a,b]; R), we put

X (2)(0) % 3 (1200 — ()] — [2(0) = B0 + 0u(6) + (1)) for 1 € [a,B]

It is clear that x1,x2 : C([a,b];R) — C([a,b];R) are continuous operators
and
ag(t) < xk(2)(t) < Bi(t) for t € [a,b], z€ C(la,b];R), k=1,2. (3.51)

Put

t

Tu(2)(1) % c1—|—/€1(x2(z))(5) ds for t € [a,b], =€ C(la,b]:R),

b
Ta(z)(t) def Co — /fg(xl(z))(s) ds for t € [a,b], z€ C([a,b];R).

By virtue of (3.51) and the assumptions ¢; o, £;1 € Pap (i = 1,2), for any
z € C([a, b]; R) the functions T1(z) and T»(z) belong to the set C([a, b];R),
|Ti(2)(t)| < My, for ¢ € [a,b], k=1,2, (3.52)

and
biolas (1) ~ b, (Bs-4)(0) < £ Tu(2)(1) <
< lr,o(B3—k)(t) — lp1(asz—k)(t) for ae. t€[a,b], k=1,2, (3.53)
where
b

My, = [cx] +/(ek,o t o) (Jas_] + |B5_x) () ds for k= 1,2.

a

Now define T : C([a,b]; R) x C([a,b];R) — C([a,b];R) x C([a,b]; R) by

T(z1,20)(t) & (T1(22) (1), Ta(21)(1)) for t € [a,b], 21, 22 € C([a, b]; R).

In view of (3.52) and (3.53), it is clear that T' maps continuously the Banach
space C([a, b]; R) x C([a, b]; R) into its relatively compact subset. Therefore,
by Schauder’s fixed point theorem, the operator T" has a fixed point, i.e.,
there exist x1, 2 € C([a, b]; R) such that

z1(t) = Ti(x2)(t), x2(t) = Ta(x1)(t) for t € [a,b]. (3.54)
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Obviously, z1, 22 € C([a,b];R), 1(a) = c1, 2(b) = co, and thus
ag(a) < zi(a) < Bi(a), az(b) < z2(b) < Ba2(b). (3.55)
On the other hand, by virtue of (3.48), (3.53) and (3.54), we get
d
21(t) = Ai(t) = 7 Ta(@2)(t) = A(t) <
< El)o(ﬁg)(?ﬁ) — 6171(042)(15) — 51(75) <0 forae. te [a,b],

which, together with (3.55), implies z1(t) < f1(¢) for ¢t € [a,b]. One can
prove the other inequalities in (3.50) analogously using (3.46), (3.47) and
(3.49). However, this means that

t b
z1(t) =1 +/€1(x2)(s) ds, x2(t) =co — /Eg(xl)(s) ds for t € [a,b],

t

that is, (z1,22) is a solution to the system (3.14) satisfying z1(a) = ¢1,
x2(b) = ¢z and (3.50). O

The next lemma follows from [25, Theorem 3.1].
Lemma 3.3. Let there exist g1, g2 € Pap such that (g1, 92) € gfb(a) and,
for any z € C([a,b];R), the inequality
Li(2)(t) sgnz(t) < gx(|2])(t) for a.e. t € [a,b], k=1,2,
holds. Then the problem (3.14), (3.15) has only the trivial solution.
Lemma 3.4. Let {; = ;o — EMNwith lio, i1 € Pap (1 =1,2). Assume
that there exist functions (1, B2 € C([a,b];R) satisfying (3.1) and
B1(t) > l1,0(B2) + £1.1(B2) for a.e. t € [a,b], (3.56)
B5(t) < —lao(B1) — l21(B1) for a.e. t € [a,b). (3.57)

Then the problem

z1(a) =0, x2(b)=0 (3.58)
for the system (3.14) has only the trivial solution.
Proof. Let ¢ : L([a, b]; R) — L([a, b]; R) be defined by

b(R)(t) € ha+b—1t) for ae. t€[a,b], andall h € L([a,b];R),

and let w be the restriction of the operator ¥ to the space C([a,b];R). For
any z € C([a,b];R) and m = 0,1, we put
PLn(2)(0) E n@@)0), 2m(2)(0) € D(lom(2)(0) for ae. ta,b].
It is clear that if (21, 2) is a solution to the problem (3.14), (3.58), then
the pair (z1,w(z2)) is a solution to the problem
v1(t) = p1o(v2)(t) — pra(v2)(t), v5(t) = p2.a(vi)(t) — p2,o(v1)(t), (3.59)
vi(a) =0, wva(a) =0, (3.60)
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and vice versa, if (v1,v2) is a solution to the problem (3.59), (3.60), then
the pair (v1,w(v2)) is a solution to the problem (3.14), (3.58).
On the other hand, it follows from (3.56) and (3.57) that the functions

v = 1 and 2 = w(f2) satisfy
() = pro(y2)(t) + pr.i(v2)(t),  72(t) = p2,o(11)(t) + p2,1(11)(t)
for a.e. ¢ € [a,b],

and since pg,m € Pap (K = 1,2; m = 0, 1), Proposition 5.1 (see Section 5
below) implies

(pl,o +P1,1,P2,0 +p2,1) € §a2b(a)'

It is also easy to verify that the inequalities
[P1.0(2)(t) —p11(2)(t)] sgn 2(t) <pro(|2]) () +pLa
[2,1(2)(t) —p2,0(2)(t)] sgn 2(t) <p2,0(|2]) (1) +p2,1(

hold on the set C([a,b];R). Therefore, by virtue of Lemma 3.3 and the
above mentioned equivalence, we get the assertion of the lemma. O

z|)(¢) for a.e. t€]a,b],

|
|z])(¥) for a.e. t€]a,b]

Proof of Theorem 3.1. According to Lemma 3.1, to prove the theorem it
is sufficient to show that the homogeneous problem (3.14), (3.15) has only
the trivial solution. In view of Remark 3.6, we can assume without loss of
generality that £ = 1 and m = 0. Let (z1,22) be a solution to the problem
(3.14),(3.15).
We first note that it follows from (3.1)—(3.3) that
Ar(t) = Bi(a) + x(€1,0(B2))(t),  B2(t) = Ba(b) for ¢ € [a,b],

and thus (3.5) yields

/fgo dS—‘rﬁg /fzo fl 0( )))(S) ds+

b

+ B2(b /52 1(x(€1,1(1))) (s) ds < Ba(b).

Consequently, using (3.1) we get
b b
/ézyo(x(élyo(l)))(s)ds =+ /ézyl(x(élyl(l)))(s)ds < 1, (361)

because we suppose that the inequality (3.5) is strict if 99 = 0.
Put

oq(t) = —/6171(62)(8) ds for t € [a,b] (3.62)
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and
t t
t) = /fz)o(ﬁl)(s) ds — /fg)l(al)(s)ds for t € [a, b]. (3.63)
It is clear that

as(t) > 0 for t € [a,b], (3.64)

and using (3.4) one can easily verify that

—ay(t) = /fl)l(ﬁg)(s) ds < f1(a) < B1(t) for t € [a,b]. (3.65)

By virtue of (3.64) and (3.65), from (3.2), (3.3), (3.62) and (3.63) we get

o (t) = —11(B2)(t) < l1,0(2)(t) — £1,1(B2)(t) for ace. t € [a,b],
ab(t) = lao(Br)(t) — 52 1(aq)(t) for a.e. t € [a,b], (3.66)
Bi(t) = L1,0(B2)(t) = €1,0(B2)(t) — L1,1(a2)(t) for ae. t € [a,b],
and
Ba(t) < —L2,0(B1)(t) — L2, (B1)(t) <
< égyo(al)(t) — Egyl(ﬂl)(t) for a.e. t € [a, b], (367)
i.e., the inequalities (3.46)—(3.49) are satisfied. Moreover, it is clear that
a1 (t) < pi(t) for t € [a,b]. (3.68)

On the other hand, (3.5), (3.62) and (3.63) result in
b

b
an(b) = / La.0(1)(s) ds + / L1 ({011 (82))) (5) ds < Ba(0).

a

Furthermore, (3.66)—(3.68) yield

ay(t) = L2,0(B1)(t) — L21(01)(t) =
> 5210(041)@) —fzyl(ﬂl)( ) > ,6) ( ) for a.e. t € [a,b].
Hence, the last two relations result in as(t) < B2(t) for ¢t € [a,b], and thus
the condition (3.45) is satisfied.

Therefore, by virtue of Lemma 3.2, the system (3.14) has a solution
(u1,us) satisfying
ui(a) =0, wua(b) = Ba2(b), (3.69)
and
ar(t) <up(t) < Br(t) for t €la,b], k=1,2. (3.70)
We will show that
ug(a) > 0. (3.71)
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Indeed, (3.64) and (3.70) imply wuz(t) > 0 for ¢ € [a, b], and since (uq,uz) is
a solution to the system (3.14), the first equation in (3.14) yields

up(t) < /[1)0(”2)(8)d87 —uq(t) < /6171(u2)(s)d8 for ¢ € [a,b].

Using these relations in the second equation of (3.14), we get

ub(t) < EQ)Q(X(ELO(UQ)))(t) + 4271()((@171(112)))@) for a.e. t € [a,b]. (3.72)

Put M =max{uz(t) : t€[a,b]} and choose tps € [a, b] such that ua(trr) =M.
Integration of (3.72) from a to tps yields

M < us(a) + / £a.0(x(r.0(u2)) (5) ds + / £ (2.1 (u2))) (5) ds <

b b
S UQ(G)+M|:/€27O (X(fl)o(l)))(s) d8+/€271(X(f1)1(1)))(8) ds|. (373)

In view of (3.1) and (3.69), we have M > 0. Therefore, (3.61) and (3.73)
result in M < uz(a) + M, i.e., the inequality (3.71) is true.
Finally, we put

v (t) = ua(b)x (t) — up(t)x2(b) for t € [a,b], k=1,2.

Obviously, (v1,v2) is a solution to the problem (3.14),(3.58). Therefore,
Lemma 3.4 yields v1 = 0 and vs = 0. Consequently, we have

0 = va(a) = —uz(a)z2(b),
which, together with (3.71), implies xz4(b) = 0. However, this means that
(z1,22) is a solution to the problem (3.14),(3.58), and thus Lemma 3.4
yields 1 =0 and z2 = 0.
Consequently, the homogeneous problem (3.14), (3.15) has only the trivial
solution. g

Proof of Theorem 3.2. According to Lemma 3.1, to prove the theorem it
is sufficient to show that the homogeneous problem (3.14), (3.15) has only
the trivial solution. In view of Remark 3.6, we can assume without loss of
generality that k = 1 and m = 0. Assume that, on the contrary, (x1,x2)
is a nontrivial solution to the problem (3.14),(3.15). Then it is clear that
1 # 0 and 29 Z 0.

First suppose that xo does not change its sign. Then we can assume
without loss of generality that xzo(t) > 0 for ¢ € [a,b]. Since the operator
{1 is nondecreasing, the first equation in (3.14) implies z}(¢t) > 0 for a.e.
t € [a,b]. Therefore, by virtue of (3.15), we have z1(t) > 0 for ¢ € [a,b]. On
the other hand, the operator ¢5 is supposed to be nonincreasing, and thus the
second equation in (3.14) yields z45(¢t) < 0 for a.e. ¢ € [a,b]. Consequently,
using the condition x2(a) = 0, we get the contradiction x5 = 0.
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Now suppose that xo changes its sign. Put

. z2(t)
A1 = inf Ao = ot b 3.74
1=1inf A, Ao max{w(t) € |a, ]}, ( )
where
A:{)\>0: M (t) — z1(t) > 0fort € [a,b[}. (3.75)
It is clear that
0< A <400, 0< A <400, (376)
and there exists ¢y € ]a, b] such that
X9 (to)
——= = )\o. 3.77
alte) 2 (370

Without loss of generality, we can assume that tg < b and there exists
by € Jto, b] such that
Indeed, if either tg = bor x2(t) > 0 for t € [to, b[, then there exists t* €]a, to[
with the properties

x2o(t) >0 for t €t*,b] x2(t*) =0.

