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A BOUNDARY VARIATIONAL INEQUALITY

APPROACH TO UNILATERAL CONTACT

WITH HEMITROPIC MATERIALS



Abstract. We study unilateral frictionless contact problems with hemi-
tropic materials in the theory of linear elasticity. We model these problems
as unilateral (Signorini type) boundary value problems, give their varia-
tional formulation as spatial variational inequalities, and transform them
to boundary variational inequalities with the help of the potential method
for hemitropic materials. Using the self-adjointness of the Steklov–Poincaré
operator, we obtain the equivalence of the boundary variational inequality
formulation and the corresponding minimization problem. Based on our
variational inequality approach we derive existence and uniqueness theo-
rems. Our investigation includes the special particular case of only traction-
contact boundary conditions without prescribing the displacement and mi-
crorotation vectors along some part of the boundary of the hemitropic elastic
body.
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1. Introduction

In recent years continuum mechanical theories in which the deformation
is described not only by the usual displacement vector field, but by other
scalar, vector or tensor fields as well, have been the object of intensive re-
search. Classical elasticity associates only the three translational degrees of
freedom to material points of the body and all the mechanical characteristics
are expressed by the corresponding displacement vector. On the contrary,
micropolar theory, by including intrinsic rotations of the particles, provides
a rather complex model of an elastic body that can support body forces and
body couple vectors as well as force stress vectors and couple stress vectors
at the surface. Consequently, in this case all the mechanical quantities are
written in terms of the displacement and microrotation vectors.

The origin of the rational theories of polar continua goes back to brothers
E. and F. Cosserat [6] who gave a development of the mechanics of contin-
uous media in which each material point has the six degrees of freedom of
a rigid body (for the history of the problem see [28], [33], [22], [9], and the
references therein).

A micropolar solid which is not isotropic with respect to inversion is called
hemitropic, noncentrosymmetric, or chiral. Materials may exhibit chirality
on the atomic scale, as in quartz and in biological molecules, as well as on
a large scale, as in composites with helical or screw-shaped inclusions.

Mathematical models describing the hemitropic properties of elastic ma-
terials have been proposed by Aero and Kuvshinski [1], [2]. We note that
the governing equations in this model become very involved and generate
6 × 6 matrix partial differential operator of second order. Evidently, the
corresponding 6 × 6 matrix boundary differential operators describing the
force stress and couple stress vectors have also an involved structure in
comparison with the classical case.

In [29], [30], [31], the fundamental matrices of the associated systems
of partial differential equations of statics and steady state oscillations have
been constructed explicitly in terms of elementary functions and the basic
boundary value problems of hemitropic elasticity have been studied by the
potential method for smooth and non-smooth Lipschitz domains.

Particular problems of the elasticity theory of hemitropic continuum have
been considered in [10], [23], [24], [25], [26], [33], [34], [35], [39] (see also [3],
[4] and the references therein for electromagnetic scattering by a homoge-
neous chiral obstacle).

The main goal of the present paper is the study of unilateral frictionless
contact problems for hemitropic elastic material, their mathematical mod-
elling as unilateral boundary value problems of Signorini type and their
analysis with the help of the spatial and boundary variational inequality
technique.
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In classical elasticity similar problems have been considered in many
monographs and papers (see, e.g., [8], [11], [12], [13], [15], [16], [17], [18],
[19], [20], [21], [36], and the references therein).

Due to the complexity of the physical model of a hemitropic continuum
we need a special mathematical interpretation of the unilateral mechanical
constraints related to the microrotation vector and the couple stress vector.
We note that the displacement vector and the force stress vector are subject
to the usual classical unilateral conditions. However, we have to pay special
attention to the fact that the force stress and couple stress vectors depend
on the displacement and microrotation vectors.

Here in this paper we can present a reasonable mathematical model for
the unilateral constraints that apply to hemitropic material in contact. We
transform the unilateral boundary value problem to the corresponding spa-
tial variational inequality (SVI) equivalently. Furthermore by boundary
integral techniques, we can reduce the SVI to an equivalent boundary vari-
ational inequality (BVI). Applying the potential method we establish some
coercivity properties of the boundary bilinear forms involved in the BVI and
thus prove uniqueness and existence for the original unilateral problems.

2. Basic Equations and Green Formulae

2.1. Field equations. Let Ω+ ⊂ R
3 be a bounded domain with a smooth

connected boundary S := ∂Ω+, Ω+ = Ω+ ∪ S; Ω− = R
3 \ Ω+. We as-

sume that Ω ∈ {Ω+, Ω−} is occupied by an elastic material possessing the
hemitropic properties.

Denote by u = (u1, u2, u3)
> and ω = (ω1, ω2, ω3)

> the displacement vec-
tor and the microrotation vector, respectively; here and in what follows the
symbol (·)> denotes transposition. Note that the microrotation vector in
the hemitropic elasticity theory is kinematically distinct from the macroro-
tation vector 1

2 curl u.
In the linear theory of hemitropic elasticity we have the following con-

stitutive equations for the force stress tensor {τpq} and the couple stress
tensor {µpq}

τpq = τpq(U) : = (µ+ α)
∂uq

∂xp
+ (µ− α)

∂up

∂xq
+ λδpq div u+

+δ δpq divω + (κ+ ν)
∂ωq

∂xp
+ (κ− ν)

∂ωp

∂xq
−

−2α
3∑

k=1

εpqk ωk, (2.1)

µpq = µpq(U) : = δ δpq div u+ (κ+ ν)
[∂uq

∂xp
−

3∑

k=1

εpqkωk

]
+
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+βδpq divω + (κ− ν)
[∂up

∂xq
−

3∑

k=1

εqpkωk

]
+

+(γ + ε)
∂ωq

∂xp
+ (γ − ε)

∂ωp

∂xq
, (2.2)

where U = (u, ω)>, δpq is the Kronecker delta, εpqk is the permutation
(Levi–Civitá) symbol, and α, β, γ, δ, λ, µ, ν, κ, and ε are the material
constants (see [1]).

The components of the force stress vector τ (n) = (τ
(n)
1 , τ

(n)
2 , τ

(n)
3 )> and

the coupled stress vector µ(n) = (µ
(n)
1 , µ

(n)
2 , µ

(n)
3 )>, acting on a surface ele-

ment with the normal vector n = (n1, n2, n3), read as

τ (n)
q =

3∑

p=1

τpqnp, µ(n)
q =

3∑

p=1

µpqnp, q = 1, 2, 3. (2.3)

Let us introduce the generalized stress operator (6 × 6 matrix differential
operator)

T (∂, n) =

[
T (1)(∂, n) T (2)(∂, n)

T (3)(∂, n) T (4)(∂, n)

]

6×6

, T (j) =
[
T (j)

pq

]
3×3

, j = 1, 4, (2.4)

where ∂ = (∂1, ∂2, ∂3), ∂j = ∂/∂xj ,

T (1)
pq (∂, n) = (µ+ α)δpq

∂

∂n
+ (µ− α)nq

∂

∂xp
+ λnp

∂

∂xq
,

T (2)
pq (∂, n) = (κ+ ν)δpq

∂

∂n
+ (κ− ν)nq

∂

∂xp
+ δnp

∂

∂xq
−

− 2α

3∑

k=1

εpqknk,

T (3)
pq (∂, n) = (κ+ ν)δpq

∂

∂n
+ (κ− ν)nq

∂

∂xp
+ δnp

∂

∂xq
,

T (4)
pq (∂, n) = (γ + ε)δpq

∂

∂n
+ (γ − ε)nq

∂

∂xp
+ βnp

∂

∂xq
−

− 2 ν
3∑

k=1

εpqk nk .

(2.5)

In view of (2.1), (2.2), and (2.3) it can easily be checked that

(τ (n), µ(n))> = T (∂, n)U.

The static equilibrium equations for hemitropic elastic bodies are written
as

3∑

p=1

∂pτpq(x) + %Fq(x) = 0,
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3∑

p=1

∂p µpq(x) +

3∑

l,r=1

εqlrτlr(x) + %Gq(x) = 0, q = 1, 2, 3,

where F = (F1, F2, F3)
> and G = (G1, G2, G3)

> are the given body force
and body couple vectors per unit mass. Using the relations (2.1)–(2.2) we
can rewrite the above equations in terms of the displacement and microro-
tation vectors:

(µ+ α)∆u(x) + (λ+ µ− α) graddiv u(x) + (κ+ ν)∆ω(x) +

+(δ + κ− ν) graddivω(x) + 2α curlω(x) + %F (x) = 0,

(κ+ ν)∆u(x) + (δ + κ− ν) graddiv u(x) + 2α curlu(x) +

+(γ + ε)∆ω(x) + (β + γ − ε) graddivω(x) + 4ν curlω(x) −

−4αω(x) + %G(x) = 0,

(2.6)

where ∆ is the Laplace operator.
Let us introduce the matrix differential operator corresponding to the

system (2.6):

L(∂) :=

[
L(1)(∂), L(2)(∂)

L(3)(∂), L(4)(∂)

]

6×6

, (2.7)

where

L(1)(∂) : = (µ+ α)∆I3 + (λ+ µ− α)Q(∂),

L(2)(∂) = L(3)(∂) : = (κ+ ν)∆I3 + (δ + κ− ν)Q(∂) + 2αR(∂),

L(4)(∂) : =
[
(γ+ε)∆−4α

]
I3+(β+γ−ε)Q(∂)+4νR(∂).

