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Abstract. An optimal control problem for variable structure dynamical
systems governed by quasi-linear neutral differential equations with dis-
continuous initial condition is considered. The discontinuity of the initial
condition means that at the initial moment the values of the initial function
and the trajectory, generally speaking, do not coincide. Necessary condi-
tions of optimality are obtained: for the optimal control and the initial
function in the form of integral maximum principle; for the optimal initial,
final and structure changing moments in the form of equalities and inequal-
ities containing discontinuity effects. Besides, a variable structure neutral
time-optimal linear problem of economical character is investigated.
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1. INTRODUCTION

Investigations of variable structure optimal control problems with delay
is one of the important directions of the optimal control theory. The delay
factor may arise in many practical problems in connection with expenditure
of time for signal transmission. Variation of the structure of a system means
that the system at some beforehand unknown moment may go over from
one law of movement to another. Moreover, after variation of the structure
the initial condition of the system depends on its previous state. This joins
them into a single system with variable structure. Assume that the change
of the system structure has to take place at a priori unknown moments
of time. Such problems are important for various practical applications.
For example, in economics it is needed to change invested capital at some
unknown moments. In engineering a controlled apparatus is to start from
another controlled apparatus, which may be cosmic, ground, submarine
and etc. Optimal control problems for various classes of variable structure
systems are investigated in [1]-[17]. Optimal problems for some classes of
neutral differential equations and differential inclusions with discontinuous
initial condition are considered in [18]-[22].

This work deals with necessary conditions of optimality for quasi-linear
neutral variable structure control systems.

The rest of the paper is organized as follows. In Section 2 all necessary
notation and auxiliary assertions are given. Therein necessary conditions of
criticality are formulated in the form of Theorem 2.5, on the bases of which
the main theorem is proved in Section 5.

In Section 3 the following control problem for neutral variable structure
systems with discontinuous initial condition is considered:

ki
Fi(t) = Y Ay (0)di(ni5(1))+
j=1

+ fi (t7 xi(Til (t))7 s 7xi(7-isi (t))7 ui(t))v le [tia ti+1]7 (1'1i)
zi(t) = @i(t), t € [m,ti), xi(ti) = xio + gi(ts, vi1(t:)), (1.2;)
i=1,m (g1=0)

under the restrictions

qp(tla s athrl; L10y -+ mmOaxm(thrl)) = 07 p= 17ma
and the functional
0 .
(t1, - tmg1, 2105 - - - Tm0s T (tmg1)) — min.

The set of differential equations (1.1;), ¢ = 1,m, is called a variable struc-
ture system. The initial conditions (1.2;), ¢ = 1, m, are called discontinuous
since, generally speaking, ¢;(t;) # ;(t;)-




4 A. Arsenashvili, I. Ramishvili, and T. Tadumadze

Connection among solutions of equations of variable structure system is
fulfilled by the conditions

zi(ti) = wio + gi(ti, vi—1(t:)), i=1,m.
The problem consists in finding an optimal element
(Ela- .. a?m+1;5107-' -55m074517-- '7&M7a17" ,ﬂm)

In that section main theorems are also formulated.

In Section 4 an economical problem of optimal distribution of the in-
vested capital and determination of optimal investment periods for various
branches of the economy are considered as an application of the results pro-
vided in the preceding section. The factor that should be taken into account
is that the number of branches may be varying across investment periods.
If we take into account the fact that the investment effects become actually
appreciable in the course of a long time (delay), as well as the recurrent
process factor, then such a process of economic development can be de-
scribed as a linear neutral variable structure optimal control problem. For
the formulated economical problem Theorem 4.1 is established (necessary
conditions of optimality), which is a corollary of Theorem 3.3.

In Section 5 Theorem 3.1 is proved by the methods given in [23], [24].

2. NOTATION AND AUXILIARY ASSERTIONS

Let J = [a,b] C R be a finite interval and ¢ € {1,...,m}; let R™ be
the n;-dimensional vector space of points x; = (x},.. ., ac:z) where * is the
sign of transposition; let O; C R™ be an open set and let Ey, be the set of
functions f; : J x O]" — R™ satisfying the following conditions: for almost
all t € J the function f;(¢,-) : O;* — R™ is continuously differentiable, for

each (z1,...,%;s,) € OFF the functions

ofi(-)

fi(taxila-"axisi)a 8371']‘ ) jzlasia

are measurable on J and for any function f; € Ey, and any compact
K; C O; there exists my, x,(-) € L(J,Ry), R+ = (0,00), such that for
any (z;1,...,%s,) € K" and almost all t € J

ofi(1)

837”

‘fi(taxila e Tis,) my, K, (1)

Functions fi1, fiz € Ey, will be called equivalent if for any fixed
(i1, -, Tis;) € OFF and almost all t € J

fir(t,xin, .. is,) — fio(t,zan, ..o is,) = 0.

The classes of equivalent functions of the set Ey, form a vector space
which will be denoted also by Ejy,; we will call also these classes functions
and denote them also by f;.
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In the space Ey, we introduce the family of subsets
B={Vk,s:K;CO;, §>0}.
Here K; is an arbitrary compact set, § > 0 is an arbitrary number,
V.o ={0fi € Ey, : H0 fi; K;) < 6},
o

H(éfi;Ki):sup{‘/5fi(t,xi1,...,acis%)dt cxi €Ky, j=1, 5, t’,t”eJ}.
t/

The family B can be accepted as a basis of neighborhoods of zero of
the space Ey,. Hence, it defines uniquely a locally convex separate vector
topology which transforms E, into a topological vector space [25]. In what
follows, we will suppose that the space Iy, is supplied with this topology.

Let 7;;(t), t € R, j = 1, s;, be absolutely continuous scalar functions sat-
isfying the conditions 7;;(t) < t, 74;(t) > 0; 7;;(¢) be the inverse function to
7i;(t). Next, let n;;(t), t € R, j = 1, k;, be continuously differentiable scalar
functions satisfying the conditions 7;;(t) < ¢, 1;;(t) > 0; p;;(t) be the inverse
function to 7;;(t); E,, be the space of continuously differentiable functions
©i J,L = [Ti; b] — Rni, Ti = min {Tﬂ(a), ceey Tisy (a),ml(a), [N ,mki(a)},
with the norm [[¢s]| = [pi(a)| + %@X‘sbi(m; A; = {pi € By, : pi(t) € O}

be the set of initial functions; A;;(t), j =1, ks, t € J, be n; x n;-dimensional
continuous matrix functions; g;(t;; x;—1), (ti,xi—1) € J X O;_1, i = 2,m, be
continuously differentiable functions.

Lemma 2.1 ([24], p. 10). Let fi1, fio € Ey, be equivalent functions. Then
for any piecewise continuous function® x;(t) € O;, t € J, the following
equality is fulfilled

‘ ] [fu (t,zi (T (), - - - wi(Tis, (1)) —

—fia(t, i (Tar (1)), - - . wi(Tis, (t)))}dt‘ =0, vV itt"ed
Now we introduce the set

B; = {/M = (1, b 1y T10s -+ 3 Ti0y Pl s Pis f10e ooy fi) € T

i i i
XHOjXHAjXHEfj:t1<"'<ti+1}; 1 =1,m,
j=1 j=1 j=1

where

* Everywhere we assume that piecewise continuous functions have finite number of
discontinuity points of the first kind.
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To each element u,, € B,, we assign the set of differential equations
ki

(1) =Y Aij(8)is (nig () +
j=1

+ fi (t, aci(nj (t), R 7xi(7-isi (t))), te [ti, ti+1], (2-11')
zi(t) = @i(t),t € [T, ts), xi(t;) = wio + gi(ts, v (L)), i=1,m. (2.2;)

Here and everywhere we suppose, that g7 = 0. On the right-hand side of
the equation (2.1;) we suppose any function from the equivalence class.

