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Abstract. The higher order nonlinear differential equation
(
|x(n)|α sgnx(n)

)(n)
+ q(t)|x|β sgnx = 0

is considered, where α and β are distinct positive constants and q : [0, +∞)→
[0, +∞) is a continuous function. Necessary and sufficient conditions for
oscillation of all proper solutions of this equation are established.
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1. Introduction

The classical Atkinson–Belohorec oscillation theory [1], [3] for the Em-
den–Fowler differential equation

x′′ + q(t)|x|γ sgn x = 0, (1.1)

where γ > 0 is a constant with γ 6= 1 and q : [a,∞) → (0,∞) is a contin-
uous function, has been generalized in various directions. One remarkable
generalization was made by Kiguradze [6]–[8] who established necessary and
sufficient conditions for oscillation of all solutions of higher order nonlinear
differential equations of the form

x(2n) + q(t)|x|γ sgnx = 0. (1.2)

Analogous results for the differential equations of the type u(n) =
f(t, u, . . . , u(n−1)) are contained in [9]–[12].

Extension of the oscillation theorems of Atkinson and Belohorec for (1.1)
to nonlinear differential equations involving nonlinear Sturm–Liouville op-
erators of the type

(
|x′|α sgnx′)′ + q(t)|x|β sgn x = 0 (1.3)

was carried out by Elbert and Kusano [4] and Kusano, Ogata and Usami
[5]. For related results the reader is referred to the book of Agarwal et al [2].

A question naturally arises as to the possibility of generalizing Kigu-
radze’s oscillation theorems for (1.2) to higher order nonlinear differential
equations of the type

(
|x(n)|α sgnx(n)

)(n)
+ q(t)|x|β sgn x = 0, (1.4)

α and β being distinct positive constants, whose principal parts may well
be called nonlinear Sturm–Liouville differential operators of order 2n. To
the best of the author’s knowledge, no results characterizing the oscillation
situation of (1.4) with general n has been found in the literature, though
the fourth order case of (1.4) with n = 2 has been investigated by Wu
[16] and Naito and Wu [13], [14]. We note that the asymptotic behavior
of nonoscillatory solutions of (1.4) has been analyzed in detail in a recent
paper of Tanigawa and Wu [15].

By a solution of (1.4) we mean a function x : [Tx,∞) → R which is n times
continuously differentiable together with |x(n)|α sgnx(n) and satisfies the
equation at every point t ≥ Tx. We are concerned exclusively with proper
solutions of (1.4), that is, those solutions x(t) which satisfy sup{|x(t)| : t ≥
T} > 0 for any T ≥ Tx. Such a solution is said to be oscillatory if it has an
infinite sequence of zeros clustering at infinity and nonoscillatory if it has
at most a finite number of zeros in its interval of existence.

The objective of this paper is to give an affirmative answer to the above
question by showing that a necessary and sufficient condition for all proper
solutions of (1.4) to be oscillatory can be established for the equation (1.4)
which is strongly nonlinear in the sense that α 6= β. Observing that the
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oscillation of all proper solutions is equivalent to the absence of nonoscil-
latory solutions, we derive the desired oscillation criteria as a consequence
of thorough analysis of possible nonoscillatory solutions of (1.4) based on a
generalization of Kiguradze’s lemma which was crucial in the study of the
equation (1.2). The generalized Kiguradze lemma, referred to as Lemma K,
is proved at the beginning of Section 1 which is concerned with the oscilla-
tion of the strongly sublinear case (α > β) of (1.4). The strongly superlinear
case (α < β) of (1.4) is considered in Sections 2. Our method used in this
paper is an extended and elaborate adaptation of the one that was invented
by Kiguradze [7], [8] for the study of (1.2).

2. Strongly sublinear equations

We introduce the notation Li, i = 0, 1, . . . , 2n − 1 for the lower order
(quasi-) derivatives associated with the Sturm–Liouville operator L2nx =
(|x(n)|α sgnx(n))(n):

Lix(t) = x(i)(t), i = 0, 1, . . . , n− 1,

Lix(t) =
(
|x(n)(t)|α sgnx(n)(t)

)(i−n)
, i = n, n + 1, . . . , 2n.

(2.1)

Clearly, Lix(t) = (Li−1x(t))′ for i = 1, 2, . . . , n̂, . . . , 2n (caret=omit), and
Lnx(t) = |(Ln−1x(t))′|α sgn(Ln−1x(t))′.

