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Abstract. We present a new class of numerical methods for nonlin-
ear first order partial differential equations. Classical solutions of mixed
problems are approximated in the paper by solutions of suitable quasilinear
systems of difference equations. We give a complete convergence analysis
for the methods and we show by an example that the new methods are
considerably better than the classical schemes. The proof of the stability
is based on a comparison technique with nonlinear estimates of the Perron
type.

2000 Mathematics Subject Classification. 35R10, 65M12.
Key words and phrases. initial boundary value problems, stability

and convergence, nonlinear estimates of the Perron type, bicharacteristics.

��� ��� ��� � 	�
 �  �����  ��� ��� � � 
 � ��� ����� ��� � � ����� � ������� � �  �� � � ����! �"�  �
# � ��� � ���"��� $ �  %� ��� &'��()� � �*! � ��+ ��&,� ��� ��� � -)��� � 
 �%��� ()� ��� 
 ��� � ��-,���%$ � 
 .
/ ����� � � � �  � ��� �  01 � ��� -)���1� � ����� 
 � � �  2! �"�  � ! -,����� � ��
 � �  
 � � ��� # ����3 .
 � � � ��� � -)��� �2 � � � ��� � � 
 ��$ � 
 / ����� � � � �  � �  � � � � �  �2 �  / � � � � �  �� � ���  
 � .
� � ��0�� ��� � � 
 � ��� �%� � ������� � �  %! ��� � � ����� �  % ��-,���4� 
 � ��� 5'�4����� � $ � ��� ��5,�

 � 6 � � 
 � � � � 7������2� � � ���1� � ������� � ��$ � ��� ��� � � �8 9"���  �! �"�  � ! -'�: 3 � � � �  0
 / � � � ��-,����� �  *��� � / ! � ��� � �*� ()� + 
 � � �� � ��� ��� � �  / � 3 
 � ! �  *# � ����
 �  / � # �  
� ��� &,��()� � �� � (��  � � � � � �"0



Generalized Euler Method for First Order Partial Differential Functional Equations 51

1. Introduction

For any metric spaces X and Y we denote by C(X,Y ) the class of all
continuous functions defined on X and taking values in Y . We will use
vectorial inequalities with the understanding that the same inequalities hold
between their corresponding components.

Let a > 0, d0 ∈ R+, d = (d1, . . . , dn) ∈ Rn
+ with R+ = [0,+∞) and

b = (b1, . . . , bn) ∈ Rn
+ with bi > 0, 1 ≤ i ≤ n, be given. Write c = b+ d, c =

(c1, . . . , cn). Let us define the sets

E = [0, a]× (−b, b) , E0 = [−d0, 0]× [−c, c],

∂0E = (0, a]× ([−c, c]\(−b, b)) , B = E0 ∪ E ∪ ∂0E,

D = [−d0, 0]× [−d, d].

Suppose that z : B → R and (t, x) ∈E, where E is the closure of E. We
define the function z(t,x) : D → R as follows

z(t,x)(τ, ξ) = z(t+ τ, x+ ξ), (τ, ξ) ∈ D.

Let us denote by ‖ · ‖0 the supremum norm in the space C(D,R). Put
Ω = E × C(D,R) × Rn and suppose that f : Ω → R is a given function
of the variables (t, x, w, q) with x = (x1, . . . , xn) and q = (q1, . . . , qn). Let
ϕ : E0 ∪ ∂0E → R and α0 : [0, a] → R, α′ : E → Rn, α′ = (α1, . . . , αn) be
given functions.
The requirements on α0 and α′ are that (α0(t), α

′(t, x)) ∈E and α0(t) ≤ t

for t ∈ [0, a]. Write α(t, x) = (α0(t), α
′(t, x)) for (t, x) ∈E. For a function

z : B → R and for a point (t, x) ∈ E we write

∂xz = (∂x1z, . . . , ∂xn
z).

We consider the nonlinear functional differential equation

∂tz(t, x) = f(t, x, zα(t,x), ∂xz(t, x)) (1)

with the initial boundary condition

z(t, x) = ϕ(t, x) for (t, x) ∈ E0 ∪ ∂0E. (2)

We consider classical solutions of (1),(2).
In recent years a number of papers concerning numerical methods for

functional partial differential equations have been published.
Difference methods for nonlinear parabolic functional differential equa-

tions with initial boundary conditions of the Dirichlet type were considered
in [11], [18]. Difference schemes for the Cauchy problem were investigated
in [12], [19].

The main question in these investigations is to find a difference functional
equation which satisfies consistency conditions with respect to the original
problem and is stable. The method of difference inequalities or theorems
on recurrent inequalities are used in the investigation of the stability.

The numerical method of lines for nonlinear partial functional equations
was considered in [10], [20]. By using a disretization in spatial variables,
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parabolic equations or first order partial equations with functional variables
are replaced by sequences of initial problems for ordinary functional differ-
ential equations. The question of under what conditions the solutions of
ordinary equations tend to solutions of original problems are investigated
in these papers. The method of differential inequalities is used.

Difference methods and monotone iterative techniques for nonlinear prob-
lems were investigated in [13], [14]. Numerical methods of functional differ-
ential equations with impulses are investigated in [9].

For further bibliographical information see the references in [5], [14] and
in the monograph [17].

Finite difference approximations relative to initial or initial boundary
value problems for first order partial functional differential equations were
investigated in [1], [6], [15], [16].

Error estimates implying the convergence of difference schemes are ob-
tained in these papers by a comparison technique. Theorems on functional
difference inequalities are used. The proofs of the convergence were also
based on a general theorem on error estimates of approximate solutions to
functional difference equations of the Volterra type with initial-boundary
conditions and with unknown function of several variables. The monograph
[8] contains an exposition of the theory of numerical methods for hyperbolic
functional differential problems.