Definition 2.1. Let

Hm = (tla" '7tm+17x10;- <oy Lim, P15 - "asamafla" afm) € Bm
The set of functions {xi(t) = x;(t; i) € Oy, t € [Ty tiga]: @ = 1,m}, where
i € By, is called a solution corresponding to the element p., if the function
x;(t) satisfies the condition (2.2;) on the interval [r;,¢;] and the equation

t ki

zi(t) = zio + gi(ti, Ti-1(t:)) + / [Z&j(f)@(mj (€)+

t,  J=1

 fi(& m (T (), s w7, (€))) | d
on the interval [t;,¢;11].

It is obvious that the function x;(t), t € [t;, t;+1], is absolutely continuous
and satisfies the equation (2.1;) almost everywhere.

It follows from the local theorem of existence and uniqueness for the
neutral equation [26] that to each element p,, there corresponds a unique
solution if the numbers ¢,11 — ¢;, ¢ = 1, m, are small enough.

On the basis of Lemma 2.1 we can conclude that if f;; and f;2 are equi-
valent functions, then x;(t; ui1) = @, (¢; pe), where

pig = (t1, - i1, T105 - - 5 Tio, P15 - - 5 Pis f15, -5 fig), J=1,2.

The following theorem about continuous dependence of solution on initial
data and right-hand side is proved by repeated application of an analogue
of Theorem 1.2.1 ([24], p. 11) for quasi-linear equations of neutral type with
several variable delays.

Theorem 2.1. Let {;(t) = x;(t;[i;), t € [r5,ti41) : i = Lm} be the
solution corresponding to the element
ﬁm = (t~1,...,t~m+1,510,...,fmo,ng,...,&m,ﬁ,...,fm) € B, t~m+1 <b,
and let K;1 C O; be a compact set containing some neighborhood of the set
Ko =@i(J;) U 5i([ti,ti+1]). Then the following assertions are valid:

2.1) there exist numbers §; > 0, i = 0,1, such that to each element

m+1
pim € V (Fims; K11, .., K1, 60, 00) = [ (V(E380) N J) %

i=1
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m

( (551‘0; dp) N Oz) X H (V((,E“ dp) N AIL) X

i=1

|:fz < (Kil;Oéo)ﬁVKﬂ,zso)]CBm

élg

-
Il
-

::13

i=1
there corresponds the solution {z;(t), t € [Ti,tix1] : i = 1,m}. Moreover,
the function x;(t) is defined on the interval [r;,t;11 + 61] C J and on the
interval [t;,t; 1 + 01] it satisfies the equation (2.1;) and takes values from
int Kﬂ N

2.2) for an arbitrary € > 0 there exists a number d = d2(e) € (0, dg] such
that the inequality

‘I'Z(t)fgl(t)‘ §€, Vite [0i,ﬂ+1+51], Hi:max{ti,i-}, 1= 1,m,

is valid for any pm € V(fim; K11, - - -, Kima, 02, ap).

Here
V(ti;0) = {ti € R: [t; — t;] < o},
V(Zio; 0o) = {wio € R™ : |Tio — wi0| < do},
V(@i;00) = {¢i € By, : ||@i — @il <o},
W(Ki1;o0) = {6fi € Ey, : Hi(6fi; Ki1) < o},
where

Hl((sfz,Kzl) = sup{/ [|5fz(t,:c“, ~7xisi) -+
J

95 fi()

‘:|dt 1T € O;, j= I,Si},

=1
ap > 0 is a given number.

Remark 2.1. Theorem 2.1 is valid if the set V (fi;m; K11, - . .Km1, 00, g) s
replaced by the set

m—+1 m
V(ﬁm, KH, e ;Kmh 50) = (V(a, 50) N J) X H (V(}EZO7 50) n Ol) X
=1 =1
< [T (V(@i80) 0 A) x [T (Fi + W (Kir: 60))
i=1 i=1

since
fi+ W(E1;00) C fi + W(Kit;20) N Vi 60, 0 < 80 < ag.

In the space

E, =R x f[an X ]i[E% X li[Efj
j=1 j=1 j=1
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we denote the set of variations
‘/i = {5#1 = (5t1, ceey 5ti+1, (51‘10, ceey 5931'0; 5@1, ceey 5301',

5f1,...,(5f1') € EIM : |(5tj| <a,j=1,1+1; ‘(5(L‘j0| < o,

™
1005l < ar, 6F5 =S Adfier Al <o, = 1}
k=1
where a1 > 0 is a fixed number, 0 f;x € Ey,, k = 1,m;, are fixed points.
The following lemma is a corollary to Theorem 2.1.

Lemma 2.2. Let {Z;(t), t € [ri,ti41] : i = 1,m} be the solution cor-
responding to the element [, € B, %varl < b; Ki7 C O; be a compact
set containing some meighborhood of the set K;y. Then there exist such
numbers 1 > 0, 01 > 0 that for an arbitrary (¢,0um) € [0,e1] x Vp,
the element fim + €0fim, € B, and the solution {z;(t;f; + edp;), t €
[Tistig1 + €0tigr] 1 i = I, m} corresponds to it, where 6p; € Vi. Moreover,
the solution x;(t; t; + €dp;) is defined on the interval [Ti,%vi_i_l + 6] C J,
takes values from intK;1 and on the interval [E + €5ti,¥;‘+1 + 61] satisfies
the corresponding differential equation almost everywhere.

By virtue of uniqueness, the solution z;(t; i;) on the interval [r;, t; 1 +061]
is a continuation of the solution Z;(t). Therefore, in what follows we assume
that the solution Z;(t) is already defined on the entire interval [7;, tip1+ 01)-

Lemma 2.2 makes it possible to define the increment of the solution
Ti(t) = wi(t ) © Awi(t;edps) = xi(t s + e0ps) — i(t), V(t,e,0p:) €
[Ti,t“_l + (51] X [0,81] x V.

Theorems provided below play an important role in the proof of necessary
conditions of optimality.

In order to formulate the theorems about variation of solutions we need
the following notation:

woy =, Zi(t), - Zi(8), Bi(E), - -, Bi(t), B(Tip 1) (82)); - - -, Bi(Tis, (12))))
J=0,p;.

The role of number p; will be found out below. If j = 0, then w§, does not

contain T; (tNZ), and if j = p;, then w?pi does not contain @;(t;).
Further, Yij = Yij (ti),

whi = (Vig» Ba(Tin (Vig))s - - > TalTij 1 (vig)), T (),
@i(Tij+1(Vij))s - - - @ilTis, (Vi)

Win = (%jvfi(ﬁl(%‘j)), e Ti(Tig—1(ig)),
Bi(t), (g1 (3ig))s - - Bil(Tis, (i), G =i + 1, s,

wig = (big1, Zo(Ti1 (Fig1))s - Fa(Tis; (Fi11))) -
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Theorem 2.2. Let the following conditions be fulfilled
2.3) vij = ti, 5 = Lpi, Yipi+1 < < Yises pij(ti) < tiv1, § = Lk,
1= 17 m;

2.4) there exists a number § > 0 such that

i1 (t) <

: S ’Yip,,(t)7 te (%V’L - 67?1']5 1= 1am'
.5) there exist finite limits

)

Vi = Yii(ti=), §=Tss,
T =i (Gi—)), =18, i=1m— L

lim fl(“}z) = fi;7 Wi = (t Ti1, '7xisi) € (E - 6’%;]
wlﬁw]

X O?’a j:O7p’L'
( i o [filwi) = filwi2)] = fij, wir,wi2 € (7ij — 8,75] x 05,
Wi1,wiz) = (W5 ,Wis

j=pi+1s, i=1m;

hm fz(wz) = fi;-Jrlv w; € (t~i+1 =9 Eil-i-l] x O

s i =Tm- L
Then there exist numbers e > 0, 09 > 0 such that for an arbitrary
(t,e,0m;) € [tis1 — 02, tip1 + 02] x [0,62] x Vi, i =T1,m,
where
={5M€Vii5t]‘§0, j:T—&—l}
the following formulas

