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Abstract. Consider the problem

u′(t) = H(u, u)(t) + Q(u)(t), u(a)− λu(b) = h(u),

where H : C([a, b]; R) × C([a, b]; R) → L([a, b]; R) is a continuous posi-
tively homogeneous operator, Q : C([a, b]; R) → L([a, b]; R) is a continuous
operator satisfying the Carathéodory condition, h : C([a, b]; R) → R is a
continuous functional, and λ ∈ [0, 1[ . The efficient conditions sufficient for
the existence of a solution to the problem considered are established.
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Introduction

Boundary value problems for functional differential equations have been
intensively studied by many mathematicians in the last decades. The reason
is development of other natural sciences as physics, chemistry, biology, etc.,
whence more precise mathematical models describing natural processes arise
involving continuous operators which are not, in general, of Nemytski type.
One of the questions in qualitative theory of functional differential equations
is the solvability of the boundary value problem

u′(t) = F (u)(t), h(u) = 0,

where F : C([a, b]; R) → L([a, b]; R) is a continuous operator and h :
C([a, b]; R) → R is a continuous functional. In such a form this problem
was studied e.g. in [1], [2], [6], [11], [14], [17], [21], [24]– [29], [32], [33], [35],
[37], [41], [44]. Of course, more accurate results can be obtained in the case
where F and h are of a special form. Thus criteria guaranteeing unique
solvability of the problem

u′(t) = `(u)(t) + q(t), u(a)− λu(b) = c,

where ` : C([a, b]; R) → L([a, b]; R) is a linear bounded operator, q ∈
L([a, b]; R), and λ, c ∈ R, can be found e.g. in [5], [7], [8], [12], [13], [15],
[16], [18]– [20], [22], [23], [30], [31], [36], [43], [46], [47].

In this paper, we present efficient conditions sufficient for the solvability
of the periodic–type boundary value problem for the functional differential
equation with a positively homogeneous operator on the right-hand side,
i.e. of the problem

u′(t) = H(u, u)(t) + Q(u)(t), (0.1)

u(a)− λu(b) = h(u), (0.2)

where H : C([a, b]; R) × C([a, b]; R) → L([a, b]; R) is a continuous, posi-
tively homogeneous operator, which is nondecreasing in the first argument
and nonincreasing in the second one, Q : C([a, b]; R) → L([a, b]; R) and
h : C([a, b]; R) → R are continuous operators satisfying the Carathéodory
condition, and λ ∈ [0, 1[ . Such types of problems were studied e.g. in [3],
[4], [9], [10], [38], [40], [42], [45].

The following notation is used throughout.
N is the set of all natural numbers.
R is the set of all real numbers, R+ = [0, +∞[ , R− = ]−∞, 0].
[x]+ = 1

2 (|x|+ x), [x]− = 1
2 (|x| − x).

C([a, b]; R) is the Banach space of continuous functions u : [a, b] → R

with the norm ‖u‖C = max{|u(t)| : t ∈ [a, b]}.
C([a, b];D) =

{
u ∈ C([a, b]; R) : u(t) ∈ D for t ∈ [a, b]

}
, where D ⊆ R.

C̃([a, b];D), where D ⊆ R, is the set of absolutely continuous functions
u : [a, b] → D.
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L([a, b]; R) is the Banach space of Lebesgue integrable functions p :

[a, b] → R with the norm ‖p‖L =
b∫
a

|p(s)| ds.

L([a, b]; D) =
{
p ∈ L([a, b]; R) : p(t) ∈ D for a.e. t ∈ [a, b]}, where

D ⊆ R.
Mab is the set of measurable functions τ : [a, b] → [a, b].
Hab is the set of continuous operators H : C([a, b]; R) × C([a, b]; R) →

L([a, b]; R) satisfying the following conditions:

(1) for every u, v, w ∈ C([a, b]; R) we have

if u(t)≤v(t) for t∈ [a, b] then H(u, w)(t)≤H(v, w)(t) for a.e. t∈ [a, b],

if u(t)≤v(t) for t∈ [a, b] then H(w, u)(t)≥H(w, v)(t) for a.e. t∈ [a, b],

(2) for every (u, v) ∈ C([a, b]; R)×C([a, b]; R) and a constant α > 0 we
have

H(αu, αv)(t) = αH(u, v)(t) for a.e. t ∈ [a, b].

Kab is the set of continuous operators F : C([a, b]; R) → L([a, b]; R)
satisfying the Carathéodory condition, i.e., for each r > 0 there exists qr ∈
L([a, b]; R+) such that

|F (v)(t)| ≤ qr(t) for a.e. t ∈ [a, b], v ∈ C([a, b]; R), ‖v‖C ≤ r.

K([a, b]×A; B), where A ⊆ R, B ⊆ R, is the set of functions f : [a, b]×
A → B satisfying the Carathéodory conditions, i.e., f(· , x) : [a, b] → B is a
measurable function for all x ∈ A, f(t, · ) : A → B is a continuous function
for almost every t ∈ [a, b], and for each r > 0 there exists qr ∈ L([a, b]; R+)
such that

|f(t, x)| ≤ qr(t) for a.e. t ∈ [a, b], x ∈ A, |x| ≤ r.

Note that since H ∈ Hab, in view of (1) in the definition of the set Hab,
we have that both H(· , 0) and H(0, · ) belong to the set Kab.

We will say that F ∈ Kab is an a-Volterra operator if for every c ∈ ]a, b[
and u, v ∈ C([a, b]; R) satisfying

u(t) = v(t) for t ∈ [a, c]

we have

F (u)(t) = F (v)(t) for a.e. t ∈ [a, c].

By a solution to the equation (0.1), where H ∈ Hab and Q ∈ Kab, we

understand a function u ∈ C̃([a, b]; R) satisfying the equality (0.1) almost
everywhere in [a, b].

Consider the problem on existence of a solution to (0.1) satisfying the
condition (0.2), where λ ∈ [0, 1[ and h : C([a, b]; R) → R is a continuous
operator such that for each r > 0 there exists Mr ∈ R+ such that

|h(v)| ≤ Mr for v ∈ C([a, b]; R), ‖v‖C ≤ r.
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The general results are formulated in Section 1 through the use of the
sets V +

ab(λ;≥), V +
ab(λ;≤), W+

ab(λ; +), and W+
ab(λ;−) (see Definitions 0.1–0.4

introduced below). In the second part of Section 1, there are established
efficient conditions sufficient for the inclusions

H∈V +
ab(λ;≥), H∈V +

ab(λ;≤), H∈W+
ab(λ; +), and H∈W+

ab(λ;−). (0.3)

At the end of Section 1, the results guaranteeing the inclusions (0.3) are
illustrated for the special case of the operator H defined by

H(u, v)(t)
def
= p(t) max

{
u(s) : τ1(t) ≤ s ≤ τ2(t)

}
−

−g(t) max
{
v(s) : µ1(t) ≤ s ≤ µ2(t)

}
for a.e. t ∈ [a, b]. (0.4)

Here p, g ∈ L([a, b]; R+), τi, µi ∈ Mab (i = 1, 2), and τ1(t) ≤ τ2(t),
µ1(t) ≤ µ2(t) for almost every t ∈ [a, b]. Auxiliary propositions neces-
sary to prove the main results are contained together with their proofs in
Section 2. Section 3 is devoted to the proofs of theorems on the solvability
of (0.1), (0.2), as well as to the proofs of the conditions guaranteeing the
inclusions (0.3) in both general and special cases. Illustrative examples are
gathered in Section 4.

Definition 0.1. We will say that an operator H ∈ Hab belongs to the

set V +
ab(λ;≥) if an arbitrary function u ∈ C̃([a, b]; R) satisfying

u′(t) ≥ H(u, 0)(t) for a.e. t ∈ [a, b], u(a)− λu(b) ≥ 0 (0.5)

admits the inequality
u(t) ≥ 0 for t ∈ [a, b].

Definition 0.2. We will say that an operator H ∈ Hab belongs to the

set V +
ab(λ;≤) if an arbitrary function u ∈ C̃([a, b]; R) satisfying

u′(t) ≤ H(u, 0)(t) for a.e. t ∈ [a, b], u(a)− λu(b) ≤ 0 (0.6)

admits the inequality
u(t) ≤ 0 for t ∈ [a, b].

Remark 0.1. Let us note that if H ∈ Hab is a homogeneous operator,
then H ∈ V +

ab(λ;≥) if and only if H ∈ V +
ab(λ;≤).

Definition 0.3. We will say that an operator H ∈ Hab belongs to the
set W+

ab(λ;−) if for every δ ∈ [0, 1] and y ∈ C([a, b]; R−), arbitrary functions

u, v ∈ C̃([a, b]; R) satisfying

u′(t)− δH(y, u)(t) ≥ v′(t)− δH(y, v)(t) for a.e. t ∈ [a, b], (0.7)

u(a)− λu(b) ≥ v(a)− λv(b) (0.8)

admit the inequality
u(t) ≥ v(t) for t ∈ [a, b]. (0.9)

Definition 0.4. We will say that an operator H ∈ Hab belongs to the
set W+

ab(λ; +) if for every δ ∈ [0, 1] and y ∈ C([a, b]; R+), arbitrary functions

u, v ∈ C̃([a, b]; R) satisfying (0.7) and (0.8) admit the inequality (0.9).
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1. Main Results

In what follows, q ∈ K([a, b]×R+; R+) is a function such that

lim
x→+∞

1

x

b∫

a

q(s, x) ds = 0. (1.1)

1.1. Existence Theorems.

Theorem 1.1. Let H ∈ V +
ab(λ;≥)∩W+

ab(λ;−) and let there exist c ∈ R+

such that for v ∈ C([a, b]; R−) the inequalities

−q(t, ‖v‖C) ≤ Q(v)(t) ≤ 0 for a.e. t ∈ [a, b], −c ≤ h(v) ≤ 0

are fulfilled. Then (0.1), (0.2) has at least one nonpositive solution.

Theorem 1.2. Let H ∈ V +
ab(λ;≤)∩W+

ab(λ; +) and let there exist c ∈ R+

such that for v ∈ C([a, b]; R+) the inequalities

0 ≤ Q(v)(t) ≤ q(t, ‖v‖C) for a.e. t ∈ [a, b], 0 ≤ h(v) ≤ c

are fulfilled. Then (0.1), (0.2) has at least one nonnegative solution.

