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FLUID-SOLID INTERACTION:
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Abstract. The potential method is developed for the three-dimensional
interface problems of the theory of acoustic scattering by an elastic obstacle
which are also known as fluid-solid (fluid-structure) interaction problems.
It is assumed that the obstacle has a Lipschitz boundary. The sought for
field functions belong to spaces having L2 integrable nontangential maximal
functions on the interface and the transmission conditions are understood
in the sense of nontangential convergence almost everywhere. The unique-
ness and existence questions are investigated. The solutions are represented
by potential type integrals. The solvability of the direct problem is shown
for arbitrary wave numbers and for arbitrary incident wave functions. It is
established that the scalar acoustic (pressure) field in the exterior domain
is defined uniquely, while the elastic (displacement) vector field in the in-
terior domain is defined modulo Jones modes, in general. On the basis of
the results obtained it is proved that the inverse fluid-structure interaction
problem admits at most one solution.
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1. Introduction

Direct and inverse problems related to the interaction between vector
fields of different dimension have received much attention in the mathemat-
ical and engineering scientific literature and have been intensively investi-
gated for the past years. They arise in many physical and mechanical models
describing the interaction of two different media where the whole process is
characterized by a vector-function of dimension k in one medium and by a
vector-function of dimension n in another one (for example, fluid-structure
interaction where a streamlined body is an elastic obstacle, scattering of
acoustic and electromagnetic waves by an elastic obstacle, interaction be-
tween an elastic body and seismic waves, etc.).

Quite many authors have considered and studied in detail the direct
problems of the interaction between an elastic isotropic body which occu-
pies a bounded region Ω+ (where a three-dimensional elastic vector field is
to be defined) and some isotropic medium (fluid say) which occupies the
unbounded exterior region, the complement of Ω+ (where a scalar field is
to be defined). The time-harmonic dependent unknown vector and scalar
fields are coupled by some kinematic and dynamic conditions on the bound-
ary ∂Ω+. Main attention has been given to the problems determining the
manner in which an incoming acoustic wave is scattered by an elastic body
immersed in a compressible inviscid fluid. An exhaustive information in this
direction concerning theoretical and numerical results can be found in [3],
[4], [5], [6], [7], [21], [12], [13], [14], [17], [19], [20], [29], [40].

The case of anisotropic obstacle have been treated in [37], [22], [23], [36].
In [36] the corresponding inverse problem is also considered. This kind of
problems arise in detecting and identifying submerged objects.

In all the above papers the boundary of the region occupied by an elastic
obstacle is assumed to be sufficiently smooth and the transmission conditions
are considered either in the classical, or in the usual Sobolev or generalized
functional trace sense (in the case of weak setting).

In the present paper our main goal is to generalize the results of the
above cited works to Lipschitz domains when the transmission conditions
are understood in the sense of nontangential convergence almost everywhere.

Following the approach for the case of smooth interface, we propose as
solution an ansatz of combinations of single and double layer potentials.
By the special representation formulas of the sought for acoustic and elas-
tic fields we reduce equivalently the original transmission problem to the
system of integral equations. In the case of Lipschitz interface, however,
the lack of smoothness introduce essential difficulties in the analysis of the
integral equations obtained. These are overcome through the use of har-
monic analysis technique together with a careful study of the properties of
the boundary integral operators generated by the single and double layer
acoustic and elastic potentials. We essentially employ the results obtained
in papers [43], [11], [41], [31], [38], [32], [33], [1], [2].



94 D. Natroshvili, G. Sadunishvili, I. Sigua, Z. Tediashvili

In particular, by the potential method we have derived the necessary and
sufficient conditions of solvability of the original transmission problem and
shown that the direct scattering problems are solvable for arbitrary values
of the frequency parameter and for arbitrary incident wave functions. It is
established that the scalar radiating acoustic (pressure) field in the exterior
domain is defined uniquely, while the elastic (displacement) vector field in
the interior domain is defined modulo Jones modes, in general.

On the basis of the results obtained and applying the approach developed
in [9], [27], and [36] we have proved the uniqueness of solution to the inverse
fluid-structure interaction (scattering) problem.

2. Mathematical Formulation of the Interface Problem.

Properties of Potentials

2.1. Elastic field. Let Ω+ ⊂ R3 be a bounded domain (diam Ω+ < +∞)

with a connected boundary S = ∂Ω+ and Ω− = R3\Ω+, Ω+ = Ω+ ∪ S.
Throughout the paper we assume that the boundary S is a Lipschitz

surface (if not otherwise stated).

The region Ω+ is supposed to be filled up by a homogeneous isotropic

medium with the elastic coefficients (Lamé constants) λ and µ, and the
density %1 = const > 0.

The homogeneous system of steady state oscillation equations of the lin-
ear elasticity reads as follows (see, e.g., [28])

A(∂, ω)u(x) := A(∂)u(x) + %1 ω
2 u(x) =

= µ∆u+ (λ+ µ) graddiv u+ %1 ω
2 u(x) = 0, (2.1)

where u = (u1, u2, u3)
> is the complex-valued displacement vector (ampli-

tude), ω > 0 is the oscillation (frequency) parameter,

A(∂, ω) := A(∂) + %1 ω
2 I3, A(∂) := [Akj(∂) ]3×3,

Akj(∂) = µ δkj ∆ + (λ+ µ) ∂k ∂j , ∂ = (∂1, ∂2, ∂3), ∂j =
∂

∂xj
;

here and in what follows I3 stands for the unit 3 × 3 matrix, δkp is the
Kronecker delta, ∆ = ∂2

1 + ∂2
2 + ∂2

3 is the Laplace operator, the superscript
> denotes transposition.

The stress tensor {σkj} and the strain tensor {εkj} are related by Hook’s
law

σkj = δkj λ (ε11 + ε22 + ε33) + 2µ εkj , εkj = 2−1 (∂k uj + ∂j uk).

As usual, the quadratic form corresponding to the density of potential
energy is assumed to be positive definite in the symmetric real variables
εkj = εjk (see, e.g., [28], [15])

E(u, u) = σkj εkj ≥ δ1 εkj εkj , δ1 = const > 0, (2.2)
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implying the inequalities µ > 0, 3λ+ 2µ > 0. Clearly, we also have

E(u, u ) = σkj εkj ≥ δ1 [ ε′kj ε
′
kj + ε′′kj ε

′′
kj ] , (2.3)

where an over-bar denotes complex conjugation, and where εkj = ε′kj + i ε′′kj

are the entries of the complex strain tensor corresponding to the vector
u = u′+ i u′′, i =

√
−1. Here and in what follows we employ the summation

over repeated indices from 1 to 3, unless otherwise stated.
The inequality (2.2) implies the positive definiteness of the matrix A(ξ)

for ξ ∈ R3 \ {0}
A(ξ)ζ · ζ = Akj(ξ) ζj ζk ≥ δ2 |ξ|2 |ζ|2, δ2 = const > 0,

where ζ is an arbitrary three-dimensional complex vector, ζ ∈ C3. Through-
out the paper a · b =

∑m
k=1 ak bk denotes the scalar product of two vectors

in Cm.
Further we introduce the stress operator

T (∂, n) = [Tkj(∂, n) ]3×3, Tkj(∂, n) = λnk ∂j + µnj ∂k + µ δkj ∂n ,

where n = (n1, n2, n3) is a unit vector and ∂n denotes the directional deriv-
ative along the vector n.

The k-th component of the stress vector acting on a surface element with
the unit normal vector n is calculated by the formula

[T (∂, n)u ]k = σkj nj =
[
2µ∂nu+ λn div u+ µ [n× curlu ]

]

k
, (2.4)

where [ · × · ] denotes the cross product of two vectors.
Note that throughout the paper we will employ the notation L2, W

s
2 (s ≥

0), and Hr
2 (r ∈ R) for the usual Lebesgue, Sobolev-Slobodetski, and Bessel

potential function spaces respectively. Recall that L2 = W 0
2 = H0

2 and
W s

2 = Hs
2 for s ≥ 0, and for a Lipschitz surface S the space Hr

2 (S) is
defined correctly only for −1 ≤ r ≤ 1. By ||u||X we denote the norm of the
element u in the space X .

2.2. Scalar field. We assume that the exterior, simply connected
domain Ω− is filled up by a homogeneous anisotropic medium (compressible
viscid fluid say) with the constant density %2. Further, let some physical
process (the propagation of acoustic waves say) in Ω− be described by a
complex-valued scalar function (scalar pressure field) w(x) being a solution
of the homogeneous ”wave equation” (generalized Helmholtz equation)

a(∂, ω)w := a(∂)w + %2 ω
2w = 0 , (2.5)

where a(∂) = akj ∂k ∂j , the real constants akj = ajk define a positive definite
matrix ã = [ akj ]3×3, i.e.,

ã ζ · ζ = akj ζj ζk ≥ δ3 |ζ|2, δ3 = const > 0, (2.6)

for arbitrary ζ ∈ C3.
Denote by Sω the characteristic surface (ellipsoid) given by the equation

ã ξ · ξ − %2 ω
2 = 0, ξ ∈ R

3.
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For an arbitrary vector η ∈ R3 with |η| = 1 there exists only one point
ξ(η) ∈ Sω such that the outward unit normal vector n(ξ(η)) to Sω at the
point ξ(η) has the same direction as η, i.e., n(ξ(η)) = η. Note that ξ(−η) =
−ξ(η) ∈ Sω and n(−ξ(η)) = −η.

It can be easily verified that

ξ(η) = ω
√
%2

(
ã−1 η · η

)−1/2
ã−1 η, (2.7)

where ã−1 is the matrix inverse to ã.
Now we are in the position to define the class Som(Ω−) of complex-valued

functions satisfying the generalized Sommerfeld type radiation conditions
(see, e.g., [42]).

A function w belongs to Som(Ω−) if w ∈ C1(Ω−) and for sufficiently
large |x|
w(x) = O (|x|−1), ∂kw(x) − i ξk(η)w(x) = O (|x|−2), k = 1, 2, 3, (2.8)

where ξ(η) ∈ Sω corresponds to the vector η = x/|x| (i.e., ξ(η) is given by
(2.7) with η = x̂ := x/|x|).

The conditions (2.8) are equivalent to the classical Sommerfeld radiation
conditions for the Helmholtz equation if the a(∂) is the Laplace operator
(see, e.g., [42], [8]). In the sequel, elements of the class Som(Ω−) will also
be referred to as radiating functions.

We have the following analogue of the classical Rellich-Vekua lemma (for
details see [22]).

Lemma 2.1. Let w ∈ Som(Ω−) be a solution of (2.5) in Ω− and let

lim
R→+∞

=
{ ∫

ΣR

[ Λ(∂x, n(x))w(x) ] [w(x) ] dΣR

}
= 0,

where ΣR is the sphere centered at the origin and radius R, and Λ(∂, n)
denotes the co-normal differentiation

Λ(∂x, n(x)) := akj nk(x) ∂j .

Then w = 0 in Ω−.

Note that, if w is a solution of the homogeneous equation (2.5), then w
is an analytic function of the real variable x in the domain Ω−. Moreover,
if, in addition, w ∈ C1(Ω−) ∩ Som(Ω−) and the boundary surface S =
∂Ω± is sufficiently smooth (C1, α smooth say), then the following integral
representation formula holds (cf. [42], [23])

∫

S

γ(x−y, ω)[Λ(∂, n)w(y)]−dSy−
∫

S

[Λ(∂y, n(y)) γ(y−x, ω)] [w(y)]−dSy =

=

{
w(x) for x ∈ Ω−,

0 for x ∈ Ω+,
(2.9)
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where

γ(x, ω) = −exp{i ω√%2 (ã−1x · x)1/2}
4π |ã|1/2 (ã−1x · x)1/2

, |ã| = det ã, (2.10)

is a radiating fundamental solution to the equation (2.5) (see, e.g., Lemma
1.1 in [23]), the symbols [ · ]± denote limits on S from Ω±.

