Mem. Differential Equations Math. Phys. 36 (2005), 137-141

Sh. Gelahsvili

ON THE CAUCHY SINGULAR PROBLEM FOR SYSTEMS OF FUNCTIONAL DIFFERENTIAL EQUATIONS

(Reported on May 16, 2005)

In the present paper, we consider the system of functional differential equations

$$x'(t) = f(x)(t) \tag{1}$$

with the initial condition

1

$$x(a) = 0, (2)$$

where $f:C([a,b];\mathbb{R}^n)\to L_{loc}(]a,b];\mathbb{R}^n)$ is a continuous operator such that for any $\rho>0$ the function

$$f_{\rho}^{*}(t) = \sup \left\{ \left\| f(x)(t) \right\| : x \in C([a, b]; \mathbb{R}^{n}), \|x\|_{C} \le \rho \right\}$$

satisfies the condition

$$f_{\rho}^* \in L_{loc}(]a, b]; \mathbb{R}).$$

In regular case where $f_{\rho}^* \in L([a, b]; \mathbb{R})$ for any $\rho > 0$, problem (1), (2) is investigated in detail (see, e.g., [1]–[4], [9], [10] and the references therein).

We are, in the main, interested in the case when f_{ρ}^* is nonintegrable on [a, b], having singularity at t = a. In this case, the problem (1), (2) is singular one.

The methods of investigation of the singular problem (1), (2) in the case, when f is either the Nemytskii or evolution operator, have been developed in [5]–[7], [11]–[15]. Below, the problem (1), (2) will be investigated without an assumption that f is evolutionary.

We will use the following notation.

 \mathbb{R}^n is the space of vectors $x = (x_1, \ldots, x_n)$ with real components x_1, \ldots, x_n and the norm

$$||x|| = \sum_{i=1}^{n} |x_i|.$$

 $x \cdot y$ is the scalar product of vectors x and $y \in \mathbb{R}^n$. If $x = (x_1, \dots, x_n)$, then

 $\operatorname{sgn}(x) = (\operatorname{sgn}(x_1), \dots, \operatorname{sgn}(x_n)).$

If $x \in \mathbb{R}$, then

$$[x]_{+} = \frac{|x| + x}{2}.$$

 $C([a,b];\mathbb{R}^n)$ is the Banach space of $n\text{-dimensional continuous vector functions }x:[a,b]\to\mathbb{R}^n$ with the norm

$$||x||_{C} = \max\{||x(t)||: a \le t \le b\}.$$

If $x \in C([a, b]; \mathbb{R}^n)$, then

$$||x||_{[a,t]} = \max\{||x(s)||: a \le s \le t\}.$$

²⁰⁰⁰ Mathematics Subject Classification. 34K10.

Key words and phrases. System of non-evolutional functional differential equations, Cauchy singular problem.

 $L_{loc}(]a,b];\mathbb{R}^n)$ is the topological space of vector functions $x:]a,b] \to \mathbb{R}^n$, whose components are Lebesgue integrable on $[a + \varepsilon, b]$ for every $\varepsilon \in]0, b - a[$. A sequence $x_k \in L_{loc}(]a,b];\mathbb{R}^n)$ (k = 1, 2, ...) is said to be convergent to $x \in L_{loc}(]a,b];\mathbb{R}^n)$ if

$$\lim_{k \to +\infty} \int_{a+\varepsilon}^{b} \left\| x_k(t) - x(t) \right\| dt = 0$$

for every $\varepsilon \in [0, b - a[$.

Theorem 1. Let there exist continuous nondecreasing functions $\ell_0 : [a, b] \to [0, +\infty[, \ell : [a, b] \to [0, +\infty[, \varphi : [0, +\infty[\to [0, +\infty[and an integrable function <math>p : [a, b] \to [0, +\infty[$ such that

$$\ell_0(0) = 0, \ \ell(0) = 0, \ \varphi(\rho) > 0 \ for \ \rho > 0,$$

and for an arbitrary $x \in C([a, b]; \mathbb{R}^n)$ in the interval [a, b] the inequality

$$\int_{a}^{t} \left[f(x)(s) \cdot \operatorname{sgn}(x(s)) \right]_{+} ds \le \ell_{0}(t) + \ell(t) \|x\|_{C} + \int_{a}^{t} p(s)\varphi(\|x\|_{[a,s]}) ds$$

holds. If, moreover,

$$\liminf_{\rho \to +\infty} \phi \left(\ell_0(b) + \ell(b)\rho, \rho \right) > \int_a^b p(t) \, dt, \tag{3}$$

where

$$\phi(\rho_0,\rho) = \int_{\rho_0}^{\rho} \frac{ds}{\varphi(s)} \quad for \ \rho \ge \rho_0 \ge 0, \tag{4}$$

then the problem (1), (2) has at least one solution.

