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ON SOLVABILITY OF A THREE-POINT

BOUNDARY VALUE PROBLEM FOR SECOND

ORDER NONLINEAR FUNCTIONAL

DIFFERENTIAL EQUATIONS



Abstract. Sufficient conditions for the solvability of the problem

u′′(t) = `(u)(t) + F (u)(t); u(a) = 0, u(b) = u(t0)

are established, where t0 ∈ ]a, b[ , `, F : C([a, b]; R) → L([a, b]; R) are con-
tinuous operators, and ` is linear.
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Introduction

In the present paper, for the nonlinear functional differential equation

u′′(t) = `(u)(t) + F (u)(t), (0.1)

we consider the problem on the existence of a solution satisfying the boun-
dary conditions

u(a) = 0, u(b) = u(t0). (0.2)

Here we suppose that t0 ∈ ]a, b[ is fixed, `, F : C([a, b]; R) → L([a, b]; R)
are continuous operators and, moreover, ` is linear.

Such problems for ordinary differential equations have been studied in
detail even for equations with singularities (see, e.g., [1], [3], [4], [5], [6],
[7] and references therein). Conditions of unique solvability of the linear
problem

u′′(t) = `(u)(t) + q(t); u(a) = 0, u(b) = u(t0)

are stated in [8] and [9]. However, the nonlinear problem (0.1), (0.2) has not
been investigated sufficiently yet. Below we will establish efficient conditions
for the solvability of (0.1), (0.2) and concretize them for special cases of (0.1)
– for so-called equations with deviating argument and integro-differential
equations.

Throughout the paper we will use the following notation.
R is the set of all real numbers, R+ = [0, +∞[ .
If x ∈ R, then [x]+ = 1

2 (|x| + x) and [x]− = 1
2 (|x| − x).

C([a, b]; R) is the Banach space of continuous functions u : [a, b] → R

with the norm ‖u‖C = max{|u(t)| : t ∈ [a, b]}.
C([a, b]; R+) = {u ∈ C([a, b]; R) : u(t) ≥ 0 for t ∈ [a, b]}.
C̃([a, b]; R) is the set of absolutely continuous functions u : [a, b] → R.

C̃ ′([a, b]; R) is the set of functions u∈ C̃([a, b]; R) such that u′∈ C̃([a, b]; R).
L([a, b]; R) is the Banach space of Lebesgue integrable functions p :

[a, b] → R with the norm ‖p‖L =
b∫
a

|p(s)| ds.

L([a, b]; R+) = {p ∈ L([a, b]; R) : p(t) ≥ 0 for almost all t ∈ [a, b]}.
L2([a, b]; R) is the Banach space of functions v : [a, b]→R, v2∈L([a, b]; R)

with the norm ‖v‖L2
=

√
b∫
a

v2(s) ds.

Mab is the set of measurable functions f : [a, b] → [a, b].
Lab is the set of linear bounded operators ` : C([a, b]; R) → L([a, b]; R).
Pab is the set of linear operators ` ∈ Lab transforming the set C([a, b]; R+)

into the set L([a, b]; R+).
Kab is the set of continuous operators F : C([a, b]; R) → L([a, b]; R)

satisfying the Carathéodory conditions, i.e., for every r > 0 there exists
qr ∈ L([a, b]; R+) such that

|F (v)(t)| ≤ qr(t) for almost all t ∈ [a, b], ‖v‖C ≤ r.
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K([a, b]× A; B), where A ⊆ R, B ⊆ R, is the set of functions f : [a, b]×
A → B satisfying the Carathéodory conditions, i.e., f(·, x) : [a, b] → B is a
measurable function for all x ∈ A, f(t, ·) : A → B is a continuous function
for almost all t ∈ [a, b], and for every r > 0 there exists qr ∈ L([a, b]; R+)
such that

|f(t, x)| ≤ qr(t) for almost all t ∈ [a, b], x ∈ A, |x| ≤ r.

By a solution to the equation (0.1), where ` ∈ Lab and F ∈ Kab, we

understand a function u ∈ C̃ ′([a, b]; R) satisfying the equality (0.1) almost
everywhere in [a, b].

1. Main Results

Before the formulation of the main result, introduce the following nota-
tion:

ϕ(t)
def
=
√

t− a for t ∈ [a, b].

If v ∈ L([a, b]; R), then θ(v)(t)
def
=

t∫
a

v(s) ds for t ∈ [a, b].