Here and throughout the paper n(y) stands for the outward unit normal

vector to S at the point y ∈ S.
For sufficiently large |x| we have the following asymptotic representation

γ(x− y, ω) = c(ξ)
exp{i ξ · (x − y)}

|x| +O (|x|−2),

c(ξ) = − |ã ξ|
4πω (%2|ã|)1/2

,

(2.11)

where y varies in a bounded subset of R3 and ξ = ξ(η) ∈ Sω corresponds to
the direction η = x/|x|; the asymptotic formula (2.11) can be differentiated
any times with respect to x and y (see [23]).

From (2.9) with the help of (2.11) we get the asymptotic representation
(for sufficiently large |x|) of a radiating solution to the equation (2.5)

w(x) = w∞(ξ)
exp{i ξ · x}

|x| +O (|x|−2), (2.12)

where

w∞(ξ) = c(ξ)

∫

S

e−i ξ · y
(
[Λ(∂, n)w(y)]− + i (ã ξ · n(y)) [w(y)]−

)
dSy

with ξ and c(ξ) as in (2.11); w∞(ξ) is the so-called far-field pattern of the
radiating solution w (cf. [9]).

2.3. Formulation of direct and inverse interaction problems. We
recall that any Lipschitz surface S satisfies the uniform cone condition and
vice versa [18], i.e., each point x ∈ S is the vertex of two truncated cones
γ(±)(x) with common axis that are congruent to a fixed cone

{x = (x1, x2, x3) ∈ R
3 : 0≤x3≤h,

√
x2

1 + x2
2≤c∗(h−x3)}, c∗ > 0, h > 0,

and such that all points of these cones except x lie in the respective do-
mains γ(±)(x) ⊂ Ω±. Usually, these cones γ(±)(x) are called nontangential

approach regions and are subjected to some regularity conditions described,
e.g., in [43]. Note that the exterior normal vector n(x) exists almost every-
where on S and belongs to the space L∞(S).

In what follows the boundary values [ · ]± on the surface S are taken in
the sense of point-wise nontangential convergence at almost every point with
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respect to the surface measure (if not otherwise stated). In particular,

[u(x)]± = lim
γ(±)(x)3y→x∈S

u(y),

[w(x)]± = lim
γ(±)(x)3y→x∈S

w(y),

[T (∂x, n(x))u(x)]± = lim
γ(±)(x)3y→x∈S

T (∂y, n(x))u(y),

[Λ(∂x, n(x))w(x)]± = lim
γ(±)(x)3y→x∈S

Λ(∂y, n(x))w(y),

for almost all x ∈ S.
Further, we denote by M±(v) the nontangential maximal functions on S

corresponding to a function v

M±(v)(x) = sup
y∈γ(±)(x)

|v(y)| for almost all x ∈ S

(for details see [43], [11]).

Remark 2.2. Denote by Ha, ω(Ω±) the subspace of C2(Ω±) consisting of
functions w that satisfy the homogeneous equation (2.5) in Ω± and such
that the nontangential boundary values [w]± and [Λ(∂, n)w]± exist almost
everywhere on S, and the maximal nontangential functions M±(w) and
M±(∂j w) (j = 1, 2, 3) are in L2(S). Then automatically, [w]± ∈ H1

2 (S),

[Λ(∂, n)w]± ∈ L2(S), and w ∈ H
3
2
2 (Ω+) and w ∈ H

3
2

2, loc(Ω
−).

Analogously, let HA, ω(Ω±) be the subspace of [C2(Ω±)]3 consisting of
vectors u that satisfy the homogeneous equation (2) in Ω± and such that
the nontangential boundary values [u]± and [T (∂, n)u]± exist almost ev-
erywhere on S, and the maximal nontangential functions M±(uk) and
M±(∂j uk) (k, j=1, 2, 3) are in L2(S). Then automatically, [u]± ∈ [H1

2 (S)]3,

[T (∂, n)u]± =! ∈ [L2(S)]3, and u ∈ [H
3
2
2 (Ω+)]3 and u ∈ [H

3
2

2, loc(Ω
−)]3.

Note that for solutions w and u of the homogeneous equations (2.5) and
(2), respectively, the following equivalences hold

M+(w) ∈ L2(S) ⇔ w ∈ H
1
2
2 (Ω+),

M−(w) ∈ L2(S) ⇔ w ∈ H
1
2

2, loc(Ω
−),

M+(u) ∈ [L2(S)]3 ⇔ w ∈ [H
1
2
2 (Ω+)]3,

M−(u) ∈ [L2(S)]3 ⇔ w ∈ [H
1
2

2, loc(Ω
−)]3,

M+(∂j w) ∈ L2(S) ⇔ w ∈ H
3
2
2 (Ω+),

M−(∂j w) ∈ L2(S) ⇔ w ∈ H
3
2

2, loc(Ω
−),

M+(∂ju) ∈ [L2(S)]3 ⇔ w ∈ [H
3
2
2 (Ω+)]3,

M−(∂ju) ∈ [L2(S)]3 ⇔ w ∈ [H
3
2

2, loc(Ω
−)]3,

where j = 1, 2, 3 (for details see [11], [32], [33], [1], [2]).
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Note that for functions of the class Ha, ω(Ω+) (respect. HA, ω(Ω±)) there
hold standard Green’s formulas where the boundary limiting values on the
boundary S are understood in the above described point-wise nontangential
convergence sense.

First we set the direct fluid-structure interaction problem.
Let a total wave field in Ω− is represented as a sum of incident and

scattered fields

wtot(x) = winc(x) + wsc(x),

where the incident field winc is taken in the form of a plane wave

winc(x) = winc(x; d) = exp {i x · d}, x ∈ R
3, d ∈ Sω, (2.13)

while the scattered field (scattered acoustic pressure) wsc(x) = wsc(x; d)
is a radiating solution of equation (2.5); here d = (d1, d2, d3) denotes the
direction of propagation of the plane wave.

Problem P (dir). Find a vector u = (u1, u2, u3)
> ∈ HA, ω(Ω+) and a

radiating function wsc ∈ Ha, ω(Ω−) ∩ Som(Ω−), satisfying the following
(kinematic and dynamic) coupling conditions in the sense of point-wise non-
tangential convergence at almost every point on S:

[u(x) · n(x)]+ = b1[Λ(∂, n)wtot(x)]−=b1 [Λ(∂, n)wsc(x)]− + f0(x), (2.14)

[T (∂, n)u(x)]+ = b2 [wtot(x)]− n(x) = b2 [wsc(x)]− n(x) + f(x), (2.15)

where T (∂, n)u is the stress vector given by formula (2.4), Λ(∂, n)w =
apq np ∂qw is the co-normal derivative, n(x) denotes the unit outward normal
vector to S at the point x ∈ S,

b1 = [%2ω
2]−1, b2 = −1. (2.16)

Remark that all the arguments below are valid if b1 and b2 are given complex
constants satisfying the conditions b1 b2 6= 0 and = [b1 b2] = 0.

Here the boundary scalar function f0 and the vector-valued function f
are defined as follows:

f0(x)=f0(x; d)=b1 Λ(∂, n)winc(x; d), (2.17)

f(x)=(f1(x), f2(x), f3(x))
>=f(x; d)=b2 w

inc(x; d)n(x). (2.18)

As it follows from the above statement, in the direct problem the domains
Ω+ and Ω− are fixed and we look for the displacement vector u and the ra-
diating scalar function wsc (scattered field). The inverse fluid-structure
acoustic interaction problem consists in finding the surface S (i.e., the scat-
terer Ω+) if the corresponding far-field pattern wsc

∞(·; d) is known for several
or all direction vectors d ∈ Sω. More rigorous mathematical formulation of
the inverse problem considered in this paper reads as follows.

Problem P (inv). Find an elastic scatterer Ω+ with a compact, con-
nected, Lipschitz boundary surface S provided that the conditions of Prob-
lem P (dir) are satisfied on S and the far-field pattern wsc

∞(ξ ; d) is a known
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function of ξ on Sω

wsc
∞(ξ; d) = G(ξ; d)

for several (or all) direction vectors d ∈ Sω; here G(· ; d) is a given function
of ξ on Sω and ξ corresponds to the vector η = x/|x| (see (2.7)).

In the both problems the oscillation parameter ω is an arbitrarily fixed
positive number. The investigation of the inverse problem becomes compli-
cated due to the fact that, in general, the direct interaction problem for
arbitrary scatterer Ω+ is not unconditionally solvable for all ω. For excep-
tional values of the parameter ω, i.e., for those values of ω for which the
corresponding homogeneous direct problem possesses nontrivial solutions,
the boundary data f0 and f , involved in the equations (2.14) and (2.15),
have to satisfy special compatibility (necessary) conditions. However, as we
shall show below for functions given by (2.17) and (2.18) these necessary
conditions are fulfilled automatically and Problem P (dir) is always solvable.
Moreover, the scalar field wsc is defined uniquely in Ω− for all ω, while
the elastic field u is defined modulo Jones modes, in general (see Section
3). This makes meaningful and justifies the above setting of the inverse
problem with arbitrary ω.

We shall study the above problems by the layer potentials (boundary
integral equations) method. The properties of the corresponding potential
type operators partly can be found in [43], [10], [11], [41], [31], [32], [33],
but for the readers convenient we bring together needed material in the
forthcoming subsection.

2.4. Scalar potentials. Steklov-Poincaré type relations. Let
us introduce the single and double layer scalar potentials related to the
operator a(∂, ω):

Va, ω(g)(x) =

∫

S

γ(x− y, ω) g(y) dSy, x ∈ R
3 \ S,

Wa, ω(g)(x) =

∫

S

[Λ(∂y, n(y)) γ(y − x, ω)] g(y) dSy, x ∈ R
3 \ S,

where g is a scalar density function.
For a solution w ∈ Ha, ω(Ω+) of equation (2.5) in Ω+ we have the follow-

ing integral representation

Wa, ω

(
[w]+

)
(x)− Va, ω

(
[Λw]+

)
(x) =

{
w(x) for x ∈ Ω+,

0 for x ∈ Ω−.
(2.19)

The similar representation holds also for a radiating solution w ∈
Ha, ω(Ω−) ∩ SK(Ω−) to the equation (2.5) in Ω−,

Va, ω

(
[Λw]−

)
(x) −Wa, ω

(
[w]−

)
(x) =

{
w(x) for x ∈ Ω−,

0 for x ∈ Ω+.
(2.20)
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These representations can be derived by standard arguments from the corre-
sponding Green’s formulas which hold for functions of the classes Ha, ω(Ω+)
and Ha, ω(Ω−) ∩ Som(Ω−) (cf. Lemma 5.1 in [41], Proposition 6.6 in [1],
and Proposition 5.5 in [2]).

In what follows we will essentially use the following properties of the layer
potentials.