Theorem 2. Let there exist continuous nondecreasing functions $\ell : [a, b] \to [0, +\infty[$, $\varphi : [0, +\infty[\to [0, +\infty[$ and an integrable function $p : [0, +\infty[\to [0, +\infty[$ such that $\varphi(\rho) > 0$ for $\rho > 0$, and

$$\phi(\ell(b)\rho,\rho) > 0 \quad for \quad \rho > 0, \tag{5}$$

and for any x and $y \in C([a, b]; \mathbb{R}^n)$ in the interval [a, b] the inequality

$$\int_{a}^{t} \left[\left(f(x)(s) - f(y)(s) \right) \operatorname{sgn} \left(x(s) - y(s) \right) \right]_{+} ds \leq \\ \leq \ell(t) \|x - y\|_{C} + \int_{a}^{t} p(s)\varphi \left(\|x - y\|_{[a,s]} \right) ds$$

holds. Then the problem (1), (2) has no more than one solution.

Theorem 3. Let the conditions of Theorem 2 be fulfilled and

$$\int_{a}^{b} \left\| f(0)(t) \right\| dt < +\infty.$$
(6)

If, moreover, $\ell(a) = 0$ and the function ϕ satisfies the inequality (3), where

$$\ell_0(t) = \|f(0)(t)\|,\,$$

then the problem (1), (2) has one and only one solution.

For $\varphi(s) \equiv s$, from Theorems 1, 2 and 3 follows

138

Corollary 1. Let there exist continuous nondecreasing functions $\ell_0 : [a,b] \to [0,+\infty[$, $\ell : [a,b] \to [0,+\infty[$ and an integrable function $p : [a,b] \to [0,+\infty[$ such that $\ell_0(a) = \ell(a) = 0$,

$$\ell(b) \exp\left(\int_{a}^{b} p(s) \, ds\right) < 1,\tag{7}$$

and for an arbitrary $x \in C([a, b]; \mathbb{R}^n)$ in the interval [a, b] the inequality

$$\int_{a}^{t} \left[f(x)(s) \cdot \operatorname{sgn}(x(s)) \right]_{+} ds \le \ell_{0}(t) + \ell(t) \|x\|_{C} + \int_{a}^{t} p(s) \|x\|_{[a,s]} ds$$
(8)

holds. Then the problem (1), (2) has at least one solution.

Corollary 2. Let there exist a continuous nondecreasing function $\ell : [a,b] \rightarrow [0,+\infty[$ and an integrable function $p : [a,b] \rightarrow [0,+\infty[$ such that for arbitrary x and $y \in C([a,b];\mathbb{R}^n)$ in the interval [a,b] the inequality

$$\int_{a}^{t} \left[\left(f(x)(s) - f(y)(s) \right) \operatorname{sgn} \left(x(s) - y(s) \right) \right]_{+} ds \leq \\ \leq \ell(t) \|x - y\|_{C} + \int_{a}^{t} p(s) \|x - y\|_{[a,s]} ds$$

holds. If, moreover, the functions ℓ and p satisfy the condition (7), then the problem (1), (2) has no more than one solution.

Corollary 3. Let the conditions of Corollary 2 be fulfilled. If, moreover, $\ell(a) = 0$ and f satisfies the condition (6), then the problem (1), (2) has one and only one solution.

