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HOMOGENEOUS EQUATIONS OF STATICS
OF THE THEORY OF ELASTIC MIXTURE
IN A CIRCULAR DOMAIN AND

IN AN INFINITE DOMAIN

WITH A CIRCULAR HOLE



Abstract. In the paper we consider the boundary value problem for homoge-
neous equations of statics of the theory of elastic mixtures in a circular domain,
and in an infinite domain with a circular hole, when projections of the displace-
ment vector on the normal and of the stress vector on the tangent are prescribed
on the boundary of the domain. The arbitrary analytic vector ¢ appearing in
the general representation of the displacement vector is sought as a double layer
potential whose density is a linear combination of the normal and tangent unit
vectors. Having chosen the displacement vector in a special form, we define the
projection of the density on the normal by the function given on the boundary.
To find the projection of the stress vector on the tangent, we obtain a singular
integral equation with the Hilbert kernel. Using the formula of transposition of
singular integrals with the Hilbert kernel, we obtain expressions for the projection
on the tangent of the above-mentioned density. Assuming that the function is
Hélder continuous, the projection of the displacement vector on the normal and
its derivative are likewise Holder continuous. Under these conditions the obtained
expressions for the displacement and stress vectors are continuous up to the bound-
ary. The theorem on the uniqueness of solution is proved, when the boundary is
a circumference. The projections of the displacement vector on the normal and
tangent are written explicitly. Using these projections, the displacement vector is
written in the form of the integral Poisson type formula.
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1. STATEMENT OF THE THIRD BOUNDARY VALUE PROBLEM AND THE
UNIQUENESS THEOREM

The basic homogeneous equations of statics of the theory of elastic mix-
ture in the two dimensional case have the form [1]
a1 Au’ + by graddivu’ 4 cAv” + dgrad divu” = 0, )
cAv' + dgraddivu’ 4 asAu” 4 by grad divu” = 0, ’
where
a1 =p1—As, bi=p1+M—Xs—p laopa, az =2 — s,
c=p3+ A5, by =po+ A+ A5+ p toaps, (1.2)
d=p3+X3— s — p laopa = ps + M — As + p Lazpe,
p=p1+p2, az3=2A3— A
Here p; and po are partial densities, and g1, p2, s, A1, A2, A3, Ag, As
are constants characterizing physical properties of the elastic mixture and
satisfying certain inequalities [2], v’ = (uy, u2) and u” = (us,uy) are partial
displacements.
If we introduce the variables
zZ=x1+1T2, Z=2T1 —1Ta,

ie.

z+Zz z2—Z
xr1 = To =
YT TP T
then after simple transformations (1.1) can be rewritten as [3]
0?U 02U
= =0, 1.3
920z " 02 (13)
where
_ (urtiug) _ B —
0= (10~ mpte) - Kms T+ 0060, (14)
— |, M2 — € — & - ¢
m—|:m2’ m3:|7 m1—€1+27m2—€2+2, m3—€3—|—2,
a2 c ai i as + by
ee=—"—, eg=——, e3=—, €1+e=——
1 d2 ) 2 dg ; 3 dQ ; 1 4 dl )
d b
€2+e5=—c;_1 , (33—|—e(;:ald7—tl7
o Kl; KS _ 79 _ |€é4, €5
K[K2, KJ’ Km = 2’ 6[65, g’
1 | m: -m
-1 _ - 35 2 — 2
m - AO |:m2’ my :| ) A0 mims my > O7 (15)

50K1 = 2(a2b1 — Cd) + b1b2 — d2, (50K2 = 2(da1 — Cbl),
6o K3 = Q(dGQ — Cbg), = 2(&1()2 — Cd) + bbby — d27
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o = (2&1 + bl)(2a2 + bg) — (20 + d)2 = 4Apd1ds,
dy = (a1+b1)(a2+b2)7(c+d)2 >0, d2:a1a2—62>0,

and the stress vector is

_ ((TU);—i(TU),\ _ 0
= ((mﬁ —z‘(TU>3> = Bs() 2B F2u0), (16)

where

O
ds(x) L 92, 2 02,

n1 and mg are the projections of the unit vector of the normal onto the
axes x1 and xo. From this definition, the unit vector of the tangent s(z) =
(—n2,n1), (TU)y is the projection of the stress vector on the axis xy, k =

