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Abstract. For nonlinear hyperbolic equations of higher order with
two independent variables sufficient conditions for the solvability and well-
posedness of the initial problems are found.
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1. STATEMENT OF THE PROBLEM AND FORMULATION OF THE MAIN
RESULTS

Let 0 < a,b < 400 and 7, : [0,b] — R, 72 : [0,a] — R be continuous
functions such that
0<m(y)<a for 0<y<b, 0<yx)<bfor 0<z<a. (Mp)
Moreover, suppose that either

~v1 and 72 are non-decreasing, yi(72(z)) <z for 0 <z < aq,

(M)
Y2(1(y)) <y for 0 <y <D,
or

~v1 and 7y are non-increasing, v1(y2(x)) <z for 0 <z < q,

Y2(11(y)) <y for 0<y < b
Then the set G = {(z,y) : 7(y) < z < a, y2(x) < y < b} is non-empty,
and the curves Ty = {(71(y),y) : 0 <y <b}, To2 ={(z,%(z)): 0 <z <a}
are parts of its boundary. In the present paper in the domain G we consider
the nonlinear hyperbolic equations

(M)

ulmn) —
:f(:c, y, w00 On=1) g (mi0) gy (men=1)  (0n) u(mfl’”)) (1.1)
and
u(mn) = fo (:L', Y, u(o,o)’ e ,u(mfl’o), u(m’o), cel u(m’"*l)) (1.1
with the initial conditions on I'y and I'y

lim u(i’o)(:ﬂ,y):cli(y) for 0<y<b (i=0,...,m—1),

z—71(y) (1 2)
lim  w™" (2, y) = cop(z) for 0 <z <a (k=0,...,n—1), '
y—y2(x)
where m and n are natural numbers and
WOV, y) = ufay), w(a,y) = LUEI),
xl
OFu(z,y) ; oF 0u(x,y)
(0,k) _guLY) k) -9 (4)
w2, y) o (z,y) o\ on

In what follows, under G will be meant a closure of the set G, and the
functions f : G x R™™m*n L R fo: G x R™™™ = R, ¢y; : [0,0] — R
(i=0,....m—1),cop : [0,a] =R (k=0,...,n—1), 71 : [0,b] = R and
v2 : [0,a] — R will be assumed to be continuous.

Along with (1.1) and (1.1"), we consider the perturbed differential equa-
tions
p(mm) :f(:n, v, U(O’O), vy v(o’”_l), ey v(m’o), ey v(m’"_l), v(o’”), vy v(m_l’"))Jr

+h(z,y), (1.3)
v = fo (2,000 RO g (m0) D) gy (1.3)
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with the perturbed initial conditions

lim 00 (2, y)=cri(y)+ews(y) for 0<y<b (i=0,...,m —1),

z—1(y)

lim v™F) (2, y) = cop(x) +ear(x) for 0O<z<a (k=0,...,m —1).
y—72(2)

(1.4)

For arbitrary continuous functions i : G — R and e : [0,a] — R (k =

0,...,n—1) and n-times continuously differentiable functions ey; : [0,b] — R
(1=0,...,m—1) we assume
m—1 n
(€10, -+, €1m—1;€20,---,€2n-1; 1) max{ZZsz 1) 0§y§b}+
i=0 j=0

+max{ Z lear ()] : 0 <z < a} + max {|h(z,y)| : (z,y) € G}. (1.5)

If, however, the functions ey; (i =0,...,m — 1) are only continuous, then

10(€105 -+ €1m—15€20,---,€2pn—-1;h) = max{ Z leri(y)]: 0<y < b}+

n—1
+ max{ Z leak (2)] : ngga}—l—maxﬂh(a:, y)|: (z,y)€G}.  (1.6)

k=0
Definition 1.1. The function u : G — R is said to be a solution (a gen-
eralized solution) of the equation (1.1) (of the equation (1.1)), if it
is uniformly continuous on G along with v(**) (i =0,...,m; k=0,...,n)
(along with v (i = 0,...,m) and u(™* (k = 0,...,n)) and at every
point G satisfies the equation (1.1) (the equation (1.1")). A solution of the
equation (1.1) (a generalized solution of the equation (1.1")), satisfying the
initial conditions (1.2), is called a solution of the problem (1.1), (1.2)

(a generalized solution of the problem (1.1'), (1.2)).