Then we can redefine the numbers A1, Ao, to for the solution (—xz1, —x2) of
the problem (3.14), (3.15), and we can take by = t*.
Now we put

wi(t) = My (t) — z1(t) for ¢ € [a,b],
wa(t) = Aay2(t) — x2(t) for t € [a,b].
By virtue of (3.7), (3.74) and (3.77), it is clear that
wi(t) >0 for ¢ € [a,b[, ws(t) >0 for t € [a,b], (3.79)

and
wa(to) = 0. (3.80)
Obviously, either A\; < Ag or A1 > As.
First suppose that A1 < A2. Then, in view of (3.7), (3.10), (3.14), (3.76),
(3.79) and the fact that ¢5 is a nonincreasing a-Volterra operator, we get

wh(t) < L8 Nayr — 1) (t) < L58%° (wy)(t) < 0 for a.e. t € [a, byl
Therefore, by virtue of (3.7), (3.76) and (3.78), the last relation yields
wa(to) = wa(bo) = A2v2(bo) > 0,

which contradicts (3.80).
Now suppose that A; > Ay. Then (3.76) implies

A1 > 0. (381)

Using (3.7), (3.8), (3.14), (3.15), (3.79), (3.81) and the assumption £; € Pyp,
we get

wi(t) > 1 (A1y2 — x2)(t) > £1(w2)(t) >0 for a.e. t € [a,b]
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and
wi(a) = Ayi(a) > 0.
Consequently, we have wy(t) > 0 for ¢ € [a,b[. Therefore, there exists € > 0
such that
wi(t) > exq1(t) for t € [a,b[,
ie.,
A1
1+e¢

However, in view of (3.75), the last relation implies A; /(1 +¢) € A, which
contradicts the first equality in (3.74).

The contradictions obtained prove that the homogeneous problem (3.14),
(3.15) has only the trivial solution. O

m(t) —21(t) >0 for t € [a,b].

Proof of Theorem 3.3. According to Lemma 3.1, to prove the theorem it
is sufficient to show that the homogeneous problem (3.14), (3.15) has only
the trivial solution. In view of Remark 3.6, we can assume without loss of
generality that &k = 2 and m = 0. Assume that, on the contrary, (1, 22)
is a nontrivial solution to the problem (3.14),(3.15). Then it is clear that
1 # 0 and 22 Z 0.

Put
M;=max {z;(t) : t€[a,b]}, my=—min{z;(t): t€(a,b]} (3.82)
for i=1,2
and choose «;, 3; € [a,b] (i = 1,2) such that
xi(ag) = My, x;(8;) = —m; for i =1,2. (3.83)

For the sake of clarity we will divide the discussion into the following
cases.

(a) The function x; does not change its sign. Then we can assume
without loss of generality that

x1(t) > 0 for t € [a,b]; (3.84)

(b) The function x; changes its sign. Then, in view of the assumption
£y € Py, the function x4 changes its sign as well. Moreover, we can
assume without loss of generality that as < B2. Further, one of the
following conditions is satisfied:

(bl) a1 < B
(b?) o > ﬁl.

Case (a): z1(t) > 0 for t € [a,b]. Obviously,

My >0, m =0, My >0, mg>0. (385)
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Integration of the first equation in (3.14) from a to a1, in view of (3.15),
(3.3), (3.83), (3.85), and the assumption ¢; € Py, implies

Ml = /61($2)(S)d8 S Mg/ﬁl(l)(s)ds S MQAl. (386)

On the other hand, the integration of the second equation in (3.14) from a
to ap on account of (3.15), (3.3)—(3.85), and the assumptions ¢2.0, £21 € Pap
yields

M2 :/6270(171)(5) dS—/égyl(Il)(S) ds S
S Ml /6270(1)(5) ds S M1A210. (387)

a

Now, using (3.85), the relations (3.86) and (3.87) result in My > 0 and
1 < A1 Az, which contradicts (3.11).

Case (b): Both functions x1 and xo change their signs and ay < (. It is
clear that

M; >0, m; >0 for i =1,2. (3.88)
Put

Qs B2
Ay, = /ﬂz,i(l)(s) ds, A3, = /6271'(1)(8) ds for i=0,1. (3.89)

Integration of the second equation in (3.14) from a to as and from s to Fa
in view of (3.15), (3.3), (3.83), and the assumptions ¢z g, 21 € Pyp implies

M2 = /fg)o(l‘l)(s) dS—/fg)l(xl)(S)dS S

a2 a2

S M1 /6270(1)(8) ds +m1 /6211(1)(8) ds = MlA%,O + mlA%J
and
B2 B2
Ms + mgy = —/6210(561)(8) ds + /6211(561)(8) ds <

B2 B2
<m /6270(1)(8) ds + M, /6271(1)(8) ds = mlA%O + MIA%l .

a2
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Using (3.13), (3.88) and (3.89), from the last two relations we get

M2 M2 mao

+ My A Ml

Now we are in a position to discuss the cases (b1l) and (b2).

A; o+ 11 A3+ Az (3.90)

Case (bl): a1 < (1. Integration of the first equation in (3.14) from a to
aq and from oy to By by virtue of (3.15), (3.3), (3.83) and the assumption
{1 € Py yields

M, = 7161(502)(5) ds < Mo 7161(1)(5) ds
and ) '
B1 B1
My +my = —/61(:1:2)(5) ds < mg /61(1)(8) ds.

In view of (3.88), it follows from the last two relations that

ay B

— 4+ —4+—L< /61(1)(5) ds—|—/€1(1)(5) ds < Aj. (3.91)

a «aq

Now, (3.90) and (3.91) imply

Adyy A1A§0+ LA A% >
1

M1 M2M1 M2 M2 M2m1 mo mq
P p— — 4+ 14+ —= — 4+ 1+ —. 3.92
T oma N mam1 * ma T ma  Mimo M L My (3.92)
If we take (3.11), (3.13), (3.89) and the relation
dl + d2 Z 2\/ d1d2 for dl, dz Z 0 (393)

into account, it is easy to verify that

M1 m1
(L= A AL )+ (1= i) > 2, /(1 - 4143 )1~ And3) >
> 2\/1 — Ai(Ab o+ A2) > 20/T= A1 Ay (3.94)
and
M My M2m1 M, My
>92 42 M2 .
momy M1m2 2 ma’ 4 mo + M2 & (3.95)

Using (3.94) and (3.95) in (3.92), we get

A1A211 > 6+2 1—A1A270 Z4+4\/1—A1A210,
which contradicts (3.12).
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Case (b2): a3 > (1. Integration of the first equation in (3.14) from a to

(1 and from 57 to aq, by virtue of (3.15), (3.3), (3.83) and the assumption
U1 € Pyp yields

B1 B1
my = —/fl(acg)(s) ds < mg/fl(l)(s) ds

and
(5] a1
My +my = /él(scg)(s) ds < My /61(1)(5) ds.
B1 B1
By virtue of (3.88), the last two relations result in
B1 ay
:—; + % + % < /61(1)(3)(13 + /51(1)(3)(13 <A (3.96)
a B1

Now, it follows from (3.90) and (3.96) that

M1 mq
AlA — A, AL — A A2 >
1 2,1-|-m1 1 2’0+M1 1430 2

M2 M1 M2m1 mq mi mo momy
>—+ —+1 1+ —+—+— . 3.97
_m2+m1+ +m2M1+ +M1+M1+M2+M1M2 ( )
In view of (3.93), it is clear that
M. M.
UL Y Rl LY (3.98)

m2M1 M1M2 - M1 ’ mao M2 -
Using (3.11), (3.13), (3.89), (3.93) and (3.98) in (3.97), we get

M
AjAgy >4+ —(1- A A5 ) + % (4— A1435) >
1

mi

>4+ 2\/(1 — A1 AL g4 — A1A3 ) >

>4+ 2\/4 —Aj(4AL  + A3 ) >4+ 4\/1 — Ay (A + A3) >

>44+4,/1— A Az,

which contradicts (3.12).

The contradictions obtained prove that the homogeneous problem (3.14),
(3.15) has only the trivial solution. O

Proof of Theorem 3.4. According to Lemma 3.1, to prove the theorem it
is sufficient to show that the homogeneous problem (3.14), (3.15) has only
the trivial solution. In view of Remark 3.6, we can assume without loss of
generality that £ = 1 and m = 0. Let (z1,22) be a solution to the problem
(3.14), (3.15).
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By virtue of the assumption ({1, go) € gSA‘fb(a) and Remark 3.3, the prob-
lem

uy(t) = Li(u)(t), wuy(t) = go(ur)(t) + g1(z1])(t), (3.99)
ui(a) =0, wu2(a)=0 (3.100)

has a unique solution (u1,us). Combining (3.14), (3.15), (3.17), (3.99) and
(3.100), we get

uy (t) + 2 (t) = l1(ug + 22)(t) for a.e. t € [a,b],
uy(t) +a5(t) = go(ur +a1)(t) + La(z1)(t) — go(@1) + g1(l21))(2) >
> go(uy +1)(t) for a.e. t € [a,b],
ui(a) +z1(a) =0,
and
uy(t) — 2 (t) = l1(ug — 22)(t) for a.e. t € [a,b],
uy(t) = 25(t) = go(ur — 21)(t) — La(1)(t) + go(x1) + g1 (|z1[)(t) =
> go(up —x1)(t) for a.e. t € [a,b],
ui(a) — z1(a) = 0.
Consequently, the inclusion (41, go) € gfb(a) implies
ur(t) +x1(¢) >0, wui(t) —x1(¢t) >0 for ¢t € [a,b],
that is,
|z1(t)] < wuq(t) for t € [a,b]. (3.101)
Taking now the assumption g1 € P,y into account, we get from (3.99) that
ui (t) = l(u2)(t), uh(t) < (go+ g1)(u1)(t) for ae. t€[a,bl. (3.102)

However, we also suppose that (1,90 +¢g1) € gfb(a), and thus the relations
(3.100) and (3.102) result in u;(¢t) < 0 for ¢ € [a, b]. Therefore, (3.101) yields
z1 = 0. Consequently, (3.14) and (3.15) imply o = 0, i.e., the homogeneous

problem (3.14), (3.15) has only the trivial solution. O
Proof of Corollary 3.1. It is not difficult to verify that the assumptions
of Theorem 3.4 are satisfied with gg = —%Eg,kﬁl,m and g1 = l3_pm +
U5 ki—m. O

Proof of Corollary 3.2. Tt is clear that (3.21), (3.22) is a particular case of
(1.3), (14) with a = 0, b= 17 q1 = 07 g2 =4q, 62 = f270 — £2,17 and fl, 6270,

ef

U3 are defined by the formulae ¢1(z)(t) def z(t) and

t t
def  di z(7(s)) def  doy / xz(As)
62,0(2)( ) (1 — t)V/(l — S)V ds, €2,1(Z)( ) (1 — t),j (1 — S)V 8
0 0
for a.e. t € [0,1] and all z € C([0, 1];R). Obviously, ¢1, 2,0, {21 € Po1 and

the operators ¢, {5, are 0-Volterra ones.
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Case (a): Since 7 is a delay, the operator ¢s o is a 0-Volterra one. There-
fore, [24, Proposition 3.4] yields (¢1,¢20+02,1) € 3\31 (0). On the other hand,
for any z € C([0, 1]; R), we have

01(2)(t) sgn z(t) = £1(]z])(t) for a.e. t €0,1],
lo(2)(t) sgnz(t) < Lao(|2])(t) + L2,1(|2])(t) for a.e. t € [0,1],
and thus, the validity of the corollary follows from Lemmas 3.1 and 3.3.
Case (b): Using (3.23), we get
b b

/61 (x(L2,0(1))) (s)ds < 1, /el (x(€2,1(1)))(s) ds < 2,

a a

where x is defined by (3.6). Therefore, [26, Corollaries 3.2 and 3.3] guarantee

~ 1 .
(fl,fz)o) S Sfb(a)7 (fl, —5 £2,1) (S Sfb(a).