Theorem 1.3. Let H ∈ V +
ab(λ;≥)∩V +

ab (λ;≤) and either H ∈ W +
ab(λ;−)

or H ∈ W+
ab(λ; +). Let, moreover, there exist c ∈ R+ such that for v ∈

C([a, b]; R) the inequalities

|Q(v)(t)| ≤ q(t, ‖v‖C) for a.e. t ∈ [a, b], |h(v)| ≤ c

are fulfilled. Then (0.1), (0.2) has at least one solution.

If, in addition,

h(v) ≤ 0, Q(v)(t) ≤ 0 for a.e. t ∈ [a, b], v ∈ C([a, b]; R−), (1.2)

then (0.1), (0.2) has at least one nonpositive solution, respectively if

h(v) ≥ 0, Q(v)(t) ≥ 0 for a.e. t ∈ [a, b], v ∈ C([a, b]; R+), (1.3)

then (0.1), (0.2) has at least one nonnegative solution.

1.2. On the Sets V +
ab(λ;≥), V +

ab(λ;≤), W+
ab(λ;−), and W+

ab(λ; +).

Proposition 1.1. Let H ∈ Hab. Then H ∈ V +
ab(λ;≥) if and only if the

problem

u′(t) ≤ −H(−u, 0)(t), u(a)− λu(b) = 0 (1.4)

has no nontrivial nonnegative solution.

Theorem 1.4. Let H ∈ Hab. Then H ∈ V +
ab(λ;≥) if and only if there

exists γ ∈ C̃([a, b]; ]0, +∞[) satisfying

γ′(t) ≥ −H(−γ, 0)(t) for a.e. t ∈ [a, b], (1.5)

γ(a)− λγ(b) > 0. (1.6)

Corollary 1.1. Let H ∈ Hab and let at least one of the following condi-

tions be fulfilled:
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(a) H(· , 0) is an a-Volterra operator and

λ exp
(
−

b∫

a

H(−1, 0)(s) ds
)

< 1;

(b) there exist numbers m, k ∈ N∪{0}, m > k, and a constant α ∈ ]0, 1[
such that

ρm(t) ≤ αρk(t) for t ∈ [a, b], (1.7)

where ρ0 ≡ 1 and

ρi(t) = −
λ

1− λ

b∫

a

H(−ρi−1, 0)(s) ds−

−

t∫

a

H(−ρi−1, 0)(s) ds for t ∈ [a, b], i ∈ N ;

(c) there exists Ĥ ∈ Hab such that

λ exp

(
−

b∫

a

H(−1, 0)(s) ds

)
+

+

b∫

a

Ĥ(1, 0)(s) exp

(
−

b∫

s

H(−1, 0)(ξ) dξ

)
ds < 1 (1.8)

and on the set {v ∈ C([a, b]; R+) : v(a)− λv(b) = 0} the inequality

−H(−ϑ(v), 0)(t)+H(−1, 0)(t)ϑ(v)(t) ≤ Ĥ(v, 0)(t) for a.e. t ∈ [a, b] (1.9)

holds, where

ϑ(v)(t)
def
= −

λ

1− λ

b∫

a

H(−v, 0)(s) ds−

t∫

a

H(−v, 0)(s) ds for t∈ [a, b]. (1.10)

Then H ∈ V +
ab(λ;≥).

Corollary 1.1 (b) with m = 1 and k = 0 results in the following assertion.

Corollary 1.2. Let

b∫

a

|H(−1, 0)(s)| ds < 1− λ.

Then H ∈ V +
ab(λ;≥).
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Theorem 1.5. Let H ∈ Hab, let there exist H ∈ Hab such that H(0, · )
is an a-Volterra operator, and let for every y ∈ C([a, b]; R−) and u, v ∈

C̃([a, b]; R) satisfying u(a)− λu(b) ≥ v(a)− λv(b), the inequality

H(y, u)(t)−H(y, v)(t) ≥ H(0, u− v)(t) for t ∈ [a, b] (1.11)

be fulfilled. If, moreover, there exists a function γ ∈ C̃([a, b]; R+) satisfying

γ(t) > 0 for t ∈ [a, b[ , (1.12)

γ′(t) ≤ H(0, γ)(t) for a.e. t ∈ [a, b], (1.13)

then H ∈ W+
ab(λ;−).

Theorem 1.6. Let H ∈ Hab and let there exist H ∈ Hab such that for

every y ∈ C([a, b]; R−) and u, v ∈ C̃([a, b]; R) satisfying u(a) − λu(b) ≥
v(a)− λv(b) the inequality (1.11) is fulfilled. Let, moreover, at least one of

the following conditions be fulfilled:

(a)

b∫

a

∣∣H(0, 1)(s)
∣∣ ds ≤ λ; (1.14)

(b) H(0, · ) is an a-Volterra operator and

b∫

a

∣∣H(0, 1)(s)
∣∣ ds ≤ 1. (1.15)

Then H ∈ W+
ab(λ;−).

Now we formulate the conditions guaranteeing the inclusions H∈V +
ab (λ;≤)

and H ∈ W+
ab(λ; +). Their proofs are similar to those of the above-listed

assertions and therefore they will be omitted.

Proposition 1.2. Let H ∈ Hab. Then H ∈ V +
ab(λ;≤) if and only if the

problem

u′(t) ≤ H(u, 0)(t), u(a)− λu(b) = 0

has no nontrivial nonnegative solution.

Theorem 1.7. Let H ∈ Hab. Then H ∈ V +
ab(λ;≤) if and only if there

exists γ ∈ C̃([a, b]; ]0, +∞[) satisfying

γ′(t) ≥ H(γ, 0)(t) for a.e. t ∈ [a, b], (1.16)

γ(a)− λγ(b) > 0. (1.17)

Corollary 1.3. Let H ∈ Hab and let at least one of the following condi-

tions be fulfilled:
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(a) H(· , 0) is an a-Volterra operator and

λ exp

( b∫

a

H(1, 0)(s) ds

)
< 1;

(b) there exist numbers m, k ∈ N∪{0}, m > k, and a constant α ∈ ]0, 1[
such that

ρm(t) ≤ αρk(t) for t ∈ [a, b],

where ρ0 ≡ 1 and

ρi(t)=
λ

1− λ

b∫

a

H(ρi−1, 0)(s) ds+

t∫

a

H(ρi−1, 0)(s) ds for t∈ [a, b], i∈N ;

(c) there exists Ĥ ∈ Hab such that

λ exp

( b∫

a

H(1, 0)(s) ds

)
+

b∫

a

Ĥ(1, 0)(s) exp

( b∫

s

H(1, 0)(ξ) dξ

)
ds < 1

and on the set {v ∈ C([a, b]; R+) : v(a)− λv(b) = 0} the inequality

H(ϑ(v), 0)(t) −H(1, 0)(t)ϑ(v)(t) ≤ Ĥ(v, 0)(t) for a.e. t ∈ [a, b]

holds, where

ϑ(v)(t)
def
=

λ

1− λ

b∫

a

H(v, 0)(s) ds +

t∫

a

H(v, 0)(s) ds for t ∈ [a, b].

Then H ∈ V +
ab(λ;≤).

Corollary 1.3 (b) with m = 1 and k = 0 results in the following assertion.

Corollary 1.4. Let

b∫

a

H(1, 0)(s) ds < 1− λ.

Then H ∈ V +
ab(λ;≤).

Theorem 1.8. Let H ∈ Hab, let there exist H ∈ Hab such that H(0, · )
is an a-Volterra operator, and let for every y ∈ C([a, b]; R+) and u, v ∈

C̃([a, b]; R) satisfying u(a) − λu(b) ≥ v(a) − λv(b), the inequality (1.11) be

fulfilled. If, moreover, there exists a function γ ∈ C̃([a, b]; R+) satisfying

(1.12) and (1.13), then H ∈ W +
ab(λ; +).

Theorem 1.9. Let H ∈ Hab and let there exist H ∈ Hab such that for ev-

ery y ∈ C([a, b]; R+) and u, v ∈ C̃([a, b]; R) satisfying u(a)−λu(b) ≥ v(a)−
λv(b) the inequality (1.11) is fulfilled. Let, moreover, either (1.14) hold or

H(0, · ) be an a-Volterra operator satisfying (1.15). Then H ∈ W +
ab(λ; +).
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Remark 1.1. Let us note that if an operator H ∈ Hab is subadditive in
the first argument, more precisely, if

H(u+v, 0)(t)≤H(u, 0)(t)+H(v, 0)(t) for a.e. t∈ [a, b], u, v∈C([a, b]; R),

then we have

−H(−u, 0)(t) ≤ H(u, 0)(t) for a.e. t ∈ [a, b], u ∈ C([a, b]; R),

and if there exists a function γ ∈ C̃([a, b]; ]0, +∞[) satisfying (1.16) and
(1.17), then it satisfies also the inequalities (1.5) and (1.6). Therefore,
according to Theorems 1.4 and 1.7, in that case the inclusion H ∈ V +

ab(λ;≤)

implies the inclusion H ∈ V +
ab(λ;≥).

Obviously, if H ∈ Hab is a superadditive operator in the first argument,
i.e. if

H(u+v, 0)(t)≥H(u, 0)(t)+H(v, 0)(t) for a.e. t∈ [a, b], u, v∈C([a, b]; R),

then we have

−H(−u, 0)(t) ≥ H(u, 0)(t) for a.e. t ∈ [a, b], u ∈ C([a, b]; R),

and, according to Theorems 1.4 and 1.7, in such a case the inclusion H ∈
V +

ab(λ;≥) implies the inclusion H ∈ V +
ab(λ;≤).

1.3. Assertions for the Operator with Maxima.

Theorem 1.10. Let i ∈ {1, 2} and let there exist ε > 0 such that

( λ

1− λ
(b− a) + (τi(t)− a) + ε

)
p(t) ≤ 1 for t ∈ [a, b]. (1.18)

Then the operator H defined by (0.4) belongs to the set V +
ab(λ;≥) if i = 1

and it belongs to the set V +
ab(λ;≤) if i = 2.

