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Abstract. In the paper we consider the boundary value problem for homoge-

neous equations of statics of the theory of elastic mixtures in a circular domain,

and in an infinite domain with a circular hole, when projections of the displace-

ment vector on the normal and of the stress vector on the tangent are prescribed

on the boundary of the domain. The arbitrary analytic vector ϕ appearing in

the general representation of the displacement vector is sought as a double layer

potential whose density is a linear combination of the normal and tangent unit

vectors. Having chosen the displacement vector in a special form, we define the

projection of the density on the normal by the function given on the boundary.

To find the projection of the stress vector on the tangent, we obtain a singular

integral equation with the Hilbert kernel. Using the formula of transposition of

singular integrals with the Hilbert kernel, we obtain expressions for the projection

on the tangent of the above-mentioned density. Assuming that the function is

Hölder continuous, the projection of the displacement vector on the normal and

its derivative are likewise Hölder continuous. Under these conditions the obtained

expressions for the displacement and stress vectors are continuous up to the bound-

ary. The theorem on the uniqueness of solution is proved, when the boundary is

a circumference. The projections of the displacement vector on the normal and

tangent are written explicitly. Using these projections, the displacement vector is

written in the form of the integral Poisson type formula.
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Effective Solution of the Basic Boundary Value Problem 37

1. Statement of the Third Boundary Value Problem and the

Uniqueness Theorem

The basic homogeneous equations of statics of the theory of elastic mix-
ture in the two dimensional case have the form [1]

a1∆u
′ + b1 graddiv u′ + c∆u′′ + d graddiv u′′ = 0,

c∆u′ + d graddiv u′ + a2∆u
′′ + b2 graddiv u′′ = 0,

(1.1)

where

a1 = µ1 − λ5, b1 = µ1 + λ1 − λ5 − ρ−1α2ρ2, a2 = µ2 − λ5,

c = µ3 + λ5, b2 = µ2 + λ1 + λ5 + ρ−1α2ρ2,

d = µ3 + λ3 − λ5 − ρ−1α2ρ2 ≡ µ3 + λ4 − λ5 + ρ−1α2ρ2,

ρ = ρ1 + ρ2, α3 = λ3 − λ4.

(1.2)

Here ρ1 and ρ2 are partial densities, and µ1, µ2, µ3, λ1, λ2, λ3, λ4, λ5

are constants characterizing physical properties of the elastic mixture and
satisfying certain inequalities [2], u′ = (u1, u2) and u′′ = (u3, u4) are partial
displacements.

If we introduce the variables

z = x1 + ix2, z̄ = x1 − ix2,

i.e.

x1 =
z + z̄

2
, x2 =

z − z̄

2i
,

then after simple transformations (1.1) can be rewritten as [3]

∂2U

∂z∂z̄
+K

∂2Ū

∂z̄2
= 0, (1.3)

where

U =

(

u1 + iu2

u3 + iu4

)

= mϕ(z)−Kmzϕ′(z) + ψ(z) , (1.4)

m =

[

m1, m2

m2, m3

]

, m1 = e1 +
e4

2
, m2 = e2 +

e5

2
, m3 = e3 +

e6

2
,

e1 =
a2

d2
, e2 = −

c

d2
, e3 =

a1

d2
, e1 + e4 =

a2 + b2

d1
,

e2 + e5 = −
c+ d

d1
, e3 + e6 =

a1 + b1

d1
,

K =

[

K1, K3

K2, K4

]

, Km = −
e

2
, e =

[

e4, e5
e5, e6

]

,

m−1 =
1

∆0

[

m3, −m2

−m2, m1

]

, ∆0 = m1m3 −m2
2 > 0, (1.5)