Consequently, the assumptions of Corollary 3.1 with £ = 1 and m = 0 are
satisfied. O

In order to prove Corollary 3.3, we need the following lemma.

Lemma 3.5. Let the numbers a; € Ry (i = 1,...,4), at least one of
which is positive, gp > 04 > 0, and A € [0,1] be such that

43

ds _(b—a)t
a1 + (ag + az)s + ays? 1= X (3.103)
%a
Then there exist functions (1, B2 € C([a,b];R) satisfying (3.1),
Bi(t) = (bf—gt)A Bi(t) + (bf—lt)f\ Ba(t) for ae. t€[ab],  (3.104)
By(t) = —(bf—“t)A Bi(t) — (bg—zt)/\ﬁg(t) for ae. t€la,b],  (3.105)
fr(a) = 0a,  P1(b) = ef2(b), [F2(a) =1, (3.106)
and
b
s+«
B=2(b) > exp ( - / (21)_784)15{7 ds). (3.107)
Proof. Define the function g : [a,b] — Ry by setting
o
ds (=)t
PO T Py S g for t € [a,b)].

o(t)
In view of (3.103), we get
o(t) >0 for t € [a,b], ola) =04, 0(b)= o, (3.108)
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and
a1 + (ag + az)o(t) + as0®(t)

o) = (b —t)>

for ¢t € [a,b[. (3.109)

Put

ﬁwﬁwm(—/%%%%QM)xﬂﬂ=wmw)Mt€MM

a

It is not difficult to verify that (1, B2 € 6’([&, bl;R) and the conditions
(3.104) and (3.105) are satisfied. Moreover, by virtue of (3.108) and (3.109),
it is clear that (3.1), (3.106) and (3.107) hold as well. O

Proof of Corollary 3.3. Let £;,0; ; € Lap (1 = 1,2; j = 0,1) be defined by
the formulae

Li(2)(t) = hi(t)z(1:(t)) for a.e. t € [a,b] and all z € C([a,b;R) (3.110)

4 i (2)(¢) et hij(t)z(7;(t)) for a.e. t € [a,b] and all z € C([a,b];R).

It is clear that £; ; € Pap (i =1,2; j =0,1) and ¢; = €;0 — ¢;1 for i = 1,2.
By virtue of (3.26), there exist 04, 0o € Ry such that wi < 0, < @ <
wo and the equality (3.103) is fulfilled. According to Lemma 3.5, we can
find 31, B2 € C([a,b];R) satisfying (3.1) and (3.104)(3.107). Using these
conditions, we get

B1(t) >0, B5(t) <0 forae. te |a,bl. (3.111)
Put
A; ={t €la,b]: hi(t) #0} for i=1,2. (3.112)

If we take (3.1), (3.104), (3.105) and (3.111) into account, by direct calcu-
lation we obtain

t

/mmm:m@—/gwmﬁz

75 (t)
= [a(t) + / (bi‘—“)Aﬁl(s)der / (ba2))\ﬁg(8)ds<

7k (1) 7k (t)
t t
a2

< Ba(t) + B1(t) / (bf;“s))\ds+ﬂ2(7'k(t)) / —(b—S))‘dS

Tk (t) 7k (2)
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and

~
-~

> —B1(t) + Pr(T3-k(t)) / (b%y ds + f2(t) / b= o) ds

T3k (t) T3k (t)

for a.e. t € [a,b]. Therefore, by virtue of (3.1), (3.27)—(3.30), (3.104) and
(3.105), we get from the last two relations

t
@) | moaxd
., h
RO ) p—— mt) N UE
1+ tf 5w d 1+ tf %5 ds
< (bfit)f\ Bi(t) + ﬁ Ba(t) = B(t) for ae. t € Ay
and
—|hs—k()|B1(T3-k(t)) >
T3k (1
hs—kM] [ G2xds
R (b—s)
Z _ | t3 k(t)| 61(0 _ - t 62(t) Z
I+ | g%xds I+ [ g%xds
T3k (t) T3k (t)
> 7 f4t)>\ Bu(t) — G fi))\ Ba(t) = ﬂé(t) for a.e. t € Az_y,

which, together with (3.111), guarantees

B1(t) = |he(®)|B2(7 (1)), Ba(t) < —[ha—k(t)|B1(75-1(t)) for ae. t € [a,b].
Consequently, the functions 1, G2 satisfy (3.2) and (3.3).
On the other hand, in view of (3.106) and (3.111) we get
b

[ tn(©)2(r0(9) ds < Bal@) i aomls = 1 < 20 = B1(0)

a

and thus the inequality (3.4) holds. At last we show that the inequality (3.5)
is satisfied in all cases (i)—(iv). Note that, in view of (3.106) and (3.111),
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we have
b
o = /hg,kﬁm(s)ﬂl(m,k(s))ds—&—
b T3_1(s)
+/h3—k,1—m(5)< / hk,l—m(ﬁ)ﬁz(ﬂc(@)dﬁ) ds <
b T3-k(s)
SQbﬁz(b)Hhs—k,mHL-i—/h3—k,1—m(8)( / hie1—m (&) d§) ds. (3.113)

Case (1): hi1—m =0 and h3_j,m = 0. In this case, we have & = 0 and thus
the inequality (3.5) trivially holds as a strict one.

Case (ii): hgi1—m =0 and hz—,m # 0. The relation (3.113) yields
O < 0p2(b)||ha—k,mll L < wallh3—km| LB2(b) = B2(b),

ie., (3.5) is true.

Case (iii): hg1—m Z 0 and h3_km # 0. In view of (3.31) and (3.107), the
relation (3.113) implies

b

g + oyw
® < o0l la s+ (1= allbasnll) e (= [ 25502 0s) <
b
g + QaOp d ) <

< 0ol + (1= ool e (- [ 222,

< 0uB2(0) |hs—k,mllL + (1 — opl|hs—k,mlIL) B2(b) = Ba(b),
i.e., (3.5) is satisfied.

Case (iv): hg1—m #Z 0 and hs_k ., = 0. Using (3.32) and (3.107), we get
from (3.113) the relation

b b
g + ayws Qg + iy Op
_ s = < — - <
<I><exp( / o) ds) _exp( / s ds) < B2(b),

and thus the inequality (3.5) holds as a strict one.
Consequently, the assumptions of Theorem 3.1 are satisfied. (|

Proof of Corollary 3.4. Let £; € L, (i = 1,2) be defined by (3.110). It
is clear that (—1)™{, (=1)1"™¢3_j € Pap, and the operator f3_j is an a-
Volterra one. By virtue of (3.35), there exist 04, 0 €]0,+00[ such that
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0a < 0 and
Qb

/ ds (b—a)
a1 +ass +aszs2 1—X

Qa

Therefore, according to Lemma 3.5, we can find functions w1, ws € 6([(1, b; R)
satisfying

Wi (t) = ﬁ wi(t) + ﬁmw for ae. t € [a,b],  (3.114)
Wwh(t) = — G f?’t))\ wi(t) for a.e. t € [a,b], (3.115)
and
wi(t) >0 for t € [a,b], i=1,2.
Put
() = (Z}i(gv for ¢ € [a,b[, ~2(t) = wa(t) for ¢ € [a,b].

It is easy to see that 71 € Cloe([a, b[;R), 72 € C([a,b];R), and the condition
(3.7) holds. Using (3.114) and (3.115), we get

0 = (o + o)

b—t
+ (b_aﬁ 72(t) for a.e. t € [a,b], (3.116)
Ya(t) = —# 7 (t) for a.e. t € [a,b]. (3.117)

Consequently, it is clear that «4 is continuous and nonincreasing on [a, b]
and
Yi(t) >0, ~5(t) <0 for ae. t€ [a,b]. (3.118)
Define the set Az_j by (3.112). If we take (3.7), (3.34) and (3.116)—(3.118)
into account, by direct calculation we obtain
i (t)

Y2(7 () = 72(t) + / Ya(8) ds < 72(t) + 72 (t) (Tk(t) — t) =

G

T(t)71(t) + 72(t) for a.e. t € [a,d]

and

o (rsk(t) = —mi (£) + /'MQ%:

T37k(t)
t t

=—7(t)+ / [bis-k(bi‘?S)A},yl(s)ds—k myz(s)dsz

T3k (t) T3k (t)
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t
14 (65

>0+ ntm®) [ [+ s
T3_k(t)

Therefore, by virtue of (3.7), (3.33), (3.34), (3.36)—(3.38), (3.116) and
(3.117), we get from the last relations

(1) (271 1)) < =iy DI = 71 ) (0) + e a(t) <

< (m + m)’?l(t) + (b_a#%(t) = '7{(75) for a.e. t € [a>b}

ds for a.e. t € Az .

and

ha—k(t

(—1)™ha—k ()1 (T3 (t)) > — : |hs—i(t)]

AN CRE L
T3—k
as

ST
which, together with (3.118), guarantees
M) = ()" he(®)r2(mk(t), 73(t) < (1) hs—r ()71 (35— (1))

for a.e. t € [a,b], and thus 1, v satisfy (3.8) and (3.9).
Consequently, the assumptions of Theorem 3.2 are fulfilled. O

1(t) >

7 (t) =~5(t) for ae. t € Az_y,

Proof of Corollary 3.5. The validity of the corollary follows from Corol-
lary 3.4 with a1 = o, as =0, a3 = 3, and k = 2, m = 1 (resp. k = 1,
m =0). O

Proof of Corollary 3.6. Let the operator ¢; € L be defined by the formula

0(2)(t) < F()2(u(t) for ae. t€[a,b] and all z € C([a,b;R), (3.119)

and let EQ = £210 — 6271, where

.5(2) () E hi(t)2(ri(t)) for ace. t € [a,b], all z€ C([a,b);R), (3.120)
0,1

7; =
ObViOUSly7 61, fz)o, 6271 € Pab, fl(l) = f7 52)0(1) = hg, and f271(1) = hi.