Lemma 2.3. Let g ∈ L2(S), h ∈ H1
2 (S), and − 1

2 ≤ r ≤ 1
2 . Then

(i) the potentials Va, ω(g), Wa, ω(g), and Wa, ω(h) are radiating solutions

of equation (2.5) in R3 \ S and

M±(Wa,ω(g)) ∈ L2(S), M±(∂jWa,ω(h)) ∈ L2(S), j=1, 2, 3,

M±(Va,ω(g)) ∈ L2(S), M±(∂jVa,ω(g)) ∈ L2(S), j=1, 2, 3,

Wa,ω(g) ∈ H
1
2
2 (Ω+), Wa,ω(g) ∈ H

1
2

2,loc(Ω
−) ∩ Som(Ω−),

Wa,ω(h) ∈ Ha,ω(Ω±) ∩ Som(Ω−), Va,ω(g) ∈ Ha,ω(Ω±) ∩ Som(Ω−);

(ii) the following jump relations hold on S for almost all z ∈ S

[Va, ω(g)(z)]± =

∫

S

γ(z − y, ω) g(y) dSy =: Ha, ω g(z),

[Λ(∂, n)Va, ω(g)(z)]± = ∓2−1g(z) +

∫

S

[Λ(∂z, n(z)) γ(z − y, ω)] g(y) dSy =:

=:
[
∓2−1I +K(1)

a, ω

]
g(z), (2.21)

[Wa, ω(g)(z)]± = ±2−1g(z) +

∫

S

[Λ(∂y, n(y)) γ(y − z, ω)] g(y) dSy =:

=:
[
±2−1I +K(2)

a, ω

]
g(z), (2.22)

[Λ(∂, n)Wa, ω(h)(z)]+ = [Λ(∂, n)Wa, ω(h)(z)]− =: La, ω h(z), (2.23)

where I stands for the identical operator ;
(iii) the operators

Ha, ω : H
− 1

2+r
2 (S) → H

1
2+r
2 (S),

K(2)
a, ω : H

1
2+r
2 (S) → H

1
2+r
2 (S),

K(1)
a, ω : H

− 1
2+r

2 (S) → H
− 1

2+r
2 (S),

La, ω : H
1
2+r
2 (S) → H

− 1
2+r

2 (S),

are continuous ;
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(iv) the operators

Ha, ω : H
− 1

2+r
2 (S) → H

1
2 +r
2 (S),

±2−1 I +K(1)
a, ω , ±2−1 I +K(2)

a, ω : L2(S) → L2(S),

La, ω : H1
2 (S) → L2(S),

are bounded Fredholm operators with zero index ;
(v) the following operator equations

Ha, ω K(1)
a, ω = K(2)

a, ω Ha, ω , La, ω Ha, ω = −4−1 I +
[
K(1)

a, ω

]2
,

La, ω K(2)
a, ω = K(1)

a, ω La, ω , Ha, ω La, ω = −4−1 I +
[
K(2)

a, ω

]2
,

(2.24)

hold in appropriate function spaces.

Proof. The proof of items (i)-(iv) (except the relations involving the
operator La, ω) based on the harmonic analysis technique can be found in
the reference [43] for ω = 0 (see also [10] where a variational approach is
used and the analogous results are obtained for − 1

2 < r < 1
2 with the help of

duality and interpolation arguments based on the Sobolev trace theorem).
The estimates

| γ(x, ω)− γ(x, 0) | < ωC0(λ, µ),

| ∂l [ γ(x, ω)− γ(x, 0) ] | < ω2 C1(λ, µ),

∂l ∂m [ γ(x, ω)− γ(x, 0) ] = O (|x|−1),

(2.25)

show that the potential and boundary operators corresponding to ω 6= 0
and ω = 0 differ by smoothing (compact) operators. Therefore, the results
obtained in [43] can be extended to the operators corresponding to arbitrary
ω (for details see, e.g., [41]).

The properties of the normal derivative of the double layer potential
Wa, ω and the operator La, ω are studied in detail in [41]. However, we give
here a simpler proof of (2.23) which does not require invertibility of any
boundary operator and can be extended to more general cases (e.g., to the
case of elastic double layer vector potential). Since the double layer potential
Wa, ω(h) with h ∈ H1

2 (S) belongs to the class Ha, ω(Ω±)∩Som(Ω−), we can
write the integral representation formulas (2.19) and (2.20) with Wa, ω(h)
for w. Add termwise these formulas and apply the jump relations (2.22) to
obtain

Va, ω

(
[ΛWa, ω(h)]+ − [ΛWa, ω(h)]−

)
= 0 in R

3 \ S.
Whence we arrive at (2.23) by jump relations (2.21).

To prove the item (v) let us remark that the representation formula (2.19)
implies [

− 2−1I +K(2)
a, ω

]
[w]+ =Ha, ω[Λw]+,

La, ω[w]+ =
[
2−1I +K(1)

a, ω

]
[Λw]+.

(2.26)
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The operator equalities (2.24) can be then obtained by substitution into
(2.26) single and double layer potentials with densities from the spaces
L2(S) and H1

2 (S), respectively. It is evident that the first and second equa-
tions in (2.24) originally hold in L2(S) but they can be continuously ex-
tended to the space H−1

2 (S) due to the mapping properties of the operators
involved; analogously, the third and fourth equations which originally hold
in H1

2 (S), can be continuously extended to the space L2(S). �

To obtain a boundary integral formulation equivalent to the basic oscil-
lation problems in exterior domains we need the following

Lemma 2.4. Let g ∈ H1
2 (S) and

w(x) = Wa, ω(g)(x) − i Va, ω(g)(x), x ∈ Ω−. (2.27)

If w vanishes in Ω−, then g = 0 on S.

Proof. If the function (2.27) vanishes in Ω− due to the jump properties
of the layer potentials we conclude

[Λw]+ − i [w]+ = 0 on S. (2.28)

Since g ∈ H1
2 (S) we have w ∈ Ha, ω(Ω+) and there holds Green’s formula

(cf. [41])
∫

Ω+

[ akj ∂jw ∂kw − %2 ω
2 |w |2 ] dx =

∫

S

[ Λw ]+ [w ]+ dS . (2.29)

With the help of (2.6) and (2.28) we conclude from (2.29) that [w]+ = 0
which yields [w]+ − [w]− = g = 0 on S. �

Further, let us introduce the boundary operators

Da, ω g :=
[
− 2−1 I +K(2)

a, ω

]
− iHa, ω , (2.30)

Na, ω g := La, ω − i
[
2−1 I +K(1)

a, ω

]
. (2.31)

These operators are generated by the limiting values on S (from Ω−) of the
superposition of potentials (2.27) and its co-normal derivative.

Lemma 2.5. (i) The operators

Da, ω : L2(S) → L2(S), (2.32)

: H1
2 (S) → H1

2 (S), (2.33)

Na, ω : H1
2 (S) → L2(S) (2.34)

are isomorphisms.

(ii) The exterior Dirichlet BVP

a(∂, ω)w(x) = 0 in Ω−, w ∈ Som(Ω−),

[w(z)]− = ϕ(z) on S, ϕ ∈ L2(S),

M−(w) ∈ L2(S),
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is uniquely solvable and the solution is representable in the form

w(x) = (Wa, ω − i Va, ω) (D−1
a, ω ϕ)(x), x ∈ Ω−.

Moreover, w ∈ H
1
2

2, loc(Ω
−) and for arbitrary R there is a positive constant

C0(R) independent of w and ϕ such that

‖w ‖
H

1
2
2 (Ω−

R
)
≤ C0(R) ‖ϕ ‖L2(S)

with Ω−R := Ω− ∩BR, where BR is the ball centered at the origin and radius

R.

If ϕ ∈ H1
2 (S) then M−(∂j w) ∈ L2(S) (j = 1, 2, 3), w ∈ H

3
2

2, loc(Ω
−), and

‖w ‖
H

3
2
2 (Ω−

R
)
≤ C1(R) ‖ϕ ‖H1

2 (S).

(iii) The exterior Neumann BVP

a(∂, ω)w(x) = 0 in Ω−, w ∈ Som(Ω−),

[Λ(∂, n)w(z)]− = ψ(z) on S, ψ ∈ L2(S),

M−(∇w) ∈ L2(S),

is uniquely solvable and the solution is representable in the form

w(x) = (Wa, ω − i Va, ω) (N −1
a, ω ψ)(x), x ∈ Ω−.

Moreover, w ∈ H
3
2

2, loc(Ω
−) and for arbitrary R there is a positive constant

C2(R) independent of w and ψ such that

‖w ‖
H

3
2
2 (Ω−

R
)
≤ C2(R) ‖ψ ‖L2(S).

(iv) If two functions g ∈ H1
2 (S) and h ∈ L2(S) are related by the equation

N−1
a, ω h = D−1

a, ω g on S, then g and h are Cauchy data on S of some radiating

solution w of the homogeneous equation (2.5) in Ω−, namely, g = [w]− and

h = [Λ(∂, n)w]− on S. Consequently, the Dirichlet and Neumann data for

an arbitrary radiating solution w of the equation (2.5) are related on S by

the following generalized Steklov-Poincaré type relation

N −1
a, ω [Λ(∂, n)w]− = D−1

a, ω [w]−.

Proof. First we show the invertibility of the operator (2.32). Due to

the results in [43] the operator D (0)
a := −2−1 I + K(2)

a, 0 : L2(S) → L2(S) is

Fredholm with index zero. In accordance with (2.10) and (2.25) the operator

Da, ω − D (0)
a : L2(S) → L2(S) is compact. Therefore it remains only to

prove the injectivity of (2.32). To this end we show that the null space of
the corresponding adjoint operator (without complex conjugation) is trivial.

Let ψ ∈ L2(S) be a solution to the homogeneous adjoint equation
[
− 2−1 I +K(1)

a, ω

]
ψ − iHa, ω ψ = 0 on S.
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It then follows that the single layer potential Va, ω(ψ) ∈ Ha, ω(Ω+) solves the
homogeneous Robin type problem with boundary condition (2.28). There-
fore, Va, ω(ψ) = 0 in Ω+. This implies [Va, ω(ψ) ]− = 0 on S. Thus
Va, ω(ψ) solves the homogeneous exterior Dirichlet BVP. Write Green’s for-

mula (2.29) for the function w = Va, ω(ψ) and for the region Ω−
R = Ω−∩BR

where BR is the ball centered at the origin and radius R, and ∂BR = ΣR,
∫

Ω−
R

[ akj ∂jVa, ω(ψ) ∂kVa, ω(ψ)− %2 ω
2 |Va, ω(ψ) |2 ] dx =

=

∫

ΣR

[ ΛVa, ω(ψ) ] [Va, ω(ψ) ] dS.

Evidently

=
{ ∫

ΣR

[ Λ(∂, n)Va, ω(ψ) ] [Va, ω(ψ) ] dΣR

}
= 0,

and in accordance with Lemma 2.1 we get Va, ω(ψ) = 0 in Ω−. Therefore
[ Λ(∂, n)Va, ω(ψ) ]−− [ Λ(∂, n)Va, ω(ψ) ]+ = ψ = 0 from which the injectivity
and, consequently, the invertibility of the operator (2.32) follows.

As it is shown in the references [43] and [41] the operator D (0)
a = :

H1
2 (S) → H1

2 (S) is Fredholm with index zero as well. Therefore the in-
vertibility of the operator (2.33) follows from its injectivity.

Analogously it can be shown that the operator (2.34), as a compact
perturbation of an invertible operator, is Fredholm with zero index (cf.
[41]). On the other hand with the help of the same arguments as above we
easily derive that the null space of the operator Na, ω is trivial. Therefore
(2.34) is an isomorphism.

Proof of the items (ii) and (iii) are quite similar to the proofs of Theorem
6.2 and Proposition 6.8 in [1] (see also the proof of Lemma 4.1 in [16] and
Theorem 5.6 in [41]).

The item (iv) immediately follows from the item (i) and the uniqueness
theorems for the exterior Dirichlet and Neumann boundary value problems.