δ0K1 = 2(a2b1 − cd) + b1b2 − d2, δ0K2 = 2(da1 − cb1),

δ0K3 = 2(da2 − cb2), δ0K4 = 2(a1b2 − cd) + b1b2 − d2,



38 M. Basheleishvili

δ0 = (2a1 + b1)(2a2 + b2)− (2c+ d)2 = 4∆0d1d2,

d1 = (a1 + b1)(a2 + b2)− (c+ d)2 > 0, d2 = a1a2 − c2 > 0,

and the stress vector is

TU =

(

(TU)2 − i(TU)1
(TU)4 − i(TU)3

)

=
∂

∂s(x)
(−2ϕ(z) + 2µU), (1.6)

where
∂

∂s(x)
= n1

∂

∂x2
− n2

∂

∂x1
, (1.7)

n1 and n2 are the projections of the unit vector of the normal onto the
axes x1 and x2. From this definition, the unit vector of the tangent s(x) =
(−n2, n1), (TU)k is the projection of the stress vector on the axis xk, k =
1, 4,

µ =

[

µ1, µ3

µ3, µ2

]

, det µ = ∆1 = µ1µ2 − µ2
3 > 0. (1.8)

We formulate the third boundary value problem as follows: find a regular
solution [4] of the equation (1.3) in a circular domain which on the boundary
of the circular domain (i.e., the circumference of radius R) satisfies the
following conditions:

(nU)+ = f(t), (s TU)+ = F (t), (1.9)

where f and F are given complex functions on the circumference satisfying
certain conditions. The sign “+” in (1.9) stands for the limit value from
inside. If D is an infinite domain, i.e. we have an infinite domain with a
circular hole, then instead of (1.9) we have the conditions

(nU)− = f(t), (s TU)− = F (t), (1.10)

where the sign “−” denotes the limit value from outside. In the case of an
infinite domain, in addition to the conditions of regularity it is necessary to
impose the requirements at infinity:

U = O(1),
∂U

∂xk

= O(ρ−2), k = 1, 2, ρ =
√

x2
1 + x2

2 . (1.11)

If the point x lies on the circumference, then x = (R,ϕ), while if the point
z is on the circumference, then z = Reit, and ζ = Reiτ .

The following formulas are valid [3]:
∫

D+

E(U,U) dy1 dy2 =

∫

S

U TU ds ≡ Im

∫

S

U TŪ ds, (1.12)

∫

D−

E(U,U) dy1 dy2 = −

∫

S

U TU ds ≡ − Im

∫

S

U TŪ ds, (1.13)
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where D+ is a circular domain of radius R, and D− is an infinite domain
with a circular hole,

ImU TU =

4
∑

k=1

uk(Tu)k = nUn + s(TU)s, Un = (nU), (TU)s = (sTU).

For the third boundary value problem we prove the following

Theorem. A regular solution of the equation (1.3) in the domains D+

and D− satisfying the homogeneous conditions of the third boundary value
problem is identically equal to zero if S is not a centerless parabolic line or
a pair of straight lines.

Proof. We use the formula (1.12). If in (1.12) f = F = 0, then since E(U,U)
is the doubled potential energy (which is positively defined), we have

u1 = c1 − εx2, u2 = c2 + εx1, u3 = c3 − εx2, u4 = c4 + εx1,

where ck (k = 1, 4) are arbitrary real constants, ε is also an arbitrary, real,
different from zero constant. Compose nU . Then on the boundary we have

(u1 + iu2)n1 + (u3 + iu4)n2 = 0, (1.14)

where n1 = dx2

ds
, n2 = −dx1

ds
. Further, we insert these expressions in (1.14)

and equate to zero the real and imaginary parts. We obtain

(c1 − εx2)
dx2

ds
− (c3 − εx2)

dx1

ds
= 0,

(c2 + εx1)
dx2

ds
− (c4 + εx1)

dx1

ds
= 0.