(2.8)

Here Ik stands for the k × k unit matrix and

R(∂) :=




0 −∂3 ∂2

∂3 0 −∂1

−∂2 ∂1 0




3×3

, Q(∂) :=
[
∂k ∂j

]
3×3

. (2.9)

Note that obviously

R(∂)u =



∂2u3 − ∂3u2

∂3u1 − ∂1u3

∂1u2 − ∂2u1


 = curlu, Q(∂)u = graddiv u . (2.10)

Due to the above notation, the equations (2.6) can be rewritten in matrix
form as

L(∂)U(x) = Φ(x),

U = (u, ω)>, Φ = (Φ(1),Φ(2))> := (−%F,−%G)>.
(2.11)

Let us remark that the operator L(∂) is formally self-adjoint, i.e., L(∂) =
[L(−∂)]>.
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2.2. Green’s formulae. For real–valued vectors U := (u, ω)>, U ′ :=

(u′, ω′)> ∈ [C2(Ω+)]6 there holds the following Green formula [29]
∫

Ω+

[
L(∂)U · U ′ +E(U,U ′)

]
dx =

∫

∂Ω+

[
T (∂, n)U

]+
· [U ′]+ dS, (2.12)

where n is the outward unit normal vector to S = ∂Ω+, the symbols [ · ]±

denote the limits on S from Ω±, E(· , ·) is the bilinear form associated with
the potential energy density defined by

E(U,U ′) = E(U ′, U) =

=

3∑

p,q=1

{
(µ+ α)u′pqupq + (µ− α)u′pquqp + (κ+ ν)(u′pqωpq + ω′pqupq) +

+(κ− ν)(u′pqωqp + ω′pquqp) + (γ + ε)ω′pqωpq +

+(γ − ε)ω′pqωqp + δ(u′ppωqq + ω′qqupp) + λu′ppuqq + βω′ppωqq

}
(2.13)

with

upq = upq(U) = ∂puq −

3∑

k=1

εpqkωk,

ωpq = ωpq(U) = ∂pωq , p, q = 1, 2, 3,

(2.14)

and u′pq = u′pq(U
′) and ω′pq = ω′pq(U

′) represented analogously by means of
U ′. Here and in what follows a · b denotes the usual scalar product of two

vectors a, b ∈ R
m: a · b =

m∑
j=1

ajbj .

The expressions upq(U) and ωpq(U) are called generalized strains corre-
sponding to the vector U = (u, ω)>.

From (2.13) and (2.14) we get

E(U,U ′) =

=
3λ+ 2µ

3

(
div u+

3δ + 2κ

3λ+ 2µ
divω

)(
div u′ +

3δ + 2κ

3λ+ 2µ
divω′

)
+

+
1

3

(
3β + 2γ −

(3δ + 2κ)2

3λ+ 2µ

)
(div ω)(divω′) +

+
µ

2

3∑

k,j=1, k 6=j

[
∂uk

∂xj
+
∂uj

∂xk
+
κ

µ

(∂ωk

∂xj
+
∂ωj

∂xk

)]
×

×

[
∂u′k
∂xj

+
∂u′j
∂xk

+
κ

µ

(∂ω′k
∂xj

+
∂ω′j
∂xk

)]
+

+
µ

3

3∑

k,j=1

[
∂uk

∂xk
−
∂uj

∂xj
+
κ

µ

(∂ωk

∂xk
−
∂ωj

∂xj

)]
×

×

[
∂u′k
∂xk

−
∂u′j
∂xj

+
κ

µ

(∂ω′k
∂xk

−
∂ω′j
∂xj

)]
+
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+
(
γ −

κ2

µ

) 3∑

k,j=1, k 6=j

[
1

2

(∂ωk

∂xj
+
∂ωj

∂xk

)(∂ω′k
∂xj

+
∂ω′j
∂xk

)
+

+
1

3

(∂ωk

∂xk
−
∂ωj

∂xj

)(∂ω′k
∂xk

−
∂ω′j
∂xj

)]
+

+α
(

curlu+
ν

α
curlω − 2ω

)
·
(

curlu′ +
ν

α
curl ω′ − 2ω′

)
+

+
(
ε−

ν2

α

)
curlω · curlω′. (2.15)

The potential energy density E(U,U) is positive definite with respect to the
variables upq(U) and ωpq(U) (see (2.14)), i.e. there exists c0 > 0 depending
only on the material constants such that

E(U,U) ≥ c0

3∑

p,q=1

[
u2

pq + ω2
pq

]
. (2.16)

From (2.16) it follows that the material constants satisfy the inequalities
(cf. [2], [29])

µ > 0, α > 0, 3λ+ 2µ > 0, µγ − κ2 > 0, α ε− ν2 > 0,

(3λ+ 2µ)(3β + 2γ)− (3δ + 2κ)2 > 0,
(2.17)

whence we easily derive

γ > 0, ε > 0, λ+ µ > 0, β + γ > 0,

d1 := (µ+ α)(γ + ε)− (κ+ ν)2 > 0,

d2 := (λ+ 2µ)(β + 2γ)− (δ + 2κ)2 > 0.

(2.18)

Due to [29] we can characterize the kernel of the energy bilinear form as
follows.

Lemma 2.1. Let U = (u, ω)> ∈ [C1(Ω)]6. Then E(U,U) = 0 in Ω is

equivalent to

u(x) = [a× x] + b, ω(x) = a, x ∈ Ω, (2.19)

where a and b are arbitrary three-dimensional constant vectors and where

the symbol × denotes the cross product of two vectors.

We call vectors of the type U(x) = ([a × x] + b, a)> generalized rigid

displacement vectors. It is evident that if a generalized rigid displacement
vector vanishes at one point then it is zero vector, i.e., a = b = 0.

Throughout the paper L2, W
s = W s

2 , and Hs = Hs
2 with s ∈ R stand

for the well-known Lebesgue, Sobolev–Slobodetskĭı, and Bessel potential
spaces, respectively (see, [37], [38], [27]). Note that Hs = W s for s ≥ 0. We
denote the associated norm by ‖ · ‖Hs .

From the positive definiteness of the energy density it easily follows that
there exist positive constants c1 and c2, depending only on the material
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constants, such that

B(U,U) : =

∫

Ω+

E(U,U)dx ≥

≥ c1

∫

Ω+

{ 3∑

p,q=1

[
(∂puq)

2 + (∂pωq)
2
]
+

3∑

p=1

[u2
p + ω2

p]

}
dx−

−c2

∫

Ω+

3∑

p=1

[u2
p + ω2

p] dx (2.20)

for an arbitrary real–valued vectorU ∈ [C1(Ω+)]6, i.e., for any U ∈ [H1(Ω+)]6

the following Korn’s type inequality holds (cf. [11], Part I, § 12, [5], Sec-
tion 6.3)

B(U,U) ≥ c1‖U‖
2
[H1(Ω+)]6 − c2‖U‖

2
[H0(Ω+)]6 , (2.21)

where ‖ · ‖[Hs(Ω+)]6 denotes the norm in the space [Hs(Ω+)]6.

Remark 2.2. From (2.12) it follows that
∫

Ω+

[
L(∂)U ·U ′−U ·L(∂)U ′

]
dx=

∫

∂Ω+

{
[TU ]+ · [U ′]+−[U ]+ · [TU ′]+

}
dS (2.22)

for arbitrary U := (u, ω)>, U ′ := (u′, ω′)> ∈ [C2(Ω+)]6.

Remark 2.3. By standard arguments, Green’s formula (2.12) can be
extended to Lipschitz domains and to the case of vector functions U ∈
[H1(Ω+)]6 and U ′ ∈ [H1(Ω+)]6 and L(∂)U ∈ [L2(Ω

+)]6 (cf. [32], [27])
∫

Ω+

[
L(∂)U · U ′ +E(U,U ′)

]
dx =

〈
[T (∂, n)U ]+, [U ′]+

〉
∂Ω+ , (2.23)

where 〈· , ·〉∂Ω+ denotes the duality between the spaces [H−1/2(∂Ω+)]6 and
[H1/2(∂Ω+)]6, which extends the usual “real” L2-scalar product , i.e., for
f, g ∈ [L2(S)]6 we have

〈f, g〉S =

6∑

k=1

∫

S

fkgk dS =: ( f, g )L2(S).

Clearly, in the general case the functional T (∂, n)U ∈ [H−1/2(∂Ω+)]6 is well
defined by the relation (2.23).

3. Formulation of Unilateral Problems and Main Existence

Results

3.1. Mechanical description of the problem. Mathematical aspects of
the mechanical unilateral problems (Signorini type problems) in the frame-
work of the classical elasticity theory are well described in many works
(see, e.g., [12], [19], [20], and the references therein). Here we will apply the



78 R. Gachechiladze, J. Gwinner, D. Natroshvili

analogous arguments and construct a mathematical model for the unilateral
problems in the theory of elasticity of hemitropic materials. The main diffi-
culties appear in the reasonable interpretation of the unilateral restrictions
for the microrotation vector and/or the couple stress vector.

We assume that a hemitropic elastic body, in its reference configuration,
occupies the closure of a domain Ω+ ∈ R

3. The boundary S = ∂Ω+ is
divided into three parts S = SD ∪ ST ∪ SC with disjoint SD, ST , and SN .
For definiteness and simplicity in what follows we assume (if not otherwise
stated) that SD has a positive surface measure, SD∩SC = ∅ and, moreover,
S, ∂SC , ∂ST , ∂SD are C∞-smooth.

The hemitropic elastic body is fixed along the subsurface SD, i.e., the
displacement vector u and the microrotation vector ω vanish on SD. The
surface force stress vector and the surface couple stress vector are applied to
the portion ST , i.e., [τ (n)(U)]+ = ψ(1) and [µ(n)(U)]+ = ψ(2) on ST , where

ψ(j) = (ψ
(j)
1 , ψ

(j)
2 , ψ

(j)
3 )>, j = 1, 2, are given vector functions on ST .

The motion of the elastic body is restricted by the so called foundation

F which is a rigid and absolutely fixed body. We are interested in the
deformation of the hemitropic body brought about due to its motion from
its reference configuration to another configuration when some portion of the
material surface of the body comes in contact with the foundation F . Note
that in the case of statics we ignore the dependence of all mechanical and
geometrical characteristics involved on time t. The actual surface on which
the body comes in contact with the foundation is not known in advance but
is contained in the portion SC of S.

We confine our attention to infinitesimal generalized deformations of the
body (see (2.14)). Moreover, we assume that the foundation surface ∂F is
frictionless and no force and couple stresses are applied on SC . Therefore,
by the standard arguments (for details see, e.g., [20], Chapter 2) we arrive
at the following linearized conditions on SC for the displacement vector u
and the force stress vector τ (n)(U):

(i) the so called non-penetration condition,

[u · n]+ ≤ ϕ, (3.1)

where n is the outward unit normal vector to ∂Ω+ and ϕ is a given scalar
function characterizing the initial gap between the foundation and the elas-
tic body;

(ii) the conditions describing that a compressive normal force stress must
be developed at the points of contact, while the normal component of the
force stress vector is zero if no contact occurs,

[
τ (n)(U) · n

]+
≤ 0,

[
τ (n)(U) · n

]+(
[u · n]+ − ϕ

)
= 0; (3.2)

(iii) the condition showing that the tangential components of the force
stress vector vanish on SC ,

[
τ (n)(U)

]+
− n

[
τ (n)(U) · n

]+
= 0. (3.3)
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Further, we make a fundamental observation: since the surface ∂F is
frictionless, the microrotation vector ω is not restricted by any condition on
SC even at the points where the contact with the rigid foundation F occurs
and, therefore, it is very natural to require that the couple stress vector
µ(n)(U) is zero on SC ,

[
µ(n)(U)

]+
= 0 on SC . (3.4)

Now we are in a position to formulate mathematically the unilateral
problem that corresponds to the equilibrium state of a hemitropic body for

given data: body force and body couple vectors Φ(1) = (Φ
(1)
1 ,Φ

(1)
2 ,Φ

(1)
3 )>

and Φ(2) = (Φ
(2)
1 ,Φ

(2)
2 ,Φ

(2)
3 )> in Ω+, surface force stress and surface couple

stress vectors ψ(1) and ψ(2) on ST , and initial gap ϕ on SC .

