
Mem. Differential Equations Math. Phys. 36 (2005), 153–156

T. Kiguradze

ON LIDSTONE BOUNDARY VALUE PROBLEM FOR HIGHER ORDER
NONLINEAR HYPERBOLIC EQUATIONS WITH TWO

INDEPENDENT VARIABLES

(Reported on July 20, 2005)

Let m and n be positive integers, a > 0, b > 0 and D = [0, a]× [0, b]. In the rectangle
D consider the nonlinear hyperbolic equation

u(2m,2n) = f
(

x, y, u, . . . , u(2m−1,0) , . . . , u(0,2n−1), . . . , u(2m−1,2n−1)
)

(1)

with the boundary conditions

u(2i,0)(0, y) = ϕ1i(y), u(2i,0)(a, y) = ϕ2i(y) (i = 0, . . . ,m − 1),

u(2m,2k)(x, 0) = ψ1k(x), u(2m,2k)(x, b) = ψ2k(x) (i = 0, . . . , n− 1),
(2)

where

u(i,k)(x, y) =
∂i+ku(x, y)

∂xi∂yk
(i = 0, . . . , 2m; k = 0, . . . , 2n).

Moreover, below it will be assumed that the function f : D×R
4mn → R is continuous, the

functions ϕ2i : [0, b] → R, ϕ2i : [0, b] → R (i = 0, . . . ,m − 1) are 2n–times continuously
differentiable, and the functions ψ2k : [0, a] → R, ψ2k : [0, a] → R (i = 0, . . . , n − 1) are
continuous.

By C2m,2n(D) denote the space of continuous functions u : D → R having the

continuous partial derivatives u(j,k) (j = 0, . . . , 2m; k = 0, . . . , 2n). By a solution of
problem (1),(2) we will understand a classical solution, i.e., a function u ∈ C2m,2n(D)
satisfying equation (1) and boundary conditions (2) everywhere in D.

By analogy with the problem

z(2m) = g(x, z, . . . , z(2m−1)), (3)

z(2i)(0) = c1i, z(2i)(a) = c2i (i = 1, . . . , n), (4)

problem (1),(2) will be called the Lidstone problem.
Problem (3),(4) and its various generalizations were investigated by many authors

(see, e.g., [1–8], [12]). As for the problem (1),(2), it was studied in the case, where
m = n = 1 and (1) is a linear equation (see [9–11]).

The given below sufficient conditions of solvability and unique solvability of problem
(1),(2) concern the case, where on the set D×R

n the function f on satisfies either of the
conditions

|f(x, y, z00, . . . , z2m−10 , . . . , z02n−1 , . . . , z2m−12n−1)|

≤
2m−1
∑

i=0

2n−1
∑

k=0

pik(x, y)|zik|+ q
(

x, y,

2m−1
∑

i=0

2n−1
∑

k=0

|zik|
)

(5)
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and

|f(x, y, z00, . . . , , z2m−12n−1)− f(x, y, z00, . . . , z2m−12n−1)|

≤
2m−1
∑

i=0

2n−1
∑

k=0

pik(x, y)|zik − zik |, (6)

where pik : D→ [0,+∞) (i = 0, . . . , 2m− 1; k = 0, . . . , 2n− 1) are continuous functions,
and q : D × [0,+∞) → [0,+∞) is a continuous function that is nondecreasing in the
second argument and

lim
ρ→+∞

1

ρ

∫ a

0

∫ b

0
q(x, y, ρ) dx dy = 0. (7)

Along with (1),(2) we will consider the differential inequality

∣

∣u(2m,2n)(x, y)
∣

∣ ≤
2m−1
∑

i=0

2n−1
∑

k=0

pik(x, y)
∣

∣u(i,k)(x, y)
∣

∣ (8)

with the homogeneous boundary conditions

u(2i,0)(0, y) = 0, u(2i,0)(a, y) = 0 (i = 0, . . . ,m− 1),

u(2m,2k)(x, 0) = 0, u(2m,2k)(x, b) = 0 (i = 0, . . . , n− 1).
(9)

By a solution of problem (8),(9) we will understand a function u ∈ C2m,2n(D) satisfying
inequality (8) and boundary conditions (9) everywhere in D.

Theorem 1. Let conditions (5) and (7) (condition (6)) hold, and let problem (8), (9)
have only a trivial solution. Then problem (1), (2) has at least one (one and only one)
solution.

For arbitrary s0 > 0, s ∈ [0, s0] and a positive integer j set

λ1(s; s0) =
1

s0
, λ2j+1(s; s0) =

s(s0 − s)

2s0

( s20
8

)j−1
,

λ2(s; s0) =
s(s0 − s)

s0
, λ2j+2(s; s0) =

s2(s0 − s)2

2s0

( s20
8

)j−1
.