Therefore, in view of (3.40) and (3.41), it is clear that the validity of the
corollary follows immediately from Theorem 3.3 with k =2 and m =0. O

Proof of Corollary 3.7. Let the operator ¢1 € L4 be defined by the formula
(3119) and let 42 = 6270 - 6271, where 5210, 6271 are given by (3120) Ob-
viously, 1, 2,0, {21 € Pab. By virtue of the condition (a) (resp. (b), resp.
(c)) of the corollary, it follows from Proposition 5.3 (resp. Proposition 5.4,
resp. Proposition 5.5) that

(U1,02) € gazb(a)-
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On the other hand, in view of the condition (A) (resp. (B)) with v* = 2,
Proposition 5.6 (resp. Proposition 5.7) yields

1 A
(fl, —5 ng) S Sfb(a).
Consequently, the assumptions of Corollary 3.1 with £ = 1 and m = 0 are
satisfied. O

4. NONLINEAR PROBLEM

In this section, we establish new efficient conditions sufficient for the
solvability as well as unique solvability of the nonlinear problem (1.1),(1.2)
under one-sided restrictions imposed on the right-hand side of the system
considered. The main results are finally applied to the case where (1.1) is
a differential system with argument deviations.

Throughout this section, the following assumptions are used:

(Hy) F1, F5 : C([a,b];R) x C([a,b];R) — L([a,b]; R) are continuous op-

erators such that the relation

sup { | Fin, ) ()] = wn, w2 € C([a, B R), urlle + [luzlle <} e
€ L([a,b; R+)

is satisfied for every r > 0 and i = 1, 2.
(Hs2) ¢1, p2 : C([a,b;R) x C([a,b];R) — R are continuous functionals
such that the condition

sup{’g@i(ul,uQ)’ 2 ug,ug € O([a, b; R), [ut]le + [|uzlle < r} < 400
holds for every » > 0 and 7 =1, 2.

4.1. Main Results. We first formulate the main results. Their proofs are
given later in Subsection 4.3.

Theorem 4.1. Let k € {1,2}, the assumptions (H1) and (Hz) be satis-
fied, and let there exist p, go, g1 € Pap such that, for any uy,us € C([a,b]; R),
the inequalities

©i(u1,uz)sgnu;(a) < ni(||u1||c + ||u2|\c) for i=1,2, (4.1)
[Fr(u1,u)(t) — p(us_)(t)] sgnup(t) <
<wi(t Jurlle + [luzllc) for a.e. t € [a,b], (4.2)

and
[Fy—po(ur, u2)(t) — go(ur)(8) + g1 (ur) ()] sgnus—k(t) <
< w3k (t, Jurllc + [Juzllc) for a.e. t € la,b] (4.3)
are fulfilled, where wy, wy € K([a,b]xR;Ry) and n1, n2 : Ry — Ry satisfy

r—4oo 1

lim 1 (m(r) —i—/wi(s,r) ds) =0 for i=1,2. (4.4)

a
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If, moreover,

PGy <1, PGy <4y/1— PGy, (4.5)

where
b

b
P= /p(l)(s) ds, G;= /gi(l)(s) ds for i=0,1, (4.6)

a

then the problem (1.1), (1.2) has at least one solution.

Remark 4.1. The first strict inequality in (4.5) cannot be replaced by the
nonstrict one (see Example 6.3). Furthermore, the second strict inequality
in (4.5) cannot be replaced by the nonstrict one provided Gy = 0 (see
Example 6.4).

Using the weak theorem on differential inequalities, we can prove

Theorem 4.2. Let k € {1,2}, the assumptions (Hy) and (Hz) be satis-
fied, and let there exist p, go, g1 € Pap such that for any ui, us € C([a,b];R)
the inequalities (4.1), (4.2) and

[F3—k(u1, u2)(t) + g1 (ur)(t)] sgnuz—x(t) <
< go(Jur))(t) + ws—k (¢, Jurlle + |uzllc) for a.e. t € [a,b] (4.7)

are fulfilled, where wy, wa € K([a,b]xR4;Ry) andn1, 2 : Ry — Ry satisfy
(4.4). If, moreover,

(p:90) € 853(0), (. —g1) € Sfy(0), (438)
then the problem (1.1), (1.2) has at least one solution.

Remark 4.2. The assumption (4.8) in the previous theorem can be re-
placed neither by the assumption

(1 —e)p, (1 —22)90) € S3(a), (0. —g1) € S3(a) (4.9)
nor by the assumption
(p90) € 85(@), (1 —en)p,—(1 —2)g1) € S (a), (4.10)

no matter how small €1, g2 € [0, 1] with &1 + &2 > 0 are (see Examples 6.5
and 6.6).

Example 4.1. On the interval [0, 7/4], we consider the problem

t/2
2y (t) = dysint / sxa(s/2) ds — e /D720 0 (1) gy (1),
0
: (4.11)
x5 (t) = do cos(2t)/cos(25)(x1(7'(s)) —z1(Xs)) ds+
0

+ q2(t) arctg(w2(t)),
fL'l(O) =cC arctg(x2(t0))7 fEQ(O) = _e./‘()ﬂ'/4 z1(s/2)x2(Ns) deEQ(O) + 2, (412)
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where dy, da € Ry, A € 0,1], 1, g2 € L([0,7/4];R), 7 : [0, 7/4] — [0,7/4]
is a measurable function, ¢y € [0,7/4], and ¢1, c2 € R.
It is clear that (4.11), (4.12) is a particular case of (1.1), (1.2) in which
a=0,b=mn/4, F1, F» and ¢1, 2 are given by the formulae
t/2
Fi(21,22)() 4f 4, sint / s22(s/2) ds — e*1 /D220 5 (1) 4 gy (1),

0
t

Fy(21, 22)() L cos(2t)/cos(23) (z1(7(s))—21(Xs)) ds+qo(t) arctg(z2(t))
0
for a.e. t € [0,7/4] and all z1, z2 € C([0,7/4]; R), and
p1(21, 22) € e arctg(22(to)), @a(z1, 22) E —e a2 00 *22(0)+c2
for z1, zo € C(]0,7/4]; R), respectively.
Let p, go, and g1 be defined by the formulae

t/2

p(2)(t) A sint/sz(s/2) ds,

0

90(2)(t) % dy cos(2t) / cos(2s)z(7(s)) ds,
0

91(2)(t) & dy cos(2¢) /cos(2s)z()\s) ds
0

fora.e. t € [0,7/4] and all z € C([0, 7/4]; R). It is clear that p, go, g1 € Pox
and the operators p, g; are 0-Volterra ones.

(a) Suppose that 7(t) < ¢ for a.e. ¢t € [0,7/4]. Then the operator go
is a 0-Volterra one and thus, according to [24, Prop. 3.4] and [25,
Theorem 4.2], the problem (4.11), (4.12) has at least one solution.

(b) Assume that dy, do satisfy

212
dr(1+2v2) —7n2(1+v2) — 24~
Then [26, Corollaries 3.2 and 3.3] imply the validity of the condi-
tion (4.8). Moreover, for any uy, ug € C([0,7/4]; R) the inequalities
(4.1), (4.2) and (4.7) are fulfilled, where 1 = |c1|7/2, N2 = |cal,

w1 = |q1|, and we = |ga2|m/2. Consequently, according to Theo-
rem 4.2, the problem (4.11), (4.12) has at least one solution.

dids <

Now we establish statements concerning the unique solvability of the
problem (1.1), (1.2).
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Theorem 4.3. Let k € {1,2}, the assumptions (Hy) and (Hz) be sa-
tisfied, and let there exist p,go, g1 € Pap such that for any uy, usz, v1, v2 €
C(la,b]; R) the inequalities

[(Pi(Ul,UQ) - (pi(vl,vg)} sgn(ui(a) —vi(a)) <0 for i=1,2, (4.13)
[P, u2)(8) = Fi(vn, 02)(t) = plus—r = v3-2) (1) x
x sgn(ug(t) — vp(t)) <0 for a.e. t € [a,b], (4.14)
and
[Py, u2) (6) = Fo (01, 02)() = gou — v) () + g1 (e — ) ()] x
sgn (us—p(t) —v3_k(t)) <0 for a.e. t € [a,b]

are fulfilled. If, moreover, the condition (4.5) holds, where P,Gy,G1 are
defined by (4.6), then the problem (1.1),(1.2) has a unique solution.

Theorem 4.4. Let k € {1,2}, the assumptions (H1) and (Hz) be sat-
isfied, and let there exist p,go,g1 € Pap such that for any ui,us,vy,ve €
C([a,b]; R) the inequalities (4.13), (4.14) and

[Foi 1, u2) (8) = P (01, 02) () + g1 (e = 0) ()| %
x sgn (us—p(t) — v3—r(t)) < go(Jur — v|)(t) for a.e. t € [a,b]
are fulfilled. If, moreover, the condition (4.8) holds, then the problem (1.1),

(1.2) has a unique solution.

As an example, we consider the differential system

2y (t) = f(O)wo(u(t) + k1 (8, z1(t), w2 (t), 21 (Ca (1)), w2(C12(t))),
xh(t) = ho(t)x1(10(t)) — h1(t)x1 (71 (t))+ (4.15)
+ ko (t, 21 (t), 2 (t), 21 (C2,1 (1)), w2(C2.2(1))),

where f, hp, € L([a,b];RY), w, Tm, G ¢ [a,b] — [a,b] are measurable func-
tions, and k; € K([a,b] x R4 R), m=0,1,14,j = 1,2.
The next statement follows from Theorem 4.1.

Corollary 4.1. Let the assumption (Hz) be satisfied, the condition (4.1)
hold for arbitrary u1, ug € C([a,b];R), and
ki(t, y1,y2, 21, 22) sgnys < wi(t, [y1| + [y2|)
for a.e. t €la,b] and every y1, y2, 21, 22 € R, i=1,2, (4.16)
where n1, N2 : Ry — Ry, and the nondecreasing in the second argument
functions w1, wy € K([a,b] x Ry;Ry) satisfy (4.4). If, moreover, the con-

dition (4.5) holds with P, Gy, G1 defined by (3.42), then the problem
(4.15), (1.2) has at least one solution.

In view of the results stated in [26], Theorem 4.2 yields
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Corollary 4.2. Let the assumption (Hz) be satisfied, the condition (4.1)
hold for arbitrary uy, us € C([a,b];R), and let the condition (4.16) be ful-
filled, where n1, o : Ry — R4, and the nondecreasing in the second argu-
ment functions wi, we € K([a,b] x Ry;Ry) fulfil (4.4). Assume that (3.43)
holds, the functions f, p, ho, To satisfy at least one of the conditions (a)—(c)
of Corollary 3.7, whereas the functions f, u, h1, 71 fulfil the condition (A)
or/and (B) of Corollary 3.7 with v* = 1. Then the problem (4.15),(1.2) has
at least one solution.

Analogously to Corollaries 4.1 and 4.2, one can derive from Theorems 4.3
and 4.4 conditions sufficient for the unique solvability of the problem (4.15),
(1.2).

4.2. Auxiliary Statements. In order to prove Theorems 4.1-4.4, we need
several auxiliary statements. We first formulate a result from [15] in a form
suitable for us.