Adding these expressions, we find that

d

ds

[

−
ε

2
(x2

1 + x2
2 − 2x1x2) + (c1 + c2)x2 − (c3 + c4)x1

]

= 0, (1.15)

that is,

ε

2
(x2

1 + x2
2 − 2x1x2)− (c1 + c2)x2 + (c3 + c4)x1 − c = 0, (1.16)

where c is a new real constant.
Next, compose from (1.16) the discriminant D1 of the equation (1.16)

and the discriminant D2 of higher terms. In our case, using the well-known
formulas from the analytic geometry, we have

D1 = ε

∣

∣

∣

∣

1, −1
−1, 1

∣

∣

∣

∣

= 0, D2 =

∣

∣

∣

∣

∣

∣

1, −1, A

−1, 1, B

A, B, − 2c
ε

∣

∣

∣

∣

∣

∣

.

Here, A = 1
ε
(c3 + c4), B = 1

ε
(c1 + c2).

Since D1 = 0, the line will be centerless, of parabolic type. If D2 = 0,
we have D2 = −(A + B)2 = 0, i.e. c1 + c2 + c3 + c4 = 0. In this case the
line is a pair of straight lines. Thus the theorem is proved. �
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In our case, i.e. whenD+ is a circular domain, orD− is an infinite domain
with a circular hole, there takes place the uniqueness of the solution.

2. Solution of the Third Boundary Value Problem in a

Circular Domain

The analytic vector ϕ, appearing in (1.4) is sought in the form

ϕ(z) =
m−1

2πi

∫

S

∂ lnσ

∂s(y)
(ng + sh) ds, (2.1)

where g and h are scalar complex periodic functions with the period 2π;
σ = z− ζ, z and ζ are the affixes of the points x and y, n and s are the unit
vectors of the normal and of the tangent, respectively, m−1 is the matrix
inverse to m, and ∆0 > 0.

From (2.1) we have

ϕ′(z) = −
m−1

2πi

∫

S

∂

∂s(y)

1

σ̄
(nḡ + sh̄) ds. (2.2)

Inserting (2.1) and (2.2) into (1.4), we obtain

U(x) =
1

2πi

∫

S

∂ lnσ

∂s(y)
(ng + sh) ds+

K

2πi

∫

S

z

σ̄
(nḡ + sh̄) ds+ ψ(z). (2.3)

If we take ψ(z) in the form

ψ(z) = −
1

2πi

∫

S

∂ ln σ̄

∂s(y)
(ng + sh) ds−

K

2πi

∫

S

ζ

σ̄
(nḡ + sh̄) ds,

then we can write U(x) as follows:

U(x) =
1

π

∫

S

∂θ

∂s(y)
(ng + sh) ds+

K

2πi

∫

S

∂

∂s(y)

σ

σ̄
(nḡ + sh̄) ds, (2.4)

where θ = arctg x2−y2

x1−y1
. The other values appearing in (2.4) have been

defined above.
Instead of U(x) we consider the expression

U(x) =
1

π

∫

S

(

∂θ

∂s(y)
−

1

2R

)

(ng + sh) ds+

+
K

2πi

∫

S

(

∂

∂s(y)
e2iθ +

iz

ζ̄R

)

. (2.5)

It is evident that if U(x) from (2.4) is a solution of the equation (1.3), then
U(x) defined from (2.5) is likewise a solution of (1.3), since the difference
between these vectors is a linear function.
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If x ∈ S, then z = Reit, while ζ = Reiτ , 2θ = π + t + τ and e2iθ =
−e−i(t+τ). We now pass to the limit in (2.5) as x tends to the boundary
point. We have

U+(t) = ng + sh, (2.6)

whence nU+ = g = f(t).
Here f is the given complex function with the period 2π and having

certain smoothness. Thus the function h remains unknown; it will be defined
below.