1)4’

(1.7)

M1, K3 2
= , detp=A; = — p3 > 0. 1.8
p [us, MJ p= Ay = pp — i3 (1.8)

We formulate the third boundary value problem as follows: find a regular
solution [4] of the equation (1.3) in a circular domain which on the boundary
of the circular domain (i.e., the circumference of radius R) satisfies the
following conditions:

(nU)* = f(t), (sTU)" = F(t), (1.9)

where f and F' are given complex functions on the circumference satisfying
certain conditions. The sign “+” in (1.9) stands for the limit value from
inside. If D is an infinite domain, i.e. we have an infinite domain with a
circular hole, then instead of (1.9) we have the conditions

(nU)~ = f(t), (sTU)" = F(t), (1.10)

[13

where the sign “—” denotes the limit value from outside. In the case of an
infinite domain, in addition to the conditions of regularity it is necessary to
impose the requirements at infinity:

ou
U=0(1), a—%:O(p—Q), k=1,2, p=/2? +23. (1.11)

If the point z lies on the circumference, then x = (R, ), while if the point
2z is on the circumference, then z = Re®, and ( = Re'".
The following formulas are valid [3]:

/E(U,U)dyldyg :/UTUdSEIm/UTUdS, (1.12)
D+ S S
/E(U,U)dyldyng/UTUdszfIm/UTUds, (1.13)
D— S S
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where DT is a circular domain of radius R, and D~ is an infinite domain
with a circular hole,

4
mUTU =Y up(Tu)y = nUp + s(TV)s, Up = (nU), (TU), = (sTU).
k=1
For the third boundary value problem we prove the following
Theorem. A regular solution of the equation (1.3) in the domains DT
and D~ satisfying the homogeneous conditions of the third boundary value

problem is identically equal to zero if S is not a centerless parabolic line or
a pair of straight lines.

Proof. We use the formula (1.12). Ifin (1.12) f = F = 0, then since E(U,U)
is the doubled potential energy (which is positively defined), we have

U] = C1 —ET2, U2 =C2 +ET1, U3 =C3—ET, U4 =Cq4+ET],

where ¢y, (k= 1,4) are arbitrary real constants, € is also an arbitrary, real,
different from zero constant. Compose nU. Then on the boundary we have

(u1 + dug)ng + (ug + iug)ng = 0, (1.14)
where ny = ddi;, ng = f%. Further, we insert these expressions in (1.14)

and equate to zero the real and imaginary parts. We obtain

dZQ dﬂj’l -
(c1 — exa) F (cs —exa) F 0,
dZQ dﬂj’l -
(co +ex1) i (ca +ex1) e
Adding these expressions, we find that
d €, 9 9
% 173 (x] + x5 — 2x122) + (1 + c2)x2 — (c3 + 04)331} =0, (1.15)
that is,
% (:C? + :c% —2x129) — (€1 4+ c2)xa + (c35 + c4)x1 — ¢ =0, (1.16)

where c is a new real constant.

Next, compose from (1.16) the discriminant D; of the equation (1.16)
and the discriminant Dy of higher terms. In our case, using the well-known
formulas from the analytic geometry, we have

L 1, -1, A
Dy=¢|_; 1‘0, Dy=|-1, 1, B].

b 2

Aa B7 _?C

Here, A = %(63 + C4)7 B = %(Cl + CQ).