In the paper we present another approach to the numerical solving of the
problem (1),(2). We transform the nonlinear equation (1) into a quasilinear
system of difference functional equations.

The following two difference methods for problem (1),(2) are known in
literature: the Euler method and the Lax scheme. They have the following
properties. Assumptions on the regularity of f in convergence theorems are
the same for both methods. It is required that the function f of the variables
(t, x, w, q) satisfies the Lipschitz condition with respect to the functional
variable and it is of class C1 with respect to q = (q1, . . . , qn). Some nonlinear
estimates for f with respect to w are also considered. For the analysis of
the stability of the Euler method we need the assumption that the function

sign ∂qf = (sign∂q1f, . . . , sign∂qn
f) (3)

is constant. We do not need this assumption if we use the Lax scheme for
(1),(2).

There are equations for which both methods can be used. It follows that
in this case the Euler method is more suitable than the Lax scheme. The aim
of the paper is to show that for each equation (1) with sufficiently regular
function f the Euler difference method can be constructed. It is important
in our considerations that the assumption that the function (3) is constant
is omitted. In other words, we show that the Lax scheme is superfluous in
the numerical approximation of classical solutions of (1),(2).

Our main ideas are based on a quasilinearization of the equation (1)
with respect to the last variable and on the theory of bicharacteristics for
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nonlinear hyperbolic problems. The method was introduced and studied by
S. Cinquini and M. Cinquini-Cibrario [2], [3].
The authors have used the method of quasilinearization and the theory
of bicharacteristics in the existence and uniqueness theory for generalized
solutions of hyperbolic differential systems. This method is also adapted to
nonlinear functional differential problems in [8], Chapter V.

The paper is organized as follows. In Section 2 we propose a quasilinear
system of difference equations of the Euler type to the problem (1),(2) .
A convergence result and an error estimate of approximate solutions are
presented in Section 3. Numerical examples are given in the last part of the
paper.

We use in the paper general ideas concerning numerical methods for
partial differential equations which were introduced in [4], [8].

Below, we give examples of equations which can be derived from (1) by
specifying the operator f .

Example 1. A general class of equations with deviated variables can
be obtained in the following way. Suppose that F : E × R × Rn → R,
β0 : [0, a] → R, β′ : E → Rn, β′ = (β1, . . . , βn) are given functions and

−d0 ≤ β0(t)− α0(t) ≤ 0, −d ≤ β′(t, x) − α′(t, x) ≤ d, (t, x) ∈ E. (4)

We define the operator f as follows:

f(t, x, w, q) = F (t, x, w(β0(t)− α0(t), β
′(t, x)−

−α′(t, x)), q), (t, x, w, q) ∈ Ω. (5)

Then

f(t, x, zα(t,x), q) = F (t, x, z(β(t, x)), q),

where β(t, x) = (β0(t), β
′(t, x)) and the equation (1) is equivalent to

∂tz(t, x) = F (t, x, z(β(t, x)), ∂xz(t, x)). (6)

Example 2. Now we consider differential integral equations. Suppose
that γ0 : [0, a] → R, γ′ : E → Rn, γ′ = (γ1, . . . , γn) are given functions and

−d0 ≤ γ0(t)− α0(t) ≤ 0, −d ≤ γ′(t, x) − α′(t, x) ≤ d, (t, x) ∈ E. (7)

For the above given functions β satisfying (4) and F : E ×R×Rn → R we
define the operator f in the following way:

f(t, x, w, q) = F (t, x,

γ0(t)−α0(t)
∫

β0(t)−α0(t)

γ′(t,x)−α′(t,x)
∫

β′(t,x)−α′(t,x)

w(τ, y)dy dτ, q), (8)

where (t, x, w, q) ∈ Ω. Then

f(t, x, zα(t,x), q) = F (t, x,

γ(t,x)
∫

β(t,x)

z(τ, y)dy dτ, q)
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and (1) reduces to the differential integral equation

∂tz(t, x) = F (t, x,

γ(t,x)
∫

β(t,x)

z(τ, y)dy dτ, ∂xz(t, x)). (9)

Existence results for mixed problems can be found in [8], Chapter V.

2. Discretizations of the Mixed Problem

Let us denote by F(X,Y ) the class of all functions defined on X and
taking values in Y , where X and Y are arbitrary sets. Let N and Z be the
sets of natural numbers and integers, respectively. Let us fix our notation
of vectors and matrices. We will denote by Mn×n the space of all n × n

matrices with real elements. For x , y ∈ Rn, U ∈Mn×n, where

x = (x1, . . . , xn), y = (y1, . . . , yn), U = [uij ]i,j=1,...,n

we put

‖x‖ =

n
∑

j=1

|xj | , x � y = (x1y1, . . . , xnyn) ,

‖U‖ = max
{

n
∑

j=1

|uij | : 1 ≤ i ≤ n
}

.

The product of two matrices is denoted by ” ? ”. If U ∈Mn×n, then UT is
the transpose matrix. We use the symbol ” ◦ ” to denote the scalar product
in Rn. For a function z ∈ C(B,R) and for a point t ∈ [0, a], we write

‖z‖t = max{ |z(τ, y)| : (τ, y) ∈ B ∩ ([−d0, t]×Rn)}.

We define a mesh on the set B in the following way. Let (h0, h
′), h′ =

(h1, . . . , hn), stand for steps of the mesh. For h = (h0, h
′) and (r,m) ∈ Z1+n,

where m = (m1, . . . ,mn), we define nodal points as follows

t(r) = rh0 , x
(m) = m � h′ , x(m) = (x

(m1)
1 , . . . , x(mn)

n ).