Lemma 4.1 ([15, Corollary 3]). Let there exist operators p, g € Lap and
a number o > 0 such that the homogeneous problem

21 (t) = p(x2)(t), @3(t) = g(x1)(t), (4.17)
z1(a) =0, z2(a)=0 (4.18)
has only the trivial solution and for every & €10,1[ arbitrary functions
x1, 22 € C([a,b]; R) satisfying the relations
@) (t) = p(x2)(t) + 0 [Fi(w1, 22)(t) — p(x2)(t)] for a.e. t € [a,b], (4.19)
2 (t) = g(z1)(t) + 6[Fa(w1, 32)(t) — g(x1)(t)] for a.e. t €[a,b]  (4.20)
and
z1(a) = g1 (w1, 22), w2(a) = dpa(z1, 22) (4.21)
admit the estimate
lz1llo + [lzallo < o (4.22)
Then the problem (1.1),(1.2) has at least one solution.
Definition 4.1. We say that a triplet (p, g,¢) € Eab X Eab X Pap belongs
to the set Agyp if there exist p1, g2 €]0, +00[ such that for arbitrary cj, ¢ €

R: and ¢f, ¢5 € L([a,b];Ry) every pair of functions z1, z2 € C([a,b];R)
satisfying the conditions

|z;(a)] < ¢f for i=1,2, (4.23)
[#(t) — p(z2)(t)] sgna1(t) < g5 (t) for ae. t € [a,b], (4.24)
and
[#5(t) — g(z1)(t)] sgnxa(t) < L(|z1])(t) + g3(t) for ae. t € [a,b] (4.25)
admits the estimate

lz1lle + llz2lle < o1(el + llaille) + e2(c5 + llg3]l)- (4.26)
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Lemma 4.2. Let the assumptions (H1) and (Hz) be satisfied and there
exist a triplet (p,g,0) € Aap such that for any ui, us € C([a,b];R) the
inequalities (4.1),

[F1(u1, u2)(t) — puz)(t)] sgnus(t) <
<wi(t, |ulle + uzlle) for ae. t € [a,b] (4.27)

and

[Fa(u1,uz)(t) — g(u1)(t)] sgnua(t) <
< L(Jur])(t) + wa (¢, Jurlle + |uzllc) for ae. t € [a,b] (4.28)

are fulfilled, where wy, wa € K([a,b]xR;Ry) and n1, n2 : Ry — Ry satisfy
(4.4). Then the problem (1.1),(1.2) has at least one solution.

Proof. By virtue of the inclusions (p, g,¢) € Aqp and £ € Pyp, the homoge-
neous problem (4.17), (4.18) has only the trivial solution.

Let 01, 02 be the numbers appearing in Definition 4.1. According to
(4.4), there exists ¢ > 0 such that

b

i 1 1
() +—/wi(s,r)d8< 5

r r 0;

for r>p, 1=1,2. (4.29)
Suppose that z1, x5 € C([a, b]; R) satisfy (4.19)—(4.21) with some § €]0,1[.
Then, using (4.1), (4.27) and (4.28), we obtain
|zi(a)] = x;i(a) sgnz;(a) = dp; (21, 22) sgnz;(a) <
<ni([lzrllo + llz2llo) for i=1,2,
[#] () — p(x2)(t)] sgna1(t) = 6 [Fu(z1, 22)(t) — p(x2)(t)] sgnxi(t) <
< w; (t, |z1]|c + ||1:2||c) for a.e. t € [a,b],

and

[24(t) — g(z1)(t)] sgnaa(t) = 6 [Fa(z, 22)(t) — g(z1)(t)] sgnza(t) <
< Uz |)(t) + w2 (¢, |21 lc + ||$2||c) for a.e. t € [a,b],

i.e., the inequalities (4.23)—(4.25) are fulfilled, where ¢} = n;(||z1||c+ 22|l c)
and qf = w;(+, ||z1]le + [|z2]|¢) for ¢ = 1,2. Hence, by virtue of the assump-
tion (p, g, /) € Aap, we get

b
2
lzille+llz2lc < o (m(lrcllc+llz2|c)+/wi(s, lz1llc +[l22llc) d8>-

=1 a

Consequently, in view of (4.29), the estimate (4.22) is satisfied.
Since g depends neither on 1,22 nor on §, it follows from Lemma 4.1
that the problem (1.1),(1.2) has at least one solution. O
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Lemma 4.3. Let the assumptions (H1) and (Hz) be satisfied and let there
exist a triplet (p,g,f) € Aqp such that for any u1, us, vi, va € C([a,b];R)
the inequalities (4.13),

[Fi (u, us) (t) — Fi(vi,v2)(t) = pluz — v2) ()] ¥
x sgn (u1(t) —vi(t)) <0 for ae. t€ [a,b] (4.30)

and

[Fo(u, u2)(t) — Fa(v1,v2)(t) — g(ur — v1)(t)] sgn (ua(t) — va(t)) <
< U(|lug —v1])(t) for a.e. t € [a,b] (4.31)

are fulfilled. Then the problem (1.1),(1.2) has a unique solution.

Proof. Tt follows from (4.13), (4.30) and (4.31) that for any uj, us €
C(la,b];R) the inequalities (4.1), (4.27) and (4.28) are satisfied, where
7 = |pi(0,0)] and w; = |F;(0,0)| for i = 1,2. Consequently, the assump-
tions of Lemma 4.2 are fulfilled, and thus the problem (1.1),(1.2) has at
least one solution. It remains to show that this problem has at most one
solution.

Indeed, let (z1,22) and (y1,y2) be solutions of the problem (1.1),(1.2).
Put

zi(t) = x;i(t) — yi(t) for t € [a,b], i=1,2.
Using (4.13), (4.30) and (4.31), we get
|zi(a)| = [goi(:vl,:vg) — goi(yl,yg)] sgn (:101 (a) — yl(a)) <0 for i1 =1,2,
[21(t) = p(z2)(t)] sgn 21 (t) =
= [Fi(z1,22)(t) = F1(y1,92)(t) — p(x2 — y2) ()] sen (1 (t) — 91 (t)) <O
for a.e. t € [a,b],

and

[z5(t) — g(z1)(t)] sgn z2(t) =
= [Fa(21,22)(t) — Fa(y1,y2)(t) — g(z1 — y1)(t)] sgn (22(t) — ya(t)) <
< (|z1])(¢) for a.e. t € [a,b].

Therefore, the assumption (p,g,?) € Aqp yields ||z1]c + ||22]lc = 0, ie.,
x1 = y1 and T2 = yo. |:|

Lemma 4.4 ([25, Lemma 4.4]). Let p, go € Lap and let the homogeneous
problem

7 (t) = p(22)(t),  25(t) = go(21)(1),
z1(a) =0, 2z2(a)=0

have only the trivial solution. Then there exists a number oo > 0 such that
for arbitrary cf, ¢5 € R and ¢}, ¢5 € L([a,b];R) the solution (z1, z2) of the
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problem

25(t) = go(z1)(t) + g5 (1), (4.32)

2 (t) = p(22)(t) + ¢i (1)
a) = z9(a) = ¢ (4.33)

z1( cr,
admits the estimate
Iz1llc + llzalle < eo(lei] + llaille) + eo(les| + llasllz)-

4.3. Proofs. We give the following two lemmas on a priori estimates before
we prove Theorems 4.1-4.4.

Lemma 4.5. Let p, go, g1 € Pap satisfy (4.5), where P, Gy, G1 are
defined by (4.6). Then (p, g0 — 91,0) € Aup.

Proof. Let cf, c; € Ry, g, ¢5 € L([a,b;Ry), and 1, x> € C([a,b];R)
satisfy (4.23)—(4.25) with ¢ = go — g1 and £ = 0. We will show that the
estimate (4.26) is true, where

16(PGy +1)(Go + Gy + 1)

®LT TTI6(1 - PGo) — P2G2 (4:34)
and
02 = 4P(llggl_+;§go_+£g; DY (4.35)
It is clear that x1, xo satisfy
2y (t) = p(a2)(t) + q1(t) for a.e. t € [a,b], (4.36)
xh(t) = go(x1)(t) — g1(z1)(t) + q2(t) for a.e. t € [a,b], (4.37)
where

@i(t) = 21(t) — p(x2)(t),  G2(t) = 25(8) — go(x1)(t) + g1 (21)(1)
for a.e. t € [a,b].
Using (4.24) and (4.25), we get

G1(t)sgnai(t) < qi(t), Ga(t)sgnaa(t) < g;3(t) for a.e. t € la,b]. (4.38)
For the sake of clarity we will divide the discussion into the following cases.

(a) Neither of the functions z; and x2 changes its sign and
x1(t)x2(t) > 0 for ¢ € [a,b]; (4.39)

(b) Neither of the functions z7 and x2 changes its sign and
x1(t)z2(t) <0 for t € [a,b]; (4.40)

(¢) The function x; changes its sign. It is clear that one of the following
conditions is satisfied.
(c1) x2(t) >0 for t € [a, b];
(c2) x2(t) <0 for t € [a, b];
(c3) The function zo changes its sign.
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Case (a): Neither of the functions x1 and x2 changes its sign and (4.39)
holds. By virtue of (4.38) and the assumptions p, go, g1 € Pap, from (4.36)
and (4.37) we get

lz1(t)|" < p(|z2])(t) + g5 (t) for a.e. t € [a,b], (4.41)
|z2(t)]" < go(|z1])(t) + ¢5(t) for a.e. t € [a,b]. (4.42)

It is clear that there exist ¢1,t2 € [a,b] such that
()] = Janllo and [ea(ts)] = [lzallc (1.43)

Integration of (4.41) and (4.42) from a to t; and from a to t2, respectively,
in view of (4.23), (4.43), and the assumptions p, gg € Pgp implies

t1 ty

z1lle < ef + /p(lzzl)(S) ds + /q’f(S) ds < ||z2llcP + f1

and
tg t2
[z2llc <5+ /go(lzll)(S) ds + /qS(S) ds < |[z1]lcGo + f2
where
fi= i+ gl for i=1,2. (4.44)

The last two inequalities yield
[z1lle < llzillcPGo+ Pfa+ fi, lz2llo < |z2llcPGo+ Gofi + fo,

and thus, using the first inequality in (4.5), we get

1 P Go 1
<
PGo f1+1 —Fa, f2, w2l < TN f1+1—PG0

Consequently, the estimate (4.26) holds with g and g2 given by (4.34) and
(4.35).

Case (b): Neither of the functions x1 and x2 changes its sign and (4.40)
holds. By virtue of (4.38) and the assumptions p, go, g1 € Pap, from (4.36)
and (4.37) we obtain

|21 (8)|" < ¢f(t) for a.e. t € [a,b], (4.45)
lza ()] < g1(|m1])(t) + 5 (¢) for a.e. t € [a,b]. (4.46)

fa.

lz1lle < 1=

It is clear that there exist t1, t2 € [a,b] such that (4.43) is satisfied. It
follows from (4.23), (4.43) and (4.45) that

ty

leallc sm/qr(s)dss fi.

a
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where f is defined by (4.44). Therefore integration of (4.46) from a to tq,
on account of (4.23), (4.43), (4.44) and the assumption g; € Pgp, implies

tg t2
2]l <e; +/91(|:v1|)(8) ds+/(1§(8) ds<|z1]lcGr+fa<Grfi+fo.

Consequently, the estimate (4.26) holds with o1 and g2 given by (4.34) and
(4.35).