Ax;(t;edp;) = edxi(t; o) + o(t; i)
are valid, where

1 =1,m,

(2.3)
Sz (t;6;) = {K(i

l—|
o
&

ZA 501 771] (~)
j=1
+Z Vi1 = Vi) f }— > Yilwi—it)fij i+

i=pi+1
85, ki—1
+(I) t’wt 837111 |:z::Az 1] X 1_]+f1 1s;_ 1+1i| }5tz+6z(t55,u'z)7 (24)
’yiO = 1’ ’Y'L] = 71]5 .7 = 17p’i7 :Y\,L_p 41 = 0;

~ o~ a ’L

* Here and in the sequel the symbol o(t, €dp1) means that lim o(t;edu)/e = 0, uniformly
for (t,0u).
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95; N am%@ﬂ
5 11— t’bﬂ(s 1 ’L
Jra%‘ 1 zi-1( i) Z / x5 8
Jj= p1+1 ~

(t:)

t;

XY (§)di (€ d€+z / Yi(pig (€): 1) Asj (pig (€)) pis (€)dpi (€)dé+

nu(t )

+/E@0MM%;

g’L - gz(tz; Ti— 1( )) 5f1[£] = 5f1 (fa 5(7—1'1 (5))3 AR %(Tisi (g)))a
the matriz functions ©;(&;t) and Y;(&;t) satisfy the system

e Xﬁ’w 20 o) e e -,

05
ki (2.5)
Yi&st) = @u(&st) + > Yalpig () 1) A (i (€)is (€)
=1
and the initial condition
s o e o Ii7 € = ta
E@ﬂ@@ﬁ{@7€#u (2.

where I; is the identity matriz, ©; is the zero matriz.

0x;(t; dp;) is called the variation of the solution Z;(¢) and the expression
(2.4) is called the formula of variation.

Theorem 2.3. Let the condition 2.3) of Theorem 2.2 and the following
conditions be fulfilled:
2.6) there exists a number 6 > 0 such that

Yir(t) <o < i (), tE [t ti +6), i=T1,m;

2.7) there exist finite limits:

5:; = ﬂfu(%( 1+1+))7 j=1,8,1=1m—1,

lim fl(wl) = ;;7 wi € [%VM%V’L +6) X Ofla .7: O7p’i7
wiﬁw”.

lim [ﬁ(wu) - ﬁ(wﬁﬂ = f;;,

(wit,wiz) = (w};,w?))

Wil, Wiz € (71]7,)/1_] +6) X Ofla .7 = Di + 1a8i7 1= 17m7
lim fl(wz) = f;s'iﬂ, wi € [tig1,tig1 + 0] O i=1,m-1

wi—w?
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Then there exist numbers e > 0,92 > 0 such that for an arbitrary

(t &, 6/’61) [ i+1 627 i+1 T+ 62] X [0752] X V;Jra 1=1,m,

where
={6u; €Vi:6t; >0, j=1,1+1},

the formula (2.3) is valid, where

0 (t; 0pi) = {Y(t +31) [ ZA )83 (153 (83) +

Si

JFZ 'Y”.H P)/z])f } Z ('Yz]JF t)f 7;§+

J=0 J=pi+1
~ ki—1
~ 0g; ~ L
+®;(tist) 8:c-g ; [ E A1ty + fitlsi,lﬂ} }5tz‘ + Bi(t; dpi);
11— ]:1

3:6 =1, ;Y\;; = 7;;; J=1pi 322;7,4_1 =0.
Remark 2.2. Theorems 2.2 and 2.3 are proved by the method given in

[24]. The matrix function Y;(&;t), € € [a, ], is plecewise continuous (see the
second equation of the system (2.5) and the condition (2.6)).

Let mij(t) = m/(t) = m(n] ' (t), § = Tss, nl(t) = t, where n(t) is
continuously differentiable and satisfies the conditions n;(t) < t, n;(¢) > 0.
Then the function Y;(&;t) is discontinuous with respect to £ € [a,t] at the
points of the set

={nl(® =12, )
The theorem formulated below is a corollary to Theorems 2.2 and 2.3.
Theorem 2.4. Let n;;(t) = nf (t) and the assumptions of Theorems 2.2,

2.3 be wvalid and, in addition, let
Di pi

Z(fy\i_j+1 - /’y\;)fz; = Z(fy\;‘;+1 ’yz])f f7,07

j=0 §=0
AT = ftA = f. i=p. +1.s, i=1
f’L]’y’L] fz]’y'u fl]? ,7 pl + )817 1 )m7

Z Ai—lj(%vi)-%i_flj + fi_flsiflJrl =
=1

- E Aiflj( T;_ 1]+fl 1si—1+1 — = fi- lsio1+1, ©=2,m,

Zafy%] gJ(’LJrl) i:]-ama j:]-asi'

Then there exist nymbers gg > 0, do > 0 such that for an arbitrary
(t,e,0p;) € [ it1 — 02, tit1 + 02] X [0,e2] X Vi, i = 1,m, the formula (2.3) is
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valid, where

ki

Sxi(t;6p;) = {Y(tz,t [ ZA 901 (M (¢ t;) + fio}*

j=1
09i

Ti—1

Z Y 71% )f1]+q) (tlat)a

Jj=pi+1

f’L 1s;— 1+1}6t +ﬂz(t 5#1)

Investigation of the optimal control problem considered in this work will
be carried out by the scheme given in [23], [24], according to which an
optimal control problem can be formulated as a problem of finding criti-
cality conditions for a continuous and differentiable mapping defined on a
quasi-convex filter. Necessary conditions of optimality are obtained from
necessary conditions of criticality.

Below all necessary definitions are given and necessary conditions of cri-
ticality are formulated.

Let £, = E; x E¢ be a locally convex topological vector space of points
z = (x,() and E, be a finite dimensional space.

Let a mapping

P:D— R?® (2.7)
and filter ® in E, be given.

Definition 2.2. The mapping (2.7) is defined on the filter ® if there
exists an element W € ® such that W C D.

Definition 2.3. Let the mapping (2.7) be defined on the filter ®. The
mapping (2.7) is called critical on the filter ® if for any point Z belonging
to every element of the filter ® there exists an element W € ® such that
W C D and P(2) € OP(W).

Definition 2.4. The mapping (2.7) is continuous on the filter ® if there
exists an element W € ® such that W C D and the restriction

P:W — R?
is continuous.

Definition 2.5. Let X C E, be a locally convex subspace. The set
D C X x E¢ is called finitely locally convex if for any arbitrary point
zo0 = (20,¢p) € D and any arbitrary linear finite dimensional manifold
L¢, C E¢ passing through the point (p there exist convex neighborhoods
Ve C X and Vi, C L¢ of the points g and (p, respectively, such that

Vo X Vo C D.

Definition 2.6. The mapping (2.7) has a differential at the point z =
(z,€) € D if there exists a linear mapping

dPg:EgZ:EZ73—> R?
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such that for any manifold

k
ng {C—FZ)\Z(SCZ T\ € R} C Eg
i=1
the following representation holds

P(Z+¢edz) — P(Z) = edP;3(62) + o(edz), V(e,dz) € (0,e0] x Vo1 X Vi1,

where Vo1 C X —7Z and Vi1 C LFE are bounded and convex neighborhoods
of zero; €y > 0 is a number for which

Z+edz € D, v (8,52) c (0,60] x Vo1 X V11,
and finally,

1ir% o(e6z)/e =0, uniformly for 0z € Vo1 x Vi3.
e—

Definition 2.7. The filter ® in F, is called quasi-convex, if for any
element W € ® and any natural number p there exists an element W; =
W1 (W;p) € ® such that for arbitrary p+1 points 2o, . . ., 2, from W; and an
arbitrary neighborhood of zero Vj; C E, there exists a continuous mapping

¢:co({z0,...,2p}) — W

satisfying the condition
(z —¢(2)) € Vo1, Vz€co({zo,...,2p}).