Definition 1.2. The problem (1.1), (1.2) is said to be well-posed if there
exist positive constants r and ¢ such that for arbitrary continuous functions
h:G — R, ey :[0,a R (k=0,...,n—1) and n-times continuously
differentiable functions ey; : [0,a] — R (i = 0,...,m — 1) satisfying the
condition

7’](610,...,elm_l,ego,...,egn_l,h) SE (17)
the problem (1.3),(1.4) is uniquely solvable, and in the domain G the in-
equality

m n—1

ZZW(M) z,y) — P (2, y ‘+Z |u(’”) (z,y) — o™ (z, y)| <

=0 k=0
S7“77(610,...,elm_l,ego,...,egn_l,h) (18)

is fulfilled, where u and v are, respectively, solutions of the problems (1.1),
(1.2) and (1.3),(1.4).



On the Solvability and Well-Posedness of Initial Problems 41

Definition 1.3. The problem (1.1’), (1.2) is said to be well-posed in
a generalized sense if there exist positive constants r and € such that for
arbitrary continuous functions b : G — R, eq; : [0,a] = R (i =0,...,m—1)
and egy : [0,a] = R (k=0,...,n— 1) satisfying the condition

N0(€10, - -5 €1m—1;€20,---,€2n—1; ) <€ (1.9)

the problem (1.3'),(1.4) has a unique generalized solution, and in the do-
main G the inequality

m—1
Z|u10 xy)fv(zo):vy‘JrZ‘u(mk :vy)fv(mk)(xyﬂ
i=0 k=0

<rno(e1n,..-,€1m—1;€20,.-.,€2n—1;h) (1.10)

is fulfilled, where u and v are, respectively, generalized solutions of the
problems (1.17), (1.2) and (1.1"), (1.3).

For m = n =1, the problem (1.1), (1.2) and its different particular cases
have been investigated in [1]-[16]. For m+mn > 2, this problem remains still
studied insufficiently. In this paper, the conditions are found which ensure,
respectively, the solvability and well-posedness of the problem (1.1),(1.2)
(the solvability and well-posedness in a generalized sense of the problem
(L.1),(1,2).

Along with (1.5) and (1.6), below the use will be made of the following
notation:

m_l i n—1,p
L T %' (1.11)
i=0 o
uo(z,y) = 2 w cr(y)+
1=0
n—1 sm 1(y772(5))kc e
" kz_o/%(y) — 1)K 2k(5) ds, (1.12)
o(x,y) = Z (=) ( DTN
1=0
n—1 .z ($*8)m71(y—72(5))k
" kzzo /my) (m —1)!k! |car(s)] ds. (1.13)

We investigate the problem (1.1), (1.2) in the case where 1 and 7, satisfy
one of the two conditions:

v1(y)=0, 72 is non-decreasing, ~2(0)=0, v2(x)<b for O<z<a (M)

and
~1 is continuously differentiable and decreasing, v1(0)=a, v1(b) =0,

Yo (v1(y)) =y for 0<y <b. (Ma)
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Theorem 1.1. Let 1 and ¢1; (i =0,...,m—1) be n-times continuously
differentiable functions and there exist a positive number § and a continuous,
non-decreasing function ¢ : [0, 4o00[— [0, +00[ such that o(T) > 0 for T > 0,

oo ds
/5 o) > (buv + p+v)(a + b) (1.14)

and, respectively, in the domains G and G x R™ ™A the inequalities

[y

n—

SN u P ()| + Z us"™ (,y)| < 8 (1.15)
=0 k:O
and
‘f(xay72007~-~ Z0n—1s+++32m0y -+ ZmnflazOnw"aszln)‘ S
m n—1
<o( 2o leul + Z J2inl) (1.16)
=0 k=0

are fulfilled. Moreover, let the functions y1 and o satisfy either the condi-
tion (M) or the condition (Ms), and the function f satisfy the local Lips-
chitz condition with respect to the last m + n variables (with respect to the
last mn + m + n variables). Then the problem (1.1),(1.2) has at least one
solution (is well-posed).