Example. Let
$$n = 1$$
, $a = 0$, $b = 1$, $\lambda_0 \ge 0$, $\lambda > 0$, $\mu \ge 1$ and
 $f(x)(t) = -\lambda_0 \exp\left(\frac{1}{t} + x^2(t)\right) x(t) + \lambda \left(1 + |x(1)|\right)^{1+\mu} t \exp\left((1 + |x(1)|)^{\mu}(t-1)\right).$

Then

$$\int_{0}^{t} \left[f(x)(s) \cdot \operatorname{sgn}(x(s)) \right]_{+} ds \leq \lambda \left(1 + |x(1)| \right)^{1+\mu} \int_{0}^{t} s \exp\left((1 + |x(1)|)^{\mu} (s-1) \right) ds =$$
$$= \lambda \left(1 + |x(1)| \right) t - \lambda \left(1 + |x(1)| \right)^{1-\mu} \left(\exp\left((1 + |x(1)|)^{\mu} (t-1) \right) - \exp\left(- (1 + |x(1)|)^{\mu} \right) \right).$$
(9)

Consequently, the condition (8) holds, where

$$\ell_0(t) \equiv \ell(t) \equiv \lambda t, \ p(t) \equiv 0.$$

If $\lambda < 1$, then inequality (7) is fulfilled, and according to Corollary 1, the problem (1), (2) has at least one solution. Suppose now that $\lambda_0 = 0$, $\lambda \ge 1$ and the problem (1), (2) has a solution x. Then by virtue of (9), we have x(1) > 0 and

$$x(1) = \lambda(1+x(1)) - \lambda(1+x(1))^{1-\mu} (1-\exp\left(-(1+x(1))^{\mu}\right)) > x(1).$$

Hence if $\lambda_0 = 0$ and $\lambda \ge 1$, then the problem (1), (2) has no solution.

The above constructed example shows that in Theorem 1 (in Corollary 1) the condition (3) (the condition (7)) is unimprovable and it cannot be replaced by the condition

$$\liminf_{\rho \to +\infty} \phi \left(\ell_0(b) + \ell(b)\rho, \rho \right) \ge \int_a^b p(t) \, dt \quad \left(\ell(b) \exp \left(\int_a^b p(s) \, ds \right) \le 1 \right).$$

An important particular case of (1) is the following integro-differential equation

$$\frac{dx(t)}{dt} = \int_{a}^{b} g(t, s, x(s), x(t)) d_s \sigma(t, s), \qquad (10)$$

where $\sigma: [a, b] \times [a, b] \to [0, 1]$ is a measurable in the first and nondecreasing in the second argument function, and $g: [a, b] \times [a, b] \times \mathbb{R}^{2n} \to \mathbb{R}^n$ is a vector function whose components are measurable in the first and continuous in the last 2n + 1 arguments. Moreover,

$$\int_{a}^{b} g_{\rho}^{*}(\cdot, s) \, d_{s} \sigma(\cdot, s) \in L_{loc}(]a, b])$$

where

$$g_{\rho}^{*}(t,s) = \max\left\{ \left\| g(t,s,x,y) \right\| : \|x\| \le \rho, \|y\| \le \rho \right\}.$$

The corollaries of Theorems 1–3 presented below deal with the cases when the vector function g on the set $]a, b] \times [a, b] \times \mathbb{R}^{2n}$ satisfies either the condition

$$g(t, s, x, y) \cdot \operatorname{sgn}(y) \le h_0(t, s) + h_1(t, s) \|x\| + h_2(t, s)\varphi(\|y\|),$$
(11)

or the condition

$$\left(g(t,s,x,y) - g(t,s,\overline{x},\overline{y})\right) \cdot \operatorname{sgn}(y-\overline{y}) \le h_1(t,s) \|x-\overline{x}\| + h_2(t,s)\varphi(\|y-\overline{y}\|), \quad (12)$$

where $h_i: [a,b] \times [a,b] \to [0,+\infty[$ (i=0,1,2) are measurable in the first and continuous in the second argument functions such that

$$\int_{a}^{b} d\tau \int_{a}^{b} h_i(\tau, s) d_s \sigma(s, \tau) < +\infty \quad (i = 0, 1, 2)$$

and $\varphi: [0, +\infty[\rightarrow [0, +\infty[$ is a continuous, nondecreasing function such that

$$\varphi(\rho) > 0$$
 for $\rho > 0$.

Suppose

$$\ell_0(t) = \int_a^t d\tau \int_a^b h_0(\tau, s) d_s \sigma(s, \tau), \quad \ell(t) = \int_a^t d\tau \int_a^b h_1(\tau, s) d_s \sigma(s, \tau),$$
$$p(t) = \int_a^b h_3(t, s) d_s \sigma(s, t).$$

Moreover, under ϕ we mean the function, given by the equality (4). Theorems 1–3 result in the following propositions.