Case (c): The function x1 changes its sign. For i = 1,2, we put
M; =max {z;(t) : t € [a,b]}, m; =—min{z;(t): t €[a,b]} (4.47)
and we choose «;, 8; € [a,b] (i = 1,2) such that
xi(og) = M, x;(8;) = —m,; for i =1,2. (4.48)

Obviously, My > 0 and m; > 0. Therefore, in view of (4.23), there exist
ts € [a,0q] and t4 € [a, £1] such that

lz1(t3)] < e, |z1(ta)] <, (4.49)
if t3 < ay then x1(t) >0 for ¢ €lts, aq], (4.50)

and
if t4 < 51 then 1‘1(75) <0 for t E]t4,ﬁl]. (451)

It is clear that [ts, 1] N [ts, 1] = &. Put

ay B1

P = /p(l)(s) ds, Py= /p(l)(s) ds.

t3 ty
Integration of (4.36) from ¢3 to «; and from t4 to (1, in view of (4.38),
(4.47)—(4.51) and the assumption p € Py implies

(e 5] [e5]

My = nifts) + [ plea)(s)ds+ [ @s)ds <

t3 t3

aq [&5%
<cf+ My /p(l)(s) ds + /qf(s) ds < MyPy + f1 (4.52)
t3 ts

and
B1 B

my = —x1(ts) — [ p(z2)(s)ds — | qi(s)ds <
s
B1 B1
<l +mo /p(l)(s) ds + /qf(s) ds <moPs + f1, (4.53)

where f; is defined by (4.44).
Now we are in a position to discuss the cases (c¢1)—(c3).
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Case (cl): z2(t) > 0 fort € [a,b]. It is clear that My = ||z2]|c and mg < 0.
Therefore, by virtue of the assumption p € Pqyp, (4.52) and (4.53) yield
Ml S M2P + fl , My S f1 . (454)
According to (4.38), (4.47) and the assumptions go, g1 € Pap, from (4.37)
we get
xh(t) < Migo(1)(t) + m1gi(1)(t) + g3 (t) for a.e. t € [a,b].

Integration of the last inequality from a to ag in view of (4.23) and (4.48)
yields

a2 a2 a2

My < c5+ M,y /go(l)(s) ds +my /gl(l)(s) ds + /qg‘(s)ds <
< M Go +my Gy + fo. (4.55)

Combining (4.54) and (4.55), we get
My < MaPGo+ Gofi +Gifi+ fa
and thus, using the first inequality in (4.5) , we obtain

Go + G1 1
=My < .
lealle =M < 7= i+ 7=pg, /2
Now (4.54) yields
1+ PG, P
= M < . 4.56
[#1llc = max{M;,m1} < 11— PG, f1+1—PG0 f2 (4.56)

Consequently, the estimate (4.26) holds with g and g2 given by (4.34) and
(4.35).

Case (c2): z2(t) < 0 for t € [a,b]. Obviously, My < 0 and mg = ||z2]|c.
Therefore, (4.52) and (4.53) imply

M1 S fl, mia S m2P+ fl- (457)
By virtue of (4.38), (4.47) and the assumptions go, g1 € Pap, from (4.37)
we get
—25(t) <migo(1)(t) + M1g1(1)(t) + g3 (t) for a.e. t € [a,b].

Integration of the last inequality from a to (2 in view of (4.23) and (4.48)
yields

B2 B2 B2
ma < cb +m1/go(1)(s) ds+M1/gl(1)(s) ds+/q§(s) ds <
<miGo + MGy + fo. (4.58)

Now (4.57) and (4.58) result in
my < maPGo + Gofr + Gifr + f2
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and thus, using the first inequality in (4.5), we get

Go + G 1
= me < .
|z2]c = ma < 1 PG, f1+1—PG0 fa

Therefore, (4.57) implies (4.56). Consequently, the estimate (4.26) holds
with g1 and pg given by (4.34) and (4.35).

Case (¢3): The function xo changes its sign. It is clear that My > 0 and
mg > 0. Therefore, in view of (4.23), there exist t5 € [a, az] and tg € [a, B2]
such that

w2 (ts)] < 3, |wa(te)| < 3, (4.59)
if t5 < g, then xza(t) >0 for ¢ €lts, aql, (4.60)
and
if t6 < B2, then xa(t) <0 for t €lts, Ba). (4.61)
It is clear that [t5, a2] N [te, f2] = &. Put
ag B2
Gi1 :/gi(l)(s) ds, Gio :/gi(l)(s) ds for i =0,1.
ts te

Integration of (4.37) from t5 to as and from tg to B2 on account of (4.38),
(4.47), (4.48), (4.59)—(4.61) and the assumptions gg, g1 € Pap implies

a2 a2 a2

My = aafts) + [ (a)9)ds ~ [ q(a))ds+ [@s)ds <
ts ts ts
<d +M1/go(1)(s) ds +my /gl(l)(s) ds+/q§(s)ds <
ts ts ts
< Mi1Goj +miGra + f2 (4.62)
and
B2 B2 B2
ma = —oa(te) ~ [go(en)(s)ds+ [ gr(en)(o)ds — [ dals)ds <
te te te
B2 B2 B2
< tm [+ [ g ds+ [ a30s)ds <
te te te
<mi1Go,2 + M1G12 + fa, (4.63)

where f; is defined by (4.44). Using (4.62) and (4.63) in (4.52) and (4.53),
respectively, we get

My < M1 P1Go1 +mi PG+ Pifa + fi,

m1 < m1PaGoo + MiPoGio+ Pafo+ fi.
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Therefore, in view of the first inequality in (4.5), the last two relations yield
0< M(1— PiGos1) < miPiGiy+ Pifs+ fi, (4.64)
0<mi(l = PoGoo) < M1 PoGia+ Pafo+ fi. (4.65)
Combining (4.64) and (4.65), we get
Mi(1 = P1Go1)(1 — PyGoo) < M1 P P,G11G1 2+
+PiP,Grafo+PiGiafi + (1 — PaGoo)(Prfa + f1). (4.66)
It is easy to verify that

1 1
PP < 1 (P +P)? < =P? G11G12< y (G111 +G12)? <

1
<ia

= =

and
(1—-P1Go1)(1 — P2Go2) >1— PGy — PGy > 1— PG.
Hence, (4.3) implies

M 1
Mi(1 — PGp) < 1—61PQG§ + ZP?c;lf2 + PG1fi + Pfo+ f1

and thus, by virtue of the second inequality in (4.5), we get
16(PG1 + 1) 4P(PGy +4)

(1— PGy) — P2G? 1— PGo) — P2G? fa.

One can show analogously that the number m; has the same upper bound

as M;. Consequently,

<
My < 75 f1+16(

z1]o = max{My,m} <

16(PG1 + 1) 4P(PG; + 4)

= 16(1 — PGy) — P2G? hut 16(1 — PGo) — P?G? for  (467)

On the other hand, it follows from (4.62) and (4.63) that
lz2|lc = max{Ma, ma} < (Go + G1)||z1]lc + fa- (4.68)
Therefore, the inequalities (4.67) and (4.68) guarantee the estimate (4.26)
with g1 and pg given by (4.34) and (4.35). O

Lemma 4.6. Let p, go, g1 € Pap satisfy (4.8). Then (p, —g1,90) € Aap-

Proof. By virtue of the inclusion (p, go) € gfb(a), the assumptions of Lem-
ma 4.4 are fulfilled. Let oo be the number appearing in the lemma indicated.
Assume that ¢f, ¢5 € Ry, ¢f, ¢¢ € L([a,b;Ry) and z1, x2 € C([a,b];R)
satisfy (4.23)-(4.25) with ¢ = —g; and ¢ = gg. We will show that the
estimate (4.26) holds, where

01 =00(14+Go+G1), 02=00(1+Go+Gy1)+1, (4.69)

and G, G are defined by (4.6).
It is clear that z7 and x4 satisfy (4.36) and

z5(t) = —g1(21)(t) + q2(t) for ae. ¢ € [a,b], (4.70)
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where
@) =21(t) = p(x2)(t),  G2(t) = 25(t) + g1(21)(t) for ae. t € [a,b].
Using (4.24) and (4.25), we get
q1(t)sgnzi(t) < gi(t) for ae. t € a,b], (4.71)
G2(t)sgnxa(t) < go(|z1])(t) + g5 (t) for a.e. t € [a,b]. (4.72)
In view of (4.71) and the assumption p € Pg, the relation (4.36) yields

2 () = & () (1) senms (1) + plaa)(0) + B0 TG ) <
< p([z2]4+)(t) + i (t) for a.e. t € [a,b] (4.73)
and
a1 = 5 () (1) senms () — pla)(0) + B2 =L G, ) <
< p([w2]-)(t) + i (t) for ae. t € [a,b]. (4.74)

On the other hand, by virtue of (4.72) and the assumptions go, g1 € Pas,
from (4.70) we get

1 sgnaa(t) +1 -

220} = 5 (= (@) () senaa(t) — g1 (@) () + ——F——@(1) <
< g1([z1]-)(t) + go(lza|)(t) +g5(t) =
= —g1([z1]+) () + g1 (Jz1 ) () + go(|z1 ) (¢) + a5 (t) (4.75)

for a.e. t € [a, D]
and

o). = 5 (— (@) (1) smna®) + (o) (1) + BRI =L ) <
< gi(fz]4) (@) + go(|lza[)(t) + a5 (t) =
= —g1([z1]-) () + g1(lz1)(t) + go(|z1[)(t) + 65 (¢) (4.76)

for a.e. t € [a,b].
Furthermore, (4.23) implies

wi(@)s < ¢ [wia)]- < for i=1,2. (4.77)
According to the assumption (p, —g1) € gfb(a) and Remark 3.3, the problem
u (t) = plu2)(t) + i (¢), (4.78)

uy(t) = —g1(u1)(t) + g1(|z1])(t) + go(Jz1))(t) + g5 (8), (4.79)
ui(a) =cj, wuz(a)=ch (4.80)
has a unique solution (u1,usg).

On the other hand, using the inclusion (p, —g1) € S'\a?b(a)7 from (4.73)—
(4.80) we get

[Z1()]+ < ua(t), [21(t)]- < wa(t) for ¢ € [a,b],
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ie.,

|z1(t)] < wuq(t) for t € [a,b]. (4.81)

Taking now the assumptions gg, g1 € Pap into account, it follows from (4.78)
and (4.79) that

ui(t) = p(u2)(t) + a1 (t), us(t) < go(wa)(t) +¢3(t) for ae. t € [a,b].

However, we also suppose that (p,go) € gfb(a) and thus the function wu,
satisfies

ui(t) < 2z1(t) for t € [a,b],
where (z1,22) is a solution to the problem (4.32), (4.33). From (4.81) and
Lemma 4.4 it is clear that

le1lle < eo(ci + llaillL) + oo(cs + llazllz).- (4.82)
Now observe that by virtue of (4.72) and the assumptions go, g1 € Pap the
relation (4.70) yields
|2(t)]" = —g1(z1)(t) sgn z2(t) + @2(t) sgn 22 (t) <
< g1(lza])(#) + go(|z1])(t) + g5 (¢) <
< (9o(M)®) + g1 (1)) |21l + a5(t) for ae. t € [a,b].