It is obvious that every convex filter ® in E, is quasi-convex.

By co[®] we denote the convex filter, whose elements are sets co(W),
where W is an arbitrary element of the filter ® and cone(M) denote the
cone generated by the set M.

Theorem 2.5 (necessary condition of the criticality). Let the mapping
(2.7) be continuous on co[®] and critical on ®. Let the filter ® be quasi-
convex. Then for any point Z belonging to all sets of the filter @, at which
the mapping (2.7) has a differential, there exist an element W € ® and a
non-zero s-dimensional row-vector m = (w1, ...,ms) such that

mdP;(02) <0, Vize€ COHQ(W —2).

Let G; C R" be an open set and the function f;(¢, 21, ..., T, u;) € R™
satisfy the following conditions: it is continuous on O;* x G; and con-

tinuously differentiable with respect to z;; € O;, j = 1,s;, for almost

all t € J; for each fixed (z;1,...,%s,,u;) € O x G; the functions f;,

%, j = 1,s;, are measurable on J; for any compacts K; C O; and
ij

M; C G, there exists a function mg, a,(-) € L(J, R4+) such that for any
(@it ..., Tis;, u;) € K x M; and for almost all ¢ € J
| Ofil:

\fit, i, - s, )| + Z aT)‘ < mi, (1)
j=1 K
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Now we consider the set

Fy={filt,zir, ..., wis;) = filt,zi1, ..., @iy, ui(t)) 1 us(-) € Q).
Here §2; is the set of measurable functions u;(t) € U; C G, t € J, satisfying
the condition: the set clu(J) is compact and lies in G;, where U; is an
arbitrary set.
It is clear that the set F; can be identified with a subset of the space E,.
Let
fi(t, Tilye-- ,xisi) = fi(t, Tily---sTis,, ﬂl(t)), where ﬂl() € Q.
In F; we define the filter ® 7, with the basis
{WKi,(; : K; C O; — compact set,d > 0 — arbitrary number},
where

Lemma 2.3 ([24], p. 73). The filter CIJJ; is quasi-convex. Moreover, for
an arbitrary element Wf € ®y, the inclusion

cone ([W(i)(Kﬂ; o) w; fz) > F; - i

holds, where
W (Kiysao) = f; + W(Kir; o),

(WO (K, ao)]wf_ is the closure of the set W (K;1; o) N W5 with respect
to WO (K15 a0) in the topology induced in W (K;1;a0) by the topology
from Ey,; K;1 C O; is a compact set.

Lemma 2.4 ([24], p. 9). Let 7,;(t) € Ki1,t € J be a piecewise-continuous
function and let 6 f;; € W(Kiq;00), j =1,2,...; moreover, let

j—oo

Then

Jj—o0

t//
lim sup{‘ /5fij(t,5i(n—1(t)),...,@(nsi(t))dt‘ W e J} _o.
t/

Lemma 2.5. Let 1;(t) € R", t € [ti,t;s1] C J and Ti(t) € Ki,

t € [1i,tit1], be piecewise-continuous functions. Then the mapping

tis1

ofi — / Vi) fi (6, Ti(Tir (), - - ., Ti(Tis, (1)) dt, (2.8)

t;

is continuous on W (K;1; o) in the topology induced from Ey,.
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Proof. Let §fi; € W(Kn; ), j=1,2,..., and
j—o0

The mapping (2.8) is continuous if

tit1

J—0o0
t

Let [0ip,0ip+1], p = 1,v;, be the intervals of continuity of the function
Yi(t) and ;(t) = Yip(t), t € [0ip, Oipy1]-

Then
vi 2iip+1
S Z ’lbip(t)&fij(t,fi(ﬁl(t)),. .. 75i(7'isi (t)))dt‘ (2.10)
p=1

ip

There exists a sequence of continuously differentiable functions Qﬁp(t),
l=1,2,..., such that

lim QL = il =0,

where
1Qhy ~ il = _max @}y (0) — iy 1)
We have
Oipt1
/ Yip(t)fij (8, i (i1 (), - - -, Ti(Tis, (t)))dt‘ < lhip — QY llo+
Oip
Oipt+1
—l—‘ / ip(t)(SfU (t,%i(Tﬂ(t)),...,%i(Tis% (t)))df‘ (2.11)
Oip

Integration by parts gives
Oipt1
ép(t)(;f’ij (ta Ez (Til (t))a ceey %l (Tisi (t)))dt =
eip
Oipt1
= Qylbips) [ 855 (T a0 Tl 1)~
Oip
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_ 97+1 ',lb.p(t)(/tfsfij (& Zi(11(9)), - .., Ti(Tis, (5)))d§) dt.
Oip

ip

For every fixed [ = 1,2,... on the basis of the preceding lemma we have
97r1>+1
Gip

From (2.10), taking into consideration (2.11) and (2.12), we obtain (2.9). O

3. STATEMENT OF THE PROBLEM. NECESSARY CONDITIONS OF
OPTIMALITY

Let Ay = {(pi € E,, :gi(t) € Ni} be sets of initial functions, N; C O;

be convex sets; scalar functions ¢P(t1, ..., tma1,Z1, -+ Ty Tma1), P = 1, [,
be continuously differentiable in all arguments: t; € J, x; € O;, ¢ = 1,m,
Tm+1 S Om

We introduce the sets:

B’L'l = {Ui = (t17-"ati+17x107---7xi05<1017"'a@iwula"wui) S

i i i
e JHix HOJ X HAJ‘O X HQi§t1 < - <ti+1}, 1=1,m.
j=1 j=1 j=1

To each element o,, € B,,; we assign the system of neutral differential
equations with variable structure and discontinuous initial condition

ki
&i(t) = ) Aij(t)di(ni5 (1)) +
j=1

+ fz (ta xi(Til (t))a ey xi(TiSi (t))a ui(t))a te [tia tiJrl]v (311)
zi(t) = @i(t), t €[, t;), zi(ts) =zio + gilti, zim1(t:)), i=1,m. (3.2;)

Here, as above, g1 = 0.
The solution {x;(t;0;), t € [1,tit1] : ¢ = 1,m}, where o; € By, corre-
sponding to the element o, € B,,; is defined similarly (see Def.2.1).

Definition 3.1. The element o,, € B,,1 is called admissible, if the
following conditions are fulfilled

qp(tl, ey bmat, T10, - - - ,:cmo,:cm(tmﬂ)) =0, p=1,m, (3.3)
where z,,(t) = (¢ 00m)-
The set of admissible elements is denoted by By.
Definition 3.2. The element

Om = (t1, - tmt1, 2105 -+ s Lm0, U, - - -, Um) € Bo



Necessary Conditions of Optimality 17

is called optimal, if there exist a number 5 > 0 and compacts K, C O,
i = 1, m, such that for an arbitrary element o,,, € By satisfying the condition

m+1 m
S = tal + 3 (|F0 — o] + |8 — il + Ha(Fi = £ Ki) ) <3,
i=1 i=1
the following inequality is fulfilled
qo(fl, e ,fm+1,510, e ,Emo, fm(?erl)) S
§ qo(tl, e ,tm+1,ﬂ§10, ey Lm0, zm(thrl))- (34)

Here
Fm(t) = 2m(t;Fm),  filws) = filws, (1)),
f(wl) = f(wi,u(t)), Ww; = (t,xﬂ,...,xis%).

The problem (3.1;)-(3.2;), (3.3), (3.4) is called the optimal problem of
neutral type with variable structure and discontinuous initial condition, and
it consists in finding an optimal element &,,.