Problem (UP). We have to find a vector U = (u, ω)>) ∈ [H1(Ω+)]6

satisfying the following system of equations and inequalities:

L(∂)U = −Φ in Ω+, (3.5)

[u]+ = 0, [ω]+ = 0 on SD , (3.6)

[τ (n)(U)]+ =
[
T (1)u+ T (2)ω

]+
= ψ(1)

[µ(n)(U)]+ =
[
T (3)u+ T (4)ω

]+
= ψ(2)



 on ST , (3.7)

[u · n]+ ≤ ϕ

[
τ (n)(U) · n

]+
≤ 0

〈
r

SC

[
τ (n)(U) · n

]+
, r

SC
[u · n]+ − ϕ

〉
SC

= 0

[τ (n)(U)]+ − n
[
τ (n)(U) · n

]+
= 0

[µ(n)(U)]+ = 0






on SC , (3.8)

where r
Σ

denotes the restriction operator to Σ,

Φ = (Φ(1),Φ(2))> ∈ [L2(Ω
+)]6, Φ(j) =

(
Φ

(j)
1 ,Φ

(j)
2 ,Φ

(j)
3

)>
, (3.9)

equation (3.5) is understood in the weak sense, i.e.,
∫

Ω+

E(U, V ) dx =

∫

Ω+

Φ · V dx (3.10)

for arbitrary infinitely differentiable function V ∈ [C∞0 (Ω+)]6 with compact
support in Ω. Due to the well-known interior regularity results for solutions
of strongly elliptic systems (see, e.g., [12]) we conclude that the equation
(3.5), with Φ as in (3.9), holds pointwise almost everywhere in Ω+.

The condition (3.6) and the first inequality in (3.8) are understood in the
usual trace sense, while (3.7) and the fourth and fifth equations in (3.8) are
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understood in the generalized functional sense described in Remark 2.3,

Ψ : = (ψ(1), ψ(2))> ∈ [L2(ST )]6,

ψ(j) =
(
ψ

(j)
1 , ψ

(j)
2 , ψ

(j)
3

)>
, j = 1, 2,

(3.11)

ϕ ∈ H
1
2 (SC). (3.12)

Throughout the paper Hs(Σ) :=
{
r
Σ
f : f ∈ Hs(S)

}
is the space of restric-

tions to Σ ⊂ S of functions from the space Hs(S), while H̃s(Σ) :=
{
f ∈

Hs(S) : supp f ⊂ Σ
}

for s ∈ R. We recall that H̃s(Σ) and H−s(Σ) are
mutually adjoint function spaces and L2(Σ) is continuously embedded in

H̃−1/2(Σ) (for details see, e.g., [27], [37]). In the third equation of (3.8) the

symbol 〈 · , · 〉SC denotes the duality brackets between the spaces H̃−1/2(SC)
and H1/2(SC), which is well-defined due to the embedding (3.11) and the
boundary condition (3.7) implying that

r
Σ
[τ (n)(U) · n]+ ∈ r

Σ
[H̃−1/2(Σ)]3 for Σ ∈ {SD, ST , SC}.

The second inequality in (3.8) means that
〈
r

SC
[τ (n)(U) · n]+, ψ

〉
SC

≤ 0 for all ψ ∈ H1/2(SC), ψ ≥ 0.

Note that due the unilateral conditions (3.8) the problem (UP) is nonlinear
since the coincidence set of the foundation F and the elastic body (i.e., the
subset of SC where [u · n ]+ = ϕ) is not known in advance. We have the
following uniqueness result.

Theorem 3.1. The problem (UP) possesses at most one solution.

Proof. Let U (1) = (u(1), ω(1))> and U (2) = (u(2), ω(2))> be two solutions of
the problem (UP) and denote U = (u, ω)> := U (1) − U (2). It is evident
that U satisfies the homogeneous differential equation (3.5) with Φ = 0, the
homogeneous Dirichlet boundary conditions (3.6), the homogeneous Neu-
mann boundary conditions (3.7) with Ψ := (ψ(1), ψ(2))> = 0. Moreover, the
tangential components of the force stress vector [τ (n)(U)]+−n[τ (n)(U) ·n]+

and the couple stress vector [µ(n)(U)]+ vanish on SC due to the fourth and
fifth conditions in (3.8). Therefore, by Green’s formula (2.23) and using the
third equality in (3.8) we get

∫

Ω+

E(U,U) dx =
〈
[T (∂, n)U ]+S , [U ]+S

〉
S

=
〈
[τ (n)(U)]+S , [u]

+
S

〉
S

=

=
〈[
τ (n)(U (1)) · n

]+
SC
−

[
τ (n)(U (2)) · n

]+

SC
, [u(1) · n]+SC

−ϕ−[u(2)· n]+SC
+ϕ

〉

SC

=

= −
〈[
τ (n)(U (1)) · n

]+

SC
, [u(2) · n]+SC

− ϕ
〉

SC

−

−
〈[
τ (n)(U (2)) · n

]+

SC
, [u(1) · n]+SC

− ϕ
〉

SC

≤ 0,
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due to the first and second inequalities in (3.8). Thus, E(U,U) = 0 in
accordance with (2.16) and by Lemma 2.1 it then follows that U = 0 in Ω+

since SD 6= ∅. This completes the proof. �

Below, in the subsequent subsections we will give some different formu-
lations of the above unilateral problem (UP) with the help of variational
inequalities.

3.2. Spatial variational inequality formulation. Let us put

H(Ω+;SD) :=
{
V = (v, w)> ∈ [H1(Ω+)]6 : r

SD
[V ]+ = 0

}
(3.13)

and for ϕ ∈ H1/2(SC) introduce the convex closed set of vector functions

Kϕ :=
{
V = (v, w)> ∈ H(Ω+;SD) : rSC

([v]+ · n) ≤ ϕ
}
. (3.14)

Let us consider the following spatial variational inequality (SVI):
Find U = (u, ω)> ∈ Kϕ such that

∫

Ω+

E(U, V − U) dx ≥

≥

∫

Ω+

Φ · (V − U) dx+ 〈Ψ, r
ST

[V − U ]+〉ST for all V ∈ Kϕ, (3.15)

where E(· , ·) is given by (2.15) and Φ, Ψ and ϕ are as in (3.9), (3.11) and
(3.12). Note that the duality relation in the right-hand side of (3.15) can be
written as a usual Lebesgue integral over the subsurface ST due to (3.11)
and Remark 2.3.

Further we show that the SVI (3.15) and the unilateral problem (UP)
are equivalent.

Theorem 3.2. If a vector function U solves the SVI (3.15), then U is a

solution to the unilateral problem (3.5)–(3.8), and vice versa.

Proof. First, we assume that U = (u, ω)> ∈ Kϕ solves the SVI (3.15) and
prove that it solves then the unilateral problem (3.5)–(3.8). It is evident
that

V = U ± V ′ ∈ Kϕ for arbitrary V ′ ∈ [C∞0 (Ω+)]6. (3.16)

From (3.15) it then follows that
∫

Ω+

E(U, V ′) dx =

∫

Ω+

Φ · V ′ dx for all V ′ ∈ [C∞0 (Ω+)]6,

which shows that U is a weak solution of the equation (3.5). Due to the inte-
rior regularity results the equation (3.5) holds point wise almost everywhere
in Ω+ since Φ ∈ [L2(Ω

+)]6.
The Dirichlet type condition (3.6) is automatically satisfied due to the

inclusion U ∈ Kϕ since Kϕ ⊂H(Ω+;SD).
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For the solution vector U and for any V ∈ Kϕ in accordance with Green’s
formula (2.23) we have
∫

Ω+

E(U, V −U) dx =

∫

Ω+

Φ·(V −U) dx+
〈
[T (∂, n)U ]+, [V −U ]+

〉
∂Ω+ . (3.17)

From (3.15) and (3.16) we conclude
〈
[T (∂, n)U ]+, [V −U ]+

〉
∂Ω+ ≥ 〈Ψ, rST

[V −U ]+〉ST for all V ∈ Kϕ. (3.18)

In virtue of (3.11) and

r
Σ
[T (∂, n)U ]+ ∈ r

Σ
[H̃−1/2(Σ)]6

r
Σ
[V − U ]+ ∈ [H1/2(Σ)]6




 for Σ ∈ {SD, ST , SC}, (3.19)

and since elements from Kϕ vanish on SD we can decompose the duality
relations in (3.18) as follows

〈
rST

[T (∂, n)U ]+, rST
[V −U ]+

〉

ST

+
〈
rSC

[T (∂, n)U ]+, rSC
[V −U ]+

〉

SC

≥

≥ 〈Ψ, rST
[V − U ]+〉ST for all V ∈ Kϕ. (3.20)

Further, let us choose the vector V as in (3.16) but now with arbitrary

V ′ ∈ [H1(Ω+)]6 such that [V ′]+S ∈ [H̃1/2(ST )]6. It is clear that V ∈ Kϕ and
from (3.20) we easily derive

〈
r

ST
[T (∂, n)U ]+, r

ST
[V ′]+

〉

ST

=

= 〈Ψ, r
ST

[V ′]+〉ST for all [V ′]+S ∈ [H̃1/2(ST )]6, (3.21)

whence the conditions (3.7) on ST follow immediately.
Note that the first condition in (3.8) is satisfied automatically since U =

(u, ω)> ∈ Kϕ.
Now, from (3.20) we conclude

〈
r

SC
[T (∂, n)U ]+, r

SC
[V − U ]+

〉

SC

≥ 0 for all V ∈ Kϕ, (3.22)

i.e.,
〈
r

SC
[τ (n)(U)]+, r

SC
[v−u]+

〉

SC

+
〈
r

SC
[µ(n)(U)]+, r

SC
[w−ω]+

〉

SC

≥0 (3.23)

for all V = (v, w)> ∈ Kϕ.
If we take v = u and w = ω ± χ with arbitrary χ ∈ [H1(Ω+)]3 such that