Theorem 1.11. Let i ∈ {1, 2}, p 6≡ 0, and let

ess sup

{ τi(t)∫

t

p(s) ds : t ∈ [a, b]

}
< η, (1.19)

where

η = sup

{
1

x
ln

(
x +

x
(
1− λ exp

(
x

b∫
a

p(s) ds
))

exp
(
x

b∫
a

p(s) ds
)
− 1

)
: x ∈ ]0, ω[

}
, (1.20)

ω =





1

‖p‖L

ln
1

λ
if λ 6= 0

+∞ if λ = 0
.

Then the operator H defined by (0.4) belongs to the set V +
ab(λ;≥) if i = 1

and it belongs to the set V +
ab(λ;≤) if i = 2.
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The following two assertions are consequences of Theorem 1.11 for λ 6= 0
and λ = 0, respectively.

Corollary 1.5. Let i ∈ {1, 2}, λ 6= 0, p 6≡ 0, and let

ess sup

{ τi(t)∫

t

p(s) ds : t ∈ [a, b]

}
<
‖p‖L

| ln λ|
ln
| ln λ|

‖p‖L

.

Then the operator H defined by (0.4) belongs to the set V +
ab(λ;≥) if i = 1

and it belongs to the set V +
ab(λ;≤) if i = 2.

Corollary 1.6. Let i ∈ {1, 2} and let

ess sup

{ τi(t)∫

t

p(s) ds : t ∈ [a, b]

}
≤

1

e
.

Then the operator H defined by (0.4) belongs to the set V +
ab(0;≥) if i = 1

and it belongs to the set V +
ab(0;≤) if i = 2.

Theorem 1.12. Let i ∈ {1, 2} and let at least one of the following con-

ditions be fulfilled:

(a) p(t)
(
τi(t)− t

)
≤ 0 for almost every t ∈ [a, b] and

λ exp

( b∫

a

p(s) ds

)
< 1; (1.21)

(b) there exists α ∈ ]0, 1[ such that

λ

1− λ

b∫

a

p(s)

τi(s)∫

a

p(ξ) dξ ds +

t∫

a

p(s)

τi(s)∫

a

p(ξ) dξ ds ≤

≤

(
α−

λ

1− λ

b∫

a

p(s) ds

)(
λ

1− λ

b∫

a

p(s) ds +

t∫

a

p(s) ds

)
for t ∈ [a, b];

(c)

λ exp

( b∫

a

p(s) ds

)
+

b∫

a

p(s)σi(s)

( τi(s)∫

s

p(ξ) dξ

)
exp

( b∫

s

p(ξ) dξ

)
ds < 1,

where

σi(t) =
1

2

(
1 + sgn(τi(t)− t)

)
for a.e. t ∈ [a, b].

Then the operator H defined by (0.4) belongs to the set V +
ab(λ;≥) if i = 1

and it belongs to the set V +
ab(λ;≤) if i = 2.
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Theorem 1.13. Let
b∫

a

p(s) ds < 1− λ.

Then the operator H defined by (0.4) belongs to both sets V +
ab(λ;≥) and

V +
ab(λ;≤).

Remark 1.2. Let us note that the operator H defined by (0.4) belongs to
the set W+

ab(λ;−) if and only if it belongs to the set W +
ab(λ; +). Therefore,

the conditions of the following assertions guarantee both inclusions H ∈
W+

ab(λ;−) and H ∈ W+
ab(λ; +).

Theorem 1.14. Let g(t)(µ2(t) − t) ≤ 0 for almost every t ∈ [a, b] and

let at least one of the following conditions be fulfilled:

(a)
b∫

a

g(s) ds ≤ 1;

(b)

g(t)(b− µ1(t)) ≤ 1 for a.e. t ∈ [a, b];

(c)
b∫

a

g(s)

s∫

µ1(s)

g(ξ) exp

( s∫

µ1(ξ)

g(η) dη

)
dξ ds ≤ 1; (1.22)

(d) g 6≡ 0 and

ess sup

{ t∫

µ1(t)

g(s) ds : t ∈ [a, b]

}
< ϑ, (1.23)

where

ϑ = sup

{
1

x
ln

(
x +

x

exp
(
x

b∫
a

g(s) ds
)
− 1

)
: x > 0

}
.

Then the operator H defined by (0.4) belongs to both sets W +
ab(λ;−) and

W+
ab(λ; +).

Corollary 1.7. Let g(t)(µ2(t)− t) ≤ 0 for almost every t ∈ [a, b] and let

ess sup

{ t∫

µ1(t)

g(s) ds : t ∈ [a, b]

}
≤

1

e
.

Then the operator H defined by (0.4) belongs to both sets W +
ab(λ;−) and

W+
ab(λ; +).
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Theorem 1.15. Let
b∫

a

g(s) ds ≤ λ.

Then the operator H defined by (0.4) belongs to both sets W +
ab(λ;−) and

W+
ab(λ; +).

2. Auxiliary Propositions

First we formulate a result from [29] in a suitable for us form.

Lemma 2.1 (Corollary 2 in [29]). Let F ∈ Kab, c ∈ R, and let there

exist a number ρ > 0 such that for every δ ∈ ]0, 1[ , an arbitrary function

u ∈ C̃([a, b]; R) satisfying

u′(t) = δF (u)(t) for a.e. t ∈ [a, b], u(a)− λu(b) = δc, (2.1)

admits the estimate

‖u‖C ≤ ρ. (2.2)

Then the problem

u′(t) = F (u)(t), u(a)− λu(b) = c

has at least one solution.

Lemma 2.2. Let H ∈ Hab and let for every δ ∈ [0, 1] the problem

u′(t) = δH(0, u)(t), u(a)− λu(b) = 0 (2.3)

have only the trivial solution. Then for every α ∈ [0, 1], y ∈ C([a, b]; R),
q0 ∈ L([a, b]; R) and c ∈ R the problem

u′(t) = αH(y, u)(t) + q0(t), u(a)− λu(b) = c

has at least one solution.

Proof. Let α ∈ [0, 1], y ∈ C([a, b]; R), q0 ∈ L([a, b]; R) and c ∈ R be fixed.
Put

F (v)(t)
def
= αH(y, v)(t) + q0(t) for a.e. t ∈ [a, b].

Then according to Lemma 2.1 it is sufficient to show that for every δ ∈ ]0, 1[

an arbitrary function u ∈ C̃([a, b]; R) satisfying (2.1) admits the estimate
(2.2).

Assume on the contrary that for every n ∈ N there exist δn ∈ ]0, 1[ and

un ∈ C̃([a, b]; R) such that

u′n(t) = δn

[
αH(y, un)(t) + q0(t)

]
for a.e. t ∈ [a, b], (2.4)

un(a)− λun(b) = δnc, (2.5)

and
‖un‖C > n. (2.6)

Put

vn(t) =
un(t)

‖un‖C

for t ∈ [a, b], n ∈ N. (2.7)
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Then, obviously,

‖vn‖C = 1 for n ∈ N (2.8)

and, since H ∈ Hab, using (2.4) and (2.5) we have

v′n(t) = δn

[
αH

( y

‖un‖C

, vn

)
(t) +

1

‖un‖C

q0(t)

]
(2.9)

for a.e. t ∈ [a, b], n ∈ N,

vn(a)− λvn(b) =
δnc

‖un‖C

for n ∈ N. (2.10)

Furthermore, by virtue of the assumptions δn ∈ ]0, 1[ for n ∈ N and H ∈
Hab,

|vn(t)− vn(s)| ≤

∣∣∣∣

t∫

s

H
( y

‖un‖C

, vn

)
(ξ) dξ

∣∣∣∣+

+

∣∣∣∣

t∫

s

q0(ξ) dξ

∣∣∣∣ ≤
∣∣∣∣

t∫

s

ω(ξ) dξ

∣∣∣∣ for s, t ∈ [a, b], n ∈ N,

where ω ≡ H(‖y‖C ,−1) + |H(−‖y‖C, 1)| + |q0|. Thus (2.8) and the last
inequality guarantee that the sequence of functions {vn}

+∞
n=1 is uniformly

bounded and equicontinuous. Therefore, without loss of generality, we can
assume that there exist δ0 ∈ [0, 1] and v0 ∈ C([a, b]; R) such that

lim
n→+∞

δn = δ0 (2.11)

and

lim
n→+∞

‖vn − v0‖C = 0. (2.12)

On the other hand, in view of (2.6), (2.11), (2.12), and the assumptions
δn ∈ ]0, 1[ for n ∈ N and H ∈ Hab, we have uniformly on [a, b]

lim
n→+∞

δnα

t∫

a

H
( y

‖un‖C

, vn

)
(ξ) dξ = δ0α

t∫

a

H(0, v0)(ξ) dξ, (2.13)

lim
n→+∞

δn

‖un‖C

t∫

a

q0(ξ) dξ = 0, (2.14)

and

lim
n→+∞

δnc

‖un‖C

= 0. (2.15)

Integration of (2.9) from a to t yields

vn(t) =vn(a) + δnα

t∫

a

H
( y

‖un‖C

, vn

)
(ξ) dξ+
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+
δn

‖un‖C

t∫

a

q0(ξ) dξ for t ∈ [a, b], n ∈ N

and, consequently, as n → +∞, with respect to (2.10), (2.12)–(2.15),

v0(t) = v0(a) + δ0α

t∫

a

H(0, v0)(ξ) dξ for t ∈ [a, b], (2.16)

v0(a)− λv0(b) = 0.