Corollary 1.1. Let there exist a positive number £y such that in the
domain G x R™T™m+" the inequality

‘f(xay72007~-~ Z0n—1y--+s2m0y -+ ZmnflazOnw"aszln)‘ <
m n—1
<eo(1+ZZ|zm|+ Z |zm) (1.17)
i=0 k=0

is fulfilled. Moreover, let the functions v1 and 7y satisfy either the condition
(My), or the condition (Mz), and the function [ satisfy the local Lipschitz
condition with respect to the last m + n variables (with respect to the last
mn+m+n variables). Then the problem (1.1), (1.2) has at least one solution
(is well-posed).

Theorem 1.2. Let there exist a positive number 0 and a continuous, non-
decreasing function ¢ : [0, +o00[ — [0, +00[ such that p(T) >0 for T >0,

oo ds ub™
b 1.18
/6 o(s) >((n71)!+y)(a+ ) ( )
and, respectively, in the domains G and G x R™t" the inequalities
m—1 n—1
a0 + 3 ay" M (@, y) <6 (1.19)

=0 k=0
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and
m—+n

fO(xayazla-~-7Zm+n)sgnzm+n § 50( Z |Zz|) (120)
i=1
are fulfilled. Let, moreover, the functions y1 and v2 satisfy along with (My)
one of the conditions (M) and (M*), and the function f satisfy the lo-
cal Lipschitz condition with respect to the last n variables (with respect to
the last m + n variables). Then the problem (1.1'),(1.2) has at least one
generalized solution (is well-posed in a generalized sense).

Corollary 1.2. Let there exist a positive number £y such that in the
domain G x R™T™ the inequality
m—+n
Jo(@,y, 21, -+, Zman) S0 Zmyn < Lo (1 + Z |Zz|> (1.21)
i=1
is fulfilled. Let, moreover, the functions y1 and 7y satisfy along with (Mp)
one of the conditions (M) and (M*), and the function f satisfy the lo-
cal Lipschitz condition with respect to the last n variables (with respect to
the last m + n variables). Then the problem (1.17),(1.2) has at least one
generalized solution (is well-posed in a generalized sense).

2. LEMMAS ON A PRIORI ESTIMATES

In this section, in the domain G we consider the differential inequalities

m n—1 _ m—1 )
e ] < (35 WO+ 5 W el)
i=0 k=0 i=0

and

ut™ () sgnu™" D (@, y) <

m—1 n—1
<o X [ @, y)| + D [ul P (@, )]) (2.1)
i=0 k=0

with the boundary conditions (1.2), where ¢ : [0,4+00[— [0, +00][ is a con-
tinuous non-decreasing function such that ¢(7) > 0 for 7 > 0.

The function u : G — R is said to be a solution (a generalized solu-
tion) of the differential inequality (2.1) (of the differential inequal-
ity (2.1')) if it is uniformly continuous on G along with «(**) (i = 0,...,m;
k=0,...,n) (along with «%®) (i =0,...,m—1) and u™"® (k =0,...,n))
and at every point of G satisfies the differential inequality (2.1) (the dif-
ferential inequality (2.1")). A solution of the differential inequality (2.1) (a
generalized solution of the differential inequality (2.1")) satisfying the initial
conditions (1.2) is called a solution of the problem (2.1), (1.2) (a generalized
solution of the problem (2.1'), (1.2)).

If

1
either 6 >0, or § =0 and / s < 400, (2.2)
o ¢(s)
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we set
T ds
Ys(7) = / —
D=5 oo
and denote by z/ng the function, inverse to ;.

Lemma 2.1. Let 1 and c¢1; (i =0,...,m — 1) be n-times continuously
differentiable and the pair 1, 2 satisfy one of the conditions (My) and
(My). If, moreover, the conditions (1.14), (1.15) and (2.2) are fulfilled,
then an arbitrary solution w of the problem (2.1),(1.2) in the domain G
admits the estimate

m n—1

SN [ )]+ 3 [ul )] < 5 (4 )+ ). (23
=0

=0 k=0

Proof. By virtue of (1.2) and (1.12) we have
a0 (z,y) = uf™ )+

1 Y —1- m,n

T L, @0 e (=0, ), 2
Yy (T

and

w0, y) = ug® (@ y)+

1 r . ¥
+ - / x— )" ds/ y—t)" "™ (s 8) dt (2.5
(m—1—4)!(n—1)! vl(y)( ) 'yz(s)( ) ( (25)

(i=0,...,m—1).