�

2.5. Special Robin type problem. Properties of plane waves.

Let us consider the interior Robin type BVP

a(∂, ω)w(x) = 0 in Ω+, w ∈ Ha, ω(Ω+), (2.35)

[Λ(∂, n)w(z)− i w(z)]− = ψ on S, ψ ∈ L2(S). (2.36)

If we look for a solution in the form of a single layer potential w(x) =
Va, ω(g)(x), we arrive at the integral equation on S

Pa, ω g :=
[
−2−1 I +K(1)

a, ω − iHa, ω

]
g = ψ,

where Pa, ω : L2(S) → L2(S) is a Fredholm operator with zero index due
to Lemma 2.2.(iv).
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Lemma 2.6. (i) The BVP (2.35)-(2.36) is uniquely solvable.

(ii) The operator Pa, ω : L2(S) → L2(S) is invertible.

(iii) An arbitrary solution w ∈ Ha, ω(Ω+) of the equation (2.35) is uniquely

representable in the form

w(x) = Va, ω

(
P−1

a, ω [Λ(∂, n)w − i w]+
)
(x), x ∈ Ω+.

Moreover, for Ω+
0 ∈ Ω+ there holds the uniform estimate

|w(x)| ≤ C δ−1 || [Λ(∂, n)w − iw]+ ||L2(S) for all x ∈ Ω+
0 ,

where C is a positive constant independent of w and δ. Here δ is the distance

between Ω+
0 and S.

Proof. The items (i) and (ii) have been shown as intermediate steps in
the proof of Lemma 2.5. The item (iii) is then a direct consequence of the
invertibility of the operator Pa, ω. �

From Lemma 2.6 it follows that the plane wave exp{i d·x}, where d ∈ Sω,
can be uniquely represented in the form

ei d ·x = Va, ω

(
P−1

a, ω

[
(Λ(∂, n)− i)ei d · ζ

]+
S

)
(x), x ∈ Ω+.

Note, that exp{i d · x} with d ∈ Sω is a non-radiating solution to the homo-
geneous equation (2.5) in R3. Let

P (S) :=
{
p (x; d) ≡ (Λ(∂x, n(x))− i) ei d ·x, x ∈ S : d ∈ Sω

}
,

Psp(S) :=
{ m∑

q=1

cq p(x; d
(q)), x ∈ S : p (x; d(q)) ∈ P (S),

cq ∈ C, d(q) ∈ Sω, m ∈ N

}
,

Psp(R
3) :=

{ m∑

q=1

cq e
i d(q) ·x, x ∈ R

3 : cq ∈ C, d(q) ∈ Sω, m ∈ N

}
;

here N and C are the sets of all natural and complex numbers, respectively.

Lemma 2.7. The set P (S) is complete in L2(S).

Proof. Let f ∈ L2(S) and
∫

S

[
(Λ(∂y, n(y))− i)ei d · y

]
f(y) dSy = 0 (2.37)

for all d ∈ Sω.
Let us consider the function

w(x) = (Wa, ω − i Va, ω)(f)(x), x ∈ R
3\S.

Clearly, in view of (2.11) we have

w(x) = c(ξ)
exp{i ξ · x}

|x|

∫

S

[
(Λ(∂y, n(y))− i) e−i ξ · y

]
f(y) dSy +O (|x|−2)
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as |x| → +∞, where ξ ∈ Sω corresponds to x̂ and c(ξ) is defined by (2.11).
By (2.37) we conclude w(x) = O (|x|−2), which implies w(x) = 0 in Ω−

due to Lemma 2.1. Therefore, we obtain [w(x)]− = Da, ω f = 0 on S. By
Lemma 2.5.(i) then we have f = 0 on S. This completes the proof. �

Lemma 2.8. Let Ω+ be a bounded Lipschitz domain such that Ω− =
R3\Ω+ be connected and let w ∈ Ha, ω(Ω+) be a solution to the homogeneous

equation (2.35) in Ω+.

Then there exists a sequence vm ∈ Psp(R
3) such that vm → w and

∂βvm → ∂βw as m → ∞ uniformly on compact subsets of Ω+ (β =

(β1, β2, β3) is an arbitrary multi-index and ∂β = ∂β1

1 ∂β2

2 ∂β3

3 ).

Proof. From Lemma 2.7 it follows that there exists in Psp(S) a sequence
of type

m∑

q=1

cq (Λ(∂x, n(x))− i) ei d(q) ·x, x ∈ S,

which converges (in the L2-sense) to the function [ (Λ(∂, n)−i)w ]+ ∈ L2(S).
We set

vm(x) =

m∑

q=1

cq e
i d(q) ·x, x ∈ Ω+.

Hence, (Λ(∂, n) − i)vm(x) → [(Λ(∂, n) − i)w(x)]+ in L2(S). By Lemma
2.6 the functions vm and w can be represented in the form

vm(x) = Va, ω

(
P−1

a, ω [ (Λ(∂, n)− i) vm ]+
)
(x), x ∈ Ω+,

w(x) = Va, ω

(
P−1

a, ω[ (Λ(∂, n)− i)w ]+
)
(x), x ∈ Ω+.

Now, let Ω+
0 ⊂ Ω+ and x ∈ Ω+

0 . Denote by δ the distance between Ω+
0 and

S = ∂Ω+. The above representations of vm and w together with Lemma
2.6 then imply

|∂βw(x) − ∂βvm(x)| ≤
≤ C δ−1 || P−1

a, ω[(Λ(∂, n)− i) vm ]+−P−1
a, ω[ (Λ(∂, n)− i)w ]+ ||L2(S) ≤

≤ C1 δ
−1 || [ (Λ(∂, n)− i) vm ]+ − [ (Λ(∂, n)− i)w ]+ ||L2(S) → 0

as m→ +∞ (uniformly in Ω+
0 ) for arbitrary multi-index β. �

Corollary 2.9. Let x0 6∈ Ω+. Then there exists a sequence vm ∈ Psp(R
3)

such that (for arbitrary multi-index β)

∂βvm(x) → ∂βγ(x− x0, ω)

uniformly in Ω+, i.e.,

|| vm(x) − γ(x− x0, ω) ||Ck(Ω+) → 0 as m→∞
for arbitrary integer k ≥ 0.
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2.6. Vector-valued potential operators of the theory of steady

state elastic oscillations. Denote by Γ(x, ω) the fundamental matrix
(Kupradze matrix) of the steady state elastic oscillation operator A(∂, ω),
i.e., A(∂, ω) Γ(x, ω) = I3 δ(x) (for details see [28], Ch. II),

Γ(x, ω) = [ Γkj(x, ω) ]3×3 ,

Γkj(x, ω) =

2∑

l=1

(δkj αl + βl ∂k∂j)
exp{i kl |x|}

|x| ,
(2.38)

where
k2
1 = %1 ω

2 (λ + 2µ)−1, k2
2 = %1 ω

2 µ−1,

αl = −δ2l (4π µ)−1, βl = (−1)l+1 (4π %1 ω
2)−1.

Note that the principal singular part of Γ(x, ω) in a vicinity of the origin
is the fundamental matrix Γ(x) (Kelvin’s matrix) of the operator A(∂) of
elastostatics,

Γ(x) = [ Γkj(x) ]3×3 , Γkj(x) = λ′ δkj |x|−1 + µ′ xk xj |x|−3, (2.39)

where

λ′ = −(λ+ 3µ) [8π µ (λ+ 2µ)]−1, µ′ = −(λ+ µ) [8π µ (λ+ 2µ)]−1.

It is easy to show that in a vicinity of the origin (|x| < 1 say)

|Γkj(x, ω)− Γkj(x) | < ωC0(λ, µ),

| ∂l [ Γkj(x, ω)− Γkj(x) ] | < ω2 C1(λ, µ),

∂l ∂m [ Γkj(x, ω)− Γkj(x) ] = O (|x|−1),

(2.40)

where k, j, l,m = 1, 2, 3, and C0(λ, µ) and C1(λ, µ) are positive constants
depending only on the Lamé parameters.

A vector u belongs to the class SK(Ω−) if u ∈ [C1(Ω−)]3 and for suffi-
ciently large |x| the following relations hold:

u(x) = u(p)(x) + u(s)(x),

∆u(p)(x) + k2
1 u

(p)(x) = 0, ∂j u
(p)(x) − i x̂j k1 u

(p)(x) = O (|x|−2),

∆u(s)(x) + k2
2 u

(s)(x) = 0, ∂j u
(s)(x) − i x̂j k2 u

(s)(x) = O (|x|−2),

where x̂ = x/|x| and j = 1, 2, 3. These conditions are the Sommerfeld-

Kupradze type radiation conditions in the elasticity theory (for details see
[28]).

From (2.38) it follows that each column of the matrix Γ(· , ω) belongs to
SK(R3 \ {0}).

The analogue of Rellich’s lemma in the elasticity theory reads as follows
(for details see [28], [34]).

Lemma 2.10. Let u ∈ SK(Ω−) be a solution of (2) in Ω− and let

lim
R→+∞

=
{ ∫

ΣR

T (∂, n)u · u dΣR

}
= 0,
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where ΣR is the same as in Lemma 2.1. Then u = 0 in Ω−.

This lemma implies that the basic exterior homogeneous BVPs of steady
state elastic oscillations (with given zero displacements or stresses on the
boundary) have only the trivial solution (see [28]).

Further, we construct the single and double layer vector potentials,

VA, ω(g)(x) =

∫

S

Γ(x− y, ω) g(y) dSy,

WA, ω(g)(x) =

∫

S

[T (∂y, n(y)) Γ(y − x, ω) ]> g(y) dSy.

For a solution u ∈ HA, ω(Ω+) of equation (2) in Ω+ we have the following
integral representation

WA, ω

(
[u]+

)
(x)− VA, ω

(
[Tu]+

)
(x) =

{
u(x) for x ∈ Ω+,

0 for x ∈ Ω−.
(2.41)

The similar representation holds also for a radiating solution u ∈
HA, ω(Ω−) ∩ SK(Ω−) to the equation (2) in Ω−,

VA, ω

(
[Tu]−

)
(x)−WA, ω

(
[u]−

)
(x) =

{
u(x) for x ∈ Ω−,

0 for x ∈ Ω+.

These representations follow from the corresponding Green’s formulas which
hold for functions of the classes HA, ω(Ω+) and HA, ω(Ω−)∩SK(Ω−) (cf. Ch.
VII in [28], Proposition 6.6 in [1], and Proposition 5.5 in [2]).

Further, we introduce the boundary operators on S generated by the
above vector potentials

HA, ω g(z) :=

∫

S

Γ(z − y, ω) g(y) dSy , (2.42)

K(1)
A, ω g(z) :=

∫

S

[T (∂z, n(z)) Γ(z − y, ω) ] g(y) dSy , (2.43)

K(2)
A, ω g(z) :=

∫

S

[T (∂y, n(y)) Γ(y − z, ω) ]> g(y) dSy ,

LA, ω g(z) := [T (∂z, n(z))WA, ω(g)(z) ]± .