Therefore in view of (4.23) it follows from the last relation that

o) < 5+ ( / go(1)(s) ds + / B (1)(6)ds o+

a a
t

+/q§(s) ds for t € [a,b],

and thus
[z2llc < (Go + Gi)llz1llc + ¢35 + (65|, (4.83)

where G, G1 are defined by (4.6).
Therefore, (4.82) and (4.83) guarantee the estimate (4.26) with ¢; and
02 given by (4.69). O

Proof of Theorem 4.1. Without loss of generality we can assume that k£ = 1.
According to Lemma 4.5, the condition (4.5) yields the inclusion
(p, 90 — g1,0) € Agp. Consequently, the validity of the theorem follows
from Lemma 4.2. O

Proof of Theorem 4.2. Without loss of generality we can assume that k = 1.
By virtue of Lemma 4.6, the condition (4.8) implies the inclusion
(p,—g1,90) € Aap. Consequently, the validity of the theorem follows from
Lemma 4.2. ]
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Proof of Theorem 4.3. Without loss of generality we can assume that k = 1.
According to Lemma 4.5, the condition (4.5) yields the inclusion
(p,90 — 91,0) € Agup. Consequently, the validity of the theorem follows
from Lemma 4.3. |

Proof of Theorem 4.4. Without loss of generality we can assume that k£ = 1.
By virtue of Lemma 4.6, the condition (4.8) implies the inclusion
(p,—g1,90) € Aap. Consequently, the validity of the theorem follows from
Lemma 4.3. O

Proof of Corollary 4.1. Put

Fi(z1,22)(t) € F(8)z2(ult)) + ki (t 21 (8), 22(8), 21 (G (1), 22(Gr2(8)))
for a.e. t € [a,b] and all 21, 25 € C([a,b]; R) (4.84)

and

Fa(z1,22)(t) & ho(8)z1(10(£)) — ha(t)21 (1 (1)) +

1
+ka(t, 21(t), 22(t), 21 (2,1 (1)), 22(C2,2(1)))
for a.e. t € [a,b] and all z1, z2 € C([a,b]; R). (4.85)

It is clear that F} and Fy satisfy the condition (H;). Moreover, it follows
from (4.16) that for any u1, us € C([a,b];R) the inequalities (4.2) and (4.3)
with & = 1 are fulfilled, where

p(2)(t ) f( )z(u(t)) for a.e. t € [a,b] and all z € C([a,b];R), (4.86)
9:(2) (1) < hi(H)2(r:(t)) for ae. t€[a,b], all z€C([a,b);R), i=0,1. (4.87)

Furthermore, p(1) = f, go(1) = ho and g1(1) = hq, and thus the assump-
tions of Theorem 4.1 with k£ = 1 are satisfied. O

Proof of Corollary 4.2. Let Fy and F; be defined by (4.84) and (4.85), re-
spectively. It is clear that F; and F» satisfy the condition (H7). Moreover,
it follows from (4.16) that for any u1, us € C([a, b]; R) the inequalities (4.2)
and (4.7) with k& = 1 are fulfilled, where p and go, g1 are defined by (4.86)
and (4.87), respectively.

By virtue of the condition (a) (resp. (b), resp. (c)) of the corollary, it
follows from Proposition 5.3 (resp. Proposition 5.4, resp. Proposition 5.5)
that

(1, 90) € S (a).
On the other hand, in view of the condition (A) (resp. (B)) with v* = 1,
Proposition 5.6 (resp. Proposition 5.7) yields

(p,—9g1) € S3(a).
Consequently, the assumptions of Theorem 4.2 with k = 1 are satisfied. O
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5. ON THE SET 82 (a)

In this section, we give some sufficient conditions stated in [26] guaran-
teeing the validity of the inclusion (p, g) € 82 (a). We first formulate rather
general results.

Proposition 5.1 ([26, Theorem 3.2]). Let p, g € Pap. Then (p,g) €
2 (a) if and only if there exist functions v1, v2 € C([a,b]; R) such that
y(t) >0, 72(t) >0 for t € a,b],
M) 2 p(2)(t), (1) = g(n)(t) for ae. t € [a,b].
Proposition 5.2 ([26, Theorem 3.3]). Let p € Pup, —g € Pap, and let
p, g be a-Volterra operators. Then (p,g) € S2(a) if and only if there exist
functions 1, v2 € Cioc([a, b[;R) such that v1 € C([a,b];R),
1 () < p(y2)(t) for a.e. t € [a,b],? (5.1)
Y(t) < g(m)(t) for ae. t€ab],
()20 for t€[mb, @) >0, 1(a) <0,
and

()] + [v2(B)] #0 for t €]a,b[.

Remark 5.1. Since possibly v2(t) — —oo as t — b—, the condition (5.1)
of the previous proposition is understood in the sense that for any by € ]a, b|
the relation

i (t) < p®(y2)(t) for a.e. t € [a,bo]
holds, where p?® is a restriction of the operator p to the space C([a, bo; R).
Choosing suitable functions «; and 72 in the propositions stated above,
one can derive several efficient conditions sufficient for the validity of the
inclusion (p,g) € 82 (a). These conditions are not formulated here in the

general form; we present however some corollaries for “operators with ar-
gument deviations”.

Proposition 5.3 ([26, Theorem 5.1]). Let hy € L([a,b];R4) and 7y :
[a,b] — [a,b] be measurable functions (k = 1,2) such that

Tk (t)

1

/ w(s)ds < — for a.e. t € a,b], k=1,2,
e

t

where '
w(t) < max{hy(t), ha(t)} for a.e. t € [a,b). (5.2)
Then (¢1,42) € gfb(a), where

0e(2) O LRy (1) (7 (8)) for ace. tefab], all z€C([a,b;R), k=1,2. (5.3)

2 See Remark 5.1.
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Proposition 5.4 ([26, Theorem 5.2]). Let hi, € L([a,b];Ry), 7% : [a,b] —
[a,b] be measurable functions (k =1,2), and let max{Ai, A2} < 1, where

b b Tk (8)

w= [eos (([utyae )i [ ranie)dc) as

S

b b T3k (S)

+/@m</@@ﬁ%>%-ﬂﬁm—aﬁ(L/’m@ﬁ%>m;ﬁrk=L2,

the function w is defined by (5.2), and

o (t) def % (1+sgn(re(t) —t)) for a.e. t € [a,b].

Then (¢1,42) € gfb(a), where {1, U3 are defined by (5.3).

Proposition 5.5 ([26, Theorems 5.3 and 5.3']). Let hy € L([a,b];Ry),
Tr : [a,b] — [a,b] be measurable functions (k = 1,2), and let there exist
m € {1,2} such that

7%w$(mf®M@MQ%<L

where 1) = esssup{7x(t) : t € [a,b]} for k =1,2. Then (¢1,02) € gfb(a),
where {1, {3 are defined by (5.3).

Proposition 5.6 ([26, Theorem 5.5]). Let hy € L([a,b];R) and 7y :
[a,b] — [a,b] be measurable functions (k = 1,2) such that

hi(t)(mx(t) —t) <0 for a.e. t €a,b], k=1,2. (5.4)
If
b T1(s)
[ [ m@de)as <1

then (¢1,42) € gfb(a), where
0h(2)(8) = (1) (1) = (1))
for a.e. t €la,b] and all z € C([a,b;R), k=1,2. (5.5)

Proposition 5.7 ([26, Theorem 5.6]). Let hy € L([a,b];R4) and 7y :
[a,b] — [a,b] be measurable functions (k = 1,2) fulfilling (5.4). Assume
that there exist numbers ai,as € Ry, a3 >0, A € [0,1] and v € [0, A] such
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that (3.35) holds,

t
1% [6%)

(b—1t)*""hi(t) < as [1—1—03(75) / (E—i— = s)*) ds} for a.e. t€(a,b],
71(t)
(b—t) " hy(t) < oy for a.e. t € [a,b],

and
az(b—t) ha(t)(t — 2(t)) < ag + W for a.e. t € la,b,
where
os(t) def % (1+sgn(t —71(t))) for a.e. t € [a,b].

Then (£1,42) € gfb(a), where {1, U3 are defined by (5.5).

6. COUNTER-EXAMPLES

In this section, we give examples verifying that the results obtained are
unimprovable in a certain sense.

Example 6.1. Let €1, g5 € [0,1[, &1 + €2 > 0, and let ¢4, fo € Ly be
defined by

0(2)(1) € fF(t)2(u(t)) for ae. te[a,b] and all z € C([a,b];R),

lo(2)(¢) def h(t)z(b) for a.e. t € [a,b] and all z € C([a,b];R),

(6.1)

where f, h € L([a,b];R1) and p : [a,b] — [a,b] is a measurable function
such that
n(s)

/b f(s)( / h(&)ds) ds = 1. (6.2)

It is clear that for any z € C([a, b]; R) the inequality (3.17) with k£ = 1 and
m = 0 is satisfied, where gy = 0 and g; = ¢5. Moreover,

n(s)

(1—e))(1— 52)/bf(s)< / h(€) dg) ds < 1 (6.3)

and thus, using Proposition 5.5, we get
(1 —e1) £, (1 — £2) £2) € 83 (a).

It is clear that (¢1,0) € gfb(a) (see, e.g., Proposition 5.5). Consequently,
the assumptions of Theorem 3.4 with £ = 1 and m = 0 are satisfied, except
the condition (3.16), instead of which the condition (3.18) is fulfilled.
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On the other hand, the homogeneous problem (3.14), (3.15) has a non-
trivial solution (x1,x2), where
¢

/f ( / 5) xo(t) = /h(s) ds for t € [a,b].

a

This example shows that the assumption (3.16) of Theorem 3.4 cannot
be replaced by the assumption (3.18), no matter how small €1, g2 € [0, 1]
with €1 + €2 > 0 are.

Example 6.2. Let « €]0,1[, €1, 2 € [0,1], &1 +e2 > 0, and a < t; <
to < b. Put e = max{e,e2} and choose f, h € L([a, b]; R) such that

f@®) >0, (t—t1)(t—t2)h(t) <0 for ae. t € [a,b, (6.4)

7f (/Ih |d§)ds_—7
/tzf( (1+5/|h |d§+/$ (§)d§)ds:1—a7

b ff(s) dsf|h(s)|ds .
/f(s) ds = emin { & o - ; ™ 0 J
4 finlds e faolas+ Facs s

and

/bf (/lh |d§) 2(1+¢).

Furthermore, we put

(1+¢) /|h )| ds for t € [a,t1]
za(t) = t
1+€/|h |ds+/ (s)ds for t e [ty,b]

t1

and ‘
:/f(s)zQ(s) ds for t € [a,b)].

1 and z1(b) < —(1 + ¢), and thus there exists
to) = —(1+¢). Let £1, b2 € Lgp be defined by

It is clear that zq(t2)
to € [t2,b] such that x;

0(2)(t) < ()=t

—~

for a.e. ¢t € [a,b] and all z € C([a, b];R),

\_/
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l5(2)(t) dof h(t)z(7(t)) for a.e. ¢t € [a,b] and all z € C([a,b];R),

(t) = {to for t e [a,tl[.

to for t € [tl, b]

It is not difficult to verify that for any z € C([a,b]; R) the inequality (3.17)
with £k =1 and m = 0 is satisfied, where

90(2)(t) & —ho(t)z(7o(t)) for ace. t € [a,b] and all z € C([a,b];R),
g1(2)(t) def hi(t)z(7(t)) for a.e. t € [a,b] and all z € C([a,b];R),

ho(t)={(i rrelntl o {"“ | for t ot

5 |h(t)| for t € [ta,b] |n(t)| for t € [t,b]

where

and

for ¢ t
o(t) = a for t € [a, 2['
to for te [tg, b]

Obviously, #1 € P, and
(90 + 91)(2)(t) = h(t)z(7(t)) for ae. t € [a,b] and all z € C([a,b];R),

where
i) = |h(t)| for t € [a,ts] '
0 for ¢ € [to,b]

Therefore, go + g1 € Pap,

/f (/ g) ds =
—7f(s) <j|h(§)|d£> ds+/f(s)<(1+s)/tllh(§)|d§+/sh(g) d§> ds—
(/f ds/lh Ids—/f S/t2|h(s)|ds)§

1 1-—
< fl-a _La)<17
1—|—6 1+¢

and thus Proposition 5.5 yields
(61,90 + 1) € S3(a).