On the other hand, if we take into account that the pair 71, 72 satisfies one
of the conditions (M7) and (Ms), then from (2.5) we find

a9, ) = ug™ )+

1 /m i [ —1—k
+ - (x—s)m 7" ds/ (y—t)" u™™ (s, ) dt
(m—1=0)l(n—=1=k)ly, @) 2(s)
(2.6)

and

i (2,y) = ul™ (@ )+

1 /I i ) .
+t— (x =) ™M (s,y)ds (1 =0,...,m—1). (2.7)
(m—=1=09! J5, )

Suppose

—

n— m—1

plz,y) =Y |ulM (@) + D |u (z,y)).

i=0 k=0 =0
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Then according to the 1nequahtles (1.15), (2.1) and the notation (1.11),
from the identities (2.4), (2.6) and (2.7) we obtain

p(z,y) <0+ v ds/ o(p(s,t)) dt+
711 (¥) ¥
Yy

+p /%(y) o(p(s,y))ds +v /wm @(p(z,t)) dt.

The above inequality by virtue of Lemma 2.1 of [9] and the conditions (1.14)
and (2.2) results in p(z,y) < 15 '((buv + p+ v)(z +y)). Consequently, the
estimate (2.3) is valid. O

Lemma 2.2. Let c1,(y) =0 (i = 0,...,m — 1), cor(x) = 0 (k =
0,...,n—1), 11 be n-times continuously differentiable and the pair v1, v2
satisfy one of the conditions (My) and (Mz). If, moreover,

bods
/0 w = +00, (2.8)

then the problem (2.1), (1.2) has only a trivial solution.

Proof. Let u be an arbitrary solution of the problem (2.1),(1.2). Then by
Lemma 2.1 for an arbitrarily small § > 0 in the domain G the inequality
(2.3) is fulfilled. On the other hand, by virtue of (2.8) we have

;irnowé_l(T) =0 for 7> 0.

Therefore if in the inequality (2.3) we pass to the limit as § — 0, then we
get u(z,y) = 0. O

Lemma 2.3. Let the pair of functions v1, 2 along with (My) satisfy
one of the conditions (M,) and (M*). If, moreover, the conditions (1.18),
(1.19) and (2.2) are fulfilled, then an arbitrary generalized solution u of the
problem (2.1), (1.2) in the domain G admits the estimate

m—1 n—1 n
3 w0z, )| + 3 a2, )] < ;! ((%w +v)(@y). (29)
i=0 k=0 )

Proof. For an arbitrarily fixed (z,y) € G, almost everywhere on the interval
Jv2(x), y[ we have

0

= |u(m’"_1)(x,t)| = ‘u(m’”)(x,tﬂ sgnu(™ Y (1),
whence by virtue of the conditions (1.2), (2.1’) and the notation (1.13) it

follows that
y

w2, y)| < @™ 1)(fc,y)+/ o(p(x,t))dt,
~y2(x)

™9 (2, )| < @™ () +
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1 Y n—k—1 o
+m/ﬁ(£)(yt) "lo(p(a,t))dt (k=0,...,n—1)

and
1
m—1—)(n—1)

x . Yy
y / (z — s)m1-i ds/ (y— )" Lo(p(s, ) dt (i=0,....m—1),
71 (y) v2(s)

|0 (2, )| < T (@, y) +

where
m—1 . n—1
plzy) =Y |uO(z,y)| + > Jut™P (a,y)|.
i=0 k=0

If, along with the above, we take into account the inequality (1.19), it
becomes clear that the function p in the domain G satisfies the integral
inequality

y

bn—l x Y
pa) <5 npi— [ ds [ pltsndery [ gpla )
(=D Jracs) 2 (2)

This inequality, according to Lemma 2.1 of [9] and the conditions (1.18) and
(2.2), results in

p(z,y) < v5t (( (nﬂi)nl)! + V) (z + y)>~

Consequently, the estimate (2.9) is valid. O

From the above-proven lemma it immediately follows

Lemma 2.4. Let c1;(y) =0 (i = 0,...,m — 1), cop(x) = 0 (k =
0,...,n—1) and the pair of functions v1, v2 along with (My) satisfy one of
the conditions (M) and (M™*). If, moreover, the condition (2.8) is fulfilled,
then the problem (2.1'), (1.2) has only a trivial generalized solution.