Moreover, according to (2.8) and (2.12) we have

‖v0‖C = 1. (2.17)

However, in view of (2.16), v0 ∈ C̃([a, b]; R) and the function v0 is a non-
trivial solution to (2.3) with δ = δ0α, a contradiction. �

Lemma 2.3. Let H ∈ Hab, yn, y0, un ∈ C([a, b]; R) (n ∈ N) be such that

lim
n→+∞

‖yn − y0‖C = 0, (2.18)

and the set {un}
+∞
n=1 is relatively compact. Then

lim
n→+∞

‖H(yn, un)−H(y0, un)‖L = 0. (2.19)

Proof. Suppose that (2.19) does not hold. Then there exist ε0 > 0 and
subsequences {ynk

}+∞k=1 ⊆ {yn}
+∞
n=1 and {unk

}+∞k=1 ⊆ {un}
+∞
n=1 such that

‖H(ynk
, unk

)−H(y0, unk
)‖L ≥ ε0 for k ∈ N. (2.20)

Obviously, {unk
}+∞k=1 is also a relatively compact set. Therefore there exists

a convergent subsequence {umk
}+∞k=1 ⊆ {unk

}+∞k=1. Let u0 ∈ C([a, b]; R) be
such that

lim
k→+∞

‖umk
− u0‖C = 0. (2.21)

According to (2.20) we have

‖H(ymk
, umk

)−H(y0, umk
)‖L ≥ ε0 for k ∈ N. (2.22)

On the other hand, with respect to (2.18), (2.21) and the assumption
H ∈ Hab, we have

∥∥H(ymk
, umk

)−H(y0, umk
)
∥∥

L
≤

∥∥H(ymk
, umk

)−H(y0, u0)
∥∥

L
+

+
∥∥H(y0, u0)−H(y0, umk

)
∥∥

L
→ 0 as k → +∞,

which contradicts (2.22). �

Now we formulate a result from [48] in a suitable for us form.

Lemma 2.4 (Theorem 2.1 in [48]). Let Tn : C([a, b]; R) → C([a, b]; R)
(n ∈ N ∪ {0}), T0 be a continuous and compact operator. Let, moreover,

u0 ∈ C([a, b]; R) be a unique fixed point of T0 and let there exist r > 0
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such that for each n ∈ N there exists at least one fixed point un ∈ {v ∈
C([a, b]; R) : ‖v − u0‖C ≤ r} of Tn. Then

lim
n→+∞

‖un − u0‖C = 0 (2.23)

if and only if

lim
n→+∞

‖Tn(un)− T0(un)‖C = 0.

Lemma 2.5. Let H ∈ W +
ab(λ;−) and let there exist a number ρ > 0 such

that for every δ ∈ ]0, 1[ an arbitrary function u ∈ C̃([a, b]; R−) satisfying

u′(t) = δ
[
H(u, u)(t) + Q(u)(t)

]
for a.e. t ∈ [a, b],

u(a)− λu(b) = δh(u)
(2.24)

admits the estimate (2.2). If, moreover,

Q(v)(t) ≤ 0 for a.e. t ∈ [a, b], v ∈ C([a, b]; R−), (2.25)

h(v) ≤ 0 for v ∈ C([a, b]; R−), (2.26)

then the problem (0.1), (0.2) has at least one nonpositive solution.

Proof. Put

χ(s) =





1 for 0 ≤ s ≤ ρ

2−
s

ρ
for ρ < s < 2ρ

0 for 2ρ ≤ s

, (2.27)

Q̃(y)(t)
def
= χ(‖y‖C)Q(y)(t) for a.e. t∈ [a, b], h̃(y)

def
= χ(‖y‖C)h(y), (2.28)

and for arbitrarily fixed y ∈ C([a, b]; R−) consider the problem

u′(t) = χ(‖y‖C)H(y, u)(t) + Q̃(y)(t), u(a)− λu(b) = h̃(y). (2.29)

Since H ∈ W+
ab(λ;−), we have that for every δ ∈ [0, 1] the problem (2.3)

has only the trivial solution and, according to Lemma 2.2, (2.27) and the
inclusion H ∈ W+

ab(λ;−), the problem (2.29) is uniquely solvable. Moreover,
in view of (2.25)–(2.28), from (2.29) we get

u′(t) ≤ χ(‖y‖C)H(0, u)(t) for a.e. t ∈ [a, b], u(a)− λu(b) ≤ 0,

and, consequently, due to (2.27) and the assumption H ∈ W +
ab(λ;−) we

have

u(t) ≤ 0 for t ∈ [a, b]. (2.30)

Denote by Ω the operator which assigns to every y ∈ C([a, b]; R−) the solu-
tion to (2.29). According to (2.27) and (2.28), there exist q2ρ ∈ L([a, b]; R+)
and M2ρ ∈ R+ such that

|Q̃(v)(t)| ≤ q2ρ(t) for a.e. t ∈ [a, b], v ∈ C([a, b]; R), (2.31)

|h̃(v)| ≤ M2ρ for v ∈ C([a, b]; R). (2.32)
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Let y ∈ C([a, b]; R−), u = Ω(y). Then (2.30) holds and

u(t) =
h̃(y)

1− λ
+

1

1− λ

t∫

a

[
χ(‖y‖C)H(y, u)(ξ) + Q̃(y)(ξ)

]
dξ+

+
λ

1− λ

b∫

t

[
χ(‖y‖C)H(y, u)(ξ) + Q̃(y)(ξ)

]
dξ for t ∈ [a, b],

whence in view of (2.30)–(2.32) we have

‖u‖C ≤ M, (2.33)

where

M =
1

1− λ

(
M2ρ + 2ρ‖H(−1, 0)‖L + ‖q2ρ‖L

)
.

Consequently,

|u(t)− u(s)| ≤

∣∣∣∣

t∫

s

χ(‖y‖C)H(y, u)(ξ) dξ

∣∣∣∣ +

∣∣∣∣

t∫

s

Q̃(y)(ξ) dξ

∣∣∣∣ ≤

≤

∣∣∣∣

t∫

s

ω(ξ) dξ

∣∣∣∣ for s, t ∈ [a, b], (2.34)

where ω ≡ MH(0,−1)− 2ρH(−1, 0) + q2ρ. Therefore, by virtue of (2.30),
(2.33) and (2.34), according to Arzelà-Ascoli lemma, the set Ω

(
C([a, b]; R−)

)

is a relatively compact subset of C([a, b]; R−).
Let now yn, y0 ∈ C([a, b]; R−) be such that the condition (2.18) holds.

For every n ∈ N ∪ {0} put un = Ω(yn) and

Tn(v)(t)
def
=

h̃(yn)

1− λ
+

1

1− λ

t∫

a

[
χ(‖yn‖C)H(yn, v)(ξ) + Q̃(yn)(ξ)

]
dξ+

+
λ

1− λ

b∫

t

[
χ(‖yn‖C)H(yn, v)(ξ) + Q̃(yn)(ξ)

]
dξ for t ∈ [a, b].

Then, according to Lemmas 2.3 and 2.4 and the continuity of χ, Q̃ and h̃,
we get the condition (2.23). Therefore, the operator Ω is a continuous op-
erator transforming the set C([a, b]; R−) into its relatively compact subset.
According to Schauder’s fixed point theorem, there exists u ∈ C([a, b]; R−)

such that u = Ω(u), i.e., u ∈ C̃([a, b]; R−) and, in view of (2.28),

u′(t) = χ(‖u‖C)
[
H(u, u)(t) + Q(u)(t)

]
for a.e. t ∈ [a, b],

u(a)− λu(b) = χ(‖u‖C)h(u).

Now, according to the assumptions of the lemma and (2.27), we get that u

admits the estimate (2.2) and, consequently, u is a nonpositive solution to
the problem (0.1), (0.2). �
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The following assertion can be proved in analogous way.

Lemma 2.6. Let H ∈ W +
ab(λ; +) and let there exist a number ρ > 0 such

that for every δ ∈ ]0, 1[ an arbitrary function u ∈ C̃([a, b]; R+) satisfying

(2.24) admits the estimate (2.2). If, moreover,

Q(v)(t) ≥ 0 for a.e. t ∈ [a, b], v ∈ C([a, b]; R+),

h(v) ≥ 0 for v ∈ C([a, b]; R+),

then the problem (0.1), (0.2) has at least one nonnegative solution.

Lemma 2.7. Let H ∈ V +
ab(λ;≥), c ∈ R+, and

|Q(v)(t)| ≤ q(t, ‖v‖C) for a.e. t ∈ [a, b], v ∈ C([a, b]; R−), (2.35)

|h(v)| ≤ c for v ∈ C([a, b]; R−). (2.36)

Then there exists a number ρ > 0 such that an arbitrary function u ∈

C̃([a, b]; R−) satisfying (2.24) with some δ ∈ ]0, 1[ admits the estimate (2.2).

Proof. Assume on the contrary that for every n ∈ N there exist δn ∈ ]0, 1[

and un ∈ C̃([a, b]; R−) such that

u′n(t) = δn

[
H(un, un)(t) + Q(un)(t)

]
for a.e. t ∈ [a, b], (2.37)

un(a)− λun(b) = δnh(un), (2.38)

and (2.6) is fulfilled. Define the functions vn by (2.7). Then, obviously,
(2.8) is satisfied, and, since H ∈ Hab, using (2.37) and (2.38) we have

v′n(t) = δn

[
H(vn, vn)(t) +

1

‖un‖C

Q(un)(t)
]

(2.39)

for a.e. t ∈ [a, b], n ∈ N,

vn(a)− λvn(b) =
δn

‖un‖C

h(un) for n ∈ N. (2.40)

Furthermore, by virtue of (2.8), (2.35), and the assumptions δn ∈ ]0, 1[ for
n ∈ N and H ∈ Hab, we have

|vn(t)− vn(s)| ≤

∣∣∣∣

t∫

s

[
H(0,−1)(ξ)−H(−1, 0)(ξ)

]
dξ

∣∣∣∣+

+

∣∣∣∣
1

‖un‖C

t∫

s

q(ξ, ‖un‖C) dξ

∣∣∣∣ for s, t ∈ [a, b], n ∈ N.
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According to the Lebesgue theorem (see, e.g., [39, Theorem 3, p. 170]), since
q satisfies (1.1), for every ε > 0 there exists δ > 0 such that

∣∣∣∣

t∫

s

[
H(0,−1)(ξ)−H(−1, 0)(ξ)

]
dξ

∣∣∣∣ ≤
ε

2
for s, t ∈ [a, b], |s− t| ≤ δ,

∣∣∣∣
1

‖un‖C

t∫

s

q(ξ, ‖un‖C) dξ

∣∣∣∣ ≤
ε

2
for s, t ∈ [a, b], |s− t| ≤ δ, n ∈ N.