[χ]+S ∈ [H̃1/2(SC)]3, then V = (v, w)> ∈ Kϕ and from (3.23) we see that

[µ(n)(U)]+ = 0 on SC , i.e., the fifth condition in (3.8) is satisfied.
From (3.23) then we have

〈
r

SC
[τ (n)(U)]+, r

SC
[v − u]+

〉

SC

≥ 0 (3.24)
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for all V = (v, 0)> ∈ Kϕ. To show the remaining three conditions in (3.8)
we proceed as follows. First we rewrite (3.24) in the form
〈
r

SC
[τ (n)(U)]+n , rSC

[v−u]+n

〉

SC

+
〈
r

SC
[τ (n)(U)]+t , rSC

[v−u]+t

〉

SC

≥0, (3.25)

where the subscripts n and t denote the normal and tangential components
of the corresponding vectors defined on the boundary S: an = a · n and
at = a−nan for arbitrary a ∈ R

3. We set V = (v, 0)> with v = u±g where

g ∈ [H1(Ω+)]3, [g]+S ∈ H̃1/2(SC), and [g]+n = 0 on SC . These restrictions
imply that V = (v, 0)> ∈ Kϕ and substitution into the inequality (3.25)
leads to the equation

〈
r

SC
[τ (n)(U)]+t , rSC

[g]+t

〉

SC

= 0. (3.26)

Since [g]+t = [g]+ is arbitrary we conclude that the fourth condition in (3.8)
is satisfied. Therefore, (3.25) yields

〈
rSC

[τ (n)(U)]+n , rSC
[v − u]+n

〉

SC

≥ 0, (3.27)

for all V = (v, 0)> ∈ Kϕ.

Let us put V = (v, 0)> with v = u− g where g ∈ [H1(Ω+)]3, [g]+S = nϑ,

ϑ ≥ 0, and ϑ ∈ H̃1/2(SC). Then V = (v, 0)> ∈ Kϕ and therefore from
(3.27) we get

〈
r

SC
[τ (n)(U)]+n , rSC

ϑ
〉

SC

≤ 0, (3.28)

which shows that the second condition in (3.8) holds.
Finally, if in (3.27) we substitute V = (v, 0)> ∈ Kϕ with r

SC
[v]+S = nϕ

on SC , we arrive at the inequality
〈
r

SC
[τ (n)(U)]+n , ϕ− r

SC
[u · n]+

〉

SC

≥ 0. (3.29)

On the other hand, since ϕ− r
SC

[u · n]+ ≥ 0 and [τ (n)(U)]+n ≤ 0 on SC we
have 〈

r
SC

[τ (n)(U)]+n , ϕ− r
SC

[u · n]+
〉

SC

≤ 0, (3.30)

which along with (3.29) implies that the third condition in (3.8) is fulfilled
as well.

Now, we prove the inverse assertion. Let U = (u, ω)> be a solution to the
unilateral problem (3.5)–(3.8) with data satisfying the assumptions (3.9),
(3.11), and (3.12). We have to show that then U solves the SVI (3.15). It is
clear that for the solution vector U and for any V ∈ Kϕ the formula (3.17)
holds in accordance with Green’s formula (2.23). Note that the assumption

(3.11) implies by embedding L2(Σ) ⊂ H̃−1/2(Σ) that rST [T (∂, n)U ]+ = Ψ ∈

rST H̃
−1/2(ST ) and by the trace theorem that rΣ[V −U ]+ ∈ [H1/2(Σ)]6 for
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Σ ∈ {ST , SC}. Therefore in view of the Dirichlet homogeneous condition
(3.6) we can rewrite (3.17) as follows

∫

Ω+

E(U, V − U) dx =

∫

Ω+

Φ · (V − U) dx+
〈
Ψ, rST

[V − U ]+
〉

ST

+

+
〈
r

SC
[T (∂, n)U ]+, r

SC
[V − U ]+

〉

SC

. (3.31)

With the help of unilateral conditions (3.8) we derive
〈
rSC

[T (∂, n)U ]+, rSC
[V − U ]+

〉

SC

=
〈
rSC

[τ (n)(U)]+n , rSC
[v − u]+n

〉

SC

+

+
〈
r

SC
[τ (n)(U)]+t , rSC

[v − u]+t

〉

SC

+
〈
r

SC
[µ(n)(U)]+, r

SC
[w − ω]+

〉

SC

=

=
〈
r

SC
[τ (n)(U)]+n , rSC

[v − u]+n

〉

SC

=

=
〈
r

SC
[τ (n)(U)]+n , rSC

[v]+n − ϕ
〉

SC

−
〈
r

SC
[τ (n)(U)]+n , rSC

[u]+n − ϕ
〉

SC

=

=
〈
r

SC
[τ (n)(U)]+n , rSC

[v]+n − ϕ
〉

SC

≥ 0

due to the second inequality in (3.8) and since r
SC

[v]+n−ϕ ≤ 0 in accordance

with (3.14). Now, (3.31) completes the proof. �

Thus we have shown that the unilateral problem (UP) (3.5)–(3.8) and
the SVI (3.15) are absolutely equivalent.

Let us remark that the bilinear form B : [H1(Ω+)]6 × [H1(Ω+)]6 → R

with

B(U, V ) :=

∫

Ω+

E(U, V ) dx (3.32)

is bounded on [H1(Ω+)]6 × [H1(Ω+)]6 and strictly coercive on H(Ω+;SD)
(for details see [32]), i.e., there are positive constants c3 and c4 such that

B(U, V )≤c3‖U‖
2
[H1(Ω+)]6‖V ‖

2
[H1(Ω+)]6 for all U, V ∈ [H1(Ω+)]6, (3.33)

B(U,U)≥c4‖U‖
2
[H1(Ω+)]6 for all U ∈ H(Ω+;SD). (3.34)

It is easy to see that the linear functional P : [H1(Ω+)]6 → R with

P(V ) :=

∫

Ω+

Φ · V dx+ 〈Ψ, r
ST

[V ]+〉ST for all V ∈ Kϕ, (3.35)

where Φ and Ψ are as in (3.9) and (3.11), is bounded due to the Schwarz
inequality and the trace theorem.

Therefore, due to the general theory of variational inequalities in Hilbert
spaces (see, e.g., [12], [8], [14]) we have the following uniqueness and exis-
tence results for the variational inequality (3.15) which can be written now
as

B(U, V − U) ≥ P(V − U) for all V ∈ Kϕ. (3.36)
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Theorem 3.3. The SVI (3.15) (i.e., the variational inequality (3.36)) is

uniquely solvable.

As an easy consequence of Theorems 3.2 and 3.3 we have

Corollary 3.4. The unilateral problem (UP) (3.5)–(3.8) is uniquely

solvable.

It is also well-known that, in turn, the variational inequality (3.36) (that
is, (3.15)) is equivalent to the following minimization problem: Find a min-
imum on the convex closed set Kϕ of the energy functional (see, e.g., [12])

J(V ) := 2−1B(V, V )−P(V ), (3.37)

i.e., find U ∈ Kϕ such that

J(U) = min
V ∈Kϕ

J(V ). (3.38)

It is evident that the minimization problem is also uniquely solvable.
Let us remark that we can reduce equivalently the above unilateral prob-

lem (UP) to the case when the right-hand side vector function in (3.5) van-
ishes. To this end, consider the auxiliary boundary value problem (BVP)

L(∂)U0 = −Φ in Ω+,

[U0]
+ = 0 on SD, [T (∂, n)U0]

+ = 0 on S \ SD,
(3.39)

where U0 = (u0, ω0)
> ∈ [H1(Ω+)]6 and Φ is as in (3.5).

This mixed BVP is uniquely solvable (for details see [29]). Therefore, if
we denote U∗ := U −U0, where U solves the unilateral problem (3.5)–(3.8)
and U0 is the solution vector of the auxiliary BVP, then we see that the
vector U∗ is a solution to the unilateral problem (UP) with homogeneous
differential equation (3.5) (i.e., with Φ = 0) and with ϕ∗ := ϕ− r

SC
[u0]

+
n in

the place of ϕ. Therefore, in what follows, we assume that Φ = 0 without
loss of generality.

3.3. Boundary variational inequality formulation. Here we reduce
the unilateral problem (UP) (3.5)–(3.8) (with Φ = 0) to an equivalent
boundary variational inequality (BVI). To this end, for a given vector f =

(f (1), f (2))> ∈ [H1/2(S)]6, f (j) = (f
(j)
1 , f

(j)
2 , f

(j)
3 )>, j = 1, 2, let us consider

the vector function

U(x) = V (H−1f)(x), x ∈ Ω+, (3.40)

where V ( · ) is the single layer potential operator and H is the boundary
integral operator on S = ∂Ω+ generated by the single layer potential (see
the Appendix, formulas (A.2), (A.11), and Theorems 4.2 and 4.3). It can
easily be verified that the vector (3.40) solves the Dirichlet BVP

L(∂)U = 0 in Ω+, U = (u, ω)> ∈ [H1(Ω+)]6,

[U ]+ = f on S.
(3.41)
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Let us introduce the so called Steklov–Poincaré operator A relating the
Dirichlet and Neumann data for a vector (3.40) (see the Appendix, Theo-
rem 4.2)

A f :=
[
T (∂, n)V (H−1f)

]+
= [−2−1I6 +K]H−1f. (3.42)

With the help of the equalities stated in the Appendix, Theorem 4.3.iii, it
can easily be shown that

A = H−1[−2−1I6 +K∗] = L − [−2−1I6 +K]H−1[−2−1I6 + K∗], (3.43)

whence it follows that the operator

A : [H1/2(S)]6 → [H−1/2(S)]6 (3.44)

is an elliptic, self-adjoint pseudodifferential operator of order 1.
Denote by XS{Λ

(1),Λ(2), . . . ,Λ(6)} the linear span of generalized rigid
displacement vectors on S (for more details we refer to the Appendix A.1).

