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Abstract. The main purpose of this paper is to give sufficient conditions
which guarantee the instability of the trivial solution of a nonlinear vector
differential equation as follows:

X(5) + Ψ(Ẋ, Ẍ)
...
X + Φ(X, Ẋ, Ẍ) + Θ(Ẋ) + F (X) = 0.
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1. Introduction

It is well-known that the stability and instability behaviors of solutions
of certain differential equations are very important problems in the theory
and applications of differential equations. It should be noted that the true
creator of the stability theory is A. M. Lyapunov [11] at the close of the
19th century. The technique discovered by him is called Lyapunov’s second
method or the direct method. This technique can be applied directly to
the differential equation under investigation, without any knowledge of the
solutions, provided the person using the method is clever enough to con-
struct the right auxiliary functions. Up to now, many results have been
obtained about the qualitative behavior of solutions of higher order nonlin-
ear differential equations by using the method. One may refer to [13] for
a survey, as well as [1-10, 14-24] and the references cited therein for some
publications on the subject. However, according to our observations in the
relevant literature, the results about instability of solutions of fifth order
nonlinear differential equations are relatively scarce. In this direction, in
the case n = 1, Ezeilo ([3], [4], [5]) investigated the instability of the trivial
solution x = 0 of the following nonlinear differential equations of the fifth
order:

x(5) + a1x
(4) + a2

...
x + a3ẍ+ a4ẋ+ f(x) = 0,

x(5) + a1x
(4) + a2

...
x + h(ẋ)ẍ + g(x)ẋ+ f(x) = 0,

x(5) + ψ(ẍ)
...
x + φ(ẍ) + θ(ẋ) + f(x) = 0

and

x(5) + a1x
(4) + a2

...
x + g(ẋ)ẍ+ h(x, ẋ, ẍ,

...
x , x(4))ẋ+ f(x) = 0.

In [21], Tiryaki also studied the instability of the trivial solution x = 0
of the nonlinear differential equation

x(5) + a1x
(4) + k(x, ẋ, ẍ,

...
x , x(4))

...
x + g(ẋ)ẍ+ h(x, ẋ, ẍ,

...
x , x(4))ẋ+ f(x) = 0.

Furthermore, recently, Sadek [15] discussed the subject for the fifth order
nonlinear vector differential equations

X(5) + Ψ(Ẍ)
...
X + Φ(Ẍ) + Θ(Ẋ) + F (X) = 0

and

X(5) +AX(4) +B
...
X +H(Ẋ)Ẍ +G(X)Ẋ + F (X) = 0,

and Tunç [25] also gave sufficient conditions which guarantee that the trivial
solution of the vector differential equations of the form

X(5) +AX(4) + Ψ(X, Ẋ, Ẍ,
...
X,X

(4))
...
X+

+G(Ẋ)Ẍ +H(X, Ẋ, Ẍ,
...
X,X

(4))Ẋ + F (X) = 0

is unstable.
The motivation for the present study has come from the papers just men-

tioned above. Our aim is to acquire a similar result for a certain nonlinear
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vector differential equation of fifth order, which is different from those just
mentioned above. Namely, in the present paper, we consider the vector
differential equations of the form

X(5) + Ψ(Ẋ, Ẍ)
...
X + Φ(X, Ẋ, Ẍ) + Θ(Ẋ) + F (X) = 0 (1.1)

in the real Euclidean space <n (with the usual norm denoted in what fol-
lows by ‖·‖), where X ∈ <n, Ψ is a continuous n × n -symmetric matrix
depending, in each case, on the arguments shown, Φ : <n ×<n ×<n → <n,
Θ : <n → <n, F : <n → <n and Θ(0) = F (0) = 0. It will also be supposed
that the functions Φ, Θ and F are continuous.

The equation (1.1) represents a system of real fifth-order differential equa-
tions of the form

x
(5)
i +

n
∑

k=1

ψik(ẋ1, ẋ2, . . . , ẋn; ẍ1, ẍ2, . . . , ẍn)
...
xk+

+φi(x1, x2, . . . , xn; ẋ1, ẋ2, . . . , ẋn; ẍ1, ẍ2, . . . , ẍn)+

+θi(ẋ1, ẋ2, . . . , ẋn) + fi(x1, x2, . . . , xn) = 0 (i = 1, 2, . . . , n).