Consequently,

|vn(t)− vn(s)| ≤ ε for s, t ∈ [a, b], |s− t| ≤ δ, n ∈ N. (2.41)

Thus (2.8) and (2.41) guarantee that the sequence of functions {vn}
+∞
n=1 is

uniformly bounded and equicontinuous. Therefore, without loss of general-
ity we can assume that there exist δ0 ∈ [0, 1] and v0 ∈ C([a, b]; R−) such
that (2.11) and (2.12) hold.

On the other hand, with regard to (1.1), (2.6), (2.11), (2.12), (2.35),
(2.36) and the assumptions δn ∈ ]0, 1[ for n ∈ N and H ∈ Hab, we have

lim
n→+∞

δn

t∫

a

H(vn, vn)(ξ) dξ=δ0

t∫

a

H(v0, v0)(ξ) dξ uniformly on [a, b], (2.42)

lim
n→+∞

δn

t∫

a

1

‖un‖C

Q(un)(ξ) dξ = 0 uniformly on [a, b], (2.43)

and

lim
n→+∞

δn

‖un‖C

h(un) = 0. (2.44)

Integration of (2.39) from a to t yields

vn(t) = vn(a) + δn

t∫

a

H(vn, vn)(ξ) dξ+

+ δn

t∫

a

1

‖un‖C

Q(un)(ξ) dξ for t ∈ [a, b], n ∈ N,

and, consequently, as n → +∞, with regard to (2.12), (2.40), (2.42)–(2.44),
we have

v0(t)=v0(a)+δ0

t∫

a

H(v0, v0)(ξ) dξ for t ∈ [a, b], v0(a)−λv0(b)=0. (2.45)

Moreover, according to (2.8) and (2.12), we get (2.17). However, in view of

(2.45) and the fact that δ0 ∈ [0, 1], we have v0 ∈ C̃([a, b]; R−) and

v′0(t) ≥ H(v0, 0)(t) for a.e. t ∈ [a, b], v0(a)− λv0(b) = 0.
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Since H ∈ V +
ab(λ;≥), we have v0(t) ≥ 0 for t ∈ [a, b]. Consequently, v0 ≡ 0,

which contradicts (2.17). �

In analogous way one can prove the following

Lemma 2.8. Let H ∈ V +
ab(λ;≤), c ∈ R+, and

|Q(v)(t)| ≤ q(t, ‖v‖C) for a.e. t ∈ [a, b], v ∈ C([a, b]; R+),

|h(v)| ≤ c for v ∈ C([a, b]; R+).

Then there exists a number ρ > 0 such that an arbitrary function u ∈

C̃([a, b]; R+) satisfying (2.24) with some δ ∈ ]0, 1[ admits the estimate (2.2).

Lemma 2.9. Let δ ∈ [0, 1], H ∈ Hab, and H(0, · ) be an a-Volterra

operator. Let, moreover, w ∈ C̃([a, b]; R) satisfy

w′(t) ≥ δH(0, w)(t) for a.e. t ∈ [a, b], (2.46)

w(a) − λw(b) ≥ 0, (2.47)

and

min
{
w(t) : t ∈ [a, b]

}
< 0. (2.48)

Then there exist t∗ ∈ ]a, b] and t∗ ∈ [a, t∗[ such that

w(t∗)=min
{
w(t) : t ∈ [a, b]

}
, w(t∗)=max

{
w(t) : t ∈ [a, t∗]

}
>0. (2.49)

Proof. Put

m = −min
{
w(t); t ∈ [a, b]

}
,

A =
{
t ∈ [a, b]; w(t) = −m

}
, t∗ = sup A.

Obviously, m > 0 and

w(t∗) = −m. (2.50)

In view of (2.47) it is clear that

a 6∈ A. (2.51)

We will show that

max
{
w(t) : t ∈ [a, t∗]

}
> 0.

Assume on the contrary that

w(t) ≤ 0 for t ∈ [a, t∗]. (2.52)

Since H(0, · ) is an a-Volterra operator, integration of (2.46) from a to t∗,
on account of (2.52), results in

w(t∗)− w(a) ≥ δ

t∗∫

a

H(0, w)(s) ds ≥ 0.

The last inequality, in view of (2.50), yields a ∈ A, which contradicts
(2.51). �
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3. Proofs

Theorem 1.1 follows from Lemmas 2.5 and 2.7. Theorem 1.2 follows from
Lemmas 2.6 and 2.8.

Proof of Theorem 1.3. We will assume that H ∈ W +
ab(λ;−). The case H ∈

W+
ab(λ; +) can be proved analogously.
To prove the existence of a solution, it is sufficient to show that the

problem

u′(t) = δH(u, u)(t), u(a)− λu(b) = 0 (3.1)

has only the trivial solution for every δ ∈ [0, 1] (see Corollary 1.4 in [34]).
Let u be a solution to (3.1). Since H ∈ W +

ab(λ;−), according to Lemma 2.2
there exists a solution α to the problem

α′(t) = δH(−[u]−, α)(t), α(a) − λα(b) = 0. (3.2)

Furthermore, since

H(−[u]−, 0)(t) ≤ 0 for a.e. t ∈ [a, b]

and

α′(t)− δH(−[u]−, α)(t) ≤ u′(t)− δH(−[u]−, u)(t) for a.e. t ∈ [a, b],

in view of H ∈ W+
ab(λ;−) we have

α(t) ≤ 0, α(t) ≤ u(t) for t ∈ [a, b]. (3.3)

Consequently,

α(t) ≤ −[u(t)]− for t ∈ [a, b]. (3.4)

Now, using (3.3) and (3.4) in (3.2) we get

α′(t) ≥ δH(α, α)(t) ≥ H(α, 0)(t) for a.e. t ∈ [a, b], (3.5)

which together with H ∈ V +
ab(λ;≥) implies

α(t) ≥ 0 for t ∈ [a, b]. (3.6)

Now (3.3) and (3.6) result in

u(t) ≥ 0 for t ∈ [a, b]. (3.7)

However, (3.7) implies

u′(t) ≤ H(u, 0)(t) for a.e. t ∈ [a, b],

whence, according to H ∈ V +
ab(λ;≤), we obtain

u(t) ≤ 0 for t ∈ [a, b]. (3.8)

Consequently, (3.7) and (3.8) yield u ≡ 0.
If, in addition, (1.2) is fulfilled, then the existence of a nonpositive solu-

tion to (0.1), (0.2) follows from Theorem 1.1.
Therefore, let moreover (1.3) be fulfilled. Consider the auxiliary problem

u′(t) = H(u, u)(t) + Q(|u|)(t), u(a)− λu(b) = h(|u|). (3.9)
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According to the first part of the theorem, there exists a solution u to (3.9).
Moreover, in view of (1.3) we have

u′(t) ≥ H(u, u)(t) ≥ H(−[u]−, u)(t) for a.e. t ∈ [a, b], (3.10)

u(a)− λu(b) ≥ 0. (3.11)

Let α be a solution to

α′(t) = H(−[u]−, α)(t), α(a) − λα(b) = 0, (3.12)

which is guaranteed by Lemma 2.2 and the inclusion H ∈ W +
ab(λ;−). Then

in view of (3.10) and (3.11) we have

α′(t)−H(−[u]−, α)(t) ≤ u′(t)−H(−[u]−, u)(t) for a.e. t ∈ [a, b],

and, consequently, (3.3) and (3.4). Now, using (3.3) and (3.4) in (3.12), we
get

α′(t) ≥ H(α, α)(t) ≥ H(α, 0)(t) for a.e. t ∈ [a, b],

which together with H ∈ V +
ab(λ;≥) implies (3.6). Now (3.3) and (3.6) result

in (3.7). Therefore, u is also a nonnegative solution to (0.1), (0.2). �

Proof of Proposition 1.1. First suppose that H ∈ V +
ab(λ;≥). If u is a solu-

tion to the problem (1.4), then −u is a solution to (0.5). According to the
assumption H ∈ V +

ab(λ;≥), we have −u(t) ≥ 0 for t ∈ [a, b], i.e., u(t) ≤ 0
for t ∈ [a, b].

Now suppose that the problem (1.4) has no nontrivial nonnegative solu-
tion. Let u be a solution to the problem (0.5). Put

v(t) = u(t)−
u(a)− λu(b)

1− λ
for t ∈ [a, b]. (3.13)

Then

[v(t)]′− ≤ −H(−[v]−, 0)(t) for a.e. t ∈ [a, b], [v(a)]− = λ[v(b)]− .

Hence, [v]− is a nonnegative solution to the problem (1.4). Thus [v]− ≡ 0,
i.e., in view of the second inequality in (0.5) and (3.13), u(t) ≥ 0 for t ∈
[a, b]. �

Proof of Theorem 1.4. First suppose that there exists γ ∈ C̃([a, b]; ]0, +∞[)
satisfying the inequalities (1.5) and (1.6). Let u be a solution to the problem
(0.5). We will show that

u(t) ≥ 0 for t ∈ [a, b]. (3.14)

Assume on the contrary that (3.14) is not valid. Then there exists t0 ∈ [a, b]
such that

u(t0) < 0. (3.15)

Put

α = max
{
−

u(t)

γ(t)
; t ∈ [a, b]

}
.

Then, in view of (3.15), we have α > 0 and

αγ(t) + u(t) ≥ 0 for t ∈ [a, b]. (3.16)
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Moreover, there exists t∗ ∈ [a, b] such that

αγ(t∗) + u(t∗) = 0. (3.17)

By virtue of H ∈ Hab, (0.5), (1.5) and (3.16), we get

αγ′(t) + u′(t) ≥ −H(−αγ, 0)(t) + H(u, 0)(t) ≥ 0 for a.e. t ∈ [a, b].

From the last inequality, (3.16) and (3.17), we obtain

αγ(a) + u(a) = 0. (3.18)

However, in view of (0.5), (1.6), (3.16), (3.18) and α > 0, we have

0 ≤ λαγ(b) + λu(b) < αγ(a) + u(a) = 0,

a contradiction.
Now assume that H ∈ V +

ab(λ;≥). Obviously, the operator H(· , 0) belongs

to the set W+
ab(λ;−). Therefore, according to Theorem 1.1 there exists a

nonpositive solution u to the problem

u′(t) = H(u, 0)(t), u(a)− λu(b) = −1. (3.19)

Moreover, by virtue of H ∈ Hab, from (3.19) it follows that u′(t) ≤ 0 for
almost every t ∈ [a, b], u(a) < 0. Consequently,

u(t) < 0 for t ∈ [a, b].