For the projection on the tangent of the stress vector we have

(TUs(t))+ =
∂

∂s(x)

(

−2ϕ+(t) + 2µU+(t)
)

s(t). (2.7)

It follows from (2.1) that

ϕ+(t) =
m−1

2
(ng + sh) +

m−1

4π

2π
∫

0

(ng + sh) dτ+

+
m−1i

2π

2π
∫

0

ctg
τ − t

2
(ng + sh) dτ. (2.8)

Noticing that ∂
∂s(x) = 1

R
∂

∂ϕ
, we have

∂

∂t
ctg

τ − t

2
(ng + sh)dτ = −

∂

∂τ
ctg

τ − t

2
(ng + sh)

1

2

and

−2
∂ϕ+

∂ϕ
= −m−1 d

dϕ
(ng+ sh) +

m−1i

2π

2π
∫

0

ctg
t− ϕ

2

d

dτ
(ng+ sh) dτ s(ϕ) dt.

If we take into account (2.8) and the fact that U+ = (ng + sh), we will
get

(2µ−m−1)
d

dϕ
(ng + sh)s(ϕ)+

+
m−1i

2π

2π
∫

0

ctg
t− ϕ

2

d

dt
(ng + sh) dt · s(ϕ) = F (ϕ) · R. (2.9)

Multiplying (2.9) by the matrix m, we obtain

(A′ −E)
d

dϕ
(ng + sh)s(ϕ)+

+
i

2π

2π
∫

0

ctg
t− ϕ

2

d

dt
(ng + sh)s(ϕ) dt = mF (ϕ) ·R, (2.10)

where A′ is the transposed matrix of A, i.e. A′ = 2mµ.
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Note that

[s(ϕ)− s(t)] ctg
t− ϕ

2
= n(ϕ) + n(t).

Using this formula, we tr4ansform the expression (2.10) to the form

(A′ −E)(g + h) +
i

2π

2π
∫

0

ctg
t− ϕ

2
(g + h) dt+

+
i

2π

2π
∫

0

d

dt
(ng + sh) (n(ϕ) + n(t)) dt = mRF (ϕ). (2.11)

Taking into account that

2π
∫

0

d

dt
(ng + sh) dt = 0,

i

2π

2π
∫

0

d

dt
(ng + sh)n(t) dt = −

i

2π

2π
∫

0

(ng + sh)s(t) dt = −
−i

2π

2π
∫

0

h dt,

we obtain

(A′ −E)(g + h) +
i

2π

2π
∫

0

ctg
t− ϕ

2
(g + h)dt =

= mRF (ϕ) +
i

2π

2π
∫

0

h dt, (2.12)

whence

A′ −E

2π

2π
∫

0

ctg
τ − t

2
(g+h)dt−

i

4π2

2π
∫

0

ctg
τ − t

2
dτ

2π
∫

0

ctg
t− ϕ

2
(g+h) dt =

=
mR

2π

2π
∫

0

ctg
τ − t

2
F (t) dt. (2.13)

We now apply the formula of transposition of singular integrals with the
Hilbert kernel (see [5, p. 144]):

1

(2π)2

2π
∫

0

ctg
t− ϕ

2
dt

2π
∫

0

ctg
τ − t

2
(g+h) dτ = −u(ϕ)+

1

2π

2π
∫

0

u(τ) dτ, (2.14)

where u = g + h = f(ϕ) + h.
The equalities (2.13) and (2.14) result in
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i
A′ −E

2π

2π
∫

0

ctg
τ − ϕ

2
(g + h) dτ − (g + h) =

= −
imR

2π

2π
∫

0

ctg
t− ϕ

2
F (t) dt−

1

2π

2π
∫

0

f(t) dt−
1

2π

2π
∫

0

h dt, (2.15)

and from the equalities (2.13) and (2.15) we easily get
[

(A′ −E)2 −E
]

[h+ f(t)] =

= −
imR

2π

2π
∫

0

ctg
t− ϕ

2
F (t) dt−

1

2π

2π
∫

0

f(t) dt−
1

2π

2π
∫

0

h dt. (2.16)

Since det
[

(A′ −E)2 −E
]

6= 0, it follows that
2π
∫

0

h dt is defined uniquely,

and from (2.16) we find that

h = −f(t)− (A′ − 2E)(A′)−1

[

imR

2π

2π
∫

0

ctg
t− ϕ

2
F (t) dt+

+

2π
∫

0

f(t) dt−
1

2π

2π
∫

0

h dt

]