All our subsequent arguments essentially depend on the following lemma
which is a generalization of the well-known Kiguradze’s lemma [7].

Lemma K. Let x(t) be a nonoscillatory solution of (1.4). Then there
exist an odd integer k ∈ {1, 3, . . . , 2n− 1} and a t0 ≥ a such that

x(t)Lix(t) > 0, t ≥ t0, for i = 0, 1, . . . , k − 1,

(−1)i−kx(t)Lix(t) > 0, t ≥ t0, for i = k, k + 1, . . . , 2n− 1.
(2.2)

Proof. We may assume without loss of generality that x(t) > 0 for t ≥ t1.
Since L2nx(t) < 0, t ≥ t1, by (1.4), it follows that each of the derivatives
Lix(t), i = 1, 2, . . . , 2n− 1, is eventually of constant sign.

We first note that if there exist c > 0 and T ≥ t1 such that Lix(t) ≥ c,
t ≥ T , for some i ∈ {1, 3, . . . , 2n − 1}, then, integrating the inequality
successively from T to t, we have

Ljx(∞) = lim
t→∞

Ljx(t) = ∞, j = 0, 1, . . . , i− 1.

We also note that it is impossible for any derivative Lix(t), i ∈ {1, 3, . . . , 2n−
1}, to satisfy the inequality Lix(t) ≤ −c, t ≥ T , for some c > 0 and T ≥ t1,
for otherwise integration of the inequality would imply that L0x(∞) =
x(∞) = −∞, which is impossible. From this fact it follows that none of the
consecutive derivatives Lix(t) and Li+1x(t) can be eventually negative.

We claim that L2n−1x(t) > 0 for t ≥ t1. In fact, if there is T > t1
such that L2n−1x(t) < 0 for t ≥ T , then, since L2n−1x(t) is decreasing,
we have Lix(t) ≤ −c1, t ≥ T , for some c1 > 0, but this is impossible
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as remarked above. The positivity of L2n−1x(t) on [t1,∞) then implies
that L2n−2x(t) is increasing there, so that it is eventually one-signed. The
two cases are possible: either L2n−2x(t) < 0 on [t1,∞) or L2n−2x(t) > 0
on [t2,∞) for some t2 ≥ t1. In the latter case, since L2n−2x(t) ≥ c2,
t ≥ t2, for some constant c2 > 0, from the above remark we have Lix(∞) =
∞ for i = 1, . . . , 2n − 3, which shows that Lix(t), i = 1, . . . , 2n − 3, are
eventually positive. In the former case it is obvious that L2n−1x(∞) =
L2n−2x(∞) = 0. In this case L2n−3x(t) must remain positive on [t2,∞),
since the simultaneous negativity of L2n−2x(t) and L2n−3x(t) is not allowed.

Applying the same arguments as above repeatedly, we conclude that all
the odd order derivatives Lix(t), i = 1, 3, . . . , 2n − 1, must be eventually
positive, while the even order derivatives Lix(t), i = 2, 4, . . . , 2n−2, may be
eventually positive or eventually negative, and that if Lix(t) < 0 for some
i ∈ {2, 4, . . . , 2n − 2}, then Li+1x(∞) = Lix(∞) = 0. This completes the
proof of Lemma K. �

We denote by Pk the set of all positive solutions of (1.4) that satisfy (2.2)
on [t0,∞) for some k ∈ {1, 3, . . . , 2n−1}. If x(t) satisfies (1.4), then so does
−x(t), and so the analysis of nonoscillatory solutions of (1.4) is reduced to
that of the union of all Pk .

One can characterize the oscillation situation of strongly sublinear equa-
tions of the form (1.4), which will be referred to as (A):

(
|x(n)|α sgnx(n)

)(n)
+ q(t)|x|β sgnx = 0, α > β. (A)

Theorem 2.1. All proper solutions of (A) are oscillatory if and only if
∞∫

a

tβ(n+ n−1

α
)q(t) dt = ∞. (2.3)

The following lemma is crucial in the proof of Theorem 2.1.

Lemma 2.1. Let x(t) be a positive solution of (A). If x(t) ∈ Pk, for
k ∈ {1, 3, . . . , 2n− 1}, then

x(t) ≥ c(k, n, α)(t− t0)
n+ n−1

α

[
L2n−1(2

2n−k−1t)
] 1

α , t ≥ t0, (2.4)

where c(k, n, α) is a positive constant depending only on n, k and α.