Definition 1.1. We will say that an operator ` ∈ Lab belongs to the
set A, if ` admits the representation ` = `0 − `1, where `0, `1 ∈ Pab, and

there exists an operator ˜̀ : L2([a, b]; R) → L2([a, b]; R) such that on the set

C̃([a, b]; R) the inequality
∣∣`0(θ(v))(t) − `0(1)(t)θ(v)(t)

∣∣ ≤ |˜̀(|v|)(t)|
√

`0(1)(t) for t ∈ [a, b] (1.1)

holds and

‖˜̀‖2 < 4

(
1−

b∫

a

ϕ(t)`1(ϕ)(t) dt−

− ϕ(t0)

b− t0

b∫

t0

(t− t0)
(
`0(ϕ)(t) + `1(ϕ)(t)

)
dt

)
. (1.2)

Theorem 1.1. Let ` ∈ A and on the set
{
u ∈ C̃ ′([a, b]; R) : u(a) = 0, u(b) = u(t0)

}

the inequalities

F (u)(t)sgn u(t) ≥ −q(t, ‖u‖C) for t ∈ [a, b], (1.3)

(t− t0)|F (u)(t)| ≤ q(t, ‖u‖C) for t ∈ [t0, b] (1.4)

hold, where q ∈ K([a, b]× R+; R+) satisfies the condition

lim
x→+∞

1

x

b∫

a

q(t, x) dt = 0. (1.5)

Then the problem (0.1), (0.2) has at least one solution.
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As an example, consider the equation

u′′(t) = p(t)u(τ(t)) − g(t)u(µ(t)) + f
(
t, u(t), u(σ(t))

)
, (1.6)

where p, g ∈ L([a, b]; R+), τ, µ, σ ∈ Mab, and f ∈ K([a, b]× R
2; R).

Theorem 1.1 implies

Corollary 1.1. Let

b∫

a

p(t)|τ(t) − t| dt < 4

(
1−

b∫

a

g(t)
√

(µ(t)− a)(t− a) dt−

−
√

t0 − a

b− t0

b∫

t0

(t− t0)
(
p(t)

√
τ(t) − a + g(t)

√
µ(t)− a

)
dt

)
. (1.7)

Let, moreover,

f(t, x, y)sgnx ≥ −q(t, |x|) for t ∈ [a, b], x, y ∈ R,

(t− t0)|f(t, x, y)| ≤ q(t, |x|) for t ∈ [t0, b], x, y ∈ R,
(1.8)

where q ∈ K([a, b]× R+; R+) satisfies (1.5). Then the problem (1.6), (0.2)
has at least one solution.

As another example, consider the equation

u′′(t) =

b∫

a

h(t, s)u(s) ds + f
(
t, u(t), u(σ(t))

)
, (1.9)

where f ∈ K([a, b] × R
2; R) and h : [a, b] × [a, b] → R is integrable on the

rectangle [a, b]× [a, b].

Corollary 1.2. Let

b∫

a

( b∫

a

|s− t| [h(t, s)]+ ds

)
dt <

< 4

[
1−

b∫

a

(√
t− a

b∫

a

√
s− a [h(t, s)]− ds

)
dt−

−
√

t0 − a

b− t0

b∫

t0

(
(t− t0)

b∫

a

√
s− a |h(t, s)| ds

)
dt

]
. (1.10)

Let, moreover, the inequalities (1.8) be fulfilled, where q ∈ K([a, b]×R+; R+)
satisfies (1.5). Then the problem (1.9), (0.2) has at least one solution.
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2. Proofs

To prove the main results, we will need the following lemma which is
a special case of the so-called principle of a priori estimate established in [2]
(see [2, Theorem 1]).

Lemma 2.1. Let the problem

u′′(t) = `(u)(t); u(a) = 0, u(b) = u(t0) (2.1)

have only the trivial solution. Let, moreover, there exist ρ > 0 such that for

each δ ∈ ]0, 1[ and each u ∈ C̃ ′([a, b]; R) satisfying (0.2) and

u′′(t) = `(u)(t) + δF (u)(t) for t ∈ [a, b], (2.2)

the estimate

‖u‖C ≤ ρ (2.3)

holds. Then the problem (0.1), (0.2) has at least one solution.

Lemma 2.2. Let ` ∈ A. Then there exists r > 0 such that for each

function u ∈ C̃ ′([a, b]; R) satisfying (0.2) and

(
u′′(t)− `(u)(t)

)
sgnu(t) ≥ −q(t, ‖u‖C) for t ∈ [a, b], (2.4)

(t− t0)|u′′(t)− `(u)(t)| ≤ q(t, ‖u‖C) for t ∈ [t0, b], (2.5)

where q ∈ K([a, b]× R+; R+) satisfies (1.5), the estimate

‖u‖C ≤ r · ‖q(·, ‖u‖C)‖L (2.6)

holds.