3. LEMMAS ON THE EXISTENCE AND UNIQUENESS OF SOLUTIONS OF
THE PROBLEMS (1.1), (1.2) anD (1.1),(1.2)

Lemma 3.1. Let the functions v1 and ¢1; (i =0,...,m — 1) be n-times
continuously differentiable and the pair 1, y2 satisfy one of the conditions
(M) and (Ms). Let, moreover, the function f satisfy the local Lipschitz
condition with respect to the last m + n variables and there exist a positive
constant pg such that in the domain G x R™ T+ the inequality

‘f(:c,y,zoo, ey Z0n—Ty s ZmOy ey Zmn—Ts Z0n,y - - - ;meln)| <po (3.1)
is fulfilled. Then the problem (1.1),(1.2) has at least one solution.

Proof. We choose a positive constant ¢ in such a way that the inequality
(1.15) is fulfilled and assume that

p =0+ (uvab+ pa + vb)po, R?”*‘m*‘" =
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— mn+m+n
= {(ZOO;- c 3 20n—1y++32m0s -3 2fmn—1,20n; - "7Zm71n) eR .

m n—1

m—1
>3l + X el <o}
0 k=0 =0

1=

Then because of the local Lipschitz property of f with respect to the last
m + n variables there exists a positive constant ¢ such that on the set
G x R ™+ the condition

f(xayaZOO;- 3 20n—1y++32m0s -y 2Zmn—1,20n,-- 'aszln)*

— (%, Y, 200, - - 20n—1, -2 Zm0s - - > Zmn—1,20ns - - - Zm—1n)| <

n—1 m—1
(3 ok = Zukl + Y J2in = Zinl) (3.2)
k=0 =0

is satisfied.
By wo we denote the modulus of continuity of the function f on the set
G x Ry m+7 and by w we denote the function given by the equality

w(r) = (ap +brvjwo((1 +p)7)+
+appo max {[n(y) —n@|: 0<y.F<b |y-7 < T}+

m—1n—1

{3 uf V) - of V) 050 <a

i=0 k=0

+b1/p0max{‘fyg(x)ffyg(f)‘: 0<z,z7<a, |[zt—7| §T}+

m—1n—1
+max{ ZZ‘U(I k) uél’k)(f,y)‘: 0<z,7<a, |xf§7}. (3.3)
i=0 k=0

By B we will mean the Banach space of functions v : G — R uniformly
continuous along with u(®) (i =0,...,m; k=0,...,n;i+k <m+n—1),
in which the norm is introduced by the equality

m n—1
|u||—sup{22|u(lk)my‘+2|u(’”)xy (m,y)eG}.

=0 k=0

Let By be the set of all u € B satisfying in G the conditions

l[ull < p,

m—1

Z ‘u(i’") (z,y) — ulo™(z, 9)| < w(ly —7l) exp(utx), (34)
=0
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S [0 B e, y) — uH @ )| < wllr - F)exp(uly).  (35)

It is obvious that an arbitrary u € By satisfies the condition

m—1n—1

SN P @, y) — B (@) < p(le T +ly—7l)  (3.6)

i=0 k=0

and By is a convex compact set of the space B.
On the set By we consider the operator

1
I T
></~n(11()ac_$)m_1 ds/vj(s()y_t)n_lf(s’ t,u®0(s,1), ..., ulmEM (s, 1)) dt.

(3.7)

If for an arbitrarily fixed u € By we put v(x,y) = p(u)(z,y) and take into
account the fact that the pair 1, 72 satisfies one of the conditions (M7) and
(My), then (3.7) yields

x
(i,k)( _ (k) 1 / _ ym—1—i
v x,y) =uy " (z,y) + - (x—s) dsx
0 (m—-1—0!(n—-1-k)! ()
y
X / (y — t)”fl*kf(s, £, u00(s,1),. .. ulmTbP) (s, t)) dt (3.8)
Y2(s)