Proof. We distinguish the two cases (i) n+1 ≤ k ≤ 2n−1 and (ii) 1 ≤ k ≤ n.
(i) Let k=2n−1. Since L2n−1x(t) > 0 is decreasing, we have L2n−2x(t)≥

(t− t0)L2n−1x(t), t ≥ t0. Integrating this inequality n− 1 times from t0 to
t and using the decreasing property of L2n−1x(t), we obtain

Lnx(t) ≥
(t− t0)

n−1

(n− 1)!
L2n−1x(t), t ≥ t0,

or equivalently,

x(n)(t) ≥
(t− t0)

n−1

α

[(n− 1)!]
1

α

[
L2n−1x(t)

] 1

α , t ≥ t0,
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from which, after integrating n times from t0 to t, it follows that

x(t) ≥
(t− t0)

n+ n−1

α

[(n− 1)!]
1

α

n∏
i=1

(
i + n−1

α

)
[
L2n−1x(t)

] 1

α , t ≥ t0. (2.5)

This shows that (2.4) holds for k = 2n− 1.
Let n + 1 ≤ k ≤ 2n− 3. Then, noting that L2n−1x(t) > 0 is decreasing

and L2n−2x(t) < 0, from the equation

L2n−2x(2t)− L2n−2x(t) =

2t∫

t

L2n−1x(τ)dτ,

we see that −L2n−2x(t) ≥ tL2n−1x(2t) for t ≥ t0. Integrating the last
inequality 2n− k − 2 times from t to 2t yields

(−1)2n−k−1Lkx(t) ≥ t2n−k−1L2n−1x(22n−k−1t), t ≥ t0,

or

Lkx(t) ≥

≥ t2n−k−1L2n−1x(22n−k−1t) ≥ (t− t0)
2n−k−1L2n−1x(22n−k−1t). (2.6)

Using (2.6) and the decreasing nature of Lkx(t) > 0, we find

Lk−1x(t) ≥

t∫

t0

Lkx(τ) dτ ≥

t∫

t0

(τ − t0)
2n−k−1L2n−1x(22n−k−1τ) dτ ≥

≥
(t− t0)

2n−k

2n− k
L2n−1x(22n−k−1t), t ≥ t0.

Further repeated integration of the above shows that

Lnx(t) ≥
(t− t0)

n−1

(2n− k)(2n− k + 1) · · · (n− 1)
L2n−1(2

2n−k−1t), t ≥ t0,

which is rewritten as

x(n)(t) ≥

≥
(t− t0)

n−1

α

[(2n− k)(2n− k + 1) · · · (n− 1)]
1

α

[
L2n−1x(22n−k−1t)

] 1

α , t ≥ t0.

Integrating this n times, we obtain

x(t) ≥

≥
(t− t0)

n+ n−1

α

[∏k−n−1
i=0 (2n− k + i)

] 1

α
∏n

i=1

(
i + n−1

α

)
[
L2n−1x(22n−k−1t)

] 1

α . (2.7)

(ii) Suppose that 1 ≤ k ≤ n. In this case we start with the inequality

−L2n−2x(t) ≥ tL2n−1x(2t) for t ≥ t0, (2.8)
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which can be obtained as in the second part of (i). First integrate this
inequality n−1 times from t to 2t, and then integrate the resulting inequality

(−1)n−1x(n)(t) ≥ t
n−1

α

[
L2n−1x(2n−1t)

] 1

α (2.9)

n− k times from t to 2t, obtaining

(−1)2n−k−1x(k)(t) ≥ tn−k+ n−1

α

[
L2n−1x(22n−k−1t)

] 1

α ≥

≥ (t− t0)
n−k+ n−1

α

[
L2n−1x(22n−k−1t)

] 1

α , t ≥ t0. (2.10)

Note that (−1)2n−k−1 = 1 in (2.10). We combine (2.10) with the inequality
x(k−1)(t) ≥ (t− t0)x

(k)(t), t ≥ t0, which is a consequence of the decreasing
nature of Lkx(t) > 0 (cf. Lemma K). Then,

x(k−1)(t) ≥ (t− t0)
n−k+1+ n−1

α

[
L2n−1x(22n−k−1t)

] 1

α , t ≥ t0, (2.11)

and integrating (2.11) k − 1 times from t0 to t, we conclude that

x(t) ≥
(t− t0)

n+ n−1

α

∏k
i=2

(
n− k + i + n−1

α

)
[
L2n−1x(22n−k−1t)