Proof. Let `0, `1 and ˜̀ be the operators appearing in Definition 1.1. Let,

moreover, u ∈ C̃ ′([a, b]; R) satisfy the conditions (0.2), (2.4), and (2.5). It
is clear that

u′′(t) = `(u)(t) + h(t) for t ∈ [a, b], (2.7)

where

h(t)
def
= u′′(t)− `(u)(t) for t ∈ [a, b]. (2.8)

Moreover, in view of (2.4) and (2.5), we have

h(t)sgn u(t) ≥ −q(t, ‖u‖C) for t ∈ [a, b], (2.9)

(t− t0)|h(t)| ≤ q(t, ‖u‖C) for t ∈ [t0, b]. (2.10)

The condition (1.1) implies
∣∣`0(u)(t)− `0(1)(t)u(t)

∣∣ =
∣∣`0(θ(u

′))(t) − `0(1)(t)θ(u′)(t)
∣∣ ≤

≤
∣∣˜̀(|u′|)(t)

∣∣ ·
√

`0(1)(t) for t ∈ [a, b]. (2.11)
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Multiplying both sides of (2.7) by u(t) and taking into account (2.9) and
(2.11), we get

u′′(t)u(t) =

= `0(1)(t)u2(t) +
[
`0(u)(t)− `0(1)(t)u(t)

]
u(t)− `1(u)(t)u(t) + h(t)u(t) ≥

≥`0(1)(t)u2(t)−
∣∣˜̀(|u′|)(t)

∣∣√`0(1)(t) |u(t)|−`1(u)(t)u(t)−q(t, ‖u‖C)|u(t)|≥

≥ −1

4

(˜̀(|u′|)(t)
)2 − `1(u)(t)u(t)− q(t, ‖u‖C)|u(t)| for t ∈ [a, b].

Integration of the last inequality from a to b results in

‖u′‖2L2
≤ u(b)u′(b) +

1

4
‖˜̀(|u′|)‖2L2

+

+

b∫

a

`1(u)(t)u(t) dt +

b∫

a

q(t, ‖u‖C)|u(t)| dt. (2.12)

On account of Hölder’s inequality, we get

|u(t)| =
∣∣∣∣

t∫

a

u′(s) ds

∣∣∣∣ ≤ ϕ(t)‖u′‖L2
for t ∈ [a, b]. (2.13)

Hence,

‖u‖C ≤
√

b− a ‖u′‖L2
, (2.14)

and

|`1(u)(t) u(t)| ≤ `1(|u|)(t)|u(t)| ≤ ϕ(t)`1(ϕ)(t)‖u′‖2L2
. (2.15)

Moreover, in view of (0.2) and (2.13), we obtain

|u(b)| = |u(t0)| ≤
√

t0 − a ‖u′‖L2
. (2.16)

By virtue of (2.14)–(2.16), we get from (2.12) that

‖u′‖2L2
≤

[√
t0 − a |u′(b)|+

√
b− a ‖q(·, ‖u‖C)‖L

]
‖u′‖L2

+

+

(
1

4
‖˜̀‖2 +

b∫

a

ϕ(t)`1(ϕ)(t) dt

)
‖u′‖2L2

. (2.17)

Now we will estimate |u′(b)|. First of all, let us mention that (2.7) and
(2.10) imply the inequality

(t−t0)|u′′(t)|≤(t−t0)
(
`0(|u|)(t)+`1(|u|)(t)

)
+q(t, ‖u‖C) for t∈ [t0, b],

whence, in view of (2.13), we get

(t− t0)|u′′(t)| ≤
≤ (t− t0)

(
`0(ϕ)(t) + `1(ϕ)(t)

)
‖u′‖L2

+ q(t, ‖u‖C) for t ∈ [t0, b]. (2.18)
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On the other hand, one can easily verify by direct calculations that

|u′(b)| = 1

b− t0

∣∣∣∣

b∫

t0

(t− t0)u
′′(t) dt

∣∣∣∣.

Hence, in view of (2.18), it holds

|u′(b)| ≤ 1

b− t0

b∫

t0

(t− t0)
(
`0(ϕ)(t) + `1(ϕ)(t)

)
dt · ‖u′‖L2

+

+
1

(b− t0)
‖q(·, ‖u‖C)‖L.