Let us denote by H the set of all h such that there are N = (N1, . . . , Nn) ∈
Nn and N0 ∈ N such that N �h′ = c and N0h0 = d0. There is K ∈ N such
that Kh0 ≤ a < (K + 1)h0. For h ∈ H we put ‖h‖ = h0 + h1 + . . . + hn.
Write

R1+n
h = { (t(r), x(m)) : (r,m) ∈ Z1+n}, Ih = { t(r) : 0 ≤ r ≤ K}

and
E0.h = E0 ∩ R

1+n
h , Eh = E ∩ R1+n

h , ∂0Eh = ∂0E ∩ R1+n
h ,

Bh = E0.h ∪ Eh ∪ ∂0Eh.

Set

Br.h = Bh ∩
(

[−d0, t
(r)] × Rn

)

, 0 ≤ r ≤ K,

and
E′h = { (t(r), x(m)) ∈ Eh : 0 ≤ r ≤ K − 1}.
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For functions ω : Ih → R, z : Bh → R , u : Bh → Rn we write

ω(r) = ω(t(r)), z(r,m) = z(t(r), x(m)), u(r,m) = u(t(r), x(m)),

‖z‖r.h = max{ |z(i,m)| : (t(i), x(m)) ∈ Br.h}

and
‖u‖r.h = max{ ‖u(i,m)‖ : (t(i), x(m)) ∈ Br.h},

where 0 ≤ r ≤ K. Let ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn , 1 standing on the
j-th place, 1 ≤ j ≤ n.

Classical difference methods for the problem (1),(2) consist in replac-
ing partial derivatives ∂t and (∂x1 , . . . , ∂xn

) = ∂x with difference operators
δ0 and (δ1, . . . , δn) = δ respectively. Moreover, because the equation (1)
contains the functional variable zα(t,x) which is an element of the space
C(D,R), we need an interpolating operator Th : F (Bh, R) → C(B,R). This
leads to the difference functional equation

δ0z
(r,m) = f(t(r), x(m), Th[z]α(r,m) , δz(r,m)) (10)

with the initial boundary condition

z(r,m) = ϕ
(r,m)
h on E0.h ∪ ∂0Eh, (11)

where ϕh : E0.h ∪ ∂0Eh → R is a given function.
The following examples of the equation (10) are known in literature. The

Euler difference method is obtained by putting

δ0z
(r,m) =

1

h0
[z(r+1,m) − z(r,m)], (12)

δjz
(r,m) =

1

hj

[z(r,m+ej) − z(r,m)], 1 ≤ j ≤ κ, (13)

and

δjz
(r,m) =

1

hj

[z(r,m) − z(r,m−ej)], κ+ 1 ≤ j ≤ n, (14)

where 0 ≤ κ ≤ n is fixed. The Lax scheme is the second important example.
It is obtained by putting

δ0z
(r,m) =

1

h0

[

z(r+1,m) −∆[z](r,m)
]

(15)

where

∆[z](r,m) =
1

2n

n
∑

j=1

[

z(r,m+ej) + z(r,m−ej)
]

, (16)

and

δjz
(r,m) =

1

2hj

[

z(r,m+ej) − z(r,m−ej)
]

, 1 ≤ j ≤ n. (17)

Suppose that the function f is continuous on Ω and that there exist the
partial derivatives

(∂q1f, . . . , ∂qn
f) = ∂qf.

The stability of difference equations generated by the equation (1) is strictly
connected with the so-called Courant-Friedrichs-Levy (CFL) conditions (see
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[4], Chapter 3). The (CFL) conditions for nonlinear equation (1) and for
the Euler difference method have the form:

(i) for each P = (t, x, w, q) ∈ Ω we have

1− h0

n
∑

j=1

1

hj

|∂qj
f(P )| ≥ 0; (18)

(ii) the function (3) is constant on Ω.
The (CFL) condition for (1) and for the Lax scheme has the form

1−
nh0

hj

|∂qj
f(P )| ≥ 0, 1 ≤ j ≤ n, (19)

where P ∈ Ω.
Note that the assumptions (18) and (19) are quite similar. It follows

from the above condition (ii) that we need more restrictive assumptions on
f for the Euler difference method than for the Lax scheme.

There are difference problems (10), (11) such that both the above differ-
ence methods are convergent. It follows from the bicharacteristics theory
for nonlinear functional differential equations that in this case the numerical
results obtained by using the Euler difference method are better than those
obtained by the Lax scheme. Then we are interested in proving convergence
results of the Euler method for a large class of nonlinear problems.

We will show that there are difference methods of the Euler type for
which the assumption (ii) can be omitted.

In the paper we present a new approach to the numerical solving of (1),(2)
. We transform initial boundary value problem into a quasilinear system of
difference equations. Our main ideas are based on a quasilinearization of
(1) with respect to the last variable and on the theory of bicharacteristics
for functional differential equations. Unknown functions in new systems are
z and the partial derivatives of z with respect to spatial variables. We use
the above general ideas for the construction of new numerical methods for
(1),(2).

We will need the following assumptions on the interpolating operator
Th : F(Bh, R) → F(B,R).

Assumption H[Th]. Suppose that the operator Th is such that
1) Th : F(Bh, R) → C(B,R);
2) for any functions z, z̄ : F(Bh, R) we have

‖Th[z]− Th[z̄]‖t(r) ≤ ‖z − z̄‖r.h, 0 ≤ r ≤ K;

3) if a function z : E → R is of class C1 then there is a function γ̃ : H → R

such that

‖z − Th[zh]‖t ≤ γ̃(h), t ∈ [0, a],

and limh→0 γ̃(h) = 0, where zh is the restriction of z to the set Bh.