] 1

α . (2.12)

Thus the proof of Lemma 2.1 is complete. �

Proof of Theorem 2.1. Suppose that the equation (A) possesses a nonoscil-
latory solution x(t). We may assume that x(t) is eventually positive. By
Lemma K x(t) satisfies (2.2) on [t0,∞), that is, x(t) ∈ Pk for some k ∈
{1, 3, . . . , 2n− 1}. From Lemma 2.1 we have for t ≥ 22n−kt0

x(t) ≥ x(21−2n+kt) ≥ c(k, n, α)(21−2n+kt− t0)
n+ n−1

α

[
L2n−1x(t)

] 1

α ≥

≥ c(k, n, α)2−(2n−k)(n+ n−1

α
)tn+ n−1

α

[
L2n−1x(t)

] 1

α ,

which implies that there exists a constant c1(k, n, α) > 0 depending only on
n, k and α such that

x(t) ≥ c1(k, n, α)tn+ n−1

α

[
L2n−1x(t)

] 1

α , t ≥ t1 = 2−2n+kt0. (2.13)

Since L2n−1x(t) > 0 is decreasing, integrating (A) over [t,∞), we see
that

[
L2n−1x(t)

] 1

α ≥

[ ∞∫

t

q(s)(x(s))β ds

] 1

α

, t ≥ t1. (2.14)

Multiply both sides of (2.14) by c1(k, n, α)tn+ n−1

α and using (2.13), we ob-
tain

x(t) ≥ c1(k, n, α)tn+ n−1

α

[ ∞∫

t

q(s)(x(s))β ds

] 1

α

, t ≥ t1. (2.15)
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We now integrate the inequality

q(t)tβ(n+ n−1

α
) ≤ c1(k, n, α)−βq(t)(x(t))β

[ ∞∫

t

q(s)(x(s))β ds

]
−

β

α

, t ≥ t1,

following from (2.15), over [t1,∞). This can be done because α > β, and
we conclude that

∞∫

t1

sβ(n+ n−1

α
)q(s) ds ≤

α

α− β
c1(k, n, α)−β

[ ∞∫

t1

q(t)(x(t))β dt

]α−β

α

< ∞,

which contradicts (2.3). Therefore, the condition (2.3) generates the oscilla-
tion of all proper solutions of (A). This completes the proof of the “if part”
of the theorem.

To prove the “only if part” it suffices to assume that
∞∫

a

tβ(n+ n−1

α
)q(t) dt < ∞ (2.16)

and show the existence of a nonoscillatory solution of (A). This statement
has been proved in the paper [10,Theorem I], but we give an outline of the
proof for completeness.

Let c > 0 be an arbitrary constant and choose T > a sufficiently large so
that

∞∫

T

tβ(n+ n−1

α
)q(t)dt ≤ 2−

1

2 [(n− 1)!]
β
α

[ n∏

i=1

(
i +

n− 1

α

)]β

c1− β
α . (2.17)

Define the set X1 by

X1 =

=
{
x∈C[T,∞) : k1(t− T )n+ n−1

α ≤x(t)≤k2(t− T )n+ n−1

α , t≥T
}

(2.18)

which is a closed convex subset of the locally convex space C[T,∞) of con-
tinuous functions on [T,∞) equipped with the topology of uniform con-
vergence on compact subintervals of [T,∞), where k1 and k2, denote the
positive constants

ki =
ci

[(n− 1)!]
1

α

∏n

m=1

(
m + n−1

α

) , i=1, 2, c1 =c
1

α , c2 =(2c)
1

α . (2.19)

Consider the integral operator F defined by

Fx(t) =

t∫

T

(t− s)n−1

(n− 1)!

[
c

(s− T )n−1

(n− 1)!
+

+

s∫

T

(s− r)n−2

(n− 2)!