Since D1 = 0, the line will be centerless, of parabolic type. If Dy = 0,
we have Dy = —(A+ B)? =0, i.e. ¢ +c2 + 3+ ¢4 = 0. In this case the
line is a pair of straight lines. Thus the theorem is proved. O
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In our case, i.e. when D7 is a circular domain, or D~ is an infinite domain
with a circular hole, there takes place the uniqueness of the solution.

2. SOLUTION OF THE THIRD BOUNDARY VALUE PROBLEM IN A
CIRCULAR DOMAIN

The analytic vector ¢, appearing in (1.4) is sought in the form

m~ Olno

plz) =5 — J a5ty )(n9+8h)d (2.1)

where g and h are scalar complex periodic functions with the period 27;
o = z—(, z and ( are the affixes of the points x and y, n and s are the unit
vectors of the normal and of the tangent, respectively, m~! is the matrix
inverse to m, and Ay > 0.

From (2.1) we have

1
27rz 8s(y o

o' ( (ng + sh) ds. (2.2)

Inserting (2.1) and (2.2) into (1.4)7 we obtain

U(z) = ‘/alna(ng-&-sh)ds—&-%/g(ng—i-sﬁ)ds—&—m. (2.3)
S S

If we take ¢(z) in the form

1 Olng K C -
P(z)=— 371 | Bs(y (ng + sh)ds — o / p (ng + sh)ds,
S S

~—

then we can write U(z) as follows:

S|

(ng + sh)ds, (2.4)

o))

Qi

1 00 K 0
U(:c);s/ ) (ng+sh)ds+— 50)

S

X2—"Y2

—22. The other values appearing in (2.4) have been

where 6 = arctg -
defined above.
Instead of U(x) we consider the expression

Ux) = %S/ <8§(Oy) — %) (ng + sh) ds+

K (0 s, iz
+ 2mi (8s(y) o Q_“R) ' (2:5)
5

It is evident that if U () from (2.4) is a solution of the equation (1.3), then
U(z) defined from (2.5) is likewise a solution of (1.3), since the difference
between these vectors is a linear function.
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If x € S, then z = Re', while ( = Re'", 20 = 7+t + 7 and €2 =
—e~ 7). We now pass to the limit in (2.5) as 2 tends to the boundary
point. We have

U™ (t) = ng + sh, (2.6)
whence nU™T = g = f(t).

Here f is the given complex function with the period 27 and having
certain smoothness. Thus the function A remains unknown; it will be defined
below.

For the projection on the tangent of the stress vector we have

(TUs(t))* = %(x) (=207 (t) + 2uU (1)) s(t). (2.7)

It follows from (2.1) that

2
-1 -1

m /(ng + sh)dr+
™

Noticing that %(z) = %

0 T—1 0 T—1
5% cth(ng—l—sh)dT— ~5 ctg —— (ng + sh) =

and

0(,0+ B . d m~1 t—¢ d
9 o= (ng +sh) + = /ctg 5 g (ng+sh)drs(p)dt.
0

If we take into account (2.8) and the fact that Ut = (ng + sh), we will
get

(2 —m) % (ng + sh)s(o)+

m~ t—p d
+ o /Ctg 5 T (ng+ sh)dt-s(p) = F(p)-R. (2.9)
0

Multiplying (2.9) by the matrix m, we obtain

(A —E) % (ng + sh)s(p)+

+—/ ctg 52 & (ng + sh)s(p)di = mF(g) - R, (2.10)

where A’ is the transposed matrix of A, i.e. A" = 2mpu.
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Note that ;
— ¥
[s(¢) = s(t)] ctg —— = n(p) +n(t).
Using this formula, we tr4ansform the expression (2.10) to the form

27

. .
(A"~ E)(g+h)+ i/ctg—‘p (g + h) di+
2T 2
0

" i / %(ng +sh) (n(p) +n(t)) dt = mRF(p). (2.11)
0

Taking into account that
2

d
/dt (ng + sh)dt =0,

0
27

2m
1 d 1
%/E(nngsh)n(t)dtf—QF/(ng+sh) 7——/hdt
0 0

we obtain
2

(A = B)g+ )+ 5 [ et 5 (g + byt =
0

=mRF(p) + i/hdt, (2.12)