Remark. The above assumption 2) implies that Th fulfills the following
Volterra condition: if the functions z, z̄ are such functions that z

∣

∣

Br.h
=
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z̄
∣

∣

Br.h
, then Th[z](r,m) = Th[z̄](r,m) for −N ≤ m ≤ N . Condition 2) states

also that Th satisfies the Lipcshitz condition with the constant L = 1. The
meaning of the assumption 3) is that Th[zh] is an approximation of z and
the approximation error is bounded by γ̃(h).

An example of the operator Th satisfying Assumption H[Th] can be found
in [8], Chapter V.

If u ∈ F(Bh, R
n) and u = (u1, . . . , un), then we put

Th[u] =
(

Th[u1], . . . , Th[un]
)

.

We denote by CL(D,R) the set of all continuous and real functions de-
fined on C(D,R) and by ‖ · ‖? the norm in CL(D,R).

Assumption H0[f ]. Suppose that f ∈ C(Ω, R), the partial derivatives

∂xf(P ) = (∂x1f(P ), . . . , ∂xn
f(P )) ,

∂wf(P ) , ∂qf(P ) = (∂q1f(P ), . . . , ∂qn
f(P ))

exist for P = (t, x, w, q) ∈ Ω and ∂xf , ∂qf ∈ C(Ω, Rn), ∂wf ∈ CL(D,R).
Assumption H[α0, α

′]. Suppose that the functions α0 : [0, a] → [0, a],
α′ :E → [−b, b] are continuous, the partial derivatives

∂xα
′(t, x) = [∂xj

αi(t, x)]i,j=1,...,n

exist on E and ∂xα
′ ∈ C(E,Mn×n).

Now we formulate a difference problem corresponding to (1),(2). We
will denote by δ0 the difference operator with respect to the variable t

and by δ = (δ1, . . . , δn) the difference operator for the spatial variables
(x1, . . . , xn) = x. Write

δz(r,m) =
(

δ1z
(r,m), . . . , δnz

(r,m)
)

,

δ0u
(r,m) =

(

δ0u
(r,m)
1 , . . . , δ0u

(r,m)
n

)

, δu(r,m) =
[

δju
(r,m)
τ

]

τ,j=1,...,n
.

Set

P (r,m)[z, u] =
(

t(r), x(m), (Th[z])α(r,m) , u(r,m)
)

.

If u : B → Rn and u = (u1, . . . , un), then we put

uα(t,x) = ((u1)α(t,x), . . . , (un)α(t,x)) for (t, x) ∈E.

We consider the following system of quasilinear difference equations with
unknown functions z and (u1, . . . , un) = u.

δ0z
(r,m) = f(P (r,m)[z, u]) + ∂qf(P (r,m)[z, u]) ◦ (δz(r,m) − u(r,m)), (20)

δ0u
(r,m) = ∂xf(P (r,m)[z, u]) + ∂wf(P (r,m)[z, u]) (Th[u])α(r,m) ? ∂xα

′(r,m)
+

+∂qf(P (r,m)[z, u]) ?
[

δu(r,m)
]T

, (21)
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with the initial-boundary condition

z(r,m) = ϕ
(r,m)
h , u(r,m) = ψ

(r,m)
h onE0.h ∪ ∂0Eh, (22)

where

ϕh : E0.h ∪ ∂0Eh → R, ψh : E0.h ∪ ∂0Eh → Rn, ψh =
(

ψh.1, . . . , ψh.n

)

,

are given functions and

∂wf(P (r,m)[z, u])(Th[u])α(r,m) =

= (∂wf(P (r,m)[z, u])(Th[u1])α(r,m) , . . . , ∂wf(P (r,m)[z, u])(Th[un])α(r,m) ).

The difference operator δ0 is defined by

δ0z
(r,m) =

1

h0

(

z(r+1,m) − z(r,m)
)

,

δ0u
(r,m)
j =

1

h0

(

u
(r+1,m)
j − u

(r,m)
j

)

, 1 ≤ j ≤ n.

(23)

The difference operator δ for the spatial variables is defined in the following
way. Suppose that (t(r), x(m)) ∈ E′h and that the functions (z, u) are known
on the set Br.h. If

∂qj
f(P (r,m)[z, u]) ≥ 0, (24)

then

δjz
(r,m) =

1

hj

(

z(r,m+ej) − z(r,m)
)

, (25)

and

δju
(r,m)
τ =

1

hj

(

u(r,m+ej)
τ − u(r,m)

τ

)

, 1 ≤ τ ≤ n. (26)

If

∂qj
f(P (r,m)[z, u]) < 0, (27)

then

δjz
(r,m) =

1

hj

(

z(r,m) − z(r,m−ej)
)

, (28)

and

δju
(r,m)
τ =

1

hj

(

u(r,m)
τ − u(r,m−ej)

τ

)

, 1 ≤ τ ≤ n. (29)

The difference problem (20)–(22) has exactly one solution (zh, uh), where
zh : Br.h → R, uh : Br.h → Rn. Indeed, if we assume that the solution of the
above problem is defined on the set Br.h, 0 ≤ r < K, and (t(r), x(m)) ∈ Eh,
then we have

(t(r), x(m+ej )), (t(r), x(m−ej)) ∈ Br.h for 1 ≤ j ≤ n.