∞∫

r

q(σ)(x(σ))β dσ dr

] 1

α

ds (2.20)
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for t > T .
Using (2.17) and (2.19), we see that F maps X1 into itself. If {xν} is

a sequence in X1 converging to x0 in C[T,∞), then from the Lebesgue
convergence theorem it follows that {Fxν} converges to Fx0 in C[T,∞),
so that F is a continuous mapping. Since F(X1) and F ′(X1) = {(Fx)′(t) :
x ∈ X1} are locally bounded in [T,∞), the Ascoli-Arzelà theorem implies
that F(X1) is relatively compact in C[T,∞). Thus all the hypotheses of
the Schauder-Tychonoff fixed point theorem are fulfilled, and so there exists
an element x ∈ X1 such that x = Fx. Differentiating the integral equation
x = Fx, we conclude that x = x(t) is a positive solution of (A) on [T,∞)
such that L2n−1x(∞) = c. This sketches the proof of the “only if part” of
the theorem. �

3. Strongly Superlinear Equations

We now turn to the oscillation problem for strongly superlinear equations
of the form (1.4), which will be referred to as (B):

(
|x(n)|α sgnx(n)

)(n)
+ q(t)|x|β sgnx = 0, α < β, (B)

where q(t) is a positive continuous function on [a,∞).

Theorem 3.1. All proper solutions of (B) are oscillatory if and only if
either

∞∫

a

tn−1q(t) dt = ∞ (3.1)

or

∞∫

a

tn−1q(t) dt < ∞ and

∞∫

a

tn−1

[ ∞∫

t

sn−1q(s) ds

] 1

α

dt = ∞. (3.2)

The following lemma is needed in the proof of the theorem.

Lemma 3.1. Let x(t) be a positive solution of (B) on [t0,∞) belonging to
Pk for some k ∈ {1, 3, . . . , 2n−1}. Then, we have the following statements.

(i) If n+1 ≤ k ≤ 2n− 1, then, the following inequalities hold on [t0,∞):

(t− t0)Lk−jx(t) ≤ (1 + j)Lk−j−1x(t) for j = 0, 1, . . . , k − n− 1, (3.3)

(t− t0)[Lnx(t)]
1

α ≤
k − n + α

α
Ln−1x(t), (3.4)

(t− t0)Lk−jx(t) ≤
k − n + {j + 1− (k − n)}α

α
Lk−j−1x(t) (3.5)

for j = k − n + 1, . . . , k − 1.

(ii) If 1 ≤ k ≤ n, then (3.3) holds on [t0,∞) for j = 0, 1, . . . , k − 1.
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Proof. (i) Let n − 1 ≤ k ≤ 2n − 1. Note that since Lkx(t) > 0 is decreas-
ing, we have (t − t0)Lkx(t) ≤ Lk−1x(t), t ≥ t0, which is (3.3) for j = 0.
Combining the inequality with the relations

(t− t0)Lk−jx(t) = (1 + j)Lk−j−1x(t) − (1 + j)Lk−j−1x(t0)−

−

t∫

t0

[
jLk−jx(s)−(s−t0)Lk−j+1x(s)

]
ds for j =1, 2, . . . , k−n−1, (3.6)

we obtain (3.3) successively for j = 1, 2, . . . , k − n− 1.
From (3.3) with j = k − n− 1, which reads

(t− t0)
(
(x(n)(t))α

)
′

≤ (k − n)(x(n)(t))α, t ≥ t0,

it follows that

α(t− t0)x
(n+1)(t) ≤ (k − n)x(n)(t), t ≥ t0. (3.7)

Integrating (3.7) from t0 to t yields

α(t− t0)x
(n)(t) ≤ {(k − n) + α}x(n−1)(t), t ≥ t0, (3.8)

which is the inequality (3.4). If we combine (3.8) with the relations

(t− t0)x
(k−j)(t) =

k − n + {j + 1− (k − n)}α

α
x(k−j−1)(t)−

−
k − n + {j + 1− (k − n)}α

α
x(k−j−1)x(t0)−

−

t∫

t0

[k − n + {j − (k − n)}α

α
x(k−j)(s)− (s− t0)x

(k−j+1)(s)
]
ds, (3.9)

holding for j = k − n + 1, k − n + 2, . . . , k − 1, then we can derive (3.5)
successively for j = k − n + 1, . . . , k − 1. This finishes the proof of (i).

The proof of the satement (ii) for k such that 1 ≤ k ≤ n is similar to
that of (i). In fact, using the decreasing nature of x(k)(t) > 0, we obtain the
inequality (t − t0)x

(k)(t) ≤ x(k−1)(t), t ≥ t0, which is (3.3) for j = 0. This
combined with the relations

(t− t0)x
(k−j)(t) = (1 + j)x(k−j−1)(t)− (1 + j)x(k−j−1)(t0)−

−

t∫

t0

[
jx(k−j)(s)− (s− t0)x

(k−j+1)(s)
]
ds for j = 1, 2, . . . , k − 1

shows successively that (t − t0)x
(k−j)(t) ≤ (1 + j)x(k−j−1)(t) for t ≥ t0.