, (2.17)

where

A′ = 2mµ =

[

A1, A3

A2, A4

]

, detA′ > 0, ∆2 = det(A′ − 2E) > 0

and

A1 =
d1 + d2 + a1b2 − cd

d1
+ λ5

(

a2 + c

d2
+
a2 + b2 + c+ d

d1

)

,

A2 =
cb1 − da1

d1
− λ5

(

a1 + c

d2
+
a1 + b1 + c+ d

d1

)

,

A3 =
cb2 − da2

d1
− λ5

(

a2 + c

d2
+
a2 + b2 + c+ d

d1

)

,

A4 =
d1 + d2 + a2b1 − cd

d1
+ λ5

(

a1 + c

d2
+
a1 + b1 + c+ d

d1

)

;

(2.18)

here d1 and d2 are given by the formula (1.5),

∆2d1d2 = [∆1 − 2λ5(a1 + a2 + 2c)] (b1b2 − d2)− 2λ5d2(b1 + b2 + 2d) ≡

≡ [∆1 − 2λ5(a1 + a2 + 2c)]
[

(b1 − λ5)(b2 − λ5)− (d+ λ5)
2
]

−

− λ5(b1 + b2 + 2d)∆1 > 0. (2.19)

Since g = f(t) = (nU)+, h = (sU)+ is defined from (2.17). Obviously,
the function h appearing in (2.17) is Hölder continuous just as f ′ and F .
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Thus we have found the projections on the normal of the displacement
vector and on the tangent of the displacement. Using the expressions of
the above-mentioned functions and substituting them into the expression
for the displacement vector, we obtain the expression for the displacement
vector in the form of a Poisson type formula. This formula allows one to
find formulas for the stress vector which will likewise be of the Poisson type.

Thus the solution of the third boundary value problem in a circular do-
main will be finally found by a Poisson type formula.

3. Solution of the Third Boundary Value Problem for an

Infinite Domain with a Circular Hole

We seek for a solution in the form

ϕ(z) =
m−1

2πi

∫

S

∂ lnσ

∂s(y)
(ng + sh) ds, (3.1)

where the values appearing in this expression have been determined in Sec-
tion 2. The functions g and h will be defined below.

From (3.1) we have

ϕ′(z) = −
m−1

2πi

∫

S

∂

∂s(y)

1

σ̄
(nḡ + sh̄) ds. (3.2)

Inserting (3.1) and (3.2) in (1.4), we obtain

U(x) =
1

2πi

∫

S

∂ lnσ

∂s(y)
(ng + sh) ds+

K

2πi

∫

S

z

σ̄
(nḡ + sh̄) ds+ ψ(z). (3.3)

Choose ψ(z) as follows:

ψ(z) = −
1

2πi

∫

S

∂ ln σ̄

∂s(y)
(ng + sh) ds−

K

2πi

∫

S

ζ

σ̄
(nḡ + sh̄) ds.

Then the displacement vector U(x) from (3.3) takes the form

U(x) =
1

π

∫

S

∂θ

∂s
(ng + sh) ds+

K

2πi

∫

S

∂

∂s(y)

σ

σ̄
(nḡ + sh̄) ds, (3.4)

where K is defined by virtue of (2.4).
Instead of (3.4) we consider U(x):

U(x) =
1

π

∫

S

(

∂θ

∂s(y)
−

1

2R

)

(ng + sh) ds+

+
K

2πi

∫

S

(

∂

∂s(y)
e2iθ +

iζ

z̄

)

. (3.5)

Obviously, if U(x) defined by (3.4) is a solution of the equation (1.3),
then (3.5) will likewise be a solution of (1.3).
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Assume that to x ∈ S there corresponds an angle ϕ which in no way is
connected with the analytic vector ϕ. Let z = Reit and ζ = Reiτ . Then
2θ = π+ t+ τ . Passing to the limit as x tends to the point of the boundary
S, we obtain

U+(t) = −(ng + sh), (3.6)

where nU+ = −g = f(t), and f(t) is a complex function with the period
2π possesing certain smoothness. Thus h remains still unknown and will be
defined later on.