(t=0,....m—1; k=0,...,n—1),
0 (@, y) = uf™ @, y)+

1 ¢ —1—1 m—1,n
+41/ ($ S)m ! f(57yau(070)(57y)a"-au( b )(Say)) ds (39)
(m W)

(i=0,...,m—1),
R (2, ) = ul ) (2, y)+

1 Yy
+m/ ((y)— t)”_l_kf(x, t, u(00) (x,t),... ,u(m_l’")(x, t)) dt (3.10)
2 (T

o

(k=0,...,n—=1).
By the conditions (3.1)—(3.6) from equalities (3.8)—(3.10) it follows that

m n—1 . m—1 .
SN R @)+ D [ (@, y)| < 6+ ppo + ppo + veo = p,
=0 k=0 1=0
m—1 m—
[0 (2, y) — v ()] < Z § (@, y) = ul™ (@, )|+
=0 =0

+appo |1 (y) — (@] + apwo (1 + p)ly — 1)+



On the Solvability and Well-Posedness of Initial Problems 49

xT

Fulw(ly — ﬂl)/ exp(uls) ds <
Y1(y)

< w(ly - 71) + uteo(ly — 7)) / " exp(uts) ds = w(ly — 71) exp(utz)

and
n—1
m,k) m,k) —
> [P y) — oD Z [ —ug" @ )|+
k=0
+bvpo|v2(x) — 2 ()| + bl/wo(( + p)lz — 7))+
y
+vlw(|lx — T|) / exp(vet) dt <
Y2 ()

<w(lz —7|) + vlw(lz — T|) /Oy exp(vlt) dt = w(|x — T|) exp(vly).

Consequently, v € By. Thus we have proved that the operator p transforms
the convex compact set By into itself. On the other hand, because of the
fact that f is continuous, from the equalities (3.7)—(3.10) it follows that p is
the continuous operator. By Schauder’s principle, there exists u € By such
that p(u)(z,y) = u(x,y) for (z,y) € G. If we again take into account the
equalities (3.7)—(3.10), then it will become clear that u is a solution of the
problem (1.1),(1.2). O

The following lemma can be proved analogously to Lemma 3.1.

Lemma 3.2. Let the pair of functions 1, V2 along with (My) satisfy one
of the conditions (M) and (M*). Moreover, let the function fo satisfy the
local Lipschitz condition with respect to the last n variables, and let there
exist a positive constant py such that in the domain G x R™t™ the inequality
|folx,y, 21,y Zman)| < po is fulfilled. Then the problem (1.1'),(1.2) has
at least one generalized solution.

Lemma 3.3. Lety; be n-times continuously differentiable and the pair v1,
o satisfy one of the conditions (M) and (Ms). If, moreover, the function
f satisfies the local Lipschitz condition with respect to the last mn+m +n
variables, then the problem (1.1),(1.2) has at most one solution.

Proof. Let u and @ be arbitrary solutions of the problem (1.1),(1.2). Since
f possesses the local Lipschitz property with respect to the last mn+m-+n
variables, there exists a positive constant £ such that in the domain G the
inequality

‘f(xa Y, u(O,O)(x7 y)a cee u(mil’n) (:Ca y))i

—f(zy, 70 (2 7y),-~-,ﬂ(m’1’")(xvy))‘ <

I
-

n

m m—1
(Z Ul (2, ) — u(i”“)(x,y)|+z|u(i’”)(fv,y)—H”’”)(fvay)\)

=0 0 =0

=
Il
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is fulfilled.
Consequently, the function v(x,y) = u(z,y) — @(z,y) is a solution of the
problem

m n—1
‘ mn) (x,y) <€(ZZ‘U(”“ xy|+2|v(m)my )

i=0 k=0
lim o0 )(:E,y):() for 0<y<b (2:0,...,m71),
z—71(y)
lim o™k (z,9)=0 for 0<z<a (k=0,...,n—1).
y—y2()

This by virtue of Lemma 2.2 implies that v(z, y)=0, i.e. u(z,y)=u(z,y). O

Lemma 3.4. Let the pair of functions 1, 2 along with (M) satisfy
one of the conditions (M,) and (M*), and the function fo satisfy the local
Lipschitz condition with respect to the last m~+n variables. Then the problem
(1.1"), (1.2) has at most one generalized solution.