Theorem 3.1. Let & be an optimal element, t, > a and conditions
2.3)-2.5) of Theorem 2.2 be fulfilled. Let, besides, there exist finite limits:

Tri = T (g (b 1)), § = 1, ko

lim fm(wm) = fﬂjbsm-i-l’wm € (aa %vm-i-l] X 0577:7

2
W — w2,

where w2, = (%varl, Zon (T (%varl)), ooy T (Tims,, (fm+1))). Then there exist
a vector m = (mo,...,m) # 0, mo < 0, and a solution {(1;(t),x:(t)),t €
[ti — 0, vi0] i =T1,m, 6 > O}* of the variable structure system

sz ” afz[’)’z]( )l 'Yzj(t)a

0x;;
(3.5)
w + sz sz zj pzj (t))/)m (t), te [EL - 67 %vi+1]a
wi():Xi()ZOa te(iJrla’yiO]a i=1,m,
such that the following conditions are fulfilled:

3.1) the integral mazimum principle for controls

Zi_'.l Zi-{-l

Vi (t) filt]dt > / Ui(t) fi (6, Ti (T (8)), - - -, Ty (Tis, (1), u (1)) dt
t; t;

v uz()EQ“ 1 =1,m;

*

vio = max{¥i1(b),...,vis; (), pir(b), ..., pir; (b)}, i(t) is piecewise-continuous
function.
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) the integral mazimum principle for initial functions

Si

S [ w2 g ars
I=pi +17'ij () K

+ / $i(pij (1) Aij (pis (£)) i ()&

t)@;(t)dt >
_1%' (t:)

P

=y 300 0)ELO 5 ) s
I lTij(Z') ’

+Z / Vipiz (1)) Aij (pig (1) pis (t)

nu(t )

3.3) the conditions for the functions x;(t),
0Q - 0Q -

= Xm(tm ’ = —Xi(ti),

"o~ X (bmi1), g~ = —xilt)

N
i—1(ti) = xi(ti) 53—,
X1 (0) = i) g
3.4) the conditions for the moments t:—, i=1,m+1,
aQ
at djz( 1 |: ZA’L] 901 771] ))+

Pi

+ Z (/’y\;j+1 ’713 }

Jj=0

Z Yi(vij— fzj’%;_

Jj=pi+1

G »[Zf 5.0)] ~ xia @)

{ZA'L 1] Ti— 1]+f1 Isi 1+1:| é

—T,m;
T 0Q Z_wm(?m+1){§:f4mj(zm+l)i~'+f' }
it = ma o Aman

Here

Q=1(¢,....¢") 99

wn _a—tQ(th-- tmt1, 710, - -
filt] = fi(tax(Til(t))a .

g :f'mOa 5T)’Ll (%vm-‘rl)) )

R %z (Tisi (t))) .

Here and everywhere we suppose, that xo(t1) = 0
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Theorem 3.2. Let o, be an optimal element, %vm+1 < b, and the condi-
tions of Theorem 2.3 be fulfilled. Let, besides, there exist finite limits

:.Entg mmy (nmJ( m+1+)) J=1km;

m  fn(@m) = fhei1r @ € [Emg1,0) x O™

W — w2,

Then there exist a vector m = (mg,...,m) # 0, mo < 0, and a solution
{(@i(t),xi(t), t € [ti — 0,7vi0) : i = T,m, & > 0} of the system (3.5) such
that the conditions 3.1)-3.3) are fulfilled. Moreover,
k
oQ : -
W%<¢z(t+ { A (6, (ni5 (£:))+
j=1

Pi Si .
F @~ D w52 - .6)] -

Jj=0 Jj=pi+1

— Xi— 1 |:ZA7, 1] 'Llj+f’b'+18i1+1:|7 7 = :["rn7

0Q
<
i athrl -

km
_wm(%vm-i-l) |:Z Amj (%vm+1)5mj + f;sm+1:| .

j=1

Theorem 3.3. Let G,, be an optimal element, t1,ty 1 € (a,b) and the
conditions of Theorem 2.4 be fulfilled. Let, besides,

D A (i) Ty + Frnsrir = O Ami (b )T + Fho 11 = Frnsmta-
Then there exist a vector m = (mg,...,m) # 0, mo < 0, and a solution

{(@i(t),xi(t), t € [ti — 6,7i0] : i = I,m, & > 0} of the system (3.5) such
that the conditions 3.1)73.3) are fulfilled. Besides,

2Q :
ﬂﬁi:ﬁ’ )5 ;A 0605 () + fuo] +
0 - . |
+ Z % Yij fl] Xz( )[a.z (pi(ti):| _Xi_l(ti)fi—ls,,-i-l, i=1,m,
Jj=pi+1
Q .
ﬂc‘)til - _wm(tm-i-l)fmsm.g.l.

Some comments. From the integral maximum principle 3.1) by stan-
dard way follows the pointwise maximum principle

bi(t) filt] = max Vi) fi(t, (i1 (1)), - -+, Ti(Tis, (1), wi), (3.6)

almost everywhere on [tNZ-,tNZ-H].
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The addends
Pi Si
> @ijr = A5)f and > iy =) fi 75
Jj=0 J=pi

in the condition 3.3) are the effects discontinuity of the initial condition.

Let ¢i(t;) = z;(t;). Then f;; =--- = fipi» fij =0, =pi+1,s;. In this
case the conditions for moments ¢;, ¢ = 1, m, are simple.

Let the functions 4;;(t), j = 1,8, w;(t), fi(t, zi1,. .., xis,, u;) be piece-
wise-continuous in ¢. Then the conditions of Theorems 3.1 and 3.2 connected

with existence of one-side limits are fulfilled.
Let

Yipe < <Ay A <o <Ah, i=Tm.
Then the conditions 2.4) and 2.6) are fulfilled, respectively.
Theorems 3.1 and 3.2 correspond to the cases, where the variations at the
points ;, i = 1, m + 1, take place on the left and on the right, respectively.
Theorem 3.3 corresponds to the case where at the points ¢;, i = 1,m + 1,
double-sided variations take place.

4. ECONOMIC PROBLEM WITH VARIABLE STRUCTURE

In this section we consider the problem of optimal distribution of the
invested capital, as well as of optimal determination of investment periods,
among various economy branches.

Let the economy be divided into n; various branches, where i = I,m
are different periods of investment. Suppose that =7, j = 1,74, is the total
volume of the output produced by the j-th branch in the corresponding
investment period. z; = (z;,...,2}")* is the state vector of the system, u?,
7 = 1,n;, are proportionality coefficients of the invested capital for the j-th
branch in the corresponding period, u; = (u},...,ul'")* is the control vector
parameter. If we take into account that the investment gives the real result
after a certain lapse of time 7; > 0, i = 1,m (delay), and also recurrent
process factor, then the process of economic development, on the basis of
the balance equation of V. Leontief’s dynamical model, can be described as

the following neutral optimal control problem:
i‘i (t) :Ai (t)’l,‘l (t — Ti) + B1 (t)ZCZ (t - Ti)+
+ Di(t)ui(t), t€ [ti,tita], (4.1;)

{:ci(t) =i(t), te[ti—m,t), i=1Lm, 42)
x1(t1) = 210, 2i(t;) = Biwi—1(t;), ©=2,m, -
with the final condition

Ty (tmt1) = Tma (4.3)

and the cost function
thrl — tl — min, (44)
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where ¢; is a fixed initial moment; x1; € R}' and z,,1 € R}™ are fixed
points; @i : [ — 7;,b] — R are fixed continuously differentiable initial
functions; A;(t), Bi(t), Di(t), t € J, i = 1,m, are n; x n;-dimensional
continuous matrix functions; F;, ¢ = 2, m, are n; xn;_1 dimensional constant
matrices;

ng
ui(t)GUi{ui(u%,...,u?*)*:Zug <1, 0<u) <1, j=T,n}, tel,
j=1

are piecewise-continuous control functions.
Next,

Ai(t) = CTTKQ(t),  Bi(t) = C; 'K (t), Di(t) = C; ' Ii(t),

where C; is a non-degenerate matrix of the material cost coefficients cfj ,
p,j = 1,n; which show the output quantity which the p-th branch must
invest in the j-th branch so that the latter could produce one unit of output
during the i-th period of investment. K?(¢) is a diagonal matrix with coef-
ficients of intensity of the output quantity of the i-th branch on the main
diagonal. K}(t) is a diagonal matrix with accumulation coefficients of the
i-th branch on the man diagonal. I;(¢) is the volume of credit or foreign
capital.