Now it follows from (2.17) that

r0‖u′‖L2
≤

(√
b− a +

√
t0 − a

b− t0

)
‖q(·, ‖u‖C)‖L, (2.19)

where

r0 =1− 1

4
‖˜̀‖2−

b∫

a

ϕ(t)`1(ϕ)(t) dt− ϕ(t0)

b− t0

b∫

t0

(t− t0)
(
`0(ϕ)(t)+`1(ϕ)(t)

)
dt.

Note also that, on account of (1.2),

r0 > 0. (2.20)

Taking now into account (2.19) and (2.20), we get from (2.14) that (2.6) is
fulfilled, where

r =
b− a

r0

(
1 +

1

b− t0

)
. �

Proof of Theorem 1.1. To prove Theorem 1.1, it is sufficient to show that
the conditions of Lemma 2.1 are fulfilled. First we will show that the ho-
mogeneous problem (2.1) has only the trivial solution. Indeed, let u be a
solution of this problem. Then, evidently, (2.4) and (2.5) are fulfilled with
q ≡ 0. Thus, by virtue of Lemma 2.2, ‖u‖C ≤ 0 and, therefore u ≡ 0.

Let r > 0 be the number appearing in Lemma 2.2. In view of (1.5), there
exists ρ > 0 such that

‖q(·, x)‖L <
1

r
x for x > ρ. (2.21)

Now let u ∈ C̃ ′([a, b]; R) satisfy (0.2) and (2.2) for some δ ∈ ]0, 1[ . On
account of (1.3) and (1.4), evidently (2.4) and (2.5) hold. Thus, by virtue
of Lemma 2.2, we get

‖u‖C ≤ r‖q(·, ‖u‖C)‖L.

The latter inequality, together with (2.21), yields (2.3). �
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Proof of Corollary 1.1. Put

`0(v)(t)
def
= p(t)v(τ(t)), `1(v)(t)

def
= g(t)v(µ(t)),

and

F (v)(t)
def
= f(t, v(t), v(σ(t))), ˜̀(v)(t)

def
=

√
p(t)

τ(t)∫

t

v(s) ds.

Without loss of generality we can assume that the function q is nonincreasing
with respect to the second variable. Then it is clear that the conditions (1.8)
imply (1.3) and (1.4). On account of Theorem 1.1, it is sufficient to show
that the inequalities (1.1) and (1.2) are fulfilled.

By virtue of Hölder’s inequality, we have

( τ(t)∫

t

v(s) ds

)2

≤ |τ(t) − t|
b∫

a

v2(s) ds for t ∈ [a, b], v ∈ C([a, b]; R).

Hence,

‖˜̀(v)‖2L2
=

b∫

a

p(t)

( τ(t)∫

t

v(s) ds

)2

dt ≤

≤ ‖v‖2L2

b∫

a

p(t)|τ(t) − t| dt for v ∈ C([a, b]; R).

Consequently,

‖˜̀‖2 ≤
b∫

a

p(t)|τ(t) − t| dt.

The last inequality, together with (1.7), yields (1.2). On the other hand, it
is clear that (1.1) holds as well. �

Proof of Corollary 1.2. Put

`0(v)(t)
def
=

b∫

a

[h(t, s)]+v(s) ds, `1(v)(t)
def
=

b∫

a

[h(t, s)]−v(s) ds,

and

F (v)(t)
def
= f(t, v(t), v(σ(t))), ˜̀(v)(t)

def
=

√√√√√
b∫

a

[h(t, s)]+

( s∫

t

v(ξ) dξ

)2

ds.

Without loss of generality we can assume that the function q is nonincreasing
with respect to the second variable. Then it is clear that the conditions (1.8)
imply (1.3) and (1.4). On account of Theorem 1.1, it is sufficient to show
that the inequalities (1.1) and (1.2) are fulfilled.
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By virtue of Hölder’s inequality,

( s∫

t

v(ξ) dξ

)2

≤ |s− t|
b∫

a

v2(ξ) dξ for t, s ∈ [a, b], v ∈ C([a, b]; R).

Hence, it is clear that

‖˜̀(v)‖2L2
=

b∫

a

( b∫

a

[h(t, s)]+

( s∫

t

v(ξ) dξ

)2

ds

)
dt ≤

≤ ‖v‖2L2

b∫

a

( b∫

a

|s− t| [h(t, s)]+ ds

)
dt for v ∈ C([a, b]; R).

Consequently,

‖˜̀‖2 ≤
b∫

a

( b∫

a

|s− t| [h(t, s)]+ ds

)
dt.

The last inequality, together with (1.10), yields (1.2). On the other hand,
it is clear that (1.1) holds as well. �
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Janáčkovo nám. 2a, 662 95 Brno
Czech Republic
E-mail: bacho@math.muni.cz

P. Vodstrčil
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