The above relations and the conditions (24)–(29) imply that the values

z
(r+1,m)
h and u

(r+1,m)
h can be calculated from (20)–(22) and the solution is

defined on Br+1.h. Then, by induction, the solution (zh, uh) of (20)–(22)
exists and it is unique on Bh.
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The numerical method consisting of the system (20)–(21) with the initial
condition (22), where the difference operators are defined by (24)–(29) is
called a generalized Euler method for problem (1),(2).

The difference problem (20)–(22) is obtained in the following way. Sup-
pose that Assumptions H0[f] and H[α0, α

′] are satisfied and that the de-
rivative ∂xϕ exists on E0 ∪ ∂0E. Let (z, u) be unknown functions of the
variables (t, x) ∈ E, where u = (u1, . . . , un). Write

U [z, u; t, x] = (t, x, zα(t,x), u(t, x)).

Let us consider the quasilinear differential system

∂tz(t, x) = f(U [z, u; t, x])+

+∂qf(U [z, u; t, x]) ◦ (∂xz(t, x)− u(t, x)), (30)

∂tu(t, x) = ∂xf(U [z, u; t, x]) + ∂wf(U [z, u; t, x])uα(t,x) ? ∂xα
′(t, x)+

+∂qf(U [z, u; t, x]) ? [∂xu(t, x)]
T (31)

with the initial condition

z(t, x) = ϕ(t, x), u(t, x) = ∂xϕ(t, x) on E0 ∪ ∂0E. (32)

Under natural assumptions on the given functions the above problem has
the following property: if (z̃, ũ) is a solution of (30)–(32), then ∂xz̃ = ũ and
the conditions
(A) the function v : D → R is a classical solution of (1),(2),
and
(B) the functions (v, ∂xv) are a classical solution of (30)–(32),
are equivalent. The difference problem (20)–(22) is a discretization of (30)–
(32). The quasilinear system (30),(31) has the following property: differen-
tial equations of the bicharacteristic for (30) and for (31) are the same and
they have the form

η′(t) = −∂qf(t, η(t), zα(t,η(t)), u(t, η(t))),

where η = (η1, . . . , ηn). This property of the system (30),(31) is very
important in the investigation of the stability of the problem (20)–(22).
It is important in our considerations that we approximate classical solu-
tions of nonlinear equation (1) by solutions of a quasilinear difference sys-
tem and the method of discretization of the system (30),(31) at the point
(t(r), x(m)) ∈ E′h depends on the properties of the functions

∂qf = (∂q1f, . . . , ∂qn
f),

and on the previous values of the unknown functions (z, u) in (20),(21).

3. Convergence of the Generalized Euler Method

We formulate next assumptions on the given functions.
Assumption H[σ]. Suppose that the function σ : [0, a]× R+ → R+ is

continuous and
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1) σ is nondecreasing with respect to both variables and σ(t, 0) = 0 for
t ∈ [0, a],

2) for each c ∈ R+ and d ≥ 1 the maximal solution of the Cauchy problem

η′(t) = cη(t) + dσ(t, η(t)) , η(0) = 0,

is η̃(t) = 0 , t ∈ [0, a].
Assumption H[f]. Suppose that Assumption H0[f] is satisfied and
1) there is A ∈ R+ such that

‖∂xf(P )‖, ‖∂wf(P )‖?, ‖∂qf(P )‖ ≤ A,

where P = (t, x, w, q) ∈ Ω,
2) there is a function σ : [0, a]×R+ → R+ such that Assumption H[σ] is

satisfied and the terms

‖∂xf(t, x, w, q)− ∂xf(t, x, w̄, q̄)‖,

‖∂wf(t, x, w, q) − ∂wf(t, x, w̄, q̄)‖?, ‖∂qf(t, x, w, q)− ∂qf(t, x, w̄, q̄)‖

are bounded from above by σ(t, ‖w − w̄‖0 + ‖q − q̄‖).

Theorem 1. Suppose that Assumptions H[α0, α
′] and H[f ] are satisfied

and
1) h ∈ H and for P = (t, x, w, q) ∈ Ω we have

1− h0

n
∑

j=1

1

hj

∣

∣

∣
∂qj

f(P )
∣

∣

∣
≥ 0, (33)

2) the operator Th : F(Bh, R) → C(B,R) satisfies the Assumption H[Th],
3) the function ϕ : E0 ∪ ∂0E → R is of the class C2, v : B → R is a

solution of the problem (1), (2) and v is of the class C2 on B,
4) the functions (zh, uh) where zh : Bh → R, uh : Bh → Rn, uh =

(uh.1, . . . , uh.n), satisfy (20)–(22) with δ0 and δ given by (23)–(29) and there
is a function β0 : H → R+ such that

|ϕ(r,m) − ϕ
(r,m)
h |+ ‖∂xϕ

(r,m) − ψ
(r,m)
h ‖ ≤ β0(h) on E0.h ∪ ∂0Eh (34)

and limh→0 β0(h) = 0.
Then there is a number ε0 > 0 and a function β : H → R+ such that we

have for ‖h‖ ≤ ε0

|v(r,m) − z
(r,m)
h |+ ‖∂xv

(r,m) − u
(r,m)
h ‖ ≤ β(h) (35)

on Eh and limh→0 β(h) = 0.

Proof. Let us denote by w : B → Rn the function defined by

w = ∂xv , w = (w1, . . . , wn).

Then the functions (v, w) satisfy the quasilinear system (30)–(31) and the
initial condition (32). Write

ξ
(r,m)
h = v(r,m) − z

(r,m)
h , (36)
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λ
(r,m)
h = w(r,m) − u

(r,m)
h , λ

(r,m)
h = (λ

(r,m)
h.1 , . . . , λ

(r,m)
h.n ), (37)

where (t(r), x(m)) ∈ Bh. Let the functions ωh.0, ωh.1 : Ih → R+ be defined
by

ω
(r)
h.0 = ‖ξh‖r.h , ω

(r)
h.1 = ‖λh‖r.h, (38)

and ωh = ωh.0 + ωh.1. We will write a difference inequality for the function
ωh. Set

Q(r,m)[v, w] = U [v, w; t(r), x(m)].

