T. Kiguradze

ON LIDSTONE BOUNDARY VALUE PROBLEM FOR HIGHER ORDER NONLINEAR HYPERBOLIC EQUATIONS WITH TWO INDEPENDENT VARIABLES

(Reported on July 20, 2005)

Let m and n be positive integers, $a>0, b>0$ and $D=[0, a] \times[0, b]$. In the rectangle D consider the nonlinear hyperbolic equation

$$
\begin{equation*}
u^{(2 m, 2 n)}=f\left(x, y, u, \ldots, u^{(2 m-1,0)}, \ldots, u^{(0,2 n-1)}, \ldots, u^{(2 m-1,2 n-1)}\right) \tag{1}
\end{equation*}
$$

with the boundary conditions

$$
\begin{align*}
u^{(2 i, 0)}(0, y) & =\varphi_{1 i}(y), \quad u^{(2 i, 0)}(a, y)=\varphi_{2 i}(y) \quad(i=0, \ldots, m-1) \\
u^{(2 m, 2 k)}(x, 0) & =\psi_{1 k}(x), \quad u^{(2 m, 2 k)}(x, b)=\psi_{2 k}(x) \quad(i=0, \ldots, n-1), \tag{2}
\end{align*}
$$

where

$$
u^{(i, k)}(x, y)=\frac{\partial^{i+k} u(x, y)}{\partial x^{i} \partial y^{k}} \quad(i=0, \ldots, 2 m ; k=0, \ldots, 2 n)
$$

Moreover, below it will be assumed that the function $f: D \times \mathbb{R}^{4 m n} \rightarrow \mathbb{R}$ is continuous, the functions $\varphi_{2 i}:[0, b] \rightarrow \mathbb{R}, \varphi_{2 i}:[0, b] \rightarrow \mathbb{R}(i=0, \ldots, m-1)$ are $2 n$-times continuously differentiable, and the functions $\psi_{2 k}:[0, a] \rightarrow \mathbb{R}, \psi_{2 k}:[0, a] \rightarrow \mathbb{R}(i=0, \ldots, n-1)$ are continuous.

By $C^{2 m, 2 n}(D)$ denote the space of continuous functions $u: D \rightarrow \mathbb{R}$ having the continuous partial derivatives $u^{(j, k)}(j=0, \ldots, 2 m ; k=0, \ldots, 2 n)$. By a solution of problem (1),(2) we will understand a classical solution, i.e., a function $u \in C^{2 m, 2 n}(D)$ satisfying equation (1) and boundary conditions (2) everywhere in D.

By analogy with the problem

$$
\begin{gather*}
z^{(2 m)}=g\left(x, z, \ldots, z^{(2 m-1)}\right) \tag{3}\\
z^{(2 i)}(0)=c_{1 i}, \quad z^{(2 i)}(a)=c_{2 i} \quad(i=1, \ldots, n), \tag{4}
\end{gather*}
$$

problem (1),(2) will be called the Lidstone problem.
Problem (3),(4) and its various generalizations were investigated by many authors (see, e.g., [1-8], [12]). As for the problem (1),(2), it was studied in the case, where $m=n=1$ and (1) is a linear equation (see [9-11]).

The given below sufficient conditions of solvability and unique solvability of problem (1),(2) concern the case, where on the set $D \times \mathbb{R}^{n}$ the function f on satisfies either of the conditions

$$
\begin{align*}
& \left|f\left(x, y, z_{00}, \ldots, z_{2 m-10}, \ldots, z_{02 n-1}, \ldots, z_{2 m-12 n-1}\right)\right| \\
& \leq \sum_{i=0}^{2 m-1} \sum_{k=0}^{2 n-1} p_{i k}(x, y)\left|z_{i k}\right|+q\left(x, y, \sum_{i=0}^{2 m-1} \sum_{k=0}^{2 n-1}\left|z_{i k}\right|\right) \tag{5}
\end{align*}
$$