Put

γ(t) = −u(t) for t ∈ [a, b].

Then γ∈ C̃([a, b]; ]0, +∞[) and it satisfies the inequalities (1.5) and (1.6). �

Proof of Corollary 1.1. (a) It is not difficult to verify that the function

γ(t) = exp

(
−

t∫

a

H(−1, 0)(s) ds

)
for t ∈ [a, b]

satisfies the inequalities (1.5) and (1.6). Consequently, the assumptions of
Theorem 1.4 are fulfilled.

(b) Define the operators ϕi : C([a, b]; R) → C([a, b]; R), i ∈ N ∪ {0}, as
follows:

ϕ0(v)(t)
def
= v(t), ϕi(v)(t)

def
= −

λ

1− λ

b∫

a

H(−ϕi−1(v), 0)(s) ds−

−

t∫

a

H(−ϕi−1(v), 0)(s) ds for t ∈ [a, b], i ∈ N. (3.20)

According to Proposition 1.1, it is sufficient to show that the problem (1.4)
has no nontrivial nonnegative solution. Let u ∈ C([a, b]; R+) satisfy (1.4).
Then

u(t) ≤ ϕ1(u)(t) for t ∈ [a, b], (3.21)
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and since ϕi, i ∈ N , are nondecreasing operators, from (3.21), on account
of (3.20), we get

u(t) ≤ ϕi(u)(t) for t ∈ [a, b], i ∈ N, (3.22)

and
u(t) ≤ ϕk(1)(t)‖u‖C = ρk(t)‖u‖C for t ∈ [a, b]. (3.23)

Put

v(t) =





u(t)

ρk(t)
if ρk(t) 6= 0

0 if ρk(t) = 0
for t ∈ [a, b], (3.24)

β = sup
{
v(t) : t ∈ [a, b]

}
. (3.25)

By virtue of (3.23)–(3.25), we have β < +∞ and

u(t) ≤ βρk(t) for t ∈ [a, b]. (3.26)

Furthermore, in view of (1.7), (3.22), and (3.26),

u(t) ≤ ϕm−k(u)(t) ≤ βϕm−k(ρk)(t) = βρm(t) ≤ αβρk(t) for t ∈ [a, b].

Hence, on account of (3.24) and (3.25), we get

β ≤ αβ.

Now, since α ∈ ]0, 1[ , we have β = 0, and consequently u ≡ 0.
(c) According to (1.8), there exists ε > 0 such that

εγ0 exp

(
−

b∫

a

H(−1, 0)(ξ) dξ

)
+

+ γ0

b∫

a

Ĥ(1, 0)(s) exp

(
−

b∫

s

H(−1, 0)(ξ) dξ

)
ds ≤ 1, (3.27)

where

γ0 =
1

1− λ exp
(
−

b∫
a

H(−1, 0)(ξ) dξ
) .

Put

γ(t) = γ0 exp

(
−

t∫

a

H(−1, 0)(ξ) dξ

)
×

×

[
ε +

t∫

a

Ĥ(1, 0)(s) exp

( s∫

a

H(−1, 0)(ξ) dξ

)
ds+

+ λ

b∫

t

Ĥ(1, 0)(s) exp

(
−

b∫

s

H(−1, 0)(ξ) dξ

)
ds

]
for t ∈ [a, b].



On a Periodic Type BVP for FDE with a Positively Homogeneous Operator 41

Obviously, γ ∈ C̃([a, b]; ]0, +∞[) and it is a solution to the problem

γ′(t) = −H(−1, 0)(t)γ(t) + Ĥ(1, 0)(t), γ(a)− λγ(b) = ε. (3.28)

Since H, Ĥ ∈ Hab and γ(t) > 0 for t ∈ [a, b], from (3.27) and (3.28) we have
γ′(t) ≥ 0 for almost every t ∈ [a, b], γ(t) ≤ 1 for t ∈ [a, b], and, consequently,

γ′(t) ≥ −H(−1, 0)(t)γ(t) + Ĥ(γ, 0)(t), γ(a)− λγ(b) > 0.

By virtue of Theorem 1.4 we find

H̃ ∈ V +
ab(λ;≥), (3.29)

where

H̃(v, w)(t)
def
= −H(−1, 0)(t)v(t)− Ĥ(−v, 0)(t) for t ∈ [a, b]. (3.30)

According to Proposition 1.1 it is sufficient to show that the problem (1.4)
has no nontrivial nonnegative solution. Let u ∈ C([a, b]; R+) satisfy (1.4).
Put

v(t) = ϑ(u)(t) for t ∈ [a, b], (3.31)

where ϑ is defined by (1.10). Obviously, v′(t) = −H(−u, 0)(t) ≥ u′(t) for
almost every t ∈ [a, b] and

0 ≤ u(t) ≤ v(t) for t ∈ [a, b], v(a)− λv(b) = 0. (3.32)

On the other hand, in view of H ∈ Hab, (1.9) and (3.30)–(3.32), we get

v′(t) = −H(−u, 0)(t) ≤

≤ −H(−1, 0)(t)v(t)−H(−v, 0)(t) + H(−1, 0)(t)v(t) =

= −H(−1, 0)(t)v(t)−H(−ϑ(u), 0)(t) + H(−1, 0)(t)ϑ(u)(t) ≤

≤ −H(−1, 0)(t)v(t) + Ĥ(u, 0)(t) ≤

≤ −H(−1, 0)(t)v(t) + Ĥ(v, 0)(t) = −H̃(−v, 0)(t) for a.e. t ∈ [a, b].

Now by (3.29), (3.32), and Proposition 1.1 we obtain u ≡ 0. �

Proof of Theorem 1.5. Let δ ∈ [0, 1], y ∈ C([a, b]; R−), and let u, v ∈

C̃([a, b]; R) satisfy (0.7), (0.8). Put w(t) = u(t)−v(t) for t ∈ [a, b]. Then, in
view of (1.11), the inequalities (2.46) and (2.47) are fulfilled. We will show
that

w(t) ≥ 0 for t ∈ [a, b]. (3.33)

Assume on the contrary that (2.48) is fulfilled. According to Lemma 2.9,
there exist t∗ ∈ ]a, b] and t∗ ∈ [a, t∗[ such that (2.49) is valid. It is clear that
there exists t0 ∈ ]t∗, t∗[ such that

w(t0) = 0. (3.34)

Put

κ = max
{w(t)

γ(t)
: t ∈ [a, t0]

}
.

Obviously, κ > 0 and there exists t1 ∈ [a, t0[ such that

κγ(t1)− w(t1) = 0. (3.35)
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It is also evident that

κγ(t)− w(t) ≥ 0 for t ∈ [a, t0].

Due to (1.12), (1.13), (2.46), δ ∈ [0, 1], κ > 0, and the fact that H(0, · ) is
an a-Volterra operator, we have

κγ′(t)− w′(t) ≤ δ
[
H(0, κγ)(t)−H(0, w)(t)

]
≤ 0 for a.e. t ∈ [a, t0].

Hence, in view of (3.35), we get

κγ(t)− w(t) ≤ 0 for [t1, t0],

whence, together with (1.12) and (3.34), we find 0 < κγ(t0) ≤ 0, a contra-
diction. �

Proof of Theorem 1.6. (a) Let δ ∈ [0, 1], y ∈ C([a, b]; R−), and let u, v ∈

C̃([a, b]; R) satisfy (0.7), (0.8). Put w(t) = u(t)−v(t) for t ∈ [a, b]. Then, in
view of (1.11), the inequalities (2.46) and (2.47) are fulfilled. We will show
that (3.33) holds. Put

M = max
{
w(t) : t ∈ [a, b]

}
, m = −min

{
w(t) : t ∈ [a, b]

}
(3.36)

and choose tM , tm ∈ [a, b] such that

w(tM ) = M, w(tm) = −m. (3.37)

Assume that (3.33) is not valid. Then m > 0, and either M ≥ 0 or M < 0.
Suppose that M < 0, i.e.,

w(t) < 0 for t ∈ [a, b]. (3.38)

Then integration of (2.46) from a to b yields

w(b)− w(a) ≥ δ

b∫

a

H(0, w)(s) ds ≥ 0,

which, on account of (3.38), contradicts (2.47).
Therefore, M ≥ 0, m > 0, and either

tM < tm (3.39)

or

tm < tM . (3.40)

First suppose that (3.39) is fulfilled. Integration of (2.46) from tM to tm,
in view of (3.36), (3.37) and the assumption δ ∈ [0, 1], results in

M + m ≤ −δ

tm∫

tM

H(0, w)(s) ds ≤ M

b∫

a

∣∣H(0, 1)(s)
∣∣ ds.

Hence, according to (1.14) we get m ≤ 0, a contradiction.
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Now suppose that (3.40) holds. Integration of (2.46) from a to tm and
from tM to b, respectively, on account of (3.36), (3.37) and the assumption
δ ∈ [0, 1], yields

w(a) + m ≤ −δ

tm∫

a

H(0, w)(s) ds ≤ M

tm∫

a

∣∣H(0, 1)(s)
∣∣ ds, (3.41)

M − w(b) ≤ −δ

b∫

tM

H(0, w)(s) ds ≤ M

b∫

tM

∣∣H(0, 1)(s)
∣∣ ds. (3.42)

Multiplying (3.42) by λ, in view of the assumption M ≥ 0 we get

λM − λw(b) ≤ M

b∫

tM

∣∣H(0, 1)(s)
∣∣ ds.

Summing the last inequality and (3.41), taking into account (2.47) and the
assumption M ≥ 0, we obtain

λM + m ≤ M

b∫

a

∣∣H(0, 1)(s)
∣∣ ds.

Hence, according to (1.14) and the assumption m > 0, we get the contra-
diction λM < λM . Therefore, (3.33) is valid.