Furthermore, —gg € Pap, the Operators {1, go are a-Volterra ones, and since

(1—e1)(1— &) /f (/ d§)ds§
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b s
< 1;5/f(s)(/|h(§)|d§> ds=1—e2<1,
12 fo

using Proposition 5.6 we get

(1 —e1)tr, (1 —£2) go) € S (a).

Consequently, the assumptions of Theorem 3.4 with £ = 1 and m = 0 are
satisfied, except the condition (3.16), instead of which the condition (3.19)
is fulfilled.

On the other hand, (x1,22) is a nontrivial solution to the homogeneous
problem (3.14), (3.15).

This example shows that the assumption (3.16) of Theorem 3.4 cannot
be replaced by the assumption (3.19), no matter how small 1, €2 € [0, 1]
with €1 + €5 > 0 are.

The following lemma, which we need in examples concerning the nonlin-
ear case, follows from the Riesz—Schauder theory and the Fredholm property
of the problem (1.3),(1.4) (see, e.g., the proof of Theorem 1.1.1 in [14]).

Lemma 6.1. If the homogeneous problem (3.14), (3.15) has a nontrivial
solution, then there exist q1, g2 € L([a,b];R) and c1, coa € R such that the
problem (1.3), (1.4) has no solution.

Example 6.3. Let ¢ € R;. In [9, Example 4.2], operators ¢1, {5 € Py
are constructed such that
b b

/51(1)(5) ds/@u)(s) ds—1+¢

and the homogeneous problem (3.14), (3.15) has a nontrivial solution. Then,
according to Lemma 6.1, there exist g1, ¢2 € L([a,b];R) and ¢1, ¢2 € R such
that the problem (1.3), (1.4) has no solution.

Having taken these operators /1, 2, we put

Fi(z1, 2)(t) € Lilzs—a) () + s(t)
for a.e. ¢t € [a,b] and all 2z, 22 € C([a,b];R), i=1,2, (6.5)
and '
vi(z1, 22) dof ¢; for z1, z0 € C([a,b;R), i=1,2. (6.6)
It is clear that Fy, F» and o1, @2 satisfy the conditions (H;) and (Ha),
respectively. Moreover, for any u1, uz € C([a,b];R) the inequalities (4.1)
and (4.2), (4.3) with £ =1 hold, where p = ¢, go = ¢2, g1 =0, and
mi = lail, wi = |gi| for i=1,2. (6.7)

Consequently, the assumptions of Theorem 4.1 with k£ = 1 are satisfied,
except the first inequality in (4.5), instead of which the equality PGy = 1+¢
holds. However, the problem (1.1), (1.2) has no solution.
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This example shows that the first strict inequality of (4.5) in Theorem 4.1
cannot be weakened.

Example 6.4. Let ¢ € Ry, a < t1 < to < tg3 < b, and let the
operators p and g; be defined by (4.86) and (4.87), respectively, where
f, h1 € L([a,b);R4) and p, 71 : [a,b] — [a, b] are measurable functions such
that

t ts
/f ds_a/hl( Yds = 1, /f ds_chl()ds_l
f=0, hy =0 on [t1,t],

b

jf(s)ds/hl(s)d824+6,

a

and

t1 for te [tz,b] , tg3 for t e [tQ,b]
For any z1, 22 € C([a,b];R) and ¢ = 1,2, we put

u(t) = {tg for t € [a, 2] n(t) = {t1 for t € [a,tz['

0 for t € [a,t1]
Ti(z1,22)(t) = S —zi(t)|zi(t)| for t € [t1,ta],
g for ¢ € [to, b]
where g1, g2 € L([a,b]; R) are such that
t3 t3
/qg(s)ds—/ 1(s)ds > 2 (6.8)
to —t1
to to
Let
Fi(21,22)(1) = p(22)(t) + Ti (21, 22)(8)
for a.e. t € [a,b] and all 21,22 € C([a,b];R),
Fy(1,22)(t) < ~1(21)(t) + a2, 22)(1)
for a.e. t € [a,b] and all 21,29 € C([a,b];R),
and

©i(z1,22) L0 for 21, 2 € C(la,b;R), i=1,2.
It is clear that the conditions (H;) and (Hz) are satisfied and for any
u1, uz € C([a,b];R) the inequalities (4.1) and (4.2), (4.3) with k = 1 are
fulfilled, where gop = 0 and
7, =0, w; =gl for i=1,2.
Moreover, p(1) = f and ¢1(1) = h;. Consequently, the assumptions of

Theorem 4.1 with k£ = 1 are satisfied, except the second inequality in (4.5),
instead of which the equality PG; = 4 + ¢ holds. However, the problem



130 Jiw{ Sremr
(1.1),(1.2) has no solution. Indeed, suppose that, on the contrary, (z1,z2)
is a solution to this problem, i.e., x1(a) = 0, z2(a) = 0, and

2y (t) = f()xa(u(t)) + Th(x1,22)(t) for a.e. t € [a,b],

xh(t) = —h1()z1 (11 (1)) + To(z1,22)(t) for a.e. t € [a,b].
The last relations yield

w1(t1) = z2(t3), w2(t1) = —z1(t1),

X1 (tl) ,Tz(lfl)
x1(t = , X t — )
i) =77 21 (t1)|(t2 — 1) 2(t2) = 7 22 (t1)](t2 — t1)
and
t3
x1(t3) = z1(t2) + x2(t1) + /Q1 (s)ds,
ta
t3
xa(t3) = wa(te) — x1(t3) + /Q2(S)d87
ta
whence we get
t3 t3
2
/qz(s)ds - /ql(s) ds < ——,
to — 11
to to

which contradicts (6.8). The contradiction obtained proves that the problem
(1.1),(1.2) has no solution.

This example shows that the second strict inequality of (4.5) in Theo-
rem 4.1 cannot be weakened.

Example 6.5. Let ¢1, 3 € [0,1], &1 + &2 > 0, and let the operators ¢1,
{5 be defined by (6.1), where f, h € L([a,b];R4) and p : [a,b] — [a,b] is
a measurable function such that (6.2) is satisfied. According to Example 6.1,
the homogeneous problem (3.14), (3.15) has a nontrivial solution. Therefore,
by virtue of Lemma 6.1, there exist ¢1, ¢2 € L([a,b]; R) and ¢1, ¢2 € R such
that the problem (1.3),(1.4) has no solution.

Let F1, F5 and @1, @2 be defined by (6.5) and (6.6), respectively. It is
clear that the conditions (H1) and (Hz) hold and for any u1,uz € C([a, b]; R)
the inequalities (4.1) and (4.2), (4.7) with k = 1 are fulfilled, where p = ¢4,
go = {2, g1 = 0, and n;,w; (i = 1,2) are defined by (6.7). Moreover, the
inequality (6.3) holds and thus Proposition 5.5 implies

((1 - 51)51, (1 — 62)52) S gfb(a).

It is clear that (¢1,0) € gfb(a) (see, e.g., Proposition 5.5). Consequently, the
assumptions of Theorem 4.2 with k = 1 are satisfied, except the condition
(4.8), instead of which the condition (4.9) is fulfilled. However, the problem
(1.1),(1.2) has no solution.
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This example shows that the assumption (4.8) of Theorem 4.2 cannot be
replaced by the assumption (4.9), no matter how small €1, o € [0, 1] with
€1 +¢e9 >0 are.

Example 6.6. Let o €]0,1[, €1, 2 € [0,1], &1 +e2 > 0, and a < t; <
to <tz < b. Put ¢ = max{eq,e2} and choose f, h € L([a,b];R) such that
(6.4) holds, f =0 and h = 0 on [ta, t3],

/t1f<s>(/slh<§>|d5) ds = 5,

/2f<s>((1+ §)/|h<§)|d§+/h<£>d§) ds=1-o,
b . j?f(s) ds?|h(s)| ds )
/f(s) ds = 3 min { 2 = = , o ™ )
ts {|h(s)|ds (1+§)af|h(s)|ds —|—t{h(s) ds
and \
/f(s)</ |h(§)|d§> ds=1+c¢.
Furthermore, we putt3 t3
(1+ %)/|h(s)|ds for t € [a,t1]

o (f) = t

(1+ %)/|h(s)|ds+/h(s)ds for ¢ € [ty, D]

t1

and
/f(S)SCz(S) ds for t € [a, 2]
() =41— (1 - %)(fg — o) Lt —ty) for t€ [ta, 3]
%‘f‘ /f(8)1‘2(8) ds for ¢ € [t3,b]

It is clear that x1(t3) = ¢/3 and z1(b) < —(1 +¢/3), and thus there exists
to € [t3,b] such that z1(tg) = —(1+¢/3). Let go, g1, p € Lap be defined by
(4.87) and

p(2)(t) = f(t)z(t) for a.e. t € [a,b] and all z € C([a,d];R),
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where
h(t)| for t € |a,t 0 for t € [a,t
ott) = ¢ " izl ) - o tsl,
0 for t € [t2,b] |h(t)| for t e [ts,b]
to for t € [a,t a for t €la,t
nt) =4 nl ) 2l
to for t e [tl,b] to for t e [tg,b]

Obviously, p, go, g1 € Pap and p, g1 are a-Volterra operators. Moreover,

/b o( [t dc ) ds =
- / o)( Jimel 3 ds+7f<s><(1+§) / e [ e dc) ds-

a a t1
to t1 b to
_(g/f(s) ds/|h(s)|ds—/f(s) ds/|h(s)|ds> <
t1 a ts a
3o 3+¢e(1—a)
< o= —— 7
<37: +1—« 312 <1,

and thus Proposition 5.5 yields

(p,90) € S (a).

Furthermore, since

(1-e1)( —82)/bf(5)</sh1(§) dé) ds <

§(1—€)/bf(8)(/slh(€)|d€) ds=1-¢" <1,

using Proposition 5.6 we get

((1 —e1)p, —(1—¢€2) 91) S gfb(a).

On the other hand, it is easy to verify that (z1, 22) is a nontrivial solution
to the homogeneous Cauchy problem (3.15) for the system

2y (t) = fO)w2(t) — fo(t)z1(t), 5(t) = h(t)z1(o(t)),
where
fot) =

e for ¢ € [ta,
3(tz —t2) — (3 —¢e)(t —t2) or t € [ta, t3]

{O for t € [a,t2[ U[ts, ]
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Therefore, according to Lemma 6.1, there exist g1, g2 € L([a,b];R) and
c1, ¢ € R such that the Cauchy problem (1.4) for the system

zy(t) = f(t)za(t) — fo(t)z1(t) + qu(t), a5(t) = h(t)z1(70(t)) + q2(t)
has no solution.
Now let

Fi(z1, 22)(t) € F(1)22() = fo()2r (1) + (1)
for a.e. t € [a,b] and all z1, z2 € C([a, b];R),

Fy(z1,22) (1) € h(t)z1(r0(1)) + qa(t)
for a.e. t € [a,b] and all z1, z2 € C([a,b];R),

and let @1, w2 be defined by (6.6). It is clear that the conditions (H;) and
(H3) hold and for any u1, uz € C([a,b];R) the inequalities (4.1) and (4.2),
(4.7) with k = 1 are fulfilled, where n;, w; (¢ = 1,2) are defined by (6.7).
Consequently, the assumptions of Theorem 4.2 with k£ = 1 are satisfied,
except the condition (4.8), instead of which the condition (4.10) is fulfilled.
However, the problem (1.1), (1.2) has no solution.

This example shows that the assumption (4.8) of Theorem 4.2 cannot be
replaced by the assumption (4.10), no matter how small e1, g2 € [0, 1] with
€1+ €2 >0 are.
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