Our aim is to choose such investment proportionality coefficients, i.e.,
such controls u;(t), t € [t;,tir1], i = 1,m, and investment structure change
moments t;, ¢ = 2, m, the final moment being ¢,,41, that the corresponding
solution {z;(t) € R}, t € [t; — 7, ti41] : i = 1,m} of the system (3.1;)
satisfies the condition (3.2;), (3.3) and the effectiveness function (3.4) takes
the least possible value.

Below, for the optimal control problem (4.1;), (4.2;), (4.3), (4.4) we
formulate the necessary conditions of optimality, which follow from The-
orem 3.3.

Theorem 4.1. Let u;(t), t € [tNi,tNiH], i =1,m, be optimal controls,
tie (a,b), i=2,m, be optimal time moments at which the system structure
changes, tmy1 be optimal final moment and let {z:(t) € RT,E - <t<
tit1, i = 1,m} be the corresponding solution and a.?i(t —7), 1= 1,m, be
continuous at the points %vi_H, i=1, m, respectively. Besides, let t;+; <E+1,
titi+T; ¢ {t~i+1 —k7i:k=1,2,...},i=1,m. Then there exists a solution
{(s(t), x5 (), t € [tiyti +7): i =T, m} of the variable structure system

Xi(t) = —wi(t + Ti)Bi(t + Ti),
’lﬂi(t) = Xi(t) + ’(/)i(t + Ti)Ai(t + Ti),
ei(t) = xi(t) = 0,t € (fiz1,tir + ), i=1,m,

te [{iazﬂrl]a

where ;(t) is a piecewise-continuous function, such that (Ym(t), xm(t))#0,

tE [tm, tm+1] and the following conditions are fulfilled:
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4.1) the maximum principle

¥i(t)Bs(t)ui(t) = max i) Bi(tyus, t € [, tiga], i =T,m;

4.2) the condition for x;(t),
Xi— 1( ) ( )E'u

4.3) the condition for the final moment th

wm(%vm+1) [Am(tm+1)xm(tm+1 - Tm) + B ( m+1) (tm—i-l - Tm)"‘
+Dy(t m+1)um(tm+1)] > 05

4.4) the conditions for the moments t:—, i=2,m,
Vi(t:) [@io(t1) — Ai(t)pio(tt — 1) — Bi(ti)pio(t1 — 1) — Dis(£)] —
—pi(ti + 1) [EiTi(t) — pio(ti)] — xi(Es) o () +
Fxim1 (E) [Aimt (8) @1 (6 — 1)+
+Bi 1 (8:)Ti1 (b — 7) + Di(t:)us(8:)] = 0.

5. PROOF OF THEOREM 3.1

Consider the topological vector space

m

E,, =RY™ x ﬁR”i X ﬁE% x [[ Er. = Ex x E¢

i=1 i=1 i=1
of the points ., = (x, (), where
T = (tla' "7tm+17x10;- "7xm0) € E:m C = (@17'- 'asamafla" 7fm) € EC
The set
m m
Xo = (a,tl] X H(tiati+1] X ]:[01 C E,;
i=1 i=1
is a locally convex subspace.
By Dy C E,,, we denote the set of the elements

m m
/J/mGXQ X HAjO X HEfj’
j=1 j=1

to each of which there corresponds the solution {z;(t; u;), t € [, tiv1] : i =
1,m}. The set Dy is not empty, because fi,, € Do.

Lemma 5.1. The set Dy is finitely locally conver.
Proof. Let fimo = (x0,¢o) € Do, where

0 0 0 0 0 0
ﬂ?oi(tl,...,tm+1,£ﬂ10,..., mO) CO* (9017"'asam7f1a"'afm)a
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is an arbitrary fixed point and Ly, C E¢ is a linear finite dimensional man-
ifold passing through the point (o, i.e.,

ko
Le = {40 +6C:0C=> Nd(j, \jER, j= 1,k0},

j=1

where

5<j = (5901]'7'- '7590mja5f1ja' 75fm]) € EC; .7 = lakOa
are fixed points.
Let {2?(t) = x;i(t; pio), t € [t2,¢2,,] : i = I,m} be the solution corre-
sponding to the element p,,0 and K;9 C O; be a compact set containing

some neighborhood of the set 9 (J;) Uz ([¢9, 9, ,]).
There exists a number dy > 0 such that to every element

pm € (V(t1300) 0 (a,1]) x H (7113 00) N (L5, tiga]) x

m

< [T (V(2%:60) 0 0:) x [T (V(2580) N Aig) x
j=1

j=1 j

’,:]3

(f)+ W (Kio; 60))

Il
—

there corresponds the solution {a;(t; ;) € int Ko, t € [t9,¢9, ] : i = 1,m}
(see Remark 2.1).
Let a number 6; € [0, dp] be so small that the neighborhood of the point (o

ko
= {Co +Z)\j5Cj DN <61, G =T1,ko}
j=1
is included in the set

H 901)60 mAzO ><]:[ f0+W( 10;50))

i=1 i=1
Thus there exist convex neighborhoods

Voo = ( (tl’(so (a, tl H z+1750 (?i,tNi+1])><

m
X H (V(2%:80) N O;) C Xo
i=1
and V¢, C L¢, such that V;, x V¢, C Dyg.
Hence the set Dy is finitely locally convex. O
On the set Dy we define the mapping
T:Dyg— R"™

by the formula
T(pm) = T (tm+15 fim)-
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Lemma 5.2. The mapping T is diﬁerentiable at the point i, = (T, E) :

m

3, ) = 3 {10 56 ZAU )1y ()

=1
Pi
DG mY A Z Yilv=)f A+
j=0 Jj= p1+1

+<I>(t)[ggl G(t:) + 01 (4 [ZAz 1 (t

+fz 1s;_ 1+1}6t +fm5 +16tm+1+zq) (leo—f—

i=1

(> ¥ ) 2E L sy

P )
it
+Z / (i (£)) Aij (pag (1) pig (8)dipi (£)dt + / Yi(t)(sfi[t]dt}v (5.1)
N mJ (t:) t;
where ®;(t), Yi(t), i = 1,m, are matriz functions satisfying the system

) i(Vij M’%J‘(i% t € [t; —0,ti1],

— Oij
= (5.2)
Yi(t) = @i(1) + Z Yi(pij (1)) Aij (pij (1) pi; (t), i=1,m,
J=1
and the conditions
~ ~. J9; ~ ~, 09
D;_1(t;) = q’i(ti)m, Yio1(t;) = Yi(ti)ax L 1=2,m, (5.3)

Di(t) =Yi(t) = O4, t>tip1, i=1,m, B, ( tmg1) = L.
Proof. Let LZ C FE¢ be a linear finite dimensional manifold and let
Vo C Xo—z, Vi CLg—g
be bounded convex neighborhoods of zero, where
F=(F1s s bt 158105 s Zm0)s €= (Plyeevs @y Fioe ooy Fn)-
It follows from finitely locally convexity of the set Dy and Theorem 2.2

the existence of a number g9 > 0 such that for an arbitrary (e, dpm,) €
[0, e0] X Vo1 x Vi1 we have [i,+edum € Do and