This lemma is proved analogously to Lemma 3.3. The only difference is
that instead of Lemma 2.2 we use Lemma 2.4.

4. PROOF OF THE MAIN RESULTS

Proof of Theorem 1.1. By virtue of (1.14), there exists a positive number &
such that

oo ds
/6+6 TQD(S) > (bILLl/ -+ 1% -+ I/)(CL -+ b) (41)

Let
T ds
v = /Ha e

and let 1/~! be the function inverse to ¢. Assume

p =1 ((bp + p+v)(a +1b)), (4.2)
1 for 7 <p
o(r) = 2—% for p<7<2p, (4.3)
0 for 7> 2p
F(2,Y, 200, - -+ Zm1n) =
m n—1
<ZZ |zik| + Z |zm|> T, Y, 2005 - -5 Zm—1n) (4.4)
=0 k=0

and consider the differential equations

umn) —

= ]”v(:c, y,u®0  On=1) gm0 gy tman=1) (0 u(mfl’")) (4.5)
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and
,U(m,n) —

= ey, 0®0, L pOnh) | (m0) | plmn=1) O (mtm)) 4
+h(x,y) (4.6)

with the initial conditions (1.2) and (1.4), where h : G — R and eg :
[0,a] - R (k =0,...,n — 1) are continuous, while ey; : [0,0] — R (i =
0,...,m—1) are n-times continuously differentiable functions satisfying the
inequality (1.7).

First, let us show that the problems (1.1), (1.2) and (1.3), (1.4) are equiv-
alent to the problems (4.5), (1.2) and (4.6), (1.2), respectively. We introduce
the function

m—1 i
wwy) = Y- RO ) - eny))+
o T Ul

.
By the conditions (1.7), (1.15), (1.16), (4.2) and (4.3) respectively in the
domains G and G x R™*+™m+n the inequalities

(cor(s) + e2r(s)) ds.

m n—1 m—1
(i,k i,n
22 [ @yl + 3 o @] <0+, (47)
i=0 k=0 =0
}f(xayaZOO;-";ZOnfla-"aszM-' Zmn—1;20n; - -+ meln)|+
m n—1
)l <eto( 303 leal + Z j2inl ) (4.8)
i=0 k=0
}f(xayaZOO;-";ZOnfla-"azm07~"7Zmn71720n7~"azm71n)|+
3] < po (4.9)

are fulfilled, where pg = £ + ©(2p).

Let u be a solution of the problem (1.1), (1.2) (of the problem (4.5), (1.2)).
Then by the condition (1.16) (by the conditions (1.16), (4.3) and (4.4)) it
likewise is a solution of the problem (2.1), (1.2). By virtue of Lemma 2.1, the
inequalities (1.14) and (1.15) guarantee the validity of the estimate (2.3).
According to (4.2), from (2.3) it follows that

m n—1 m—1 _
DD [Py + Y [ul (@ y)| < p. (4.10)
1=0 k=0 1=0

If along with the above we take into account the equalities (4.3) and (4.4),
then it will become clear that « is a solution of the problem (4.5), (1.2) (of
the problem (1.1),(1.2)). Consequently, the sets of solutions of the problems
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(1.1),(1.2) and (4.5), (1.2) coincide, and every solution of these problems in
the domain G admits the estimate (4.10).

Assume now that v is a solution of the problem (1.3), (1.4) (of the problem
(4.6),(1.4)). Then by the conditions (1.7) and (1.16) (by the condition (4.8))
the function v is a solution of the differential inequality

m n—1 m—1
[ (2, )| < e+ cp(Z > [ @)+ 3 o @, y)\) ~
i=0 k=0 i=0

By virtue of Lemma 2.1, the conditions (4.1), (4.2) and (4.7) guarantee the
validity of the estimate

m n—1

ZZ [vR) (2, y)| + Z [ (2, y)| < p. (4.11)

i=0 k=0

If along with the above we take into account the equalities (4.3) and (4.4),
then it will become clear that v is a solution of the problem (4.6), (1.4) (of
the problem (1.3), (1.4)). Consequently, the set of solutions of the problems
(1.3),(1.4) and (4.6), (1.4) coincide, and every solution of these problems in
the domain G admits the estimate (4.11).