Thus (3.3) holds for j = 0, 1, . . . , k − 1. �

Remark. Let x(t) be a positive solution of (B) belonging to Pk for some
odd k such that n + 1 ≤ k ≤ 2n− 1. Then, from (3.3)–(3.5) it can shown
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that x(t) satisfies

Lkx(t) ≤ (k − n)!

[ n∏

i=1

(k − n + αi

α

)]α
(x(t))α

(t− t0)k+(α−1)n
, t ≥ t0. (3.10)

Proof of Theorem 3.1. Suppose that (B) possesses an eventually positive
solution x(t). Then, x(t) ∈ Pk for some k ∈ {1, 3, . . . , 2n− 1}. Assume that
(2.2) holds on the interval [t0,∞), t0 ≥ a.

We first consider the case where k satisfies n + 1 ≤ k ≤ 2n − 1. We
multiply (B) by tn−1(x(t))−β and integrate it from 2t0 to t. Repeated
application of integration by parts leads to the equation

w(t) + β

t∫

2t0

w(s)
x′(s)

x(s)
ds +

t∫

2t0

sn−1q(s) ds =

=w(2t0)+(n−1)(n−2) · · · (k−n)

t∫

2t0

Lkx(s)
sk−n−1

x(s)β
ds, t≥2t0, (3.11)

where w(t) is given by

w(t) =

=
[
tn−1L2n−1x(t)−(n−1)tn−2L2n−2x(t)+(n−1)(n−2)tn−3L2n−3x(t)−

− · · ·+ (n− 1)(n− 2) · · · {n− (2n− k − 1)}tn−(2n−k)Lkx(t)

]
(x(t))−β =

=
[
tn−1L2n−1x(t)−(n−1)tn−2L2n−2x(t)+(n−1)(n−2)tn−3L2n−3x(t)−

− · · ·+ (n− 1)(n− 2) · · · (k − n + 1)tk−nLkx(t)
]
(x(t))−β . (3.12)

Noting that x′(t) ≥ 0 and w(t) ≥ 0 on [t0,∞) by Lemma K and using (3.10)
we have

t∫

2t0

sn−1q(s) ds ≤

≤ w(2t0) + c(k, n, α)

t∫

2t0

sk−n−1

(s− t1)k+(α−1)n
(x(s))α−β ds, t ≥ 2t0

for some constant c(k, n, α) > 0 depending only on k, n and α, from which
it follows that

∞∫

2t0

tn−1q(t)dt < ∞. (3.13)
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To proceed further we rewrite w(t) as follows:

w(t) = tk−n−1v(t)(x(t))−β+

+ (n− 1)(n− 2) · · · (k − n)tk−n−1Lk−1x(t)(x(t))−β , (3.14)

where v(t) is defined by

v(t) = t2n−kL2n−1x(t)− (n− 1)t2n−k−1L2n−2x(t)+

+ · · ·+ (n− 1)(n− 2) · · · (k − n + 2)(k − n + 1)tLkx(t)−

− (n− 1)(n− 2) · · · (k − n + 1)(k − n)Lk−1x(t). (3.15)

As is easily verified v′(t) ≤ 0 for t ≥ t0, and so v(t) is decreasing on [t0,∞).
Using this fact and the increasing nature of Lk−1x(t) > 0 (cf. Lemma K),
we find from (3.14) that w(t) satisfies

w(t) ≤ c1(k, n)tk−n−1Lk−1x(t)(x(t))−β , t ≥ t0, (3.16)

for some constant c1(k, n) > 0.
Let us now multiply (B) by tn−1(x(t))−β and integrate it over [t, τ ],

t ≥ 2t0. Then, the same computation as in the beginning of the proof yields

w(τ) + β

τ∫

t

w(s)
x′(s)

x(s)
ds +

τ∫

t

sn−1q(s) ds =

= w(t) + (n− 1)(n− 2) · · · (k − n)

τ∫

t

Lkx(s)
sk−n−1

(x(s))β
ds, (3.17)

which implies

τ∫

t

sn−1q(s) ds ≤ w(t) + (n− 1) · · · (k − n)

τ∫

t

Lkx(s)
sk−n−1

(x(s))β
ds. (3.18)

Since both integrals in (3.18) converge as τ → ∞ because of (3.13) and
(3.10), we obtain