Using the formula (1.6) for the projection on the tangent of the stress
vector, we have

TUs(t) =
∂

∂s(t)
(−2ϕ(t) + 2µU(t)) s(t), (3.7)

whence

(TUs(t))+ =
∂

∂s(t)

(

−2ϕ+(t)− 2(ng + sh)
)

s(t) = F (t). (3.8)

Since ∂
∂s(t) = 1

R
d
dt

, we can rewrite (3.8) as follows:

[

−2
dϕ+

dt
− 2µ

d(ng + sh)

dt

]

s(t) = F (t)R. (3.9)

Taking into account our calculations performed in Section 2, we obtain

ϕ+(t) = −
m−1

2
(ng + sh) +

m−1

4

2π
∫

0

(ng + sh) dϕ−

−
m−1i

2π

2π
∫

0

ctg
τ − t

2

d

dτ
(ng + sh) dt s(t) (3.10)

and (3.9) takes the form

m−1(−A′ +E)
d

dt
(ng + sh)s(t)−

−
m−1i

2π

2π
∫

0

ctg
t− ϕ

2

d

dt
(ng + sh) dt · s(t) = F (t) ·R. (3.11)

If we multiply the left-hand side of (3.11) by the matrix m, detm = ∆0 >

0, we will find that

− (A′ −E)
d

dt
(ng + sh)s(t)−

−
i

2π

2π
∫

0

ctg
t− ϕ

2

d

dτ
(ng + sh) dτ · s(t) = mRF (t). (3.12)
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It follows from (3.11) that

[s(ϕ)− s(t)] ctg
t− ϕ

2
= −n(ϕ) + n(t).

Taking also into account the formulas

d

∂ϕ
(ng + sh)s(ϕ) = g + h and

2π
∫

0

n(ϕ)s(ϕ) dt = 0,

from (3.12) we obtain

− (A′ −E) (ng + sh) +
i

2π

2π
∫

0

ctg
t− ϕ

2

d

dt
(ng + sh)s(t) dt =

= mRF (t)−
i

2π

2π
∫

0

f(t) dt, (3.13)

whence

−(A′ −E)

2π

2π
∫

0

ctg
τ − t

2
(g + h) dτ − i (g + h) +

i

2π

2π
∫

0

(g + h) dτ =

=
mR

2π

2π
∫

0

F (τ) ctg
τ − t

2
dt. (3.14)

Multiplying (3.13) by −(A′ − E) and (3.14) by −i, after summation we
have

[

(A′ −E)2 −E
]

(g+h)−
i

2π

2π
∫

0

(g+h) dt = −
imR

2π

2π
∫

0

F (τ) ctg
τ − t

2
dτ−

−
(A′ − E)RmF (x)

2π
−
i(A′ −E)

2π

2π
∫

0

f(t) dt, (3.15)

whence

h = f(t)−(A′−2E)(A′)−1

[

i

2π

2π
∫

0

(−f+h) dt−
imR

2π

2π
∫

0

F (τ) ctg
τ − t

2
dτ−

−
i(A′ −E)RmF (t)

2π
+
i(A′ −E)

2π

2π
∫

0

f(t) dt

]

. (3.16)

The formula (3.16) allows one to determine h0 = 1
2π

2π
∫

0

h dt.
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Consequently, h = (sU)+ is determined from the formula (3.16). Having
found g and h, we can obtain from (3.5) Poisson type formulas for the
displacement vector. It can be easily seen that for the validity of the formula
(3.16), the functions f and F must be Hölder continuous.

Thus the solution of the third boundary value problem for an infinite
domain with a circular hole is found in its final form.
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