A:cm(fmﬂ + e0tmy1;E0m) = séwm(fmﬂ + &0 ptm; O )+
+0(?m+1 + €5tm+1; séum),
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where the variation 6fcm(fm+1 + €0ptm; dpim) is calculated by the formula
(2.4).
We have

T(fim + €6pm) — T'(fim) = xm(tvarl + €0ty 15 fim + E04m) — 5Wz(tvwwrl) =
= xm(szrl + 55tm+1; ﬁm + gé,ufm) - %m(szrl + 55tm+1)+

+ [5m(%vm+1 + E(Stm+1) - -%m(%vm+1)] =

trmt1+tedtmtt
— 5w (Tss + 0t Otim) + / Fuldt + o(edp).  (5.4)
it
It is easy to see that
811_% 6Ty (Emg1 + €015 Optam) = 02 (b 13 Oftm) (5.5)
uniformly for du,, € Vo1 x Vi1 and

Tt 1+e0tm 41

Fraltldt = €f . 10tm1 + 0(e8pm). (5.6)
2

Let us introduce the following notation:

q)m(t) = q)m(t§%vm+1)7 Ym(t) = Ym(m?m—i-l);

03, _
®;_1(t) = q)i(ti)ax;l i1 (tts), (5.7)
Vies () = i) 5 2 Vi (), i =

Obviously ®,(t),Y;(t) satisfies the system (5.2) and the conditions (5.3)
(see (2.5) and (2.6)).
From (5.4), taking into consideration (5.5), (5.6), (5.7) and the variation
formulas (2.4), we get
km
T(ﬁm + €0ptm) — T(ﬁm) =€ [5xm(%vm+1§ Spim) + Z Amj(

j=1

g1 )T +

J

s 1)0tms1| +0(0tm) = edTy, (5pim) + o(0pm), (5.8)

where

G 1300) = { Y ) [ )~

ko Pm
=3 Ay o) By o) + > Cges = )i |~
j=1 j=0
Sm ~ IGm, =~
= 2 YOmg g + Pl (52— BB+

Jj=pm+1
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+q)m 1 |: Z Am 1] l’mflj + f;715m71+1} }5tm+
+q) ( )5xm0 + (I)mfl( m)axmfl(?m; 5ﬂm,1)+

S /Y sty 2 O s e

0Ty i
J pm“l‘le](tm) J
tm, Emtt
+> / Yo (P (8)) A (0 (£) g ()00 ()t + /Ym(t)5fm[t]dt
j=1 - -
Mg (tm) tm

Continuing this process with respect to the variation 0z ;(t;0u,), ¢ =
m—1,1, and grouping terms in suitable way, from (5.8) we obtain the for-
mula (5.1). O

Now consider the space E, = R x E,, of the points z = (&, fim)-
Define the set

X =1[0;00) x Xg, D =10,00) x Dy.

Obviously the set D C X x E¢ is finitely locally convex (see Lemma 5.1).
On the set D we define the mapping

P:D— R'
by the formula
P(z) = Q(tl, oy tma1, 10, - - - ,xOm,T(um)) +(£,0,...,0)%,
where Q = (¢°,...,¢")*.

Lemma 5.3. The mapping P is differentiable at the point Z = (0, iy, ) :

dP;(32) = i { [gg + 29 (n(&—)@@)—

amerl
ki
= Ay (E)i(ns +Z Vo~ T3 ) -
j=1
0Q aé 99+
&MH”%>%%30%M@“Km Gil))+

Jj=pi+1

aQ B ki—1 .
5 2E)(3 Ar s CF s + e o) ot
j=1

amerl

8:@- + a:Cerl

+ ( oG | _9Q <I>i(32)>5xio+
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8fz[71]()] ()&01( )dt+

- Z / oLy ) 2

J=pi+ _I_” (t

+Z / 8x it pzj

=t Tij (t )

() Aj (i (£) i ()00 (t)dt

it ~ ~
) )
v [ Gelviwssian) + ot

amerl

t;
00  km
8x:i1(z’4m3 fm 1), T + fmsm +1)}5tm+1+(5€ 0,...,0)*, (5.9

0z = (06, 0pum) € E, — Z.

Proof. Let Ly C E¢ be an arbitrary finite-dimensional linear manifold and

let
V01CXff, V11CLE

be arbitrary convex bounded neighborhoods of zero, where

afm)

T=(0,11, . tms1: 7105 s Fm0)s C = (B1yeee Py f1, .-
There exists a number £y > 0 such that for (g,9z) € [0,e0] x Vo1 X V11

Z+ebze D

and the formula (5.8) is true.
We have
P(Z+e6z) — P(Z) = Q(t1 +0t1, ..., tms1 + E0tpi1, T1o + 0210, - . -
Tmo + €6Zmo, T (fim + €0pm)) — Q(t1, ..
o Zmo, T(fim)) +€(6€,0,...,0)"
Let the number 3 > 0 be so small that

T(/jm) + t(T(ﬁm + E&Mm) - T(ﬁm)) € Kmla
x [0,e0] X V.

oy tma1, T10, - - -

Y(t, e, 0pm) € 10,1]

(see Lemma 2.2).
Now we transform the difference

Q(ﬁ +edtq, ... ,%vm+1 + €0tm+1,T10 + €0T10,

T(pim + 55,Um))

1
b1 + €0t i1, T10 + €t0T10, - . -

d ~
= / EQ(zﬁl + etbty, ...t
ﬁm)))dt:

0
Tmo + et0xmo, T (fim) + t(T (i + €0ptm) — T'(

....... Tmo + €0Tmo,

7Q(Z17"'7Zm+17§107 """" 75m0;T(ﬁm)) ==
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m—+1
{ 6Q6t +Z—5xzo+ aQ ~dT; ((mm)}Jra(séum),

where
1 m41 ~
aQ £;t] 9Qls;t]  9Q
a(edpim) ZE/{ Z [ T )5t +Z( oz, ;)5%‘04-
0 =1
0Qle; 1] 2Q 5 9Qlz; 1]
+| e ame}dTMm (6um)}dt+o(56um) / o
0
0Qle; 1)

oQ ~ ~ _
_ (f1 + tSt1, . .., Ens1 + et6t i1, Tr0 + tda1o, - .
ot; ot;

s Zmo + 6020, T(fim) + (T (fim + €dptm) — T (fim)))-

It is not difficult to see that uniformly for (¢,0z) € [0,1] x Vo1 x Vi1 we
have

e—0

- (aé[s;t] e
ot; ot;

0Q g; ] .
= 1 M
b ( Ox; &’cz) 0, e=1m;

8Q [e;t] Q _0
EHO aﬂl?m+1 3Im+1 7

Therefore a(edz) = o(ed
Thus

>0, i =TT

m—+1 é)Q
P(Z+e6z) — P(3) = { ac 0t + Z —530104—

i=1

00
+ Q AT (Opim) + (55,0,...,0)*] + o(ed ).
amerl
Hence according to the equality (5.1) we obtain (5.9). O

In the space E, we define the filter ®3 as the direct product of the filters

m m
(I)g = (1)5 X H(I)@; X H(I)ﬁ,
i=1 i=1

where the filters ®z, ®3,, ¢ = 1,m, are defined by the convex bases

{(Vom [0,00)) x (Vi N (a,t1]) x H (Vi 0 (Eis Eia]) X

m
< [[Vsn :VOCR, Vi CR, i=Tm+1, V5,CO0; i=Tm —

i=1
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convex neighborhood of points 0 € R, t; € R, i =1, m + 1,

Fio CO, i= 1,m};

{Vz, N Ay :V;, C E, — convex neighborhood }, i=T1,m.

The filters <I>J7i,i =1, m are introduced in Section 2.

The filter ®; is quasi-convex, because it is the direct product of convex
filters ®z, ®5,, ¢ = 1,m, on the quasi-convex filters <I>]7i, i = 1,m (see
Lemma 2.3).