(b) Let δ ∈ [0, 1], y ∈ C([a, b]; R−), and let u, v ∈ C̃([a, b]; R) satisfy
(0.7), (0.8). Put w(t) = u(t) − v(t) for t ∈ [a, b]. Then, in view of (1.11),
the inequalities (2.46) and (2.47) are fulfilled. We will show that (3.33) is
satisfied.

Assume on the contrary that the inequality (2.48) holds. According to
Lemma 2.9, there exist t∗ ∈ ]a, b] and t∗ ∈ [a, t∗[ such that (2.49) is valid.
Integration of (2.46) from t∗ to t∗ yields

w(t∗)− w(t∗) ≤ −

t∗∫

t∗

H(0, w)(s) ds.

Hence, in view of (2.48), (2.49) and the assumption that H(0, · ) is an a-
Volterra operator, we find

w(t∗) < w(t∗) + |w(t∗)| ≤ w(t∗)

b∫

a

|H(0, 1)(s)| ds.

The last inequality, on account of (1.15), implies w(t∗) < w(t∗), a contra-
diction. �

Proofs of Proposition 1.2, Theorems 1.7–1.9, and Corollary 1.3 are sim-
ilar to the proofs of Proposition 1.1, Theorems 1.4–1.6, and Corollary 1.1,
respectively and therefore they will be omitted.
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Proof of Theorem 1.10. Put

γ(t)
def
=

λ

1− λ
(b− a) + (t− a) + ε for t ∈ [a, b].

Then γ(a)− λγ(b) = (1− λ)ε > 0, and, in view of (1.18), we have

γ′(t) ≥ p(t)
( λ

1− λ
(b− a) + (τ1(t)− a) + ε

)
= p(t)γ(τ1(t)) =

= −p(t) max
{
− γ(s) : τ1(t)≤s ≤τ2(t)

}
for a.e. t∈ [a, b] if i=1

and

γ′(t) ≥ p(t)
( λ

1− λ
(b− a) + (τ2(t)− a) + ε

)
= p(t)γ(τ2(t)) =

= p(t) max
{
γ(s) : τ1(t) ≤ s ≤ τ2(t)

}
for a.e. t ∈ [a, b] if i = 2.

Consequently, the assumptions of Theorems 1.4 and 1.7, respectively, are
fulfilled. �

Proof of Theorem 1.11. Let us note that according to (1.19) and (1.20)
there exist x0 ∈ ]0, ω[ and ε ∈ ]0, 1− λex0‖p‖L [ such that

τi(t)∫

t

p(s) ds ≤
1

x0
ln

(
x0 +

x0(1− λex0‖p‖L − ε)

ex0‖p‖L − 1 + ε

)
for a.e. t ∈ [a, b].

Hence we get

exp

(
x0

t∫

τi(t)

p(s) ds

)
≥

1

x0
−

1− λex0‖p‖L − ε

(1− λ)x0ex0‖p‖L

for a.e. t ∈ [a, b]. (3.43)

Put

γ(t) = exp

(
x0

t∫

a

p(s) ds

)
−

1− λex0‖p‖L − ε

1− λ
for t ∈ [a, b].

Then γ ∈ C̃([a, b]; ]0, +∞[), γ(a) − λγ(b) > 0, and, in view of (3.43), we
have

γ′(t) = x0p(t) exp

(
x0

τi(t)∫

a

p(s) ds

)
exp

(
x0

t∫

τi(t)

p(s) ds

)
≥

≥ p(t)

(
exp

(
x0

τi(t)∫

a

p(s) ds

)
−

− exp

(
x0

τi(t)∫

a

p(s) ds

)
1− λex0‖p‖L − ε

(1− λ)ex0‖p‖L

)
≥

≥ p(t)γ(τi(t)) for a.e. t ∈ [a, b].
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However, since γ is a nondecreasing function, the last inequality means

γ′(t) ≥ −p(t) max
{
− γ(s) : τ1(t) ≤ s ≤ τ2(t)

}
(3.44)

for a.e. t ∈ [a, b] if i = 1

and

γ′(t) ≥ p(t) max
{
γ(s) : τ1(t) ≤ s ≤ τ2(t)

}
(3.45)

for a.e. t ∈ [a, b] if i = 2.

Consequently, the assumptions of Theorems 1.4 and 1.7 are fulfilled, respec-
tively. �

Proof of Corollary 1.5. The validity of the corollary follows immediately
from Theorem 1.11 for x = 1

‖p‖L
ln 1

λ
. �

Proof of Corollary 1.6. If p ≡ 0, then the validity of the corollary follows
from Theorem 1.10. If p 6≡ 0, then the corollary follows from Theorem 1.11,
because

η > sup
{ 1

x
ln x : x > 0

}
=

1

e
. �

Proof of Theorem 1.12. (a) Put

γ(t) = exp

( t∫

a

p(s) ds

)
for t ∈ [a, b].

Then γ ∈ C̃([a, b]; ]0, +∞[) and, in view of (1.21), γ(a) − λγ(b) > 0. Fur-
thermore,

γ′(t) = p(t) exp

( t∫

a

p(s) ds

)
≥ p(t)γ(τi(t)) for a.e. t ∈ [a, b].

However, the last inequality yields (3.44) and (3.45), respectively. There-
fore, the assumptions of Theorem 1.4, respectively Theorem 1.7, are fulfilled.

(b) The assertion follows from Corollary 1.1 (b), respectively Corol-
lary 1.3 (b), for m = 2 and k = 1.

(c) Put

Ĥ(v, w)(t)
def
= p(t)σi(t)

τi(t)∫

t

p(s) max
{
v(ξ) : τ1(s) ≤ ξ ≤ τ2(s)

}
ds

for a.e. t ∈ [a, b].

Then the assertion follows from Corollary 1.1 (c), respectively Corollary 1.3
(c). �

Proof of Theorem 1.13. It immediately follows from Corollaries 1.2
and 1.4. �
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Proof of Theorem 1.14. Let us note that if g ∈ L([a, b]; R+), then

g(t) max
{
u(s) : µ1(t)≤s ≤µ2(t)

}
−g(t) max

{
v(s) : µ1(t)≤s ≤µ2(t)

}
≤

≤ g(t) max
{
u(s)− v(s) : µ1(t) ≤ s ≤ µ2(t)

}
for a.e. t ∈ [a, b]. (3.46)

Therefore we can put

H(v, w)(t)
def
= −g(t) max{w(s) : µ1(t)≤s≤µ2(t)} for a.e. t∈ [a, b]. (3.47)

Then the assertion (a) follows from Theorem 1.6 (b) and Remark 1.2. The
assertion (b) follows from Theorems 1.5 and 1.8 with γ(t) = b−t for t ∈ [a, b].

(c) Let u, v ∈ C̃([a, b]; R) and δ ∈ [0, 1] be such that (0.7) and (0.8) are
satisfied with y ∈ C([a, b]; R) and H defined by (0.4). We will show that
(0.9) is fulfilled. Put w(t) = u(t) − v(t) for t ∈ [a, b]. Then, according to
(3.46), we have

w′(t) ≥ −δg(t) max
{
w(s) : µ1(t) ≤ s ≤ µ2(t)

}
for a.e. t ∈ [a, b],

w(a) − λw(b) ≥ 0.

We will show that w(t) ≥ 0 for t ∈ [a, b]. Obviously, there exists q0 ∈
L([a, b]; R+) such that

w′(t)=−δg(t) max
{
w(s) : µ1(t)≤s≤µ2(t)

}
+q0(t) for a.e. t∈ [a, b]. (3.48)

From (3.48) we get

w′(t) =− δg(t)w(t) − δg(t) max
{
w(s) : µ1(t) ≤ s ≤ µ2(t)

}
+

+ δg(t)w(t) + q0(t) for a.e. t ∈ [a, b]. (3.49)

On the other hand, integration of (3.48) from a to t yields

w(t) = w(a) − δ

t∫

a

g(s) max
{
w(ξ) : µ1(s) ≤ ξ ≤ µ2(s)

}
ds+

+

t∫

a

q0(s) ds for t ∈ [a, b]. (3.50)

Using (3.50) in (3.49), we obtain

w′(t) =− δg(t)w(t)−

− δg(t) max

{
− δ

s∫

a

g(ξ) max{w(η) : µ1(ξ) ≤ η ≤ µ2(ξ)} dξ+

+

s∫

a

q0(ξ) dξ : µ1(t) ≤ s ≤ µ2(t)

}
−

− δg(t)

t∫

a

δg(s) max
{
w(ξ) : µ1(s) ≤ ξ ≤ µ2(s)

}
ds+
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+ δg(t)

t∫

a

q0(s) ds + q0(t) for a.e. t ∈ [a, b].

Hence we get

w′(t) = −δg(t)w(t)−

−δg(t) max

{
δ

t∫

s

g(ξ) max
{
w(η) : µ1(ξ) ≤ η ≤ µ2(ξ)} dξ−

−

t∫

s

q0(ξ) dξ : µ1(t) ≤ s ≤ µ2(t)

}
+ q0(t) for a.e. t ∈ [a, b]. (3.51)

Now, since g(t)(µ2(t) − t) ≤ 0 and q0(t) ≥ 0 for almost every t ∈ [a, b], the
equality (3.51) results in

w′(t) ≥ −δg(t)w(t)− δ2g(t)×

×max

{ t∫

s

g(ξ) max
{
w(η) : µ1(ξ) ≤ η ≤ µ2(ξ)

}
dξ : µ1(t) ≤ s ≤ µ2(t)

}

for a.e. t ∈ [a, b].

Put

x(t) = w(t) exp

(
δ

t∫

a

g(s) ds

)
for t ∈ [a, b]. (3.52)

Then, in view of w(a) ≥ λw(b), we have x(a) ≥ λ0x(b), where λ0 =
λe−δ‖g‖L ∈ [0, 1[ . Furthermore,

x′(t) ≥ −δ2g(t) max

{ t∫

s

g(ξ)×

×max

{
x(η)exp

( t∫

η

δg(ν) dν

)
:µ1(ξ)≤η≤µ2(ξ)

}
dξ :µ1(t)≤s≤µ2(t)

}
(3.53)

for a.e. t ∈ [a, b].