∞∫

t

sn−1q(s) ds ≤ w(t) + (n− 1) · · · (k − n)

∞∫

t

Lkx(s)
sk−n−1

(x(s))β
ds ≤

≤ c1(k, n)Lk−1x(t)
tk−n−1

(x(t))β
+ c2(k, n)

∞∫

t

Lkx(s)
sk−n−1

(x(s))β
ds, t ≥ 2t0
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where c2(k, n) is a positive constant. A simple calculation with the aid of
(3.10) and a similar inequality for Lk−1x(t) leads to

∞∫

t

sn−1q(s) ds ≤

≤ c3(k, n, α)
(x(t))α−β

(t− t0)αn
+ c4(k, n, α)

∞∫

t

sk−n−1

(s− t0)k−n+αn
(x(s))α−β ds ≤

≤ c5(k, n, α)
(x(t))α−β

(t− t0)αn
, t ≥ t0, (3.19)

where ci(k, n, α) (i = 3, 4, 5) are positive constants, and the negativity of
α− β has been used. Taking (3.19) into account, we compute

τ∫

2t0

tn−1

[ ∞∫

t

sn−1q(s) ds

] 1

α

dt ≤

≤ c6(k, n, α)

τ∫

2t0

tn−1

(t− t0)n
(x(t))1−

β
α dt, τ ≥ 2t0. (3.20)

We now combine (3.20) with the inequality

x(t) ≥ cktn+ k−n−1

α , t ≥ 2t0,

ck > 0 being a constant, (cf. Remark to Lemma K) to obtain
τ∫

2t0

tn−1

[ ∞∫

t

sn−1q(s) ds

] 1

α

dt ≤ c7(k, n, α)

τ∫

2t0

s−1s(1− β

α
)(n+ k−n−1

α
) ds.

This clearly implies that
∞∫

2t0

tn−1

[ ∞∫

t

sn−1q(s) ds

] 1

α

dt < ∞. (3.21)

The inequalities (3.10) and (3.21) show that “if part” of Theorem 3.1 is
true for k satisfying n + 1 ≤ k ≤ 2n− 1.

Let us turn to the case where 1 ≤ k ≤ n. Since Lix(∞) = 0, i =
n, n + 1, . . . , 2n − 1, integrating (B) n times from t to ∞ and noting that
x(t) is increasing, we have

(−1)n−1Lnx(t) ≥ (x(t))β

∞∫

t

(s− t)n−1

(n− 1)!
q(s) ds,

or

(−1)n−1 x(n)(t)

(x(t))
β
α

≥

[ ∞∫

t

(s− t)n−1

(n− 1)!
q(s) ds

] 1

α

, t ≥ t0. (3.22)
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Integrating (3.22) multiplied by tn−1 over [2t0, t] gives

t∫

2t0

sn−1

[ ∞∫

s

(s− r)n−1

(n− 1)!
q(r) dr

] 1

α

ds ≤

≤ (−1)n−1w(t) + (−1)nw(2t0) + (−1)n−1 β

α

t∫

2t0

w(s)
x′(s)

x(s)
ds+

+(−1)2n−k−1(n− 1)(n− 2) · · · (k + 1)k

t∫

2t0

Lkx(s)
sk−1

(x(s))
β

α

ds,

where w(t) is the function defined by (3.12). Since x′(t) ≥ 0 and
(−1)n−1w(t) ≤ 0 by Lemma K and since (t − t0)

k−1Lkx(t) ≤ (k − 1)!x′(t)
by (ii) of Lemma 3.1, it follows that

t∫

2t0

sn−1

[ ∞∫

s

(s− r)n−1

(n− 1)!
q(r) dr

] 1

α

ds ≤

≤ (−1)nw(2t0) + (n− 1)(n− 2) · · · (k + 1)k

t∫

2t0

Lkx(s)
sk−1

(x(s))
β

α

ds ≤

≤ (−1)nw(2t0) + (n− 1)(n− 2) · · · (k + 1)k · 2k−1(k − 1)!

t∫

2t0

x′(s)

(x(s))
β

α

ds

for t ≥ 2t0. Since α < β implies
∫
∞

2t0
x′(t)/(x(t))

β

α dt < ∞, we conclude from

the above that
∞∫

2t0

tn−1
[ ∞∫

t

sn−1q(s) ds
] 1

α

dt < ∞. (3.23)

Thus it has been shown that the “if part”of Theorem 3.1 is true also in the
case where k satisfies 1 ≤ k ≤ n.