According to Theorem 2.1 and Remark 1.1, there exists a number d; > 0
such that

W = [0,00) x (V(t1561) N (a,11]) x [ (V(Eig1:61) 0 (Ei,Figal) x
i=1
< [[ Ve > [[ (fi + W(Kir:61)) € D.
i=1 i=1
Furthermore the mapping
P:W — R

is continuous in the topology induced from F.,.

Here V(Z;0,01) C O; and K;; C O; is a compact set containing some
neighborhood of the set ¢;(J;) U Ei([ﬂ,ﬂ-ﬂ]).

The element Wl((i) of the filter ® 7. is a subset of the convex set ﬁ +

i1,01

W (K;1,61). Therefore
CO(WE(Kll, ey Kml; 61)) cCWcC D,
where

Wg(KH, - ,Km1;51) = [O, OO) X (V(ﬁ,él) N (a,ﬁ])x

(V(Fig1560) 0 (i, Eiga]) % H Vi X

.

X
i=1 i=1

X H (@i361) N Agp) X ]__‘[VV;;?M1 € ®;.
1=1 i=1

Consequently, there exists an element W3 (K1, ..., Ku1;01) of the filter @5
such that the mapping

P:co (Wg(Kll, .. ,Kml;él)) — R

is continuous.
Thus the mapping P is defined and continuous on the filter co([®3]).
The point z = (0, fi,,,) belongs to all elements of the filter ®z. Further-
more,

P(Z) = (QO(%'l, cee 7tm+17510; cee aEmO;Em(thrl))aOa c 30)*
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Now we introduce the set

By = {um = (t1, -y b1, 10 -« - s Lm0y Py -« s Prny 1y o o5 frm)

fi= filt,@ir, . .o Tim, ui(t)), i = 1,m;
(E1y o Ema 1, T10s -« - s B0y Pl -« s Py ULy« -+ Un) GBO}.
For an arbitrary element
2= (& pm) € Wz N ([0,00) x By),
where W3 € ®3, we have
P(z) = (qo(tl, st 1, 105 - - - Tmos T(tmat; i), 0, - . .,0))*+
+(&,0,...,0)".

The element o,, = (?1, .. .tm+1,510, ey Tmo, {51, ey &m,ﬂl, ce ,ﬂm) €
By is optimal, so there exists an element
Wg(Klg, A ,ng; 52) S (I)g,

where 02 € (0,9), K;2 C O; is a compact set containing INQ, such that for
any element

z € Wz(Kiz, ..., Kia;62) N ([0,00) x By)
we have the inequality
(L, bt 1,10y -+ + s Timoy T (1)) <
<@ (t1, - bt 15105 - -3 Tn0s Ton (b1 fim)) + €.
It is easy to see that
P(W(Kiz, ..., Km2;62) N ([0,00) X By)) C L =
={(",0,...,0)* € R : p’ € R},
and the point P(Z) is a boundary point of the set
P(Wz(Kia, ..., Km2;62) N ([0,00) x By))

with respect to the one-dimensional space L.
Thus

P(2) € 9(P(Wz(Ki2, ..., Kp2;02)) N L)
and, all the more,
P(g) € 8P(W5(K12, coy Koo 52))

Hence the mapping P is critical on the filter ®;.
The assumptions of Theorem 2.5 are fulfilled. Consequently, there exist

a non-zero vector m = (m,...,m) # 0 and an element W: € ®; such that
the following inequality is fulfilled
mdP;(0z) <0 Véz e cone(Wg -2), (5.10)

where dP; has the form (5.9).
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We introduce the functions
0Q
l/fi(t)zﬂa Yi(t), xi(t)=m
Tm+1
which, as it is easy to see, satisfy the equation (3.5) and the conditions

l(t) = Oa te (tNiJrla’yiO]a 1= ]-am.
0Q (5.12)

~ axml ’
Yim1(t:) = xim1(t) = xa(t; )affh -, 1=2,m

From the inequality (5.10) according to (5.9), (5.11) and (5.12) we get
m ki
8Q -

{ |: A (pz 777».7

D

i=1

09 ®;(t), i=1,m,  (5.11)

a-73m—|-1

Yilt) = x
1pm(gm+1) = Xm(%vm+1)

=T

t)+

Jj=1

Pi
+Z(7y\;7+1 ’Y'L] Z wl ’Y'L] fz] ’ny] + X’L( 1)
j= Jj=pit+1

x (giz N SEZ( )) +xi-1( (Z A 1] T+ fi__lsi_l_,_l)}(stﬂr

+<W8—Q+X1 z)5x10+ Z / Vi (a5 (t

or
Jj= p1+1 .

&ﬂ[%()] (t)6n(t dt+Z / Uil (1) Asy (g (1))

8 ~
77” (ts)
Tip1
b8+ [ vi0asidaf+
t
+ i (1 (ZAmJ b)), '+fmsm+1):|6tm+1+

athrl
+mpd¢ <0 Véz e cone(W 2). (5.13)

+

The condition éz € cone(Wg — Z) is equivalent to the conditions 6§ €
[0,00), dt; < ( 00,0}, © = 1,m+1; dxyo € R™, dp; € cone(Wg, — @),

ofi € cone( fl) 1 = 1, m, where
W; €d;, i=Tm.

W@i :‘7¢imAi07
Let t; =0,i=1,m+1, dx;0 =dp; =0f; =0,4i=1,m. Then
m00€ <0 V6 €10, 00).
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Hence it follows
Un) S 0.

Let §p; = 0fi = dwi0 = 0, i = 1,m, 6§ = 0. Then from (5.13) with
§t; € (—00,0], i = I,m + 1, we obtain the conditions for the moments £;,
i=1,m+1 (see 3.4)).

Let 6t; = 0,5 =1,m+1, d¢; =3f; = 0,i =1,m, 66 = 0. Then with
O0x;0 € R™ we have

ﬂaé

é)ati

Let 0t; =0,i =1,m+1, 0f; = dxjo = 0,7 = 1,m, §§ =0 dp;(t) =0,
j=1,m, j #i. Then

—_

m. (5.14)

> [ w250 gy gy

.- - i
J=DPi +17'7,j (t%)
+> / Di(pis (8) Asj (pig (1) o (D30 (t)dt < 0, ¥ bp; € cone(Ws, — &s).
j=1 7.
nij ()
From this inequality and the inclusion

cone (W%- - @) DAy — &

follows the integral maximum principle for the initial functions @;, i = 1, m.
In (5.13) assume that §t; = 0,4 = I,m+1, dx0 = dp; = 0,1 =1,m
06 =0, 0f;[t] =07 =1,m, j #1i. Then we get

tit1

/ Yi(H)3filtldt <0, ¥ 6f; € cone (Wj, — fi). (5.15)

ti

It is clear that this inequality is the more so true with
0 fi € cone ([Wﬁ NWO (K ap)] — ﬁ),
where 4 B
WO (Kir; a0) = fi + W (Kit; ).
According to Lemma 2.5, the inequality (5.15) also is true with
0 f; € cone ([W(i)(Kﬂ; ao)} W, ﬁ)

But by virtue of Lemma 2.3 we can conclude that the inequality (5.15) takes
place with
5f’L = f’L(t; Tils-- -y xzslaul(t)) - fi(taxila s 7x1517az(t)) € E - ﬁ
Taking this into consideration, from (5.15) we obtain the integral maxi-
mum principle 3.1) O
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Remark 5.1. Theorems 3.2 and 3.3 are proved analogously to Theorem

3.1. In this case for calculation of the differential we use Theorems 2.3 and
2.4, respectively. Moreover, we replace the set X respectively by the sets

10.

11.

12.

13.

14.

15.

16.

m m m

H[ti;tiJrl) X [thrlab) X HOZ and Jerl X ]:[O,L

=1 =1 =1
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