Note that the potential and boundary operators VA, ω, WA, ω, HA, ω, K(1)
A, ω,

K(2)
A, ω, and LA, ω have quite the same jump and mapping properties as the

corresponding scalar operators considered in Subsection 2.4 (see Lemma
2.3).
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Lemma 2.11. Let g ∈ [L2(S)]3, h ∈ [H1
2 (S)]3, and − 1

2 ≤ r ≤ 1
2 . Then

(i) the potentials VA, ω(g), WA, ω(g), and WA, ω(h) are radiating solutions

of equation (2) in R3 \ S and

M±(WA, ω(g)) ∈ [L2(S)]3 , M±(∂j WA, ω(h)) ∈ [L2(S)]3 ,

M±(VA, ω(g)) ∈ [L2(S)]3 , M±(∂j VA, ω(g)) ∈ [L2(S)]3 ,

WA, ω(g) ∈ [H
1
2
2 (Ω+)]3 , WA, ω(g) ∈ [H

1
2

2, loc(Ω
−)]3 ∩ SK(Ω−) ,

WA, ω(h) ∈ HA, ω(Ω±) ∩ SK(Ω−) , VA, ω(g) ∈ HA, ω(Ω±) ∩ SK(Ω−) ;

(ii) the following jump relations hold on S for almost all z ∈ S
[VA, ω(g)(z)]± = HA, ω g(z),

[T (∂, n)VA, ω(g)(z)]± =
[
∓2−1 I3 +K(1)

a, ω

]
g(z),

[WA, ω(g)(z)]± =
[
±2−1 I3 +K(2)

A, ω

]
g(z),

[T (∂, n)WA, ω(h)(z)]+ = [T (∂, n)Wa, ω(h)(z)]−=: LA, ω h(z) ; (2.44)

(iii) the operators

HA, ω : [H
− 1

2 +r
2 (S)]3 → [H

1
2+r
2 (S)]3,

K(2)
A, ω : [H

1
2+r
2 (S)]3 → [H

1
2+r
2 (S)]3,

K(1)
A, ω : [H

− 1
2 +r

2 (S)]3 → [H
− 1

2+r
2 (S)]3,

LA, ω : [H
1
2+r
2 (S)]3 → [H

− 1
2+r

2 (S)]3,

are continuous ;
(iv) the operators

HA, ω : [H
− 1

2 +r
2 (S)]3 → [H

1
2+r
2 (S)]3,

±2−1 I3 +K(1)
A, ω , ±2−1 I3 +K(2)

A, ω : [L2(S)]3 → [L2(S)]3,

LA, ω : [H1
2 (S)]3 → [L2(S)]3,

are bounded Fredholm operators with zero index ;
(v) the following operator equations

HA, ω K(1)
A, ω = K(2)

A, ω HA, ω , LA, ω HA, ω = −4−1 I3 +
[
K(1)

A, ω

]2
,

LA, ω K(2)
A, ω = K(1)

A, ω LA, ω , HA, ω LA, ω = −4−1 I3 +
[
K(2)

A, ω

]2
,

(2.45)

hold in appropriate function spaces.
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Proof. The proof of the item (i) can be found in [2], Subsection 5.2 (see
also [26]). The relations (2.40) show that the corresponding potential and
boundary operators with subscripts ω 6= 0 and ω = 0 differ by smoothing
(compact) operators. Therefore, the items (i)-(iv) immediately follow from
the results obtained in [11] and [16] for the operators with ω = 0 (see also
[32]). Note that the relation (2.44) can be shown by the same arguments as
(2.23) in the proof of Lemma 2.3.

The item (v) follows from the representation formula (2.41) which implies

[
− 2−1 I3 +K(2)

A, ω

]
[u]+ = HA, ω [T u]+ ,

LA, ω [u]+ =
[
2−1 I3 + K(1)

A, ω

]
[T u]+.

(2.46)

The operator equalities (2.45) can be then obtained by substitution into
(2.46) single and double layer potentials with densities from the spaces
[L2(S)]3 and [H1

2 (S)]3, respectively. It is evident that the first and second
equations in (2.45) originally hold in [L2(S)]3 but they can be continuously
extended to the space [H−1

2 (S)]3 due to the mapping properties of the oper-
ators involved; analogously, the third and fourth equations which originally
hold in [H1

2 (S)]3, can be continuously extended to the space [L2(S)]3. �

As in the scalar case we have the following

Lemma 2.12. Let g ∈ [H1
2 (S)]3 and

u(x) = WA, ω(g)(x)− i VA, ω(g)(x), x ∈ Ω−. (2.47)

If u vanishes in Ω−, then g = 0 on S.

Proof. If the function (2.47) vanishes in Ω− due to the jump properties
of the elastic layer potentials we conclude

[T u]+ − i [u]+ = 0 on S. (2.48)

Since g ∈ [H1
2 (S)]3 we have u ∈ HA, ω(Ω+) and there holds Green’s formula

(cf. [28], [1])
∫

Ω+

[E(u, u )− %1 ω
2 |u |2 ] dx =

∫

S

[T u ]+ · [u ]+ dS . (2.49)

With the help of (2.3) and (2.48) we conclude from (2.49) that [u]+ = 0
which yields [u]+ − [u]− = g = 0 on S. �

Further, let

DA, ω g :=
[
− 2−1 I3 +K(2)

A, ω

]
− iHA, ω , (2.50)

NA, ω g := LA, ω − i
[
2−1 I3 +K(1)

A, ω

]
.

These operators are generated by the limiting values on S (from Ω−) of
the displacement vector (2.47) and the corresponding stress vector, i.e.,
[u ]− = DA, ω g and [Tu ]− = NA, ω g.
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Lemma 2.13. (i) The operators

DA, ω : [L2(S)]3 → [L2(S)]3 , (2.51)

: [H1
2 (S)]3 → [H1

2 (S)]3 , (2.52)

NA, ω : [H1
2 (S)]3 → [L2(S)]3 , (2.53)

are isomorphisms.

(ii) The exterior Dirichlet BVP (with prescribed displacement vector)

A(∂, ω)u(x) = 0 in Ω−, u ∈ SK(Ω−),

[u(z)]− = ϕ(z) on S, ϕ ∈ [L2(S)]3,

M−(u) ∈ L2(S),

is uniquely solvable and the solution is representable in the form

u(x) = (WA, ω − i VA, ω) (D−1
A, ω ϕ)(x), x ∈ Ω−.

Moreover, u ∈ [H
1
2

2, loc(Ω
−)]3 and for arbitrary R there is a positive constant

C0(R) independent of u and ϕ such that

‖u ‖
[H

1
2
2 (Ω−

R
)]3
≤ C0(R) ‖ϕ ‖[L2(S)]3

with Ω−R := Ω− ∩ BR, where BR is the ball centered at the origin and ra-

dius R.

If ϕ ∈ [H1
2 (S) ]3 thenM−(∂j u) ∈ [L2(S)]3 (j=1, 2, 3), u∈ [H

3
2

2, loc(Ω
−)]3,

i.e., u ∈ HA, ω(Ω−) and

‖u ‖
[H

3
2
2 (Ω−

R
)]3
≤ C1(R) ‖ϕ ‖[H1

2 (S)]3 .

(iii) The exterior Neumann BVP (with prescribed stress vector)

A(∂, ω)u(x) = 0 in Ω−, u ∈ SK(Ω−),

[T (∂, n)u(z)]− = ψ(z) on S, ψ ∈ [L2(S)]3,

M−(∂j u) ∈ [L2(S)]3, j = 1, 2, 3,

is uniquely solvable and the solution is representable in the form

u(x) = (WA, ω − i VA, ω) (N −1
A, ω ψ)(x), x ∈ Ω−.

Moreover, u ∈ [H
3
2

2, loc(Ω
−)]3 and for arbitrary R there is a positive constant

C2(R) independent of u and ψ such that

‖u ‖
[H

3
2
2 (Ω−

R
)]3
≤ C2(R) ‖ψ ‖[L2(S)]3 .

(iv) If two vector functions g ∈ [H1
2 (S)]3 and h ∈ [L2(S)]3 are related

by the equation N−1
A, ω h = D−1

A, ω g on S, then g and h are Cauchy data

on S of some radiating solution u of the homogeneous equation (2) in Ω−,

namely, g = [u]− and h = [T (∂, n)u]− on S. Consequently, the Dirichlet
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and Neumann data for an arbitrary radiating solution u of the equation (2)
are related on S by the following Steklov-Poincaré type relation

N −1
A, ω [T (∂, n)u]− = D−1

A, ω [u]−.

Proof. First we show the invertibility of the operator (2.51). Due to the

results in [11] the operator D (0)
A := −2−1 I3 + K(2)

A, 0 : [L2(S)]3 → [L2(S)]3

is Fredholm with index zero. In accordance with (2.38), (2.39), and (2.40)

the operator DA, ω − D (0)
A : [L2(S)]3 → [L2(S)]3 is compact. Therefore

it remains only to prove that (2.51) is one to one. To this end we show
that the null space of the corresponding adjoint operator (without complex
conjugation) is trivial.

Let ψ ∈ [L2(S)]3 be a solution to the homogeneous adjoint equation

[
− 2−1 I3 +K(1)

A, ω

]
ψ − iHA, ω ψ = 0 on S.

It then follows that the single layer potential VA, ω(ψ) ∈ HA, ω(Ω+) solves
the homogeneous Robin type problem with boundary condition (2.48).
Therefore, VA, ω(ψ) = 0 in Ω+. This implies [VA, ω(ψ) ]− = 0 on S. Thus
VA, ω(ψ) solves the homogeneous exterior Dirichlet BVP. Write Green’s for-

mula (2.49) for the function u = VA, ω(ψ) and for the region Ω−
R = Ω− ∩BR

where as above BR is the ball centered at the origin and radius R, and
∂BR = ΣR,
∫

Ω−
R

[E
(
VA,ω(ψ), VA, ω(ψ)

)
−%1 ω

2 |VA,ω(ψ)|2 ] dx=

∫

ΣR

TVA, ω(ψ) · VA,ω(ψ) dS.

Evidently, by (2.3)

=
{ ∫

ΣR

T VA, ω(ψ) · VA, ω(ψ) dΣR

}
= 0,

and in accordance with Lemma 2.10 we get VA, ω(ψ) = 0 in Ω−. Therefore
by jump formulas [T (∂, n)VA, ω(ψ) ]− − [T (∂, n)VA, ω(ψ) ]+ = ψ = 0, from
which the injectivity and, consequently, invertibility of the operator (2.32)
follows.

As it is shown in [11] the operator D (0)
A = : [H1

2 (S)]3 → [H1
2 (S)]3 is

Fredholm with index zero as well. Therefore the invertibility of the operator
(2.52) follows from its injectivity.

It can be proved that the operator (2.53) is a compact perturbation of
the invertible operator NA, τ with = τ > 0. Therefore (2.53) is Fredholm
with zero index. On the other hand with the help of the same arguments
as above we easily derive that the null space of the operator (2.53) is trivial
and, consequently, it is an isomorphism.

Proof of the items (ii) and (iii) are quite similar to the proofs of Theorem
6.2 and Proposition 6.8 in [1] (see also the proof of Lemma 4.1 in [16]).
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The item (iv) immediately follows from the item (i) and the uniqueness
theorems for the exterior Dirichlet and Neumann boundary value prob-
lems. �

Remark 2.14. Note that for − 1
2 ≤ r ≤ 1

2 the operators

Da, ω : H
1
2+r
2 (S) → H

1
2+r
2 (S) , (2.54)

Na, ω : H
1
2+r
2 (S) → H

− 1
2+r

2 (S) , (2.55)

DA, ω : [H
1
2+r
2 (S)]3 → [H

1
2+r
2 (S)]3 , (2.56)

NA, ω : [H
1
2+r
2 (S)]3 → [H

− 1
2+r

2 (S)]3 (2.57)

are continuous due to Lemmas 2.3.(iii) and 2.11.(iii).
Moreover, these operators are invertible. In fact, invertibility of the op-

erators (2.54) and (2.56) follows from Lemmas 2.5.(i) and 2.13.(i) by duality
and interpolation arguments (cf. [26], Section 2).