Theorem 3.5. The Steklov–Poincaré operator (3.42) possesses the fol-

lowing properties:

〈Af, f〉S ≥ 0 for all f ∈ [H1/2(S)]6, (3.45)

〈Af, f〉S = 0 if and only if f = r
S
([a× x] + b, a)>, a, b ∈ R

3, (3.46)

i.e., f ∈ XS{Λ
(1),Λ(2), . . . ,Λ(6)},

〈Af, g〉S = 〈Ag, f〉S for all f, g ∈ [H1/2(S)]6, (3.47)

kerA = XS

{
Λ(1),Λ(2), . . . ,Λ(6)

}
, (3.48)

i.e., for an arbitrary generalized rigid displacement vector χ(x) = ([a×x]+
b, a)>, x ∈ S, we have Aχ = 0 on S.

Proof. The relations (3.45) and (3.46) follow from inequality (2.16), Lem-
ma 2.1, and Green’s identity

∫

Ω+

E(U,U) dx = 〈Af, f〉S with U = V (H−1f). (3.49)

The equality (3.47) is an easy consequence of (3.43), while (3.48) can be
established with the help of Theorem 5.3.ii in the Appendix. �

Further, let

H(S, SD) : =
{
g=(g(1), g(2))>, g(j)∈ [H1/2(S)]3, j=1, 2 : r

SD
g=0

}
≡

≡
[
H̃1/2(S \ SD)

]6
, (3.50)

and for ϕ ∈ H1/2(SC) introduce the convex closed set of vector functions

Kϕ :=
{
g = (g(1), g(2))> ∈ H(S, SD) : r

SC
(g(1) · n) ≤ ϕ

}
. (3.51)

Let us consider the following boundary variational inequality (BVI):
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Find f = (f (1), f (2))> ∈ Kϕ such that
〈
Af, g − f

〉
S
≥ 〈Ψ, r

ST
(g − f)〉ST for all g = (g(1), g(2))> ∈ Kϕ, (3.52)

where A is the Steklov–Poincaré operator, Ψ and ϕ are as in (3.11) and
(3.12). Note that the duality relation in the right-hand side of (3.52) can be
written as a usual Lebesgue integral over the subsurface ST due to (3.11)
and Remark 2.3.

First we establish the following strict coercivity property of the opera-
tor A.

Theorem 3.6. The Steklov–Poincaré operator (3.42) is strictly coercive

on H(S, SD), i.e., there is a positive constant C1 such that

〈Af, f〉S ≥ C1‖f‖
2
[H1/2(S)]6 for all f ∈ H(S, SD). (3.53)

Proof. The proof coincides word for word with the proof of Lemma 4.2
in [13]. �

Thus, the bilinear form 〈Af , g〉S is strictly coercive on the subspace
H(S, SD) and bounded on [H1/2(S)]6 × [H1/2(S)]6, i.e. there is a positive
constant C2 such that

〈Af, g〉S ≤ C2‖f‖[H1/2(S)]6‖h‖[H1/2(S)]6 for all f, g ∈ [H1/2(S)]6. (3.54)

Therefore, the BVI (3.52) is uniquely solvable due to the general theory of
variational inequalities in Hilbert spaces (see, e.g., Theorems 2.1 and 2.2 in
[14]).

Further we show that the boundary variational inequality (3.52) is equiv-
alent to the unilateral problem (UP).

Theorem 3.7. (i) If f ∈ Kϕ solves the BVI (3.52) then the vector U
given by (3.40) is a solution to the unilateral problem (UP) (3.5)–(3.8) with

Φ = 0.
(ii) If U ∈ Kϕ is a solution of the problem (UP) with Φ = 0, then

f = [U ]+S is a solution of the BVI (3.52).

Proof. Let f ∈ Kϕ be a solution of the BVI (3.52) and construct the vector
U by (3.40). It is evident that U ∈ [H1(Ω+)]6 and L(∂)U = 0 in Ω+ in
accordance with Theorem 4.2 in the Appendix. Moreover, since [U ]+ =
([u]+, [ω]+)> = f ∈ Kϕ on S we see that the conditions (3.5) with Φ = 0,
(3.6), and the first inequality in (3.8) are satisfied.

Note that

Af = [T (∂, n)U ]+ =
(
[τ (n)(U)]+, [µ(n)(U)]+

)>
∈ [H−1/2(S)]6. (3.55)

Further, let g = f ± h where h = (h(1), h(2))> ∈ [H̃1/2(ST )]6. Evidently,
g ∈ Kϕ and from (3.52) we get

〈
Af, h

〉
S

= 〈Ψ, r
ST
h〉ST for all h = (h(1), h(2))> ∈ [H̃1/2(ST )]6.

Consequently,
rST

Af = rST
[T (∂, n)U ]+ = Ψ on ST (3.56)
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and the conditions (3.7) hold.
Now in view of the embedding (3.11) and equality (3.56) we see that

r
Σ
Af ∈ r

Σ
[H̃−1/2(Σ)]6 with Σ ∈ {SD, ST , SC}. (3.57)

Therefore, we can decompose the duality brackets in the left-hand side of
the inequality (3.52) as a sum corresponding to the division of the surface
S = SD ∪ ST ∪ SC . With the help of (3.56) we then obtain

〈
r

SC
Af, r

SC
(g − f)

〉
SC

=
〈
r

SC
[τ (n)(U)]+, r

SC
(g(1) − f (1))

〉

SC

+

+
〈
r

SC
[µ(n)(U)]+, r

SC
(g(2) − f (2))

〉

SC

≥ 0

for all g = (g(1), g(2))> ∈ Kϕ. (3.58)

Let us substitute g = f ± h with h = (0, h(2))> ∈ [H̃1/2(SC)]6 in (3.58) to
obtain

〈
rSC

Af, rSC
h
〉

SC

=

=
〈
r

SC
[µ(n)(U)]+, r

SC
h(2)

〉

SC

= 0 for all h(2) ∈ [H̃1/2(SC)]3.

This implies that rSC
[µ(n)(U)]+ = 0, i.e., the fifth condition in (3.8) is

satisfied. Then from (3.58) in view of (3.55) we derive
〈
r

SC
[τ (n)(U)]+, r

SC
(g(1) − f (1))

〉

SC

≥ 0 for all (g(1), 0)> ∈ Kϕ. (3.59)

In turn, this inequality can be rewritten in the following equivalent form
〈
r

SC
[τ (n)(U)]+n , rSC

(g(1)
n − f (1)

n )
〉

SC

+

+
〈
r

SC
[τ (n)(U)]+t , rSC

(g
(1)
t − f

(1)
t )

〉

SC

≥ 0, (3.60)

where the subscripts n and t denote the normal and tangential components
of the corresponding vectors.

Substituting here g(1) = f (1)±h(1), where h(1) ∈ [H̃1/2(SC)]3 with h
(1)
n =

0, we arrive at the equation
〈
r

SC
[τ (n)(U)]+t , rSC

h
(1)
t

〉

SC

= 0 (3.61)

for arbitrary tangential vector h
(1)
t = h(1) ∈ [H̃1/2(SC)]3. This shows that

the fourth equation in (3.8) is fulfilled.

Further, let g(1) = f (1) − nϑ, where ϑ ∈ H̃1/2(SC) with ϑ ≥ 0. Clearly,
(g(1), 0) ∈ Kϕ and from (3.60) we then obtain

〈
r

SC
[τ (n)(U)]+n , rSC

ϑ
〉

SC

≤ 0 for all ϑ ∈ H̃1/2(SC), ϑ ≥ 0, (3.62)

implying that [τ (n)(U)]+n ≤ 0, i.e., the second condition in (3.8) holds.
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The last inequality yields that
〈
r

SC
[τ (n)(U)]+n , rSC

[u · n]+ − ϕ
〉

SC

≥ 0, (3.63)

since r
SC

[u · n]+ − ϕ ≤ 0.

On the other hand, let g(1) = f
(1)
t +nθ, where θ ∈ H1/2(S) with r

SC
θ = ϕ

on SC and rSD
θ = 0 on SD . We have then (g(1), 0) ∈ Kϕ and from (3.60)

we conclude 〈
r

SC
[τ (n)(U)]+n , ϕ− r

SC
[u · n]+

〉

SC

≥ 0, (3.64)

since [u+] = f (1). From the inequalities (3.63) and (3.64) the third condition
in (3.8) follows. This completes the proof of item (i).

Now, let U ∈ Kϕ be a solution to the unilateral problem (3.5)–(3.8) with
Φ = 0. It is evident that U can be represented in the form (3.40) with
f = (f (1), f (2))> := [U ]+S . Due to the boundary conditions (3.6) and the

first inequality in (3.8) we see that f = [U ]+S ∈ Kϕ. Further, by Theorem 3.2
the vector U is a solution to the spatial variational inequality (3.15) with
Φ = 0:

∫

Ω+

E(U, V − U) dx ≥
〈
Ψ, r

ST
[V − U ]+

〉
ST

for all V ∈ Kϕ. (3.65)

With the help of Green’s formula the left-hand side integral in (3.65) can
be rewritten as
∫

Ω+

E(U, V −U) dx =
〈
[T (∂, n)U ]+S , [V ]+S − [U ]+S

〉

S
=

〈
Af, g − f

〉
S
, (3.66)

where g := [V ]+S . Since V ∈ Kϕ is arbitrary, from (3.65) and (3.66) it
follows that

〈
Af, g − f

〉
S
≥ 〈Ψ, r

ST
(g − f)〉ST for all g = (g(1), g(2))> ∈ Kϕ.

Thus, the vector f = [U ]+S is a solution of the boundary variational inequal-
ity (3.52). �

Note that if f solves the BVI (3.52) then it is also a solution to the
following minimization problem: Find a minimum on the convex closed set
Kϕ of the energy functional

E(g) := 2−1
〈
Ag, g

〉
S
−

〈
Ψ, rST

g
〉
ST
, (3.67)

i.e., find f ∈ Kϕ such that

E(f) = min
g∈Kϕ

E(g). (3.68)

In accordance with Theorems 3.3 and 3.7, and Corollary 3.4 we have the
evident existence and equivalence result.
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Corollary 3.8. The unilateral problem (UP) (3.5)–(3.8), SVI (3.15),
BVI (3.52), and the minimization problems (3.38) and (3.68) are equivalent

in the sense described in Theorem 3.7 provided Φ = 0. All this problems are

uniquely solvable.