Let the functions Γh, Λh : E′h → R be defined by

Γ
(r,m)
h = δ0v

(r,m) − ∂tv
(r,m)+

+∂qf(Q(r,m)[v, w]) ◦
[

∂xv
(r,m) − δv(r,m)

]

, (39)

and

Λ
(r,m)
h = f(Q(r,m)[v, w]) − f(P (r,m)[zh, uh])−

−∂qf(Q(r,m)[v, w]) ◦ w(r,m) + ∂qf(P (r,m)[zh, uh]) ◦ u
(r,m)
h +

+
[

∂qf(Q(r,m)[v, w])− ∂qf(P (r,m)[zh, uh])
]

◦ δv(r,m). (40)

It follows from (30) and from (20) that the function ξh satisfies the difference
equation

ξ
(r+1,m)
h = ξ

(r,m)
h + h0∂qf(P (r,m)[zh, uh]) ◦ δξ

(r,m)
h +

+h0

[

Λ
(r,m)
h + Γ

(r,m)
h

]

. (41)

Put

J+[r,m] =
{

j ∈ {1, . . . , n} : ∂qj
f(P (r,m)[zh, uh]) ≥ 0

}

,

J−[r,m] = {1, . . . , n}\J+[r,m].

Consider the operator Wh : F(Bh, R) → F(E′h, R) defined by

Wh[θ](r,m) = θ(r,m)

[

1− h0

n
∑

j=1

1

hj

∣

∣∂qj
f(P (r,m)[zh, uh])

∣

∣

]

+

+ h0

∑

j∈J+[r,m]

1

hj

∂qj
f(P (r,m)[zh, uh])θ(r,m+ej )−

− h0

∑

j∈J−[r,m]

1

hj

∂qj
f(P (r,m)[zh, uh])θ(r,m−ej ), (42)

where θ ∈ F(Bh, R) and (t(r), x(m)) ∈ E′h. It follows from (24)–(29) that
the relation (41) is equivalent to

ξ
(r+1,m)
h = Wh[ξh](r,m) + h0

[

Λ
(r,m)
h + Γ

(r,m)
h

]

. (43)

According to the assumption (33), we have
∣

∣Wh[ξh](r,m)
∣

∣ ≤ ω
(r)
h.0 for (t(r), x(m)) ∈ E′h. (44)
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Let c̃, s̃ ∈ R+ be such constants that

|∂tv(t, x)| , ‖∂xv(t, x)‖ , |∂ttv(t, x)| ≤ c̃,

‖∂xxv(t, x)‖, |∂txi
v(t, x)| ≤ c̃,

(45)

where (t, x) ∈ B, i = 1, . . . , n, and

|∂tα0(t, x)|, ‖∂tα
′(t, x)‖, ‖∂xα

′(t, x)‖ ≤ s̃, (t, x) ∈E. (46)

It follows from Assumption H[f] and from the condition 2) of the theorem
that there is γ0 : H → R+ such that

∣

∣

∣
Γ

(r,m)
h

∣

∣

∣
≤ γ0(h) on E′h (47)

and limh→0 γ0(h) = 0. According to Assumptions H[f] and H[Th], there is
γ̃0 : H → R+ such that

‖vα(r,m) − (Th[zh])α(r,m)‖0 ≤ ω
(r)
h.0 + γ̃0(h) and lim

h→0
γ̃0(h) = 0 (48)

and

|f(Q(r,m)[v, w])− f(P (r,m)[zh, uh])| ≤ Aω
(r)
h +Aγ̃0(h),

where (t(r), x(m)) ∈ E′h. In the same manner we can see that

‖∂qf(Q(r,m)[v, w]) − ∂qf(P (r,m)[zh, uh])‖ ≤ σ(t(r), ω
(r)
h + γ̃0(h)), (49)

where (t(r), x(m)) ∈ E′h. An easy computation shows that
∣

∣

∣
Λ

(r,m)
h

∣

∣

∣
≤ 2c̃σ(t(r), ω

(r)
h + γ̃0(h)) + 2Aω

(r)
h +Aγ̃0(h),

where (t(r), x(m)) ∈ E′h . According to the above estimates and (43), (44),
we have

ω
(r+1)
h.0 ≤ ω

(r)
h.0 + 2h0c̃σ(t(r), ω

(r)
h + γ̃0(h))+

+2h0Aω
(r)
h + h0(γ0(h) +Aγ̃0(h)), 0 ≤ r ≤ K − 1. (50)

Now we write a difference inequality for ωh.1. Let the functions Uh, Vh :
E′h → Rn be defined by

U
(r,m)
h = δ0w

(r,m) − ∂tw
(r,m) (51)

+∂qf(Q(r,m)[v, w]) ?
[

∂xw
(r,m) − δw(r,m)

]T

and

V
(r,m)
h = ∂xf(Q(r,m)[v, w]) − ∂xf(P (r,m)[zh, uh])+

+∂wf(Q(r,m)[v, w])A[w](r,m) ? ∂xα
′(r,m)

−

−∂wf(P (r,m)[zh, uh])ThA[uh](r,m) ? ∂xα
′(r,m)

+

+
[

∂qf(Q(r,m)[v, w]) − ∂qf(P (r,m)[zh, uh])
]

?
[

δw(r,m)
]T

. (52)
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It follows from (31) and (21) that the function λh satisfy the difference
equation

λ
(r+1,m)
h = λ

(r,m)
h + h0∂qf(P (r,m)[zh, uh]) ?