(10)

Theorem 2. Let conditions (5) and (7) (condition (6)) hold, and

2n−1
∑

k=0

2m−1
∑

i=0

∫ a

0

∫ b

0
pik(x, y)λ2m−i(x;a)λ2n−k(y; b) dx dy ≤ 1. (11)

Then problem (1), (2) has at least one (one and only one) solution.

Let

µ2j−1(s0) =
( s20

8

)j−1
, µ2j (s0) = 2

( s20
8

)j
(j = 1, 2, . . . ).

Then by (10) we have

λk(s; s0) ≤
1

s0
µk(s0) for 0 ≤ s ≤ s (k = 1, 2, . . . ).

Therefore Theorem 2 implies the

Corollary 1. Let conditions (5) and (7) (condition (6) hold, and let

2n−1
∑

k=0

2m−1
∑

i=0

µ2m−i(a)µ2n−k(b)

∫ a

0

∫ b

0
pik(x, y) dx dy ≤ ab. (12)

Then problem (1), (2) has at least one (one and only one) solution.
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Let us show that in Theorem 2 and Corollary 1, respectively, conditions (11) and (12)
are unimprovable from the viewpoint that they cannot be replaced by the conditions

2n−1
∑

k=0

2m−1
∑

i=0

∫ a

0

∫ b

0
pik(x, y)λ2m−i(x; a)λ2n−k(y; b) dx dy ≤ 1 + ε (11ε)

and
2n−1
∑

k=0

2m−1
∑

i=0

µ2m−i(a)µ2n−k (b)

∫ a

0

∫ b

0
pik(x, y) dx dy ≤ (1 + ε)ab, (12ε)

no matter how small ε > 0 is. Indeed, as it was shown in [6] (see Example 1.1), for an
arbitrary ε > 0 there exist continuous functions g1 : [0, a] → [0,+∞) and g2 : [0, b] →
[0,+∞) such that

4 < a

∫ a

0
g1(x) dx < 4

√
1 + ε, 4 < b

∫ b

0
g2(y) dy < 4

√
1 + ε,

and the boundary value problems

w′′ = −g1(x)w, w(0) = w(a) = 0

and

w′′ = −g2(y)w, w(0) = w(b) = 0

have nontrivial solutions w1 and w2. If m > 1 (n > 1), then by v1 (by v2) denote the
solution of the problem

v(2m−2) = w1(x), v(2i)(0) = v(2i)(a) = 0 (i = 0, . . . ,m− 1)
(

v(2n−2) = w2(y), v(2k)(0) = v(2k)(b) = 0 (k = 0, . . . , n− 1)
)

.

For m = 1 (n = 1) set v1(x) = w1(x) (v2(y) = w2(y)). Then the function

u(x, y) = v1(x)v2(y)

is a nontrivial solution of the homogeneous equation

u(2m,2n) = g(x, y)u(2m−2,2n−2)

subject to the boundary conditions (9), where

g(x, y) = g1(x)g2(y)

and

16 < ab

∫ a

0

∫ b

0
g(x, y) dx dy < 16(1 + ε). (13)

On the other hand, the function

f(x, y, z00, . . . , z2m−12n−1) ≡ g(x, y)z2m−22n−2

satisfies condition (6), where

pik(x, y) ≡ 0 for i 6= 2m− 2 or k 6= 2n− 2,

pik(x, y) ≡ g(x, y) for i = 2m− 2, k = 2n− 2.

Moreover, as it follows from inequality (13), conditions (11) and (12) are violated, while
conditions (11ε) and (12ε) hold.

Theorem 3. Let conditions (5) and (7) (condition (6) hold, where

pik(x, y) ≡ pik (i = 0, . . . , 2m − 1; k = 0, . . . , 2n− 1)

are nonnegative constants satisfying the inequality

2n−1
∑

k=0

2m−1
∑

i=0

( a

π

)2m−i( b

π

)2n−k
pik < 1. (14)

Then problem (1), (2) has at least one (one and only one) solution.
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Let i ∈ {0, . . . ,m− 1}, k ∈ {0, . . . , n− 1}. Then the differential equation

u(2m,2n) = (−1)m+n+i+k
(π

a

)2m−2i(π

b

)2n−2k
u(2i,2k)

has a nontrivial solution

u(x, y) = sin
(π

a
x
)

sin
(π

b
y
)

.

Consequently, in Theorem 3 the strict inequality (14) cannot be replaced by the unstrict
inequality

2n−1
∑

k=0

2m−1
∑

i=0

( a

π

)2m−i( b

π

)2n−k
pik ≤ 1.
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