If the function f satisfies the local Lipschitz condition with respect to the
last m + n variables (with respect to the last mn + m + n variables), then,
obviously, the function fsatisﬁes the same condition. In this case, by virtue
of the condition (4.9) and Lemma 3.1 (of Lemmas 3.1 and 3.2), the problem
(4.5),(1.2), as well as the problem (4.6),(1.4) has at least one solution (one
and only one solution). This, according to the above-proven, implies that
the problem (1.1),(1.2), as well as the problem (1.3), (1.4) has at least one
solution (one and only one solution), and solutions of these problems admit
the estimates (4.10) and (4.11).

To complete the proof of the theorem, it remains to show that in the case
where the function f satisfies the local Lipschitz condition with respect to
the last mn + m + n variables the difference of solutions of the problems
(1.1),(1.2) and (1.3),(1.4) admits the estimate (1.8), where r is a positive
constant not depending on h, e1; (i =0,...,m—1) and egr, (k =0,...,n—1).

In the above-mentioned case, there exists a positive constant £ such that
in the domain G x R7"*™*" the condition

‘f(x7y;2005---aZOn—la---aZTI’LOv---7Zmn—1720n7---azm—1n)_
_f(x7y)200)'")EOTL—17"'7ET)’LO)"')Emn—1720n7"'72m—1n) S
m n—1
<ZZ|ZU€ZU€|+ Z |Zzn Zzn|> (412)
1=0 k=0

is fulfilled.
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Let u and v be, respectively, the solutions of the problems (1.1), (1.2)
and (1.3),(1.4). Suppose

’U.)(’ll',y) = U(l’,y) - U(.I,y), ’UJ()('JJ,y) - : - ell(y)+

—I—Z/ (z=9) ~ D ear(8) ds.

Then by the notation (1.5) and the inequalities (4.10)—(4.12), the function
w is a solution of the problem

|w™™ (2, 9)] < nleo, .. e1m-1;€20,- -, €2n—1;h)+

m n—1

(ZZW’“) 2,y |+Z |l (@, y)|
=0k

lim w® (z,y) = e1;(y) for O<y<b (1=0,...,m—1),

\_/
—
e
—_
w
=

z—71(y) . (4.14)
lim  w™* (2,9) = e(y) for 0<z<a (k=0,...,n—1).
y—y2()
As for wy, it in the domain G satisfies the inequality
m n—1 m—1
i,k) i,n
22 e @y + 3 g @) <
i=0 k=0 i=0
S7"07](610,-~-a€1m71;€20,-~-7€2n71;h); (415)
where 79 > 0 is a constant not depending on h, e1; (i =0,...,m — 1) and

ear, (k=0,...,n—1).
By virtue of the conditions (4.13)—(4.15) and Lemma 2.1, the function w
in the domain G admits the estimate
m n—1
ZZW““) T,y ‘—l—Z‘wZ" xy
=0 k=0
< 7’77(610, <o €1m—15€20y.-.,€2n-1; h)a

where r = (1+179) exp((a+b)(buv + u+v)) — 1. Consequently, the estimate
(1.8) is valid, where r is a positive constant not depending on h, ey; (i =
0,...,m—1)and ey, (k=0,...,n—1). |

Proof of Corollary 1.1. By (1.17), in the domain G x R™"* ™+ the condition
(1.16) is fulfilled, where ¢(7) = o(1 + 7).

We choose § > 0 in such a way that the inequality (1.15) in G be ful-
filled. Obviously, the condition (1.14) is likewise fulfilled. If now we apply
Theorem 1.1, the validity of Corollary 1.1 becomes evident. 0

Theorem 1.2 can be proved analogously to Theorem 1.1. The only differ-
ence in the proof is that instead of Lemmas 2.1, 2.2, 3.1 and 3.3 we apply
Lemmas 2.3, 2.4, 3.2 and 3.4.
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10.

11.

12.

13.

14.

15.

16.

M. Grigolia
In the case ¢(7) = £o(1 + 7), from Theorem 1.2 we obtain Corollary 1.2.
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