2w

whence

o 5 27 27 2
— ) —1 t—o -
5 /cth(ngh)dt— 5 T/Cth(g+h)dt—

0 0 0
R 27
m T—1
=—[ct F(t)dt. 2.1

el (1) (2.13)

0

We now apply the formula of transposition of singular integrals with the
Hilbert kernel (see [5, p. 144]):

2 2m 2m
— —1 1
/ L4 dt/cthT (g+h)dr = —u(g@)—f—Q— /u(r) dr, (2.14)
v
0 0

whereu =g+ h = f(p)+h
The equalities (2.13) and (2.14) result in
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27
_E _
/ctg%(g—&-h)dr—(g—l—h):
0

2 27 27
tmR t—o 1 1
— _ F - — - — 2.1
i / ctg S E Pty dt — 5 / Fle)de — - / hdt, (2.15)
0 0 0

and from the equalities (2.13) and (2.15) we easily get
(A"~ B)? — E] [h + f(1)] =

27
mR t—
— /ctg Ly t——/f dt——/hdt (2.16)
21 2

Since det [(A' — E)? — E| # 0, it follows that f hdt is defined uniquely,
and from (2.16) we find that

27
imR

t—yp
—— [ ctg —E= F(t)dt
o /cg 5 F(t)di+

0
/ dt__/hdt] 217)

h=—f(t) - (4 —2B)(4) !

where
A =2mp = A Ay det A" >0, Ay =det(A —2F) >0
1% AQ, A4 ) B} 2
and
dy +do + ai1bs — cd + +by+c+d
A = 1 2 T a102 — C 4 a2 c+a2 2+ ¢ ,
dq ds di
A2:cb1—da1_)\5 a1+c+a1—|—b1—|—c+d ,
dq do dq (2.18)
A 7cb2—dagi/\ a2+c+a2—|—b2—|—c+d '
3 — dl 5 d2 dl ’
A4:d1+d2+a2b1—cd+/\5 a1+c+a1+b1+c+d :
d1 d2 dl

here d; and dy are given by the formula (1.5),
Aodidy = [A1 — 2)Xs5(a1 + ag + 2¢)] (b1by — d?) — 2Xs5d2(by + by + 2d) =
= [A1 — 2X5(a1 + a2 + 20)] [(b1 — As)(ba — As) — (d+ A5)?] —
—As5(by + b2 +2d)A; > 0. (2.19)

Since g = f(t) = (nU)*, h = (sU)" is defined from (2.17). Obviously,
the function h appearing in (2.17) is Holder continuous just as f’ and F.
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Thus we have found the projections on the normal of the displacement
vector and on the tangent of the displacement. Using the expressions of
the above-mentioned functions and substituting them into the expression
for the displacement vector, we obtain the expression for the displacement
vector in the form of a Poisson type formula. This formula allows one to
find formulas for the stress vector which will likewise be of the Poisson type.

Thus the solution of the third boundary value problem in a circular do-
main will be finally found by a Poisson type formula.

3. SOLUTION OF THE THIRD BOUNDARY VALUE PROBLEM FOR AN
INFINITE DOMAIN WITH A CIRCULAR HOLE

We seek for a solution in the form
Olno
= h)ds, 3.1
o) =gy | iy 9+ o (3.)
where the values appearing in thls expression have been determined in Sec-
tion 2. The functions g and h will be defined below.
From (3.1) we have

1
27rz 85 o

(ng + sh) ds. (3.2)

‘G

Inserting (3.1) and (3.2) in (1.4), we obtain

1 Olno K z - —
U(z) = — (ng +sh)ds + o— [ = (ng+sh)ds +¥(z). (3.3)
s/ 211 / o

Choose 1)(z) as follows:

P(z)=—— L /g;?(;(nngsh)dsﬁ, g(nngsi_z)ds.