Define

H(v, z)(t)
def
= −δ2g(t) max

{ t∫

s

g(ξ)×

×max

{
z(η)exp

( t∫

η

δg(ν) dν

)
: µ1(ξ)≤η≤µ2(ξ)

}
dξ : µ1(t)≤s≤µ2(t)

}

for a.e. t ∈ [a, b].
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Then H ∈ Hab and H(0, · ) is an a-Volterra operator. Suppose that the
function x assumes negative values. Then, according to Lemma 2.9, there
exist t∗ ∈ ]a, b] and t∗ ∈ [a, t∗[ such that

x(t∗) = −m < 0, x(t∗) = M > 0, (3.54)

where

m = −min
{
x(t) : t ∈ [a, b]

}
, M = max

{
x(t) : t ∈ [a, t∗]

}
.

Now integration of (3.53) from t∗ to t∗, on account of (3.54), results in

−m−M ≥ M

t∗∫

t∗

H(0, 1)(s) ds ≥

≥ −M

b∫

a

g(s)

s∫

µ1(s)

g(ξ) exp

( s∫

µ1(ξ)

g(η) dη

)
dξ ds.

However hence, with respect to (1.22) and (3.54), we get a contradiction
M < M . Therefore, x(t) ≥ 0 for t ∈ [a, b], and consequently, on account of
(3.52), we have w(t) ≥ 0 for t ∈ [a, b].

(d) According to (1.23) there exist x0 > 0 and ε ∈ ]0, 1[ such that

t∫

µ1(t)

g(s) ds ≤
1

x0
ln

(
x0 +

x0(1− ε)

ex0‖g‖L − 1 + ε

)
for a.e. t ∈ [a, b].

Hence we get

exp

(
x0

µ1(t)∫

t

g(s) ds

)
≥

1

x0
−

1− ε

x0ex0‖g‖L

for a.e. t ∈ [a, b]. (3.55)

Put

γ(t) = exp

(
x0

b∫

t

g(s) ds

)
− 1 + ε for t ∈ [a, b].

Then γ ∈ C̃([a, b]; ]0, +∞[) and, in view of (3.55), we have

γ′(t) = −x0g(t) exp

(
x0

µ1(t)∫

t

g(s) ds

)
exp

(
x0

b∫

µ1(t)

g(s) ds

)
≤

≤ −g(t)

[
exp

(
x0

b∫

µ1(t)

g(s) ds

)
− exp

(
x0

b∫

µ1(t)

g(s) ds

)
1− ε

ex0‖g‖L

]
≤

≤ −g(t)γ(µ1(t)) for a.e. t ∈ [a, b].

However, since γ is a nonincreasing function, the last inequality means

γ′(t) ≤ −g(t) max
{
γ(s) : µ1(t) ≤ s ≤ µ2(t)

}
for a.e. t ∈ [a, b].
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Now if we define H by (3.47), then, according to (3.46), the assertion follows
from Theorems 1.5 and 1.8. �

Proof of Corollary 1.7. If g ≡ 0, then the validity of the corollary follows
from Theorem 1.14 (a). If g 6≡ 0, then the corollary follows from Theo-
rem 1.14 (d), because

ϑ > sup
{ 1

x
ln x : x > 0

}
=

1

e
. �

Proof of Theorem 1.15. Define H by (3.47). Then, in view of (3.46), the
assertion follows immediately from Theorem 1.6 (a) and Remark 1.2. �

4. Examples

The following example shows that the solvability of the problem (0.1),
(0.2) does not mean, in general, the unique solvability of this problem, even
in the case where Q ≡ 0 and h ≡ const.

Example 4.1. Let t0 ∈ ]a, b[ and consider the boundary value problem

u′(t) = p(t)
[
max

{
u(s) : τ1(t) ≤ s ≤ τ2(t)

}
− u(τ1(t))

]
,

u(a)− λu(b) = −c,
(4.1)

where

τ1(t) =

{
a for a.e. t ∈ [a, t0]

t0 for a.e. t ∈ ]t0, b]
, τ2(t) =

{
t0 for a.e. t ∈ [a, t0]

b for a.e. t ∈ ]t0, b]
,

p ∈ L([a, b]; R+), c > 0, λ ∈ [0, e−2[ , and

t0∫

a

p(s) ds = 1,

b∫

t0

p(s) ds = 1. (4.2)

Define

H(u, v)(t)
def
= p(t)

[
max

{
u(s) : τ1(t) ≤ s ≤ τ2(t)

}
− v(τ1(t))

]

for a.e. t ∈ [a, b].

Then, according to Theorem 1.12 (a), we have H ∈ V +
ab(λ;≥). Moreover,

it can be easily shown that H ∈ W +
ab(λ;−). Indeed, let u, v ∈ C̃([a, b]; R)

satisfy (0.7) and (0.8) with some δ ∈ [0, 1] and y ∈ C([a, b]; R−). Then,
if we put w(t) = u(t) − v(t) for t ∈ [a, b], the inequalities (0.7), (0.8) are
equivalent to

w′(t) ≥ −δp(t)w(τ1(t)) for a.e. t ∈ [a, b], w(a)− λw(b) ≥ 0. (4.3)
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Integration of (4.3) from a to t ∈ [a, t0] and from t0 to t ∈ [t0, b] yields
respectively

w(t) ≥ w(a)

(
1− δ

t∫

a

p(s) ds

)
for t ∈ [a, t0], (4.4)

w(t) ≥ w(t0)

(
1− δ

t∫

t0

p(s) ds

)
for t ∈ [t0, b]. (4.5)

Furthermore, from (4.4) and (4.5), with regard to (4.2), we get

w(t0) ≥ w(a)(1− δ), w(b) ≥ w(t0)(1− δ), (4.6)

whence we have
w(b) ≥ w(a)(1 − δ)2. (4.7)

Assume that w(a) < 0. Then, in view of the second inequality in (4.3)
and (4.7), we find

0 > w(a) ≥ λw(b) > w(b) ≥ w(a)(1− δ)2 ≥ w(a),

a contradiction. Therefore w(a) ≥ 0, and, consequently, in view of (4.6) we
have also w(t0) ≥ 0. Now from (4.4) and (4.5) we get w(t) ≥ 0 for t ∈ [a, b],
which means u(t) ≥ v(t) for t ∈ [a, b].

Thus, according to Theorem 1.1, the problem (4.1) has at least one non-
positive solution.

On the other hand, since c > 0, we can choose d > 0 such that c+λd > d,
and for every k ∈ [d, c + λd] let us define

uk(t) =





−(c + λd)

t0∫

t

p(s) ds− k

t∫

a

p(s) ds for t ∈ [a, t0]

−k

b∫

t

p(s) ds− d

t∫

t0

p(s) ds for t ∈ ]t0, b]

.

Now it can be easily verified that for every k ∈ [d, c +λd] the function uk is
a nonpositive solution to (4.1). Thus, the problem (4.1) has infinitely many
nonpositive solutions.

The following example shows that the requirement on the operators Q

and h to transform nonpositive functions into the set of nonpositive func-
tions and nonpositive numbers, respectively, introduced in Theorem 1.1,
is essential and it cannot be omitted. In other words, the inclusion H ∈
V +

ab(λ;≥) ∩W+
ab(λ;−) does not guarantee, in general, the solvability of the

problem (0.1), (0.2) for arbitrary sublinear Q and h. The same is true for
the inclusion H ∈ V +

ab(λ;≤) ∩W+
ab(λ; +).

Example 4.2. On the segment [a, b] consider the problem

u′(t) = p(t) max
{
u(s) : a ≤ s ≤ b}+ q0(t), u(a) = c. (4.8)
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Here p ∈ L([a, b]; R+), q0 ∈ L([a, b]; R), c ∈ R, and

b∫

a

p(s) ds ≥ 1.

Put

H(u, v)(t)
def
= p(t) max

{
u(s) : a ≤ s ≤ b

}
.

Obviously, if u(a) ≥ 0, then also max{u(s) : a ≤ s ≤ b} ≥ 0, and thus every

function u ∈ C̃([a, b]; R) satisfying (0.5) (with λ = 0) admits

u′(t) ≥ H(u, 0)(t) = p(t) max
{
u(s) : a ≤ s ≤ b

}
≥ 0 for a.e. t ∈ [a, b].

Consequently H ∈ V +
ab(0;≥). On the other hand, the function

u(t) = 1−

b∫

t

p(s) ds for t ∈ [a, b]

satisfies (0.6) (with λ = 0) but it assumes positive values. Therefore, H 6∈
V +

ab(0;≤). Moreover, it can be easily verified that H ∈ W +
ab(0;−) and

H ∈ W+
ab(0; +). According to Theorem 1.1, the problem (4.8) has at least

one nonpositive solution whenever q0(t) ≤ 0 for almost every t ∈ [a, b] and
c ≤ 0.

On the other hand, it is not difficult to show that the problem (4.8)
is not solvable if q0(t) ≥ 0 for almost every t ∈ [a, b] and c ≥ 0, c +

‖q0‖L > 0. Indeed, assume on the contrary that there exists u ∈ C̃([a, b]; R)
satisfying (4.8). Then from (4.8) we get u′(t) ≥ 0 for almost every t ∈ [a, b].
Consequently, the maximum value of the function u is reached at the point
b and u(b) ≥ u(a) = c ≥ 0. Having this in mind, by integration of (4.8)
from a to b we obtain

u(b) = c + u(b)

b∫

a

p(s) ds +

b∫

a

q0(s) ds,

whence we get

0 ≥ u(b)

(
1−

b∫

a

p(s) ds

)
= c +

b∫

a

q0(s) ds > 0,

a contradiction.
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17. R. Hakl, A. Lomtatidze, and B. Půža, On periodic solutions of first order nonlinear
functional differential equations of non-Volterra’s type. Mem. Differential Equations
Math. Phys. 24(2001), 83–105.

18. R. Hakl, A. Lomtatidze, and I. P. Stavroulakis, On a boundary value problem
for scalar linear functional differential equations. Abstr. Appl. Anal., 2004, No. 1,
45–67.



On a Periodic Type BVP for FDE with a Positively Homogeneous Operator 53
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