To show that (2.55) is an isomorphism, we proceed as follows. It can

easily be shown that La, ω : H
1
2+r
2 (S) → H

− 1
2+r

2 (S) and its adjoint L∗a, ω :

H
1
2−r
2 (S) → H

− 1
2−r

2 (S) coincide on the space H1
2 (S). Therefore, it is rea-

sonable to use the same symbol La, ω for the operator L∗a, ω. In particular,
for r = 0 the operator La, ω is self-adjoint.

Further, the invertibility of the operator (2.34) implies that La, ω :

H1
2 (S) → H0

2 (S) and La, ω : H0
2 (S) → H−1

2 (S) are Fredholm operators with

zero index. Consequently, by interpolation La, ω : H
1
2+r
2 (S) → H

− 1
2+r

2 (S)
is Fredholm with zero index.

Some further analysis show that the null spaces of the operator (2.55) is
the same for all − 1

2 ≤ r ≤ 1
2 . Therefore (2.55) is injective, since its kernel is

trivial for r = 1
2 . Whence, we conclude that (2.55) is an isomorphism. The

proof for (2.57) is word for word.

It should be mentioned that for g ∈ H
1
2+r
2 (S) with − 1

2 ≤ r < 1
2 the non-

tangential limits on S of ∂j Wa, ω (g) do not exist, in general, and

[Λ(∂, n)w ]−S = La, ω (g) is to be understood as a generalized (functional)
trace on S of the co-normal derivative of the double layer potential (cf. [39]
for smooth domains).

3. The Direct Fluid-Structure Interaction Problem

3.1. Uniqueness theorem. Jones modes and Jones eigenfre-

quencies. We denote by J(Ω+) the set of values of the frequency parameter
ω > 0 for which the following boundary value problem

A(∂, ω)u(x) = 0, x ∈ Ω+,

[T (∂, n)u(x)]+ = 0, [u(x) · n(x)]+ = 0, x ∈ S,
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admits a nontrivial solution u ∈ HA, ω(Ω+). Such solutions (vectors) are
called Jones modes, while the corresponding values of ω are called Jones

eigenfrequencies (cf., e.g., [29], [22]). The space of Jones modes correspond-
ing to ω we denote by Xω(Ω+). Note that J(Ω+) is at most enumerable,
and for each ω ∈ J(Ω+) the space of associated Jones modes is of finite
dimension (see [34], [1]). Clearly, if u ∈ Xω(Ω+), then u ∈ Xω(Ω+).

The uniqueness result for the homogeneous direct problem (f0 = 0 and
f = 0 in (2.14) and (2.15)) is given by the following assertion.

Theorem 3.1. Let a pair (u,wsc) ∈ HA, ω(Ω+)×
[
Ha, ω(Ω−)∩Som(Ω−)

]

be a solution of the homogeneous direct problem (2), (2.5), (2.14), and

(2.15), where b1 b2 6= 0 and = [b1 b2] = 0. Then wsc = 0 in Ω− and

u ∈ Xω(Ω+).

Proof. Let (u,wsc) ∈ HA, ω(Ω+)×
[
Ha, ω(Ω−)∩Som(Ω−)

]
be a solution

pair to the homogeneous problem (P )dir. By Green’s formulas (2.29) and
(2.49) we then have

∫

Ω−
R

[ akj ∂jw ∂kw − %2 ω
2 |w |2 ] dx =

= −
∫

S

[w ]− [ Λw ]− dS +

∫

ΣR

w Λw dΣR , (3.1)

∫

Ω+

[E(u, u )− %1 ω
2 |u |2 ] dx =

∫

S

[T u ]+ · [u ]+ dS , (3.2)

where R > 0 is a sufficiently large number.

Since [Tu ]+ · [u ]+ = b1 b2 [w ]− [ Λ(∂, n)w ]− and b1 b2 is a real number
different of zero, from (3.1) and (3.2) we get

=
∫

ΣR

w Λw dΣR = 0.

Whence w = 0 in Ω− by Lemma 2.1. From the homogeneous conditions
(2.14) and (2.15) it follows that u ∈ Xω(Ω+), which completes the proof. �

Corollary 3.2. Let ω 6∈ J(Ω+). Then the homogeneous direct problem

possesses only the trivial solution.

3.2. Existence results. First we prove the following

Lemma 3.3. An arbitrary solution u ∈ HA, ω(Ω+) of equation (2) is

representable in the form of a single layer potential.

Proof. Let us consider the following boundary value problem

A(∂, ω)u(x) = 0 in Ω+, u ∈ HA, ω(Ω+) , (3.3)

[T (∂, n)u(x)]+ − i [u(x)]+ = Φ(x), x ∈ S , (3.4)
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where Φ = (Φ1,Φ2,Φ3)
> ∈ [L2(S)]3 is an arbitrary vector-function.

We look for a solution to the BVP (3.3)-(3.4) in the form of a single layer
potential

u(x) = VA, ω (g)(x) x ∈ Ω+,

where g = (g1, g2, g3)
> ∈ [L2(S)]3 is a sought for density.

The boundary condition (3.4) leads then to the Fredholm system of in-
tegral equations with index equal to zero

[− 2−1I3 +K(1)
A, ω − iHA, ω] g = Φ, (3.5)

where K(1)
A, ω and HA, ω are given by (2.43) and (2.42), respectively.

Further we show that the operator

PA, ω := −2−1I3 +K(1)
A, ω − iHA, ω : [L2(S)]3 → [L2(S)]3 (3.6)

is invertible. To this end we first prove that the homogeneous BVP (3.3)-
(3.4) has only the trivial solution. With the help of Green’s identity (3.2)
and the condition (3.4) with Φ = 0 we arrive at the equation

∫

Ω+

{E(u, u )− ω2 |u|2 } dx = −i
∫

S

| [u]+ |2 dS.

Whence it follows that [u ]+ = 0 on S. Therefore, [Tu]+ = 0 on S in
view of (3.4). With the help of the general integral representation (2.41)
we conclude that u = 0 in Ω+, which shows that the homogeneous BVP in
question has only the trivial solution.

Let g0 ∈ [L2(S)]3 be an arbitrary solution to the homogeneous system
(3.5) (Φ = 0). The potential VA, ω(g0) ∈ HA, ω(Ω+) solves then the homo-
geneous BVP (3.3)-(3.4) and therefore

VA, ω(g0)(x) = 0, x ∈ Ω+. (3.7)

Using the continuity property of the single layer potential, from (3.7) we
have

[VA, ω(g0)(x)]
+ = [VA, ω(g0)(x)]

− = 0.

Evidently, VA, ω(g0)(x) ∈ HA, ω(Ω−) ∩ SK(Ω−) solves the homogeneous
Dirichlet type exterior BVP (with zero displacements on S). By Lemma
2.13.(ii) we get VA, ω(g0)(x) = 0 in Ω− and taking into consideration the
jump relation [T VA, ω(g0)]

− − [T VA, ω(g0)]
+ = g0, we conclude that g0 = 0

on S, i.e., kerPA, ω is trivial.
Since PA, ω is a Fredholm operator of zero index in accordance with

Lemma 2.11.(iv), it follows that the operator (3.6) is invertible. Therefore,
from (3.5) we have

g = P−1
A, ω Φ = P−1

A, ω{[T (∂, n)u ]+ − i [u]+}.
In turn, this proves that an arbitrary solution u ∈ HA, ω(Ω+) to equation
(2) in Ω+ can be represented as a single layer potential

u(x) = VA, ω(P−1
A, ω F )(x) with F (x) := [T (∂, n)u(x)]+ − i [u(x)]+.
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This completes the proof. �

Further, we show that the nonhomogeneous problem P (dir) is solvable for
arbitrary incident wave and for arbitrary value of the oscillation parameter
ω.

Let us look for a solution to the problem (P )dir in the following form:

u(x) = VA, ω (g)(x), x ∈ Ω+, (3.8)

wsc(x) = Wa, ω (g4)(x) − i Va, ω (g4)(x), x ∈ Ω−, (3.9)

where g = (g1, g2, g3)
> ∈ [L2(S)]3 and g4 ∈ H1

2 (S) are sought for densities.
The boundary conditions (2.14) and (2.15) lead to the system of integral

equations on S,

[
− 2−1I3 +K(1)

A, ω

]
g(x)− b2 n(x)Da, ω g4(x) = f(x), (3.10)

[HA, ω g(x)] · n(x)− b1Na, ω g4(x) = f0(x), (3.11)

where K(1)
A, ω, HA, ω , Da, ω, Na, ω, f , and f0 are given by (2.43), (2.42), (2.30),

(2.31), (2.18), and (2.17), respectively. The constants b1 and b2 are defined
by (2.16).

Let us remark that by the above approach Problem P (dir) is equivalently

reduced to the system of integral equations (3.10)-(3.11).
The matrix operator generated by the left-hand side expressions in (3.10)

and (3.11) reads as

K :=

[ [
− 2−1I3 +K(1)

A, ω

]
3×3

[ − b2 nk(x)Da, ω ] 3×1

[nj(x) (HA, ω)jk ] 1×3 −b1Na, ω

]

4×4

. (3.12)

Therefore, the system (3.10) and (3.11) can be rewritten in the matrix form

KG = F,

where G = (g1, g2, g3, g4)
> ∈ [L2(S)]3 ×H1

2 (S) and F = (f1, f2, f3, f0)
> ∈

[L2(S)]4.
From the mapping properties of boundary integral operators described

in Subsections 2.4 and 2.6 it follows that

K : [L2(S)]3 ×H1
2 (S) → [L2(S)]4. (3.13)

Further, we show that the operator (3.13) is Fredholm with zero index and
establish the necessary and sufficient conditions for solvability of the system
(3.10)-(3.11).

To this end, we represent the operator K as

K = T1 + T2,
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where

T1 :=

[
[PA, ω ]3×3 [ 0 ] 3×1

[ 0 ] 1×3 −b1Na, ω

]

4×4

, (3.14)

T2 :=

[
[ iHA, ω ]3×3 [ − b2 n(x)Da, ω ] 3×1

[nj(x) (HA, ω)jk ] 1×3 0

]

4×4

=

=

[
[ I3 ]3×3 [n(x) ] 3×1

[n(x) ] 1×3 0

]

4×4

[
[ iHA, ω ]3×3 [ 0 ] 3×1

[ 0 ] 1×3 −b2Da,ω

]

4×4

, (3.15)

the operator PA, ω is given by (3.6).
It is evident that the operators T1 and T2 have the same mapping prop-

erties as K (see (3.13)).
Note that the first (matrix) multiplier in (3.15) as operator from [L2(S)]4

into [L2(S)]4 is continuous, while the second one maps [L2(S)]3 × H1
2 (S)

into [H1
2 (S)]4 due to Lemmas 2.3.(iv) and 2.13.(i). Therefore, T2 as oper-

ator from [L2(S)]3 × [H1
2 (S)] into [L2(S)]4 is compact (as a composition

of bounded and compact operators). Further, from invertibility of the op-
erators (2.34) and (3.6) the invertibility of the operator T1 : [L2(S)]3 ×
H1

2 (S) → [L2(S)]4 follows. Consequently, the operator (3.13) is Fredholm
with zero index as a compact perturbation of the invertible operator (3.14).