3.4. A special particular case. In this subsection we consider the unilat-
eral problem (3.5)–(3.8) when SD = ∅, i.e., ∂Ω+ = ST ∪ SC . In addition,
we assume that the submanifold SC is neither rotational nor ruled (i.e., SC

is not a part of some rotational or ruled surface). Thus, now we have to

find a vector function Ũ = (ũ, ω̃)> ∈ [H1(Ω+)]6 by the following conditions

L(∂)Ũ = Φ in Ω+, (3.69)
[
T (∂, n)Ũ

]+
= Ψ on ST , (3.70)

[ũ · n]+ ≤ ϕ

[
τ (n)(Ũ) · n

]+
≤ 0

〈
rSC

[
τ (n)(Ũ) · n

]+
, rSC

[ũ · n]+ − ϕ
〉

SC

= 0

[
τ (n)(Ũ)

]+
− n

[
τ (n)(Ũ) · n

]+
= 0

[
µ(n)(Ũ)

]+
= 0





on SC , (3.71)

with Φ, Ψ, and ϕ as in (3.9), (3.11), and (3.12).
As we will see, in contrast to the above considered case, the problem

(3.69)–(3.71) is not always solvable and the uniqueness theorem does not
hold as well. Below we derive the necessary and sufficient conditions of
solvability for the problem (3.69)–(3.71) and study the structure of the set
of solutions.

To this end we reduce equivalently the problem under consideration to
the form which is more convenient for further analysis.

Let us consider the auxiliary boundary value problem

L(∂)U0 = Φ in Ω+, U0 := (u0, ω0)
> ∈ [H1(Ω+)]6, (3.72)

[T (∂, n)U0]
+ = 0 on ST , (3.73)

[u0 · n]+ = ϕ

[τ (n)(U0)]
+ − n[τ (n)(U0) · n]+ = 0

[µ(n)(U0)]
+ = 0





on SC . (3.74)

This problem has a unique solution for arbitrary Φ and ϕ if the submanifold
SC is neither rotational nor ruled. In fact, the uniqueness theorem is shown
in the Appendix, Subsection A.2, while the existence is a consequence of
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the Korn’s type inequality (2.21). Evidently,

[T (∂, n)U0]
+
S ∈ [H̃−1/2(SC)]6. (3.75)

Denote U := Ũ − U0. Then it is easy to check that U solves the following
unilateral problem

L(∂)U = 0 in Ω+, (3.76)

[T (∂, n)U ]+ = Ψ on ST , (3.77)

[u · n]+ ≤ 0

[τ (n)(U) · n]+ ≤ σ
〈
r

SC
[τ (n)(U) · n]+ − σ, r

SC
[u · n]+

〉
SC

= 0

[τ (n)(U)]+ − n[τ (n)(U) · n]+ = 0

[µ(n)(U)]+ = 0






on SC , (3.78)

where

σ = −r
SC

[τ (n)(U0) · n]+S ∈ r
SC

[H̃−1/2(SC)]6. (3.79)

Due to the inclusions (3.11) and (3.79) we have r
SC

[τ (n)(U)]+S ∈

rSC
[H̃−1/2(SC)]6 which implies that the duality relation in (3.78) is cor-

rectly defined since r
SC

[U ]+S ∈ [H1/2(SC)]6.
Now, let us introduce the convex closed cone of vector functions

K0 :=
{
V = (v, w)> ∈ [H1(Ω+)]6 : rSC

([v]+ · n) ≤ 0
}

(3.80)

and consider the spatial variational inequality: Find U = (u, ω)> ∈ K 0 such
that ∫

Ω+

E(U, V − U) dx ≥

≥ 〈Ψ, rST
[V − U ]+〉ST +〈σ, rSC

[v−u]+ · n〉SC for all V ∈K 0. (3.81)

By the same arguments as in the proof of Theorem 3.2 we can show that
if a vector function U solves the SVI (3.81), then U is a solution to the
unilateral problem (3.76)–(3.78), and vice versa.

Further, let

K0 :=
{
g = (g(1), g(2))> ∈ [H1/2(S)]6 : r

SC
(g(1) · n) ≤ 0

}
(3.82)

and consider the boundary variational inequality :
Find f = (f (1), f (2))> ∈ K0 such that

〈
Af, g − f

〉
S
≥ 〈Ψ, rST

(g − f)〉ST +
〈
σ, rSC

(g(1) − f (1)) · n
〉

SC
(3.83)

for all g = (g(1), g(2))> ∈ K0,
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where A is the Steklov–Poincaré operator. Clearly, K0 is a convex closed
cone.

By the same arguments as in Theorem 3.7 we can prove that if f ∈ K0

solves the BVI (3.83) then the vector U given by (3.40) is a solution to the
unilateral problem (3.76)–(3.78), and vice versa, if U ∈ K 0 is a solution of
the problem (3.76)–(3.78), then [U ]+S = f is a solution of the BVI (3.83).

Similarly, we can show also that if f solves the BVI (3.83) then it is also
a solution to the following minimization problem: Find a minimum on the
convex closed cone K0 of the energy functional

E0(g) := 2−1
〈
Ag, g

〉
S
− 〈Ψ, r

ST
g〉ST − 〈σ, rSC

g(1) · n〉SC . (3.84)

Thus, the BVP (3.76)–(3.78), SVI (3.81), BVI (3.83), and the minimiza-
tion problem (3.84) are equivalent in the sense described above.

In accordance with the general theory (see, e.g., [12], Part 2, Section 10)
we have to construct the set R of vector functions g ∈ [H1/2(S)]6 satisfying
the equation 〈Ag, g〉S = 0. By Theorem 3.5

R =
{
χ = (χ(1), χ(2))> ∈ [H1/2(S)]6 :

χ(1) = [a× x] + b, χ(2) = a, x ∈ S, a, b ∈ R
3
}
,

i.e., R is the restriction on S of the space of generalized rigid displacements.
Further, we set

R1 : = K0 ∩ R =
{
χ ∈ R : r

SC
χ(1) · n ≤ 0

}
,

R∗1 : =
{
χ ∈ R1 : r

SC
χ(1) · n = 0

}
= {0}.

(3.85)

The last equality is a consequence of the fact that if ([a×x]+b) ·n(x) = 0
for x ∈ SC , then SC is either rotational or ruled.

Let f = (f (1), f (2))> ∈ K0 be a solution of the boundary variational
inequality (3.83). Then for arbitrary χ = (χ(1), χ(2))> ∈ R1 we see that

f̃ = f + χ = (f (1) + χ(1), f (2) + χ(2))> ∈ K0. Therefore, from (3.83) with

g = f̃ we get
〈
Af, χ

〉
S
≥ 〈Ψ, r

ST
χ〉ST + 〈σ, r

SC
χ(1) · n〉SC for all χ ∈ R1. (3.86)

SinceA is self-adjoint, by Theorem 3.5 it follows that 〈Af, χt〉S =〈Aχ, f〉S =
0 for every χ ∈ R. Therefore we arrive at the following necessary condition
for the BVI (3.83) to be solvable,

〈Ψ, r
ST
χ〉ST + 〈σ, r

SC
χ(1) · n〉SC ≤ 0 for all χ ∈ R1. (3.87)

On the other hand, if the condition (3.87) holds in the strong sense, which
means that in (3.87) the equality appears if and only if χ ∈ R∗

1 (i.e., if
and only if χ = 0), then the minimization problem for the functional (3.84)
and consequently the BVI (3.83) are solvable due to Theorem 10.1 in the
reference [12], Part 2, Section 10. Thus we have the following assertion.
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Theorem 3.9. The inequality (3.87) is a necessary condition for the

BVI (3.83) to be solvable. If (3.87) holds in the strong sense, then the BVI
(3.83) is solvable.

Let us study the uniqueness question. If f = (f (1), f (2))> ∈ K0 and
h = (h(1), h(2))> ∈ K0 are solutions of the BVI (3.83), then we have

〈Af, h− f〉S ≥
〈
Ψ, r

ST
(h− f)

〉
ST

+
〈
σ, r

SC
(h(1) − f (1)) · n

〉
SC
, (3.88)

〈Ah, f − h〉S ≥
〈
Ψ, r

ST
(f − h)

〉
ST

+
〈
σ, r

SC
(f (1) − h(1)) · n

〉
SC
. (3.89)

By adding of these inequalities and with the help of the property (3.45) we
derive

〈A(h− f), h− f〉S = 0,

which implies that χ̃ = (χ̃(1), χ̃(2))> := h − f ∈ R due to Theorem 3.5.
Note that h = f + χ̃ ∈ K 0. Since 〈Af, χ̃〉S = 0 and 〈Ah, χ̃〉S = 0 we get
from (3.88) and (3.89)

〈Ψ, r
ST
χ̃〉ST +

〈
σ, r

SC
χ̃(1) · n

〉
SC
≤0, 〈Ψ, r

ST
χ̃〉ST +

〈
σ, r

SC
χ̃(1) · n

〉
SC
≥0,

that is,

〈Ψ, r
ST
χ̃〉ST +

〈
σ, r

SC
χ̃(1) · n

〉
SC

= 0. (3.90)

Thus we have shown the following assertion.

Theorem 3.10. Let f be a solution of the BVI (3.83). Then f is defined

modulo a generalized rigid displacement vector χ̃ = (χ̃(1), χ̃(2))> ∈ R such

that f + χ̃ ∈ K0 and the condition (3.90) holds.

Remark 3.11. It is evident that if σ := 0 on SC and 〈Ψ, rST
χ〉ST = 0 for

arbitrary rigid displacement vector χ, i.e., Ψ satisfies the generalized equi-
librium conditions on ST , then the necessary condition (3.87) holds but not
in the strong sense. In this case, we can not say anything about the solv-
ability of the variational inequality (3.83). Therefore, the condition SD 6= ∅

is crucial for existence and uniqueness results formulated in Corollary 3.8.