We consider through in what follows, in place of (1.1), the equivalent
differential system:

Ẋ = Y, Ẏ = Z, Ż = W, Ẇ = U,

U̇ = −Ψ(Y, Z)W − Φ(X,Y, Z)Z −Θ(Y )− F (X)
(1.2)

obtained as usual by setting Ẋ = Y , Ẍ = Z,
...
X = W , X(4) = U in (1.1).

The Jacobian matrices J (Ψ(Y, Z)Z |Y ), J (Ψ(Y, Z) |Z ), JΘ(Y ) and
JF (X) are given by

J (Ψ(Y, Z)Z |Y ) =

(

∂

∂yj

n
∑

k=1

ψikzk

)

=

(

n
∑

k=1

∂ψik

∂yj

zk

)

,

J (Ψ(Y, Z) |Z ) =

(

∂

∂zj

n
∑

k=1

ψik

)

=

(

n
∑

k=1

∂ψik

∂zj

)

,

JΘ(Y ) =

(

∂θi

∂yj

)

, JF (X) =

(

∂fi

∂xj

)

,

where (x1, x2, . . . , xn), (y1, y2, . . . , yn), (z1, z2, . . . , zn), (ψik), (θ1, θ2, . . . , θn)
and (f1, f2, . . . , fn) are the components of X , Y , Z, Ψ, Θ and F , respec-
tively. Moreover, it will also be assumed, as basic throughout what fol-
lows, that the Jacobian matrices J (Ψ(Y, Z) |Y ), J (Ψ(Y, Z) |Z ), JΘ(Y ) and
JF (X) exist and are continuous and symmetric.

The symbol 〈X,Y 〉 corresponding to any pair X , Y in <n stands for the

usual scalar product
n
∑

i=1

xiyi, and λi(A) (i = 1, 2, . . . , n) are the eigenvalues

of the n× n-matrix A.
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Now, we consider the linear constant coefficient fifth order differential
equation

x(5) + a1x
(4) + a2

...
x + a3ẍ+ a4ẋ+ a5x = 0, (1.3)

where a1, a2, . . . , a5 are some real constants. It is well-known from the
qualitative behavior of solutions of linear differential equations that the
trivial solution of (1.3) is unstable if and only if the associated auxiliary
equation

ψ(λ) ≡ λ5 + a1λ
4 + a2λ

3 + a3λ
2 + a4λ+ a5 = 0 (1.4)

has at least one root with a positive real part. The existence of such a root
naturally depends on (though not always all of) the coefficients a1, a2, . . . , a5

in (1.4). For example, if

a1 < 0 (1.5)

then it follows from a consideration of the fact that the sum of the roots
of (1.4) equals to (−a1) and that at least one root of (1.4) has a positive
real part for arbitrary values of a2, . . . , a5. An analogous consideration,
combined with the fact that the product of the roots (1.4) equals to (-a5)
will verify that at least one root of (1.4) has a positive real part if

a1 = 0 and a5 6= 0 (1.6)

for arbitrary a2, a3 and a4. The condition a1 = 0 here in (1.6) is, however,
superfluous when

a5 < 0, (1.7)

for then ψ(0) = a5 < 0 and ψ(R) > 0 if R > 0 is sufficiently large thus
showing that there is a positive real root of (1.4) subject to (1.7) and for
arbitrary a1, a2, a3 and a4.

A root with a positive real part also exists for certain equations (1.4)
with a5 positive and sufficiently large. To see this easily, we refer to the
well-known Routh–Hurwitz criteria which stipulate that each root of (1.4)
has a negative real part. Namely, a necessary and sufficient condition for
the negativity of the real parts of all the roots of the polynomial equation
(1.4) is the positivity of all the principal minors of the Hurwitz matrix

H5 =













a1 1 0 0 0
a3 a2 a1 1 0
a5 a4 a3 a2 a1

0 0 a5 a4 a3

0 0 0 0 a5













.

It should be noted that the principal diagonal of the Hurwitz matrix H5

exhibits the coefficients of the polynomial equation (1.4) in the order of
their numbers from a1 to a5. The fourth order minor, say ∆4, concerned
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here is given by the determinant

∆4 =

∣

∣

∣

∣

∣

∣

∣

∣

a1 1 0 0
a3 a2 a1 1
a5 a4 a3 a2

0 0 a5 a4

∣

∣

∣

∣

∣

∣

∣

∣

,

that is, on multiplying out,

∆4 = −a2
5 + a5(2a1a4 + a2a3 − a1a

2
2) + a4(a1a2a3 − a2

3 − a2
1a4). (1.8)

It is thus clear, in particular, that if ∆4 < 0, as would indeed be the case
from (1.8) if

a5 ≥ R0 > 0 (1.9)

with R0 = R0(a1, a2, a3, a4) sufficiently large, then at least one root of (1.4)
has a non-negative real part subject to (1.9).