[^0]\[

$$
\begin{align*}
& \left|f\left(x, y, z_{00}, \ldots,, z_{2 m-12 n-1}\right)-f\left(x, y, \bar{z}_{00}, \ldots, \bar{z}_{2 m-12 n-1}\right)\right| \\
& \quad \leq \sum_{i=0}^{2 m-1} \sum_{k=0}^{2 n-1} p_{i k}(x, y)\left|z_{i k}-\bar{z}_{i k}\right|, \tag{6}
\end{align*}
$$
\]

where $p_{i k}: D \rightarrow[0,+\infty)(i=0, \ldots, 2 m-1 ; k=0, \ldots, 2 n-1)$ are continuous functions, and $q: D \times[0,+\infty) \rightarrow[0,+\infty)$ is a continuous function that is nondecreasing in the second argument and

$$
\begin{equation*}
\lim _{\rho \rightarrow+\infty} \frac{1}{\rho} \int_{0}^{a} \int_{0}^{b} q(x, y, \rho) d x d y=0 \tag{7}
\end{equation*}
$$

Along with (1),(2) we will consider the differential inequality

$$
\begin{equation*}
\left|u^{(2 m, 2 n)}(x, y)\right| \leq \sum_{i=0}^{2 m-1} \sum_{k=0}^{2 n-1} p_{i k}(x, y)\left|u^{(i, k)}(x, y)\right| \tag{8}
\end{equation*}
$$

with the homogeneous boundary conditions

$$
\begin{gather*}
u^{(2 i, 0)}(0, y)=0, \quad u^{(2 i, 0)}(a, y)=0 \quad(i=0, \ldots, m-1), \\
u^{(2 m, 2 k)}(x, 0)=0, \quad u^{(2 m, 2 k)}(x, b)=0 \quad(i=0, \ldots, n-1) . \tag{9}
\end{gather*}
$$

By a solution of problem (8),(9) we will understand a function $u \in C^{2 m, 2 n}(D)$ satisfying inequality (8) and boundary conditions (9) everywhere in D.

Theorem 1. Let conditions (5) and (7) (condition (6)) hold, and let problem (8), (9) have only a trivial solution. Then problem (1), (2) has at least one (one and only one) solution.

For arbitrary $s_{0}>0, s \in\left[0, s_{0}\right]$ and a positive integer j set

$$
\begin{gather*}
\lambda_{1}\left(s ; s_{0}\right)=\frac{1}{s_{0}}, \quad \lambda_{2 j+1}\left(s ; s_{0}\right)=\frac{s\left(s_{0}-s\right)}{2 s_{0}}\left(\frac{s_{0}^{2}}{8}\right)^{j-1}, \\
\lambda_{2}\left(s ; s_{0}\right)=\frac{s\left(s_{0}-s\right)}{s_{0}}, \quad \lambda_{2 j+2}\left(s ; s_{0}\right)=\frac{s^{2}\left(s_{0}-s\right)^{2}}{2 s_{0}}\left(\frac{s_{0}^{2}}{8}\right)^{j-1} . \tag{10}
\end{gather*}
$$

Theorem 2. Let conditions (5) and (7) (condition (6)) hold, and

$$
\begin{equation*}
\sum_{k=0}^{2 n-1} \sum_{i=0}^{2 m-1} \int_{0}^{a} \int_{0}^{b} p_{i k}(x, y) \lambda_{2 m-i}(x ; a) \lambda_{2 n-k}(y ; b) d x d y \leq 1 \tag{11}
\end{equation*}
$$

Then problem (1), (2) has at least one (one and only one) solution.

Let

$$
\mu_{2 j-1}\left(s_{0}\right)=\left(\frac{s_{0}^{2}}{8}\right)^{j-1}, \quad \mu_{2 j}\left(s_{0}\right)=2\left(\frac{s_{0}^{2}}{8}\right)^{j} \quad(j=1,2, \ldots)
$$

Then by (10) we have

$$
\lambda_{k}\left(s ; s_{0}\right) \leq \frac{1}{s_{0}} \mu_{k}\left(s_{0}\right) \quad \text { for } \quad 0 \leq s \leq s \quad(k=1,2, \ldots)
$$

Therefore Theorem 2 implies the
Corollary 1. Let conditions (5) and (7) (condition (6) hold, and let

$$
\begin{equation*}
\sum_{k=0}^{2 n-1} \sum_{i=0}^{2 m-1} \mu_{2 m-i}(a) \mu_{2 n-k}(b) \int_{0}^{a} \int_{0}^{b} p_{i k}(x, y) d x d y \leq a b \tag{12}
\end{equation*}
$$

Then problem (1), (2) has at least one (one and only one) solution.