Let us analyze the null spaces of the operator (3.13) and its adjoint
one. Applying the uniqueness Theorem 3.1 and Lemma 2.4 we can prove
that the homogeneous system (3.10)-(3.11) (with f = 0 and f0 = 0) has
only the trivial solution (g = 0, g4 = 0) if ω 6∈ J(Ω+), and the operator
(3.13) is then invertible. If ω ∈ J(Ω+), then g4 = 0 and g = (g1, g2, g3)

>

is a nontrivial vector such that VA, ω (g) ∈ Xω(Ω+). Below we show that
dim kerK = dimXω(Ω+). Thus, if ω is a Jones eigenfrequency then kerK
is not trivial and the operator (3.13) is not invertible.

The operator formally adjoint to K with respect to the usual L2-duality
(without complex conjugation) reads as

K ∗ :=




[
− 2−1I3 +K(2)

A, ω

]
3×3

[
(HA, ω)jk nj

]
3×1

[ − b2 Pa, ω nk ] 1×3 −b1
{
La, ω − i

[
2−1 I +K(2)

a, ω

]}




4×4

.

This means that
〈
KΦ , Ψ

〉
=

〈
Φ , K ∗Ψ

〉
(3.16)

for all Φ,Ψ ∈ [L2(S)]3 ×H1
2 (S), where

〈
Φ , Ψ

〉
=

∫

S

4∑

j=1

Φj Ψj dS.
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The relation (3.16) can be extended by continuity to the case Φ ∈ [L2(S)]3×
H1

2 (S) and Ψ ∈ [L2(S)]4, defining the operator adjoint to (3.12) with map-
ping property

K ∗ : [L2(S)]4 → [L2(S)]3 ×H−1
2 (S).

Consider the homogeneous adjoint equation

K ∗ Ψ ∗ = 0 with Ψ ∗ ∈ [L2(S)]4. (3.17)

Put
Ψ ∗ = (ψ ∗, ψ ∗

4 )>, ψ ∗ = (ψ ∗
1 , ψ

∗
2 , ψ

∗
3 )>.

Let us first show that an arbitrary solution Ψ ∗ ∈ [L2(S)]4 of (3.17) belongs
actually to the space [H1

2 (S)]4. In fact, (3.17) implies:
[
− 2−1I3 +K(2)

A, ω

]
ψ ∗ +HA, ω (ψ ∗

4 n ) = 0,

b2
{
− 2−1I +K(1)

a, ω − iHa, ω

}
(ψ ∗ · n) +

+b1
{
La, ω − i

[
2−1 I +K(2)

a, ω

]}
ψ ∗

4 = 0

which with the help of (2.50) and (2.31) can be rewritten as

DA, ω ψ
∗ = −iHA, ω ψ

∗ −HA, ω ψ
∗
4 , (3.18)

b1Na, ω ψ
∗
4 = −b2

{
− 2−1I +K(1)

a, ω − iHa, ω

}
(ψ ∗ · n) +

+i b1
{
K(2)

a, ω −K(1)
a, ω

}
ψ ∗

4 . (3.19)

By Lemmas 2.5.(i) and 2.13.(i) we conclude that ψ ∗ ∈ [H1
2 (S)]3 and ψ ∗

4 ∈
H1

2 (S) since the right hand side expressions in equations (3.18) and (3.19)
are in [H1

2 (S)]3 and L2(S), respectively.
Next, we show that if Ψ ∗ = (ψ ∗, ψ ∗

4 )> is an arbitrary solution of (3.17)
then

ψ ∗
4 (x) = 0 and (ψ ∗(x) · n(x) ) = 0 on S. (3.20)

Let Ψ ∗ = (ψ ∗, ψ ∗
4 )> ∈ kerK ∗ and let

u∗(x) = WA, ω (ψ ∗)(x) + VA, ω (ψ ∗
4 n)(x),

w∗(x) = b2 Va, ω (ψ ∗ · n)(x) + b1Wa, ω (ψ ∗
4 )(x).

It is evident that u∗ ∈ HA, ω(Ω±)∩SK(Ω−) and w∗ ∈ Ha, ω(Ω±)∩Som(Ω−)
due to the above mentioned regularity property of Ψ ∗. Simple calculations
show that

[u∗ ]−k = [K ∗Ψ ∗ ]k = 0, k = 1, 2, 3,

[ Λ(∂, n)w∗ − i w∗ ]+ = [K ∗ Ψ ∗ ]4 = 0 on S.

Due to Lemmas 2.13.(ii) and 2.6.(i) we derive that u∗ = 0 in Ω− and w∗ = 0
in Ω+. In accordance with the jump relations of the scalar and vector layer
potentials we get

[u∗ ]+ − [u∗ ]− = ψ ∗, [T (∂, n)u∗ ]+ − [T (∂, n)u∗ ]− = −ψ ∗
4 n,

[w∗ ]+ − [w∗ ]− = b1 ψ
∗
4 , [ Λ(∂, n)w∗ ]+ − [ Λ(∂, n)w∗ ]− = −b2 ψ ∗ · n,
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i.e.,
[u∗ ]+ = ψ ∗, [T (∂, n)u∗ ]+ = −ψ ∗

4 n,

[w∗ ]− = −b1 ψ ∗
4 , [ Λ(∂, n)w∗ ]− = b2 ψ

∗ · n .
(3.21)

Therefore

[u∗ · n ]+ = b−1
2 [ Λ(∂, n)w∗ ]− , [T (∂, n)u∗ ]+ = b−1

1 [w∗ ]− n.

By Theorem 3.1 we then have w∗ = 0 in Ω− and u∗ ∈ Xω(Ω+). Whence
in view of equations (3.21) the relations (3.20) follow. Moreover, the first
equality in (3.21) yields that ψ ∗ belongs to the space of traces (boundary
values) on S of Jones modes. We denote this space by

[Xω(Ω+) ]S := { [u]+S : u ∈ Xω(Ω+) }.
With the help of the integral representation formula (2.41) and definition

of Jones modes we can show that the reverse assertion is also valid, i.e., if
ψ ∗ ∈ [Xω(Ω+) ]S , then (ψ ∗, 0)> ∈ kerK ∗. Therefore we have the evident
equalities

dim kerK = dim kerK ∗ = dim [Xω(Ω+)]S = dimXω(Ω+).

These results lead to the following

Lemma 3.4. The operator (3.13) is Fredholm with zero index.

If ω 6∈ J(Ω+) then (3.13) is invertible and the system (3.10)-(3.11) is

solvable for arbitrary right hand side functions fk ∈ L2(S), k = 0, 1, 2, 3.
If ω ∈ J(Ω+) then the condition

∫

S

f(y) · h(y) dS =

∫

S

3∑

j=1

fj(y)hj(y) dS = 0 for all (3.22)

h = (h1, h2, h3)
> ∈ [Xω(Ω+) ]S

is necessary and sufficient for system (3.10)-(3.11) to be solvable (recall that

h ∈ [Xω(Ω+) ]S yields h ∈ [Xω(Ω+) ]S ).

Note that, if f(x) = n(x)ϕ(x), where ϕ ∈ L2(S) is some scalar function
and, as above, n is the unit normal vector to S, then the condition (3.22)
is automatically satisfied. Therefore, finally we have the following main
existence result.

Theorem 3.5. The direct scattering problem P (dir) is solvable for arbi-

trary incident wave winc and for arbitrary value of the oscillation parame-

ter ω.

Moreover, a solution is representable in the form of (3.8) and (3.9), where

g4 and wsc are defined uniquely, while g and u are defined uniquely if ω 6∈
J(Ω+) and, if ω is exceptional (ω ∈ J(Ω+)), then g is defined modulo vector-

functions of kerK and u is defined modulo Jones modes (Xω(Ω+)).
When ω is exceptional then the boundary values of the stress vector

[T (∂, n)u ]+ = (− 1
2I3 +K(1)

A, ω) g and the normal component of the displace-

ment vector [u · n ]+ = (HA, ω g) · n are determined uniquely.
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Remark 3.6. It is evident that the far field pattern wsc
∞(ξ) is defined

uniquely as well and due to the representation (3.9) we have

wsc
∞(ξ) = c(ξ)

∫

S

[
( Λ(∂y, n(y))− i ) e−i ξ · y

]
g4(y) dSy, (3.23)

where ξ ∈ Sω corresponds to the vector x̂ = x/|x| and c(ξ) is given by
(2.11).

Corollary 3.7. Let G = (g1, g2, g3, g4)
> be a solution to the system

(3.10)-(3.11). Then there are constants C1 > 0 and C2 > 0 independent of

g4, f, and f4, such that

‖ g4 ‖H1
2 (S)≤ C1

{
‖ f ‖[L2(S)]3 + ‖ f0 ‖L2(S)

}
,

‖ wsc
∞(ξ) ‖L2(Sω)≤ C1

{
‖ f ‖[L2(S)]3 + ‖ f0 ‖L2(S)

}
,

and

| ∂β wsc(x) | ≤ δ−1 C2

{
‖ f ‖[L2(S)]3 + ‖ f0 ‖L2(S)

}
, x ∈ Ω−0 ,

uniformly for any subset Ω−
0 ⊂ Ω− and arbitrary multi-index β, where δ :=

dist {Ω−0 , S }.
Moreover, let { (g(q), 0)>}N

q=1 with g(q) = (g
(q)
1 , g

(q)
2 , g

(q)
3 )> be a complete

system of linearly independent solutions to the homogeneous version of the

simultaneous equations (3.10)-(3.11) and (g̃, 0)> = (g̃1, g̃2, g̃3, 0)> be its par-

ticular solution orthogonal to all (g(q), 0)> (q = 1, n). Then there is a con-

stant C3 > 0 independent of g̃, f, and f4, such that

‖ g̃ ‖L2(S)≤ C3

{
‖ f ‖[L2(S)]3 + ‖ f0 ‖L2(S)

}
.

The proof is a consequence of the following - more general assertions (see
[36], Lemmas 2.8 and 2.11).

Lemma 3.8. Let a Banach space X be the direct product of two Banach

spaces X1 and X2, i.e., X = X1 ×X2 with the norm ‖ x ‖X=‖ x1 ‖X1 + ‖
x2 ‖X2 , where x = (x1, x2) ∈ X, xk ∈ Xk, k = 1, 2.

Let T : X → Y be a linear continuous operator from X into Banach

space Y and assume that the linear equation

T x = y, (3.24)

where y ∈ Y is a given element and x ∈ X is an unknown, is normally

solvable, i.e., the range R(T ) is closed in Y .

Moreover, let ker T ⊂ X1×{θ2} where θk, k = 1, 2, are zero elements of

Xk.
If x = (x1, x2) ∈ X is a solution of equation (3.24) then there exists a

constant C > 0, independent of y, such that

‖ x2 ‖X2 ≤ C ‖ y ‖Y = C ‖ T x ‖Y .
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Lemma 3.9. Let X and Y be Banach spaces, T : X → Y be a linear

continuous operator, and the equation

T x = y (3.25)

be normally solvable.

Moreover, let dim kerT = N < ∞, {ej}N
j=1 be a basis in kerT , and

{fj}N
j=1 be a corresponding bi-orthogonal system in the adjoint space X∗,

i.e., fj ∈ X∗ and fi(ej) = δij , where δij is the Kronecker’s delta.

If x is an arbitrary solution to (3.25), then x̃ = x − ∑N
i=1 fi(x)ei is a

particular solution of the same equation satisfying the inequality

‖ x̃ ‖X ≤ C ‖ y ‖Y ,

where C does not depend on x and y.

4. Inverse Problem. Uniqueness Theorem

This section deals with the uniqueness of solution to the inverse fluid-
structure interaction problem (see Subsection 1.3).