2. Main Result

We establish the following

Theorem 2.1. In addition to the basic assumptions imposed on Ψ, Φ,

Θ and F , suppose that the following conditions are satisfied:

(i) The matrices JΘ(Y ), JF (X) are symmetric and λi(JF (X)) < 0 for

all X ∈ <n (i = 1, 2, . . . , n);

(ii)
n
∑

i=1

ziφi(X,Y, Z) ≥ 0 for all X, Y ,Z ∈ <n, where Φ(X,Y, Z) =

(φ1(X,Y, Z), . . . , φn(X,Y, Z));
(iii) The matrices Ψ(Y, Z) and J (Ψ(Y, Z)Z |Y ) are symmetric and

J (Ψ(Y, Z)Z |Y ) is negative-definite for all Y ,Z ∈ <n,

or

(i)′ The matrices JΘ(Y ), JF (X) are symmetric and λi(JF (X)) > 0 for

all X ∈ <n (i = 1, 2, . . . , n);

(ii)′

n
∑

i=1

ziφi(X,Y, Z) ≤ 0 for all X, Y , Z ∈ <n, where Φ(X,Y, Z) =

(φ1(X,Y, Z), . . . , φn(X,Y, Z));
(iii)′ The matrices Ψ(Y, Z) and J (Ψ(Y, Z)Z |Y ) are symmetric and

J (Ψ(Y, Z)Z |Y ) is positive-definite for all Y ,Z ∈ <n.

Then the trivial solution X = 0 of (1.2) is unstable.

Remark 2.2. It should be noted that, for the case n = 1, the result of
Ezeilo [3; Theorem 3] is a special case of our result. The result established
here includes and improves the result established by Sadek [15; Theorem 3].
The following lemma is important for the proof of the theorem.

Lemma 2.3. Let A be a real symmetric n× n-matrix and

a′ ≥ λi(A) ≥ a > 0 (i = 1, 2, . . . , n),
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where a′, a are constants. Then

a′ 〈X,X〉 ≥ 〈AX,X〉 ≥ a 〈X,X〉

and

a′2 〈X,X〉 ≥ 〈AX,AX〉 ≥ a2 〈X,X〉 .

Proof. See [12]. �

Proof of the theorem. The main tool in the proof of the theorem is the
Lyapunov function V0 = V0(X,Y, Z,W,U) defined as follows:

V0 =
1

2
〈W,W 〉−〈Y, F (X)〉−〈Z,U〉−

1
∫

0

〈Θ(σY ), Y 〉 dσ−

−

1
∫

0

〈σΨ(Y, σZ)Z,Z〉 dσ. (2.1)

Clearly, it follows from (2.1) that V0(0, 0, 0, 0, 0) = 0. Obviously, it also
follows from the assumptions of the theorem, the above lemma and (2.1)
that

V0(0, 0, 0, ε, 0) =
1

2
〈ε, ε〉 =

1

2
‖ε‖2

> 0

for all arbitrary ε 6= 0, ε ∈ <n. Thus, in every neighborhood of (0, 0, 0, 0, 0)
there exists a point (ξ, η, ζ, µ, τ) such that V0(ξ, η, ζ, µ, τ) > 0 for all ξ, η, ζ,
µ, τ in <n. Next, let (X,Y, Z,W,U) = (X(t), Y (t), Z(t),W (t), U(t)) be an
arbitrary solution of the system (1.2). Then from (2.1) and (1.2) we have
by an elementary differentiation that

V̇0 =
d

dt
V0(X,Y, Z,W,U) = 〈Z,Φ(X,Y, Z)〉−〈Y, JF (X)Y 〉+

+ 〈Ψ(Y, Z)W,Z〉+ 〈Θ(Y ), Z〉−

−
d

dt

1
∫

0

〈Θ(σY ), Y 〉 dσ −
d

dt

1
∫

0

〈σΨ(Y, σZ)Z,Z〉 dσ. (2.2)