Let us show that in Theorem 2 and Corollary 1, respectively, conditions (11) and (12) are unimprovable from the viewpoint that they cannot be replaced by the conditions

$$
\sum_{k=0}^{2 n-1} \sum_{i=0}^{2 m-1} \int_{0}^{a} \int_{0}^{b} p_{i k}(x, y) \lambda_{2 m-i}(x ; a) \lambda_{2 n-k}(y ; b) d x d y \leq 1+\varepsilon
$$

and

$$
\sum_{k=0}^{2 n-1} \sum_{i=0}^{2 m-1} \mu_{2 m-i}(a) \mu_{2 n-k}(b) \int_{0}^{a} \int_{0}^{b} p_{i k}(x, y) d x d y \leq(1+\varepsilon) a b
$$

no matter how small $\varepsilon>0$ is. Indeed, as it was shown in [6] (see Example 1.1), for an arbitrary $\varepsilon>0$ there exist continuous functions $g_{1}:[0, a] \rightarrow[0,+\infty)$ and $g_{2}:[0, b] \rightarrow$ $[0,+\infty)$ such that

$$
4<a \int_{0}^{a} g_{1}(x) d x<4 \sqrt{1+\varepsilon}, \quad 4<b \int_{0}^{b} g_{2}(y) d y<4 \sqrt{1+\varepsilon}
$$

and the boundary value problems

$$
w^{\prime \prime}=-g_{1}(x) w, \quad w(0)=w(a)=0
$$

and

$$
w^{\prime \prime}=-g_{2}(y) w, \quad w(0)=w(b)=0
$$

have nontrivial solutions w_{1} and w_{2}. If $m>1(n>1)$, then by v_{1} (by $\left.v_{2}\right)$ denote the solution of the problem

$$
\left.\begin{array}{rl}
v^{(2 m-2)}=w_{1}(x), & v^{(2 i)}(0)=v^{(2 i)}(a)=0 \\
\left(v^{(2 n-2)}\right. & =w_{2}(y), \quad v^{(2 k)}(0)=v^{(2 k)}(b)=0
\end{array} \quad(k=0, \ldots, n-1)\right) .
$$

For $m=1(n=1)$ set $v_{1}(x)=w_{1}(x)\left(v_{2}(y)=w_{2}(y)\right)$. Then the function

$$
u(x, y)=v_{1}(x) v_{2}(y)
$$

is a nontrivial solution of the homogeneous equation

$$
u^{(2 m, 2 n)}=g(x, y) u^{(2 m-2,2 n-2)}
$$

subject to the boundary conditions (9), where

$$
g(x, y)=g_{1}(x) g_{2}(y)
$$

and

$$
\begin{equation*}
16<a b \int_{0}^{a} \int_{0}^{b} g(x, y) d x d y<16(1+\varepsilon) \tag{13}
\end{equation*}
$$

On the other hand, the function

$$
f\left(x, y, z_{00}, \ldots, z_{2 m-12 n-1}\right) \equiv g(x, y) z_{2 m-22 n-2}
$$

satisfies condition (6), where

$$
\begin{gathered}
p_{i k}(x, y) \equiv 0 \quad \text { for } \quad i \neq 2 m-2 \text { or } k \neq 2 n-2 \\
p_{i k}(x, y) \equiv g(x, y) \quad \text { for } \quad i=2 m-2, k=2 n-2
\end{gathered}
$$

Moreover, as it follows from inequality (13), conditions (11) and (12) are violated, while conditions (11_{ε}) and (12_{ε}) hold.