4. Appendix

A.1. Properties of potentials and boundary pseudodifferential ope-

rators. The fundamental matrix Γ(x) for the differential operator L(∂)
reads as follows (this matrix can be obtained by standard limiting procedure,
as the frequency parameter σ → 0, from the fundamental matrix of the
pseudo-oscillation equations constructed in [29]):

Γ(x) =

∥∥∥∥
Γ(1)(x) Γ(2)(x)
Γ(3)(x) Γ(4)(x)

∥∥∥∥
6×6

,

Γ(m)(x) =
∥∥Γ

(m)
kj (x)

∥∥
3×3

, m = 1, 2, 3, 4,

(A.1)
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where

Γ
(1)
kj (x) = −

1

4π

{[γ + ε

d1

1

|x|
+

2∑

l=1

k2
l c1l

e−kl|x| − 1

|x|

]
δkj −

−
∂2

∂xk∂xj

[ λ+ µ

µ(λ+ 2µ)

|x|

2
+

3∑

l=1

c1l
e−kl |x| − 1

|x|

]
+

+

3∑

l,p=1

c2lεkjp
∂

∂xp

e−kl|x| − 1

|x|

}
,

Γ
(2)
kj (x) = Γ

(3)
kj (x) = −

1

4π

{
−

[κ+ ν

d1

1

|x|
+

2∑

l=1

k2
l c3l

e−kl |x| − 1

|x|

]
δkj +

+
∂2

∂xk∂xj

3∑

l=1

c3l
e−kl|x| − 1

|x|
+

3∑

l,p=1

c4lεkjp
∂

∂xp

e−kl|x| − 1

|x|

}
,

Γ
(4)
kj (x) = −

1

4π

{[µ+ α

d1

1

|x|
+

2∑

l=1

k2
l c5l

e−kl|x| − 1

|x|

]
δkj −

−
∂2

∂xk∂xj

3∑

l=1

c5l
e−kl |x| − 1

|x|
+

3∑

l,p=1

c6lεkjp
∂

∂xp

e−kl|x| − 1

|x|

}
.

Here d1 and d2 are defined by (2.18), and

c1l =
cl
d1

(k2
l − k2

3)
{[

(γ + ε)k2
l − 4α

]
(k2

l − λ2
1) + 4νd3k

2
l

}
,

c2l =
clk

2
l

d1
(k2

l − k2
3)

{[
d3(γ + ε)− 4ν

]
k2

l +
16α2κ

d1

}
,

c3l =
clk

2
l

d1
(k2

l − k2
3)

[
(k2

l − λ2
1)(κ+ ν)− 2αd3

]
,

c4l =
clk

2
l

d1
(k2

l − k2
3)

[
2α(k2

l − λ2
1)− d3k

2
l (κ+ ν)

]
,

c5l =
clk

2
l

d1
(µ+ α)(k2

l − k2
3)(k

2
l − λ2

1),

c6l =
cld3k

4
l

d1
(µ+ α)(k2

l − k2
3), l = 1, 2,

c13 = −
(δ + 2κ)2

4α(λ+ 2µ)
, c33 = −

δ + 2κ

4α(λ+ 2µ)2
,

c53 = −
1

4α
, c23 = c43 = c63 = 0,

cq =
1

k4
q (k2

q+1 − k2
q )(k2

q+2 − k2
q )
, q = 1, 2, 3, k4 := k1, k5 := k2,

d3 =
4(µν − ακ)

d1
, λ2

1 =
4αµ

d1
, k2

3 =
4α(λ+ 2µ)

d2
,
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k2
1 + k2

2 = 2λ2
1 − d2

3, k2
1k

2
2 = λ4

1, k1 = k2 = a+ ib, a > 0, b ∈ R.

With the help of the relations

3∑

l=1

clk
2
l = λ−4k−2

3 ,
3∑

l=1

clk
2m
l = 0 for m = 2, 3,

3∑

l=1

clk
8
l = 1,

3∑

l=1

c1lk
2
l = −

β + 2γ

d2
+
γ + ε

d1
+

λ+ µ

µ(λ+ 2µ)
,

3∑

l=1

c3lk
2
l = −

δ + 2κ

d2
+
ν + κ

d1
,

3∑

l=1

c5lk
2
l = −

λ+ 2µ

d2
+
µ+ α

d1
,

it can easily be checked that for sufficiently large |x| (as |x| → +∞) and
for arbitrary multi-index σ = (σ1, σ2, σ3) we have the following asymptotic
behaviour

∂σΓkj(x) =

{
O(|x|−1−|σ|) for k, j = 1, 2, 3,

O(|x|−2−|σ|) for either k ≥ 4 or j ≥ 4.

Here σj are nonnegative integers, ∂σ =∂σ1

1 ∂σ2

2 ∂σ3

3 , and |σ|=σ1+σ2+σ3≥0.
We remark also that

Γ(y − x) = [ Γ(x− y) ]>.

The corresponding single layer and double layer potentials, and the New-
ton type volume potential read as follows [29]

V (ϕ)(x) =

∫

S

Γ(x− y)ϕ(y) dSy , x ∈ R
3 \ S, (A.2)

W (ϕ)(x) =

∫

S

[
T (∂y, n(y))Γ(y − x)

]>
ϕ(y) dSy , x ∈ R

3 \ S, (A.3)

NΩ(ψ)(x) =

∫

Ω

Γ(x− y)ψ(y) dy, x ∈ R
3, (A.4)

where T (∂, n) is the stress operator of the theory of hemitropic elasticity
(see (2.4)), ϕ = (ϕ1, . . . , ϕ6)

> is a density vector-function defined on S =
∂Ω, while a density vector-function ψ = (ψ1, . . . , ψ6)

> is defined in Ω ∈
{Ω+,Ω−}.

These potentials have the jump and mapping properties described by the
following theorems (for details see [29]).

Theorem 4.1. Let U ∈ [H1(Ω+)]6 with L(∂)U ∈ [L2(Ω
+)]6. Then there

holds the following integral representation formula

W ([U ]+)(x)− V ([TU ]+)(x) +NΩ+(L(∂)U)(x) =

=

{
U(x) for x ∈ Ω+,

0 for x ∈ Ω−.
(A.5)
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Theorem 4.2. Let S ∈ Ck+1,τ where k ≥ 0 is an integer, 0 < τ ≤ 1,
and let 0 < t < τ . Then the operators

V : [Ck,t(S)]6 →
[
Ck+1,t(Ω±)

]6
, W : [Ck,t(S)]6 →

[
Ck,t(Ω±)

]6
, (A.6)

are bounded.

For any g ∈ Ck,t(S) and any x ∈ S

[V (g)(x)]± = V (g)(x) = Hg(x), (A.7)

[T (∂x, n(x))V (g)(x)]± = [∓2−1I6 +K]g(x), (A.8)

[W (g)(x)]± = [±2−1I6 +K∗]g(x), (A.9)

[T (∂x, n(x))W (g)(x)]+ = [T (∂x, n(x))W (g)(x)]− = Lg(x), (A.10)

where

Hg(x) : =

∫

S

Γ(x− y)g(y) dSy, (A.11)

Kg(x) : =

∫

S

T (∂x, n(x))Γ(x − y)g(y) dSy, (A.12)

K∗ g(x) : =

∫

S

[
T (∂y, n(y))Γ(y − x)

]>
g(y) dSy, (A.13)

Lg(x) : = lim
Ω±3z→x∈S

T (∂z, n(x))

∫

S

[
T (∂y, n(y))Γ(y−z)

]>
g(y) dSy. (A.14)

The operators V and W can be extended by continuity to the bounded

mappings

V : [H−1/2(S)]6 → [H1(Ω+)]6
[
[H−1/2(S)]6 → [H1

loc(Ω
−)]6

]
,

W : [H1/2(S)]6 → [H1(Ω+)]6
[
[H1/2(S)]6 → [H1

loc(Ω
−)]6

]
.

The jump relations (A.7)–(A.10) on S remain valid for the extended opera-

tors in the corresponding functional spaces.

Denote by XΩ+{Λ(1),Λ(2), . . . ,Λ(6)} the linear span of vectors of general-
ized rigid displacements in a region Ω+, where, for definiteness, we assume
that

Λ(1) = (0,−x3, x2, 1, 0, 0)>, Λ(2) = (x3, 0,−x1, 0, 1, 0)>,

Λ(3) = (−x2, x1, 0, 0, 0, 1)>, Λ(4) = (1, 0, 0, 0, 0, 0)>,

Λ(5) = (0, 1, 0, 0, 0, 0)>, Λ(6) = (0, 0, 1, 0, 0, 0)>.

The restriction of the space XΩ+{Λ(1),Λ(2), . . . ,Λ(6)} onto the boundary
S=∂Ω we denote byXS{Λ

(1),Λ(2), . . . ,Λ(6)}. Clearly, the vectors {Λ(j)}6j=1

are basis in both spaces XΩ+ and XS .
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Theorem 4.3. Let S, k, t, and τ be as in Theorem 6.1. Then the

operators

H : [Ck,t(S)]6 → [Ck+1,t(S)]6
[
[H−1/2(S)]6 → [H1/2(S)]6

]
, (A.15)

K : [Ck,t(S)]6 → [Ck,t(S)]6
[
[H−1/2(S)]6 → [H−1/2(S)]6

]
, (A.16)

K∗ : [Ck,t(S)]6 → [Ck,t(S)]6
[
[H1/2(S)]6 → [H1/2(S)]6

]
, (A.17)

L : [Ck+1,t(S)]6 → [Ck,t(S)]6
[
[H1/2(S)]6 → [H−1/2(S)]6

]
(A.18)

are bounded.

Moreover,

(i) H, ±2−1I6 + K, ±2−1I6 + K∗, and L are elliptic pseudodifferential

operators of order −1, 0, 0, and 1, respectively;

(ii) ±2−1I6 +K and ±2−1I6 +K∗ are mutually adjoint singular integral

operators of normal type with index equal to zero. The operators H, 2−1I6 +
K and 2−1I6 +K∗ are invertible. The inverse of H

H−1 : [Ck+1,t(S)]6 → [Ck,t(S)]6
[
[H1/2(S)]6 → [H−1/2(S)]6

]

is a singular integro-differential operator.

The null space of the operator −2−1I6 +K∗ is XS{Λ
(1),Λ(2), . . . ,Λ(6)};

(iii) L is a singular integro-differential operator and the following equal-

ities hold in appropriate function spaces:

K∗H = HK, LK∗ = KL, HL = −4−1I6 + (K∗)2, LH = −4−1I6 +K2;

(iv) The operators −H and L are self-adjoint and non-negative elliptic

pseudodifferential operators with positive definite principal symbol matrices

and with index equal to zero. Moreover, 〈h,−Hh〉S ≥ c0‖h‖[H−1/2(S)]6 for

all h ∈ [H−1/2(S)]6 and 〈Lg, g〉
S
≥ 0 for all g ∈ [H1/2(S)]6 with equality

only for

g = ([a× x] + b, a)>, (A.19)

where a, b ∈ R
3 are arbitrary constant vectors; here 〈· , ·〉

S
denotes the dual-

ity between the spaces [H−1/2(S)]6 and [H1/2(S)]6 which extends the usual

[L2(S)]6-scalar product;

(v) a general solution of the homogeneous equations [−2−1I6 +K∗]g = 0
and Lg = 0 is given by (A.19) ( i.e., the operators L, −2−1I6 + K∗, and

−2−1I6 +K have six dimensional null-spaces).