But

d

dt

1
∫

0

〈σΨ(Y, σZ)Z,Z〉 dσ=

1
∫

0

〈σΨ(Y, σZ)Z,W 〉 dσ+

1
∫

0

〈σΨ(Y, σZ)W,Z〉 dσ+

+

1
∫

0

〈

σ2J(Ψ(Y, σZ) |Z)WZ ,Z
〉

dσ +

1
∫

0

〈σJ(Ψ(Y, σZ)Z |Y )Z ,Z〉 dσ =

=

1
∫

0

〈σΨ(Y, σZ)W,Z〉 dσ +

1
∫

0

σ
∂

∂σ
〈σΨ(Y, σZ)W,Z〉 dσ+
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+

1
∫

0

〈σJ(Ψ(Y, σZ)Z |Y )Z ,Z〉 dσ =

= σ2 〈Ψ(Y, σZ)W,Z)〉
∣

∣

1
0 +

1
∫

0

〈σJ(Ψ(Y, σZ)Z |Y )Z ,Z〉 dσ =

= 〈Ψ(Y, Z)W,Z〉+

1
∫

0

〈σJ(Ψ(Y, σZ)Z |Y )Z ,Z〉 dσ (2.3)

and

d

dt

1
∫

0

〈Θ(σY ), Y 〉 dσ =

1
∫

0

σ 〈JΘ(σY )Z, Y 〉dσ +

1
∫

0

〈Θ(σY ), Z〉 dσ =

=

1
∫

0

σ
∂

∂σ
〈Θ(σY ), Z〉 dσ +

1
∫

0

〈Θ(σY ), Z〉 dσ =

= σ 〈Θ(σY ), Z〉
∣

∣

1
0 = 〈Θ(Y ), Z〉 . (2.4)

Substituting the estimates (2.3) and (2.4) into (2.2), we obtain

V̇0 = 〈Z,Φ(X,Y, Z)〉 − 〈Y, JF (X)Y 〉 −

1
∫

0

〈σJ(Ψ(Y, σZ)Z |Y )Z ,Z〉 dσ.

Hence, the assumptions (i), (ii) and (iii) of the theorem and the lemma

show that V̇0(t) ≥ 0 for all t ≥ 0, that is, V̇0 is positive semi-definite.

Furthermore, V̇0 = 0 (t ≥ 0) necessarily implies (only) that Y = 0 for all

t ≥ 0, and therefore also that X = ξ (a constant vector), Z = Ẏ = 0,

W = Ÿ = 0, U =
...
Y = 0, for all t ≥ 0. Substituting the estimates

X = ξ, Y = Z = W = U = 0

into (1.2), we obtain that F (ξ) = 0 which necessarily implies that ξ = 0
because of F (0) = 0. Hence

X = Y = Z = W = U = 0 for all t ≥ 0.

Therefore, the function V0 satisfies all the conditions of the Krasovskǐı crite-
rion [8] if the conditions of the theorem hold. Thus, the basic properties of
the function V0(X,Y, Z, W,U), which are proved just above verify that the
zero solution of the system (1.2) is unstable. (See Theorem 1.15 in Reissig
[13] and Krasovskǐı [8]). The system of equations (1.2) is equivalent to the
differential equation (1.1). Consequently, the original statement of the first
part of the theorem follows.

Similarly, for the proof of the second part of the theorem, we consider
the Lyapunov function V1 =V1(X,Y, Z,W,U) defined as V1 =−V0, where V0

is defined by (2.1). The remaining proof of the second part of the theorem
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follows the lines indicated in the proof of the first part just shown above,
except for some minor modifications. We will omit the details. (See also
the result of Ezeilo [3; Theorem 3]).

Example 2.4. As a special case of (1.1) (see Sadek [15]), if we take for
n = 3

Ψ =





z1 1 2
1 z2 3
2 3 z3



 , Φ =





z3
1 + z5

1

z3
2 + z5

2

z3
3 + z5

3



 ,

Θ =





y2
1

y2
2

y2
3



 , F =





−x1 − x3
1

−x2 − x3
2

−x3 − x3
3



 ,

then we will have

JΘ(Y ) =





2y1 0 0
0 2y2 0
0 0 2y3



 ,

JF (X) =





−1− 3x2
1 0 0

0 −1− 3x2
2 0

0 0 −1− 3x2
3





and

λ1(JF ) = −1− 3x2
1, λ2(JF ) = −1− 3x2

2, λ3(JF ) = −1− 3x2
3.

Hence, JF (X) < 0 for all x1, x2, x3, and

3
∑

i=1

ziΦi(Z) = z4
1 + z6

1 + z4
2 + z6

2 + z4
3 + z6

3 for all z1, z2, z3.

Thus all the conditions of the first part of the theorem are satisfied.
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