Theorem 3. Let conditions (5) and (7) (condition (6) hold, where

$$
p_{i k}(x, y) \equiv p_{i k} \quad(i=0, \ldots, 2 m-1 ; k=0, \ldots, 2 n-1)
$$

are nonnegative constants satisfying the inequality

$$
\begin{equation*}
\sum_{k=0}^{2 n-1} \sum_{i=0}^{2 m-1}\left(\frac{a}{\pi}\right)^{2 m-i}\left(\frac{b}{\pi}\right)^{2 n-k} p_{i k}<1 \tag{14}
\end{equation*}
$$

Then problem (1), (2) has at least one (one and only one) solution.

Let $i \in\{0, \ldots, m-1\}, k \in\{0, \ldots, n-1\}$. Then the differential equation

$$
u^{(2 m, 2 n)}=(-1)^{m+n+i+k}\left(\frac{\pi}{a}\right)^{2 m-2 i}\left(\frac{\pi}{b}\right)^{2 n-2 k} u^{(2 i, 2 k)}
$$

has a nontrivial solution

$$
u(x, y)=\sin \left(\frac{\pi}{a} x\right) \sin \left(\frac{\pi}{b} y\right)
$$

Consequently, in Theorem 3 the strict inequality (14) cannot be replaced by the unstrict inequality

$$
\sum_{k=0}^{2 n-1} \sum_{i=0}^{2 m-1}\left(\frac{a}{\pi}\right)^{2 m-i}\left(\frac{b}{\pi}\right)^{2 n-k} p_{i k} \leq 1
$$

References

1. R. P. Agarwal, D. O'Regan, I. Rachůnkova, and S. Staněk, Two-point higher-order BVPs with singularities in phase variables. Comput. Math. Appl. 46(2003), No. 12, 1799-1826.
2. R. P. Agarwal, D. O'Regan, and S. Staněk, Singular Lidstone boundary value problem with given maximal values for solutions. Nonlinear Anal. 55(2003), No. 7-8, 859-881.
3. R. P. Agarwal and P. J. Y. Wong, Lidstone polynomials and boundary value problems. Comput. Math. Appl. 17(1989), No. 10, 1397-1421.
4. P. Hartman, Ordinary differential equations. John Wiley \& Sons, Inc., New York-London-Sydney, 1964.
5. I. Kiguradze, Concerning the solvability of two-point singular boundary value problems. (Russian) Uspekhi Mat. Nauk 53(1998), No. 4, 153.
6. I. Kiguradze, Some optimal conditions for the solvability of two-point singular boundary value problems. Funct. Differ. Equ. 10(2003), No. 1-2, 259-281.
7. I. Kiguradze and G. Tskhovrebadze, On the two-point boundary value problems for systems of higher order ordinary differential equations with singularities. Georgian Math. J. 1(1994), No. 1, 31-45.
8. I. Kiguradze, B. Půža and I. P. Stavroulakis, On singular boundary value problems for functional differential equations of higher order. Georgian Math. J. 8(2001), No. 4, 791-814.
9. T. Kiguradze, On the correctness of the Dirichlet problem in a characteristic rectangle for fourth order linear hyperbolic equations. Georgian Math. J. 6(1999), No. 5, 447-470.
10. T. Kiguradze, On the Dirichlet problem in a characteristic rectangle for fourth order linear singular hyperbolic equations. Georgian Math. J. 6(1999), No. 6, 537-552.
11. T. Kiguradze and V. Lakshmikantham, On the Dirichlet problem in a characteristic rectangle for higher order linear hyperbolic equations. Nonlinear Anal. 50(2002), No. 8, Ser. A: Theory Methods, 1153-1178.
12. P. J. Y. Wong and R. P. Agarwal, Eigenvalues of Lidstone boundary value problems. Appl. Math. Comput. 104(1999), No. 1, 15-31.

Author's address:

T. Kiguradze

Florida Institute of Technology
Department of Mathematical Sciences
150 W. University Blvd.
Melbourne, Fl 32901
USA
E-mail: tkigurad@fit.edu

[^0]: 2000 Mathematics Subject Classification. 35L35, 35B30.
 Key words and phrases. Lidstone problem, higher order, nonlinear hyperbolic equation.