The “only if”part of the theorem is proved as follows (cf. [10, Theo-
rem I]). Let c > 0 be given arbitrarily and choose T > a so that

∞∫

T

tn−1

(n− 1)!

[ ∞∫

t

(s− t)n−1

(n− 1)!
q(s) ds

] 1

α

≤ 2−1c1− β

α . (3.24)

We define the set X2 and the mapping G by

X2 =
{
x ∈ C[T,∞) :

c

2
≤ x(t) ≤ c, t ≥ T

}
(3.25)
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and

Gx(t) =

= c−

∞∫

t

(s− t)n−1

(n− 1)!

[ ∞∫

s

(r − s)n−1

(n− 1)!
q(r)(x(r))β dr

] 1

α

ds, t ≥ T, (3.26)

respectively. Then it is routinely proved that G maps X2 into itself, that G
is a continuous mapping, and that G(X2) is relatively compact in C[T,∞).
Therefore, by the Schauder-Tychonoff fixed point theorem there exists an
element x ∈ X2 such that x = Gx. It is clear that the fixed element
x = x(t) gives a positive solution of (B) on [T,∞) such that x(∞) = c.
This completes the proof. �
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4. Á. Elbert and T. Kusano, Oscillation and nonoscillation theorems for a class of
second order quasilinear differential equations. Acta Math. Hungar. 56(1990), No. 3–
4, 325–336.

5. T. Kusano, A. Ogata, and H. Usami, Oscillation theory for a class of second
order quasilinear ordinary differential equations with application to partial differential
equations. Japan. J. Math. (N.S.) 19(1993), No. 1, 131–147.

6. I. T. Kiguradze, On the oscillation of solutions of some ordinary differential equa-
tions. (Russian) Dokl. Akad. Nauk SSSR 144(1962), No. 1, 33–36; English transl.:
Sov. Math., Dokl. 3(1962), 649–652.

7. I. T. Kiguradze, On the oscillation of solutions of the equation dmu/dtm +
a(t)|u|nsign u = 0. Mat. Sb. 65(1964), No. 2, 172–187.

8. I. T. Kiguradze, Concerning the oscillation of solutions of nonlinear differential
equations. (Russian) Differentsial’nye Uravneniya 1(1965), No. 8, 995–1006; English
transl.: Differ. Equations 1(1965), 773–782.

9. I. T. Kiguradze, On oscillation conditions for solutions of nonlinear ordinary differ-
ential equations, I. (Russian) Differentsial’nye Uravneniya 10(1974), No. 8, 1387–
1399; English transl.: Differ. Equations 10(1974), 1073–1082.

10. I. T. Kiguradze, On oscillation conditions for solutions of nonlinear ordinary differ-
ential equations, II. (Russian) Differentsial’nye Uravneniya 10(1974), No. 9, 1586–
1594; English transl.: Differ. Equations 10(1974), 1224–1230.



152 Tomoyuki Tanigawa

11. I. Kiguradze and T. Chanturia, Asymptotic properties of solutions of nonau-
tonomous ordinary differential equations. Kluwer Academic Publishers, Dordrecht–

Boston–London, 1993.
12. I. Kiguradze, N. Partsvania, and I. P. Stavroulakis, On oscillatory solutions of

nonlinear differential equations with advanced arguments. Mem. Differential Equa-

tions Math. Phys. 25(2002), 156–158.
13. M. Naito and Wu Fentao, A note on the existence and asymptotic behavior of

nonoscillatory solutions of fourth order quasilinear differential equations. Acta Math.

Hungar. 102(2004), No. 3, 177–202.
14. M. Naito and Wu Fentao, On the existence of eventually positive solutions of

fourth-order quasilinear differential equations. Nonlinear Anal. 57(2004), No. 2, 253–
263.

15. T. Tanigawa and Wu Fentao, On the existence of positive soluitons for a class of
even order quaslinear differential equations. Adv. Math. Sci. Appl. 14(2004), No. 1,
75–85.

16. Wu Fentao, Nonoscillatory solutions of fourth order quasilinear differential equa-
tions. Funkcial. Ekvac. 45(2002), No. 1, 71–88.

(Received 30.03.2004)

Author’s Address:

Department of Mathematics
Faculty of Science Education
Joetsu University of Education
Niigata, 943–8512
Japan
E-mail: tanigawa@juen.ac.jp