[

δλ
(r,m)
h

]T

+

+ h0

[

U
(r,m)
h + V

(r,m)
h

]

, (53)

where (t(r), x(m)) ∈ E′h. For the function λh = (λh.1, . . . , λh.n) we write

Wh[λh](r,m) =
(

Wh[λh.1]
(r,m), . . . ,Wh[λh.n](r,m)

)

where Wh is defined by (42). It follows from (24)–(29) that the relation (53)
is equivalent to

λ
(r+1,m)
h = Wh[λh](r,m) + h0

[

U
(r,m)
h + V

(r,m)
h

]

, (54)

where (t(r), x(m)) ∈ E′h. According to the assumption (33), we have

‖Wh[λh](r,m)‖ =

n
∑

τ=1

∣

∣

∣
Wh[λh.τ ](r,m)

∣

∣

∣
≤

≤

[

1− h0

n
∑

j=1

1

hj

∣

∣

∣
∂qj

f(P (r,m)[zh, uh])
∣

∣

∣

]

‖λ
(r,m)
h ‖+

+h0

∑

j∈J+[r,m]

1

hj

∂qj
f(P (r,m)[zh, uh])‖λ

(r,m+ej)
h ‖−

−h0

∑

j∈J−[r,m]

1

hj

∂qj
f(P (r,m)[zh, uh])‖λ

(r,m−ej)
h ‖

and consequently

‖Wh[λh](r,m)‖ ≤ ω
(r,m)
h.1 for (t(r), x(m)) ∈ E′h. (55)

It follows from Assumption H[f] and from the condition 2) of the theorem
that there is γ1 : H → R+ such that

‖U
(r,m)
h ‖ ≤ γ1(h) on E′h , and lim

h→0
γ1(h) = 0. (56)

It is easy to see that the conclusion analogous to (49) can be drawn for the
derivatives ∂xf , ∂wf . According to Assumption H[Th] there is γ̃1 : H → R+

such that

‖wα(r,m) − (Th[uh])α(r,m)‖0 ≤ γ̃1(h) + ω
(r)
h.1 and lim

h→0
γ̃1(h) = 0, (57)

where (t(r), x(m)) ∈ E′h. Then we have the estimate

‖V
(r,m)
h ‖ ≤ (1 + c̃+ c̃s̃) σ(t(r), ω

(r)
h + γ̃0(h)) +As̃γ̃1(h) +As̃ω

(r)
h ,

and consequently

ω
(r+1)
h.1 ≤ ω

(r)
h.1 + h0(1 + c̃+ s̃c̃)σ(t(r), ω

(r)
h + γ̃0(h)) (58)
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+h0As̃ω
(r)
h + h0(γ1(h) +As̃γ̃1(h)) , 0 ≤ r ≤ K − 1.

Adding the inequalities (50) and (58), we get

ω
(r+1)
h ≤ ω

(r)
h + h0d̄ω

(r)
h + h0d̃σ(t(r), ω

(r)
h + γ̃0(h)) + h0γ̃(h), (59)

where 0 ≤ r ≤ K − 1 and

d̄ = A(2 + s̃) , d̃ = 1 + 3c̃+ s̃c̃,

γ̃(h) = γ0(h) + γ1(h) +A(γ̃0(h) + s̃γ̃1(h)).
(60)

Consider the Cauchy problem

η′(t) = d̄η(t) + d̃σ(t, η(t) + γ̃0(h)) + γ̃(h) , η(0) = β0(h). (61)

It follows from Assumption H[σ] that there is ε0 > 0 such that for ‖h‖ < ε0
there exists the maximum solution ηh of (61) and ηh is defined on [0, a].
Moreover, we have

lim
h→0

ηh(t) = 0 uniformly on [0, a].

The function ηh satisfies the difference inequality

η
(r+1)
h ≥ η

(r)
h + h0d̄η

(r)
h + d̃h0σ(t(r), η

(r)
h + γ̃0(h)) + h0γ̃(h) , 0 ≤ r ≤ K − 1.

By the above inequality and (59) we have

ω
(r)
h ≤ η

(r)
h for 0 ≤ r ≤ K. (62)

Then we get (35) for β(h) = ηh(a). This completes the proof.

Remark. If we set σ(t, s) = Ls for (t, s) ∈ [0, a]×R+, where L ∈ R+, then
the function σ satisfies Assumption H[σ]. In other words, we can assume
that the functions ∂xf , ∂wf , ∂qf satisfy the Lipschitz condition with respect
to (w, q) on Ω.

Remark. In the Assumption H[Th] we can put γ̃(h) = c̃‖h‖, where c̃ ∈ R+

is such constant that

|∂tz(t, x)| ≤ c̃, |∂xi
z(t, x)| ≤ c̃, 1 ≤ i ≤ n, (t, x) ∈ B.

There exists an interpolating operator satisfying the so modified Assumption
H[Th]. It has been proposed in [8].

Lemma 1. Suppose that all the assumptions of Theorem 1 are satisfied
with σ(t, τ) = Lτ on [0, a]×R+, where L ∈ R+. Then we have the following
error estimate of the method (20)–(29):

|v(r,m) − z
(r,m)
h |+ ‖∂xv

(r,m) − u
(r,m)
h ‖ ≤ β̄(h) on Eh,

where

β̄(h) = β0(h)e
L̃a + γ̄(h)

eL̃a − 1

L̃
if L̃ > 0,

β̄(h) = β0(h) + aγ̄(h) if L̃ = 0

with
L̃ = d̄+ Ld̃, γ̄(h) = γ̃(h) + c̃d̃L‖h‖,
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γ0(h) = γ1(h) =
c̃

2
(1 +A)‖h‖, γ̃0(h) = γ̃1(h) = c̃‖h‖,

and γ̃, d̄, d̃, s̃ are given by (46), (60).