Theorem 4.1. Let Ω+
j , j = 1, 2, be two bounded elastic scatterers with

Lipschitz boundaries ∂Ω+
j = Sj and with simply connected complements

Ω−j = R3 \ Ω+
j , and let for a fixed wave number ω the far-field patterns

w
(j)sc
∞ (· ; d) for the both scatterers coincide for all incident directions d ∈ Sω.

Then Ω+
1 = Ω+

2 .

Proof. Step 1. We denote the elastic vector field in the domain Ω+
j by

u(j)(x; d) and the scattered scalar field in the domain Ω−
j by w(j)sc(x; d) =:

w(j)(x; d) j = 1, 2.
In the both cases the incident field is represented in the form of a plane

wave (see (2.13)). Thus, the pair (u(j), w(j)) is a solution to Problem P (dir)

for the scatterer Ω+
j (j = 1, 2) with a fixed oscillation parameter ω (see

(2.14)-(2.18)).

Let Ω+
1 6= Ω+

2 and Ω−12 := R3 \ {Ω+
1 ∪ Ω+

2 }.
Since w(1)(x; d) and w(2)(x; d) are radiating solutions of the equation

(2.5) in Ω−12 and have the same far field patterns w
(1)
∞ (ξ; d) = w

(2)
∞ (ξ; d) for

all d ∈ Sω, we conclude that

w(1)(x; d) = w(2)(x; d) in Ω−12, (4.1)

due to the asymptotic relation (2.12) and Lemma 2.1.
Step 2. Let us consider Problem P (dir) with the domains Ω+

j , Ω−j (j =

1, 2), where the incident field is taken in the form winc(x) = vm(x) ∈
Psp(R

3), i.e., f0(x) = b1 Λ(∂, n) vm(x), f(x) = b2 vm(x)n(x). The corre-

sponding elastic field in Ω+
j and the scattered field in Ω−

j we denote by
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u(j,m)(x) and w(j,m)(x), respectively. From the conditions of Theorem 4.1
and the equality (4.1) it follows that

w(1,m)
∞ (ξ) = w(2,m)

∞ (ξ), ξ ∈ Sω, and w(1,m)(x) = w(2,m)(x), x ∈ Ω−12,

since the direct problem is linear.
Step 3. Let x0 be an arbitrary point in Ω−

12 and let us consider Problem

P (dir) with the same domains Ω+
j , Ω−j (j = 1, 2), where the interface data

are given as follows

f0(x) = f0(x;x0) := b1 Λ(∂, n) γ(x− x0, ω), (4.2)

f(x) = f(x;x0) := b2 γ(x− x0, ω)n(x); (4.3)

here γ(· , ω) is the fundamental function defined by (2.10). The correspond-
ing elastic field (in Ω+

j ) and scalar scattered field (in Ω−
j ) we denote by

u(j)(x;x0) and w(j)(x;x0).
Due to Corollary 2.9 there exists a sequence vm ∈ Psp(R

3) such that (for
arbitrary multi-index β)

∂βvm(x) → ∂βγ(x− x0, ω) (4.4)

uniformly in Ω+
1 ∪ Ω+

2 .
Applying the linearity of the direct problem, equation (3.23), Corollaries

2.9 and 3.7, and the results obtained in Step 2, we get

‖w(1)
∞ (ξ;x0)− w(2)

∞ (ξ;x0)‖L2(Sω) =

= ‖w(1)
∞ (ξ;x0)− w(1,m)

∞ (ξ) + w(2,m)
∞ (ξ)− w(2)

∞ (ξ;x0)‖L2(Sω) ≤

≤ ‖w(1)
∞ (ξ;x0)− w(1,m)

∞ (ξ)‖L2(Sω) + ‖w(2)
∞ (ξ;x0)− w(2,m)

∞ (ξ)‖L2(Sω) ≤

≤ C
{
‖γ(x− x0, ω)− vm(x)‖L2(S1)+

+‖Λ(∂, n) [γ(x− x0, ω)− vm(x)] ‖L2(S1) +

+‖γ(x− x0, ω)− vm(x)‖L2(S2) +

+‖Λ(∂, n) [γ(x− x0, ω)− vm(x)] ‖L2(S2)

}
→ 0

as m → ∞; here w
(j,m)
∞ (ξ) denotes the far field pattern of the scattered

field w(j,m)(x) corresponding to the incident wave function vm ∈ Psp(R
3)

involved in (4.4).

This implies w
(1)
∞ (ξ;x0) = w

(2)
∞ (ξ;x0) for ξ ∈ Sω and, consequently, by

Lemma 2.1

w(1)(x;x0) = w(2)(x;x0) in Ω−12. (4.5)

Step 4. Since Ω+
1 6= Ω+

2 , there exists a point x∗ ∈ ∂
(
Ω+

1 ∪ Ω+
2

)
such

that the closed ball B(x∗, 2δ) centered at x∗ and radius 2δ > 0 does not

intersect either Ω+
1 or Ω+

2 . Without restriction of generality, we assume
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that B(x∗, 2δ) ∩ Ω+
2 = ∅ and that n(x∗) exists. Evidently, S∗1 := ∂Ω+

1 ∩
B(x∗, 2δ) ⊂ S1 and dist{B(x∗, δ) , Ω+

2 } ≥ δ.
Further we choose a sequence xp ∈ B(x∗, δ) ∩ γ−(x∗) ∩ Ω−12 such that

|x∗ − xp| → 0 as p → ∞. Here γ−(x∗) is a nontangential approach region
(cone) at the point x∗ ∈ S1.

Now let us consider the problem described in Step 3 with the point xp

for x0.
For the domains Ω+

1 and Ω−1 , the interface conditions of type (2.14) on
S1 reads as follows:

[u(1)(x;xp) · n(x)]+S1
= b1 [Λ(∂, n)w(1)(x;xp)]−S1

+

+ b1 Λ(∂, n) γ(x− xp;ω), x ∈ S1.

Taking into account the fact that w(2)(· ;xp) is bounded in B(x∗, δ) ⊂ Ω−2
together with its derivatives uniformly with respect to xp ∈ B(x∗, δ) (see
Corollary 3.7) and applying the equation (4.5) with xp for x0, we arrive at
the relation

| [u(1)(x;xp) · n(x)]+S∗1
− b1 [ Λ(∂, n(x)) γ(x− xp, ω) ]S∗1 | =

= | b1 [ Λ(∂, n(x))w(1)(x;xp) ]−S∗1
| = | b1 [ Λ(∂, n(x))w(2)(x;xp) ]−S∗1

| ≤ C1,

where C1 does not depend on u(1) and xp.
In particular,

‖ [u(1)(x;xp) · n(x) ]+ − b1 [ Λ(∂, n(x)) γ(x− xp, ω) ] ‖L2(S∗1 ) ≤
≤ C1 |S∗1 |1/2, (4.6)

where |S∗1 | is the area of the sub-manifold S∗1 and p = 1, 2, 3, · · · .
Step 5. Here we prove that

‖ [u(1)(x;xp) · n(x) ]+ ‖L2(S) ≤ C2 (4.7)

with a constant C2 > 0 independent of xp and u(1). Note that u(1)(x;xp)
and w(1)(x;xp) can be represented in the form (3.8) and (3.9), where the
densities g and g4 are to be defined from the system (3.10)-(3.11) with f0

and f given by (4.2) and (4.3), and with S1 for S.
Moreover,

g(x;xp) = g̃(x;xp)−
N∑

q=1

cq g
(q)(x),

where cq (q = 1, N) are arbitrary constants,
{
(g(q), 0)>

}N

q=1
is a complete

(orthonormal) system of linearly independent solutions of the corresponding
homogeneous equations, and (g̃, g4)

> is a fixed particular solution orthog-
onal to this system. Remark that VA, ω(g(q)) ∈ Xω(Ω+) if ω ∈ J(Ω+) and

[u(1)(x;xp) · n(x) ]+S = [HA, ω g̃(x, x
p) ] · n(x).

We proceed as follows. From the interface condition

[T (∂, n)u(1)(x;xp) ]+ = b2 n(x) [w(1)(x;xp) ]−+b2 n(x)γ(x−xp, ω), x∈S1,
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we conclude that g := g(x, xp) solves then the integral equation
[
− 2−1 g +K(1)

A, ω g
]
(x) = ψ(x, xp) + b2 n(x) γ(x− xp, ω) on S1, (4.8)

where ψ(x, xp) := b2 n(x) [w(1)(x;xp) ]− ∈ [L2(S1)]
3. A simple analysis

implies that the norm ‖[w(1)(x;xp) ]−‖L2(S1\S∗1 ) is uniformly bounded with

respect to xp ∈ B(x∗, δ). Due to the relation (4.5) it is evident that the norm
‖[w(1)(x;xp) ]−‖L2(S∗1 ) = ‖[w(2)(x;xp) ]S∗1 ‖L2(S∗1 ) is also uniformly bounded
with respect to xp ∈ B(x∗, δ). Therefore ‖ψ(·, , xp)‖[L2(S)]3 ≤ C3 with
a positive constant C3 independent of xp. Apply to equation (4.8) the
operator HA, ω and use the first equality in (2.45) to obtain

[
− 2−1HA, ω g +K(2)

A, ω HA, ω g
]
(x) = Ψ(x, xp) on S1,

where

Ψ(·, xp) = HA, ω {ψ(x, xp) + b2 n(x) γ(x− xp, ω)} ∈ [L2(S)]3

and ‖Ψ(·, xp)‖[L2(S)]3 ≤ C4 with a positive constant C4 independent of xp.
From these relations with the help of the invertibility of the operator (2.51)
with DA, ω given by (2.50) we derive that HA, ω g(·, xp) ∈ [L2(S)]3 and
by Lemma 3.9 we finally get ‖HA, ω g(·, xp)‖[L2(S)]3 ≤ C5 with a positive
constant C5 independent of xp. Whence (4.7) follows directly.

Step 6. The inequality (4.7) contradicts to (4). In fact, we easily derive
that

Λ(∂, n(x)) γ(x− xp;ω) =
n(x) · ζp

4π|ã1/2| [ ã−1 ζp · ζp ]3/2

1

|x− xp|2 +O(1),

where ζp = x−xp

|x−xp| , x ∈ S∗1 and xp ∈ γ−(x∗). Whence it follows that the

left-hand side in (4) is not bounded as xp approaches x∗. This completes
the proof. �
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38. D. Natroshvili, A.-M. Sändig, and W. L. Wendland, Fluid-structure interaction
problems. Mathematical aspects of boundary element methods (Palaiseau, 1998),
252–262, Chapman & Hall/CRC Res. Notes Math., 414, Chapman & Hall/CRC,
Boca Raton, FL, 2000.

39. R. T. Seeley, Singular integrals and boundary value problems. Amer. J. Math.
88(1966), 781–809.

40. A. F. Seybert, T. W. Wu, and X. F. Wu, Radiation and scattering of acoustic
waves from elastic solids and shells using the boundary element method. J. Acoust.
Soc. Amer. 84(1988), 1906–1912.

41. R. H. Torres and G. V. Welland, The Helmholtz equation and transmission
problems with Lipschitz interfaces. Indiana Univ. Math. J. 42(1993), No. 4, 1457–
1485.

42. I. N. Vekua, On metaharmonic functions, Trudy Tbiliss. Mat. Inst Razmadze
12(1943), 105–174. (Russian).

43. G. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace’s
equation in Lipschitz domains. J. Funct. Anal. 59(1984), No. 3, 572–611.

(Received 1.02.2005)

Authors’ address:

Department of Mathematics
Georgian Technical University
77, M. Kostava St., Tbilisi 0175
Georgia