Corollary 4. If the conditions (11) and (3) are fulfilled, then the problem (10), (2) has at least one solution.

Corollary 5. If the conditions (12) and (5) are fulfilled, then the problem (10), (2) has no more than one solution.

Corollary 6. Let the conditions (12), (5) and

$$\int_{a}^{b} dt \int_{a}^{b} \left\| g(t,s,0,0) \right\| d_{s} \sigma(s,t) < +\infty$$

be fulfilled. If, moreover, the inequality (3) holds, where

$$\ell_0(t) = \int_a^b d\tau \int_a^b \|g(t, s, 0, 0)\| \, d_s \sigma(s, \tau),$$

then the problem (10), (2) has one and only one solution.

References

1. N. V. AZBELEV, V. P. MAKSIMOV, AND L. F. RAKHMATULLINA, Introduction to the theory of functional-differential equations. (Russian) *Nauka, Moscow*, 1991.

2. E. BRAVYI, R. HAKL, AND A. LOMTATIDZE, On Cauchy problem for first order nonlinear functional differential equations of non-Volterra's type. *Czechoslovak Math. J.* **52(127)**(2002), No. 4, 673–690.

3. E. BRAVYI, R. HAKL, AND A. LOMTATIDZE, Optimal conditions for unique solvability of the Cauchy problem for first order linear functional differential equations. *Czechoslovak Math. J.* **52(127)**(2002), No. 3, 513–530.

4. R. HAKL, A. LOMTATIDZE, AND J. ŠREMR, Some boundary value problems for first order scalar functional differential equations. *Masaryk University*, *Brno*, 2002.

5. I. KIGURADZE, On the Cauchy problem for singular systems of ordinary differential equations. (Russian) *Differentsial'nye Uravneniya* 1(1965), No. 10, 1271–1291; English transl.: *Differ. Equations* 1(1965), 995–1011.

6. I. KIGURADZE, Some singular boundary value problems for ordinary differential equations. (Russian) *Tbilisi University Press, Tbilisi*, 1975.

7. I. KIGURADZE, Initial and boundary value problems for systems of ordinary differential equations, I. (Russian) *Metsniereba, Tbilisi*, 1997.

8. I. KIGURADZE, On the singular Cauchy problem for systems of linear ordinary differential equations. (Russian) *Differentsial'nye Uravneniya* **32**(1996), No. 2, 215–223; English transl.: *Differ. Equations* **32**(1996), No. 2, 173–180.

9. I. KIGURADZE AND B. PŮŽA, On a certain singular boundary value problem for linear differential equations with deviating arguments. *Czechoslovak Math. J.* **47**(1997), No. 2, 233–244.

10. I. KIGURADZE AND B. PŮŽA, Boundary value problems for systems of linear functional differential equations. *Masaryk University, Brno*, 2003.

11. I. KIGURADZE AND Z. SOKHADZE, On the Cauchy problem for singular evolution functional differential equations. (Russian) *Differentsial'nye Uravneniya* **33**(1997), No. 1, 48–59; English transl.: *Differ. Equations* **33**(1997), No. 1, 47–58.

12. I. KIGURADZE AND Z. SOKHADZE, On singular functional differential inequalities. *Georgian Math. J.* 4(1997), No. 3, 259–278.

13. I. KIGURADZE AND Z. SOKHADZE, On the global solvability of the Cauchy problem for singular functional differential equations. *Georgian Math. J.* 4(1997), No. 4, 355–372.

14. I. KIGURADZE AND Z. SOKHADZE, On the structure of the set of solutions of the weighted Cauchy problem for evolution singular functional differential equations. *Fasc. Math.*, 1998, No. 28, 71–92.

15. A. CHECHIK, Investigation of systems of ordinary differential equations with singularity. (Russian) *Trudy Moskovskogo mat. o-va* 8(1959), 155–198.

Author's address:

Chair of Computational Mathematics and Informatics

Faculty of Mechanics and Mathematics

I. Javakhishvili Tbilisi State University

2, University St., Tbilisi 0143 Georgia