Proof. It follows that the estimates (47), (56), (48) and (57) are satisfied
with the above given γ0, γ1, γ̃0 and γ̃1, respectively, and we obtain the
lemma from (35) and (62) and by solving of the problem (61).

Remark. In Lemma 1 on the error estimate we need estimates for the
derivatives of the solution v of the problem (1),(2). One may obtain them
by the method of differential inequalities, see [8], Chapter V.

4. Numerical Experiments

Let n = 2. Consider the mixed problem

∂tz(t, x, y) = x[∂xz(t, x, y) + cos(∂xz(t, x, y)− 2txz(t, x, y))]+

+y[∂yz(t, x, y)− sin(∂yz(t, x, y) + 2tyz(t, x, y))]+

+z
(

t,
x

2
,
y

2

)

+ f(t, x, y), (63)

z(0, x, y) = 1 for (x, y) ∈ [−1, 1]× [−1, 1], (64)

z(t, 1, y) = z(t,−1, y) = et(1−y2) for t ∈ [0, a], y ∈ [−1, 1],

z(t, x, 1) = z(t, x,−1) = et(x2−1) for t ∈ [0, a], x ∈ [−1, 1],

where

f(t, x) = (1− 2t)et(x1−y2)(x2 − y2)− x− e
t
4 (x2−y2).

The solution of the problem is given by v(t, x) = et(x2−y2). The classical
difference method for (63),(64) has the form

δ0z
(r,m) = x(m1)(δ1z

(r,m)(r,m) + cos(δ1z
(r,m)(r,m) − 2tx(m1)z(r,m)))+

+y(m2)(δ2z
(r,m)(r,m) − sin(δ2z

(r,m)(r,m) + 2ty(m2)z(r,m)))+

+A(r,m) + f (r,m), (65)

z(0,m1,m2) = 1 for (x(m1), y(m2)) ∈ [−1, 1]× [−1, 1], (66)

z(r,N1,m2) = z(r,−N1,m2) = et(r)(1−(y(m2))2) for t(r) ∈ [0, a], y(m2) ∈ [−1, 1],

z(r,m1,N2) = z(r,m1,−N2) = et(r)((x(m1))2−1) for t(r) ∈ [0, a], x(m1) ∈ [−1, 1],

where m = (m1,m2),

δ0z
(r,m) =

1

h0

[

z(r+1,m) −∆z(r,m)
]

,

∆z(r,m) =
1

4

(

z(r,m1−1,m2) + z(r,m1+1,m2) + z(r,m1,m2−1) + z(r,m1,m2+1)
)

,

and

δ1z
(r,m) =

1

2h1

[

z(r,m1+1,m2) − z(r,m1−1,m2)
]

,
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δ2z
(r,m) =

1

2h2

[

z(r,m1,m2+1) − z(r,m1,m2−1)
]

.

Moreover, we put

A(r,m) = Th[z](t(r), 0.5x(m1), 0.5y(m2)), (67)

and Th is the interpolating operator for n = 2. The convergence of the
method (65),(66) follows from [7]. Let us denote by zh : Eh → R the
solution of the problem (65),(66) and by ζh : Eh → R the solution given by
the generalized Euler method for the problem (63),(64).

Suppose that t(r) is fixed for some 0 ≤ r ≤ K. Then we put

ε
(r)
h = max{|zh

(r,m) − v(r,m)|,−N ≤ (m1,m2) ≤ N},

ν
(r)
h =

1

(2N1 − 1)(2N2 − 1)

∑

−N≤(m1,m2)≤N

|zh
(r,m) − v(r,m)|.

The numbers ε
(r)
h and ν

(r)
h can be called the maximal and the average error

of the classical method for fixed t(r). In the similar way we define maximal

and average errors ε̄
(r)
h , ν̄

(r)
h for the generalized Euler method.

We put a = 1, b = 1, h0 = 0.0001, h1 = 0.04, and we have the following
experimental values for the above defined errors.

Table of maximal errors εh, ε̄h and average errors νh, ν̄h.

t(r) ε
(r)
h ε̄

(r)
h ν

(r)
h ν̄

(r)
h

0.2 9.01 · 10−3 8.72 · 10−4 6.61 · 10−3 4.39 · 10−4

0.4 4.53 · 10−2 4.10 · 10−3 3.26 · 10−2 1.96 · 10−3

0.6 1.14 · 10−1 1.06 · 10−2 7.99 · 10−2 4.87 · 10−3

0.8 2.21 · 10−1 2.18 · 10−2 1.50 · 10−1 9.55 · 10−3

1.0 3.70 · 10−1 3.94 · 10−2 2.46 · 10−1 1.65 · 10−2

Note that ε̄
(r)
h < ε

(r)
h and ν̄

(r)
h < ν

(r)
h for all values of t(r).

Thus we see that the errors of the method (65),(66) are larger than
the errors of the generalized Euler method. This is due to the fact that
the approximation of the spatial derivatives of z in the generalized Euler
method is better than the respective approximation of ∂xz, ∂yz in (65),(66).

The amount of time of computing the approximate solution of the same
problem with equal steps using the generalized method and using the classi-
cal method is comparable (in fact, the former is about 150 % of the latter),
which is what we expected.

The method described in Theorem 1. have a potential for applications
in the numerical solving of first order nonlinear differential equations with
deviated variables.
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