2mi 2mi ) o
S
Then the displacement vector U(x) from (3.3) takes the form
K 8
= — h)ds + — h) ds 3.4
w/a (ng +sh)ds + 3 /8s(y 0ng+s) (3.4)
5 S

where K is defined by virtue of (2.4).
Instead of (3.4) we consider U(z):

Ux) = %/ (af(ey) — %) (ng + sh) ds+
s

+£ < 0 em+%). (3.5)

27

Obviously, if U(z) defined by (3.4) is a solution of the equation (1.3),
then (3.5) will likewise be a solution of (1.3).
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Assume that to x € S there corresponds an angle ¢ which in no way is
connected with the analytic vector . Let z = Re? and ¢ = Re’". Then
20 = m+t+ 7. Passing to the limit as z tends to the point of the boundary
S, we obtain

Ut (t) = —(ng + sh), (3.6)

where nU'T = —g = f(t), and f(t) is a complex function with the period
27 possesing certain smoothness. Thus h remains still unknown and will be
defined later on.

Using the formula (1.6) for the projection on the tangent of the stress
vector, we have

TUs(t) = 8%@) (=2p(t) + 2uU(t)) s(t), (3.7)
whence
(TUs(t))" = % (=20 (t) — 2(ng + sh)) s(t) = F(t). (3.8)

Since %(t) = + & we can rewrite (3.8) as follows:

dp+ d(ng + sh)
a a0

Taking into account our calculations performed in Section 2, we obtain

= F()R. (3.9)

27
1 -1
ot (t) = —m2 (ng + sh) + n /(ng + sh) dp—
0
1 2 d
) T—1
= /ctg 5 I (ng + sh) dt s(t) (3.10)
0

and (3.9) takes the form

m~H(—A' + E) 4 (ng + sh)s(t)—

dt
1 27 d
m” 1 t—o B
= /ctg 5 (ng +sh)dt-s(t)=F()-R. (3.11)
0

If we multiply the left-hand side of (3.11) by the matrix m, detm = Ay >
0, we will find that

—(A"-E) % (ng + sh)s(t)—
2m d
) t— _
— 5 | e o (ng + sh)dr - s(t) = mRF(t). (3.12)
0
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It follows from (3.11) that
[5(9) — (1)) ctg 2 = ~n(p) + n(t).

Taking also into account the formulas
2

% (ng+sh)s(¢) =g+h and /n(ap)s(gp) dt =0,

(e}

from (3.12) we obtain
. 2 d
/ ? t—¢
— (A - — S h)s(t) dt =
(A"— FE) (ng + sh)+ o /ctg 5 @ (ng + sh)s(t)

(e}

7
= F(t) — — 1
mRE(@) - o [ 0d (313
0
whence
(A/ ) 27 27
— - F T—1 . ) _
o /ctg 5 (g+h)dr—z(g+h)+%/(g—&-h)dr—
0 0
2
mR

3 T—1
0

Multiplying (3.13) by —(A’ — E) and (3.14) by —i, after summation we
have

27

(4" = EB)* - E] (g+h)*%/(g+h) dt = *iT;TR/F(T) cte Tt dr-
0 0

(A — EQ)fmF(x) B i(A’2 = E) / Ft)dt, (3.15)

whence

. 2 R 27
L/(_f+h)dt—lm /FT cth_
2

0

(A~ E)RmF(1) | i(A 7 dt] (316)
!
[
0

t
dr—

h= f()— (A -2E)(4)"

2

The formula (3.16) allows one to determine hg = 5
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Consequently, h = (sU)* is determined from the formula (3.16). Having
found g and h, we can obtain from (3.5) Poisson type formulas for the
displacement vector. It can be easily seen that for the validity of the formula
(3.16), the functions f and F' must be Holder continuous.

Thus the solution of the third boundary value problem for an infinite
domain with a circular hole is found in its final form.
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