A.2. Uniqueness theorem for the BVP (3.72)–(3.74).

Theorem 4.4. The homogeneous BVP (3.72)–(3.74) has only the trivial

solution if the submanifold SC is neither rotational nor ruled.

Proof. Let U0 := (u0, ω0)
> be a solution to the homogeneous BVP (3.72)–

(3.74) with Φ = 0 and ϕ = 0. From Green’s formula (2.12) with U = U ′ =
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U0 and Lemma 2.1 then we have

u0(x) = [a× x] + b, ω0(x) = a, x ∈ Ω+, (A.20)

where a, b ∈ R
3 are arbitrary three-dimensional constant vectors, i.e., U0 is

a generalized rigid displacement vector. It is evident that all conditions of
the homogeneous BVP (3.72)–(3.74) are automatically satisfied except the
first equation in (3.74) with ϕ = 0, implying the following restriction

u0(x) · n(x) = ([a× x] + b) · n(x) = 0, x ∈ SC , (A.21)

where, as above, n(x) is the exterior unit normal vector at the point x ∈ S.
In what follows we shall show that if (A.21) holds and |a| + |b| 6= 0, then
SC is either rotational or ruled submanifold. We prove it in several steps.

Step 1. First we assume that a = 0 and b 6= 0. Without loss of generality
we set b3 6= 0. From (A.21) then we get

b · n(x) = b1n1(x) + b2n2(x) + b3n3(x) = 0, x ∈ SC . (A.22)

Let ζ(x1, x2, x3) = 0 be an equation of the submanifold SC in some neigh-
bourhood of a point x0 ∈ SC . Then n(x) is parallel to the vector ∇xζ(x) =
(∂1ζ(x), ∂2ζ(x), ∂3ζ(x)). Therefore, by (A.22) we arrive at the partial dif-
ferential equation of the first order

b1
∂ζ(x)

∂x1
+ b2

∂ζ(x)

∂x2
+ b3

∂ζ(x)

∂x3
= 0. (A.23)

The corresponding system of characteristic equations is (see, e.g., [7])

dx1

b1
=
dx2

b2
=
dx3

b3
. (A.24)

Evidently, the first integrals of the system of ordinary differential equations
(A.24) are the functions

x1 − αx3 = C1, x2 − β x3 = C2,

where α = b1/b3, β = b2/b3, and C1 and C2 are arbitrary constants.

Therefore, ζ̃(x) := F (x1−αx3, x2−β x3) with an arbitrary differentiable
function F (· , ·) is a general solution of the differential equation (A.23).

Moreover, it is evident that if ∇F 6= 0, then ζ̃(x) = F (x1−αx3, x2−βx3) =
0 defines a two-dimensional manifold. Performing the linear transformation,

x1 = x′1 + αx′3, x2 = x′2 + βx′3, x3 = x′3,

it is easy to see that ζ̃(x) = F (x1−αx3, x2−βx3) = F (x′1, x
′
2) = 0 describes

a cylindrical surface with directrix parallel to the x′3 axis, i.e., parallel to the
vector (α, β, 1) = (1/b3)b. Thus, the above mentioned equation ζ(x) = 0

of the submanifold SC , as a particular case of the general equation ζ̃(x) =
0, defines a cylindrical manifold with a directrix parallel to b (note that
∇ ζ(x) 6= 0). Since SC is not ruled submanifold we conclude that b = 0.
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Step 2. Now, let a 6= 0. Represent b as b = c+ d, where c, d ∈ R
3 and c

is parallel to a, while d is perpendicular to a. Then there is a point x0 such
that d = −[a× x0] and due to (A.20) we have

u0(x) = [a× (x − x0)] + c, x ∈ Ω+. (A.25)

Then from (A.21)

[a× (x− x0)] · n(x) + c · n(x) = 0, x ∈ SC . (A.26)

Sub-step 2.1. We first consider the case c 6= 0 and make an orthogonal
transformation of the co-ordinate system, x = Λ ξ + x0 such that the new
axis ξ1 is directed parallel to the vector a and the new origin coincides
with the point x0. Clearly, Λ = [λkj ]3×3 is an orthogonal matrix with the
properties

det Λ=1, Λ−1=Λ>, λkj =λ∗kj , a=Λ(|a|, 0, 0)>, c=Λ(|c|, 0, 0)>, (A.27)

where λ∗kj is the co-factor of the element λkj , |a| and |c| stand for the lengths

of the vectors a and c respectively. Set ã := (|a|, 0, 0)> and c̃ := (|c|, 0, 0)>.
Note that [Λz ×Λy] = Λ[z × y] for arbitrary z, y ∈ R

3 and for an arbitrary
orthogonal matrix Λ. Applying the above identities from (A.26) we have

{
[a× (x− x0)] · n(x) + c · n(x)

}

x=Λξ+x0

=

=
{

Λ
[
Λ> a× Λ>(x − x0)

]
· n(x) + ΛΛ>c · n(x)

}

x=Λξ+x0

=

=
{[

Λ> a× Λ> (x− x0)
]
· Λ>n(x) + Λ>c · Λ>n(x)

}

x=Λξ+x0

=

=
{(

[ã× ξ] + c̃
)
· Λ>n(x)

}

x=Λξ+x0

=

= `(ξ) · ñ(ξ) = 0, ξ ∈ SC , (A.28)

where `(ξ) := [ã × ξ] + c̃ = (|c|,−|a|ξ3, |a|ξ2) and ñ(ξ) := Λ>n(Λξ + x0) is
the outward unit normal vector at the point ξ ∈ SC .

Further, let ζ(ξ1, ξ2, ξ3) = 0 be an equation of the submanifold SC in
some neighbourhood of a point ξ0 ∈ SC . Then ñ(ξ) is parallel to the vector
∇ξζ(ξ) = (∂1ζ(ξ), ∂2ζ(ξ), ∂3ζ(ξ)) and by (A.26) and (A.28) we arrive at the
partial differential equation of the first order

|c|
∂ζ(ξ)

∂ξ1
− |a|ξ3

∂ζ(ξ)

∂ξ2
+ |a|ξ2

∂ζ(ξ)

∂ξ3
= 0, (A.29)

i.e.,

e
∂ζ(ξ)

∂ξ1
− ξ3

∂ζ(ξ)

∂ξ2
+ ξ2

∂ζ(ξ)

∂ξ3
= 0 with e =

|c|

|a|
. (A.30)

The simultaneous characteristic equations are

dξ1
e

= −
dξ2
ξ3

=
dξ3
ξ2

. (A.31)
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It can easily be shown that

η1(ξ) : = −ξ2 sin
ξ1
e

+ ξ3 cos
ξ1
e

= C1,

η2(ξ) : = ξ2 cos
ξ1
e

+ ξ3 sin
ξ1
e

= C2,

(A.32)

where C1 and C2 are arbitrary constants, are the first integrals of the system
of ordinary differential equations (A.31). Therefore, a function

ζ̃(ξ) := F (η1(ξ), η2(ξ)) = F
(
− ξ2 sin

ξ1
e

+ ξ3 cos
ξ1
e
, ξ2 cos

ξ1
e

+ ξ3 sin
ξ1
e

)

with an arbitrary differentiable function F (· , ·) is a general solution of the
differential equation (A.30).

Note that the equation ζ(ξ1, ξ2, ξ3) = 0 of the submanifold SC is a

particular case of the general equation ζ̃(ξ) := F (η1(ξ), η2(ξ)) = 0 with
∇F (η1, η2) 6= 0. This relation defines a two-dimensional manifold M in a
neighbourhood of some point ξ0 ∈ M. Further, by the implicit function
theorem we derive that either η1(ξ) = h1(η2(ξ)) or η2(ξ) = h2(η1(ξ)), i.e.,
either

−ξ2 sin
ξ1
e

+ ξ3 cos
ξ1
e

= h1

(
ξ2 cos

ξ1
e

+ ξ3 sin
ξ1
e

)

or

ξ2 cos
ξ1
e

+ ξ3 sin
ξ1
e

= h2

(
− ξ2 sin

ξ1
e

+ ξ3 cos
ξ1
e

)
.

We easily see that in both cases the functions hk( · ) are linear functions
in ξ2 and ξ3, since the second order partial derivatives of the functions hk

with respect to the variables ξ2 and ξ3 vanish identically. Therefore, the
intersection of the manifold M with the plane ξ1 = const is a straight line
segment defined by the above linear relationship between the variables ξ2
and ξ3. This proves that M is a ruled manifold. Since, by assumption SC

is not ruled, we conclude that c = 0 in (A.25), and consequently in (A.26).
Sub-step 2.2. From (A.26) with c = 0, by the same arguments as above

we arrive at the equation (A.29) with |c| = 0, that is,

−ξ3
∂ζ(ξ)

∂ξ2
+ ξ2

∂ζ(ξ)

∂ξ3
= 0, (A.33)

due to the assumption |a| 6= 0. Here ζ(ξ1, ξ2, ξ3) = 0 is again an equation
of the submanifold SC in some neighbourhood of a point ξ0 ∈ SC . The
characteristic equations now read as follows

dξ1
0

= −
dξ2
ξ3

=
dξ3
ξ2

. (A.34)

The corresponding first integrals are

ξ1 = C1, ξ22 + ξ23 = C2,

where C1 and C2 are arbitrary constants. A function

ζ̃(ξ) := F (ξ1, ξ
2
2 + ξ23)
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with an arbitrary differentiable function F (· , ·), is then a general solution of
the differential equation (A.33). If we assume that ∇F (η1, η2) 6= 0 then the

equation ζ̃(ξ) = F (ξ1, ξ
2
2 + ξ23) = 0 defines a rotational submanifold M with

the axis of rotation parallel to the co-ordinate axis ξ1, i.e., to the vector a.
Therefore, the function ζ(ξ), as a particular solution of the equation

(A.33), belongs to the family of functions of the form F (ξ1, ξ
2
2 + ξ23), and

consequently, the equation ζ(ξ1, ξ2, ξ3) = 0 describes a rotational surface.
Since the submanifold SC is not rotational, we conclude that a = 0.

Thus, we have shown that if SC is neither rotational nor ruled submani-
fold, then a = b = 0. Due to (A.20) this proves that the homogeneous BVP
(3.72)–(3.74) possesses only the trivial solution. �
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