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1. Introduction

In modelling real systems one is frequently confronted with a differential
equation

y′′(t) = f(t, y(t)), t ∈ [0, T ], y(0) = y0, y(T ) = yT ,

where the structure of the equation is known (represented by the vector
field f) but the model parameters and the values y0 and yT are not known
exactly. One method of treating this in certainty is to use a fuzzy set theory
formulation of the problem.

This paper is concerned with the existence of fuzzy solutions for three and
four-point boundary value problems for second order differential equations.
More precisely, in the first part of Section 3 we will consider the following
three-point problem

y′′(t) = f(t, y(t)), t ∈ J := [0, 1], (1)

y(0) = 0̂ ∈ En, y(η) = y(1), (2)

where we let En be the set of all upper semi-continuous, convex, normal
fuzzy numbers with bounded α−level, f : J × En → En a continuous
function and η ∈ [0, 1].

The second part of this section will be devoted to the following four-point
problem

y′′(t) = f(t, y(t)), t ∈ J = [0, 1], (3)

y(0) = y′(η), y(1) = y(τ), (4)

where f, η are as in problem (1)–(2), and τ ∈ [0, 1].
The study of multi-point boundary value problem for linear second order

ordinary differential equations was initiated by Il’in and Moiseev [5], [6]. In
the early 1990’s Gupta [4] studied the three-point boundary value problem
for nonlinear ordinary differential equations and this paper led to much
activity in the area.

Kandel and Byatt [7] introduced the concept of fuzzy differential equa-
tions and later it was applied in fuzzy processes and fuzzy dynamical sys-
tems. For recent results on fuzzy differential equations, see [2], [8], [9], [11],
[12], [14] and the references therein. In this paper using some ideas from [12]
we initiate the study multi-point boundary value problems for fuzzy differ-
ential equations. Our approach relies on a fixed point theorem in absolute
retract spaces [3].

2. Preliminaries

In this section, we introduce notation, definitions, and preliminary facts
which are used throughout this paper.
CC(Rn) denotes the set of all nonempty compact, convex subsets of R

n.
Denote by

En = {y : R
n → [0, 1] satisfying (i) to (iv) mentioned below} :
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(i) y is normal, that is, there exists an x0 ∈ R
n such that y(x0) = 1;

(ii) y is fuzzy convex, that is for x, z ∈ R
n and 0 < λ ≤ 1,

y(λx + (1− λ)z) ≥ min[y(x), y(z)];

(iii) y is upper semi-continuous;

(iv) [y]0 = {x ∈ Rn : y(x) > 0} is compact.

For 0 < α ≤ 1, we denote [y]α = {x ∈ R
n : y(x) ≥ α}. Then from (i) to

(iv), it follows that the α−level sets [y]α ∈ CC(Rn). If g : R
n×R

n → R
n is

a function, then, according to Zadeh’s extension principle we can extend g

to En ×En → En by the function defined by

g(y, y)(z) = sup
z=g(x,z̄)

min{y(x), y(z̄)}.

It is well known that

[g(y, y)]α = g([y]α, [y]α) for all y, y ∈ En and 0 ≤ α ≤ 1,

and g is continuous. For addition and scalar multiplication, we have

[y + y]α = [y]α + [y]α, [ky]α = k[y]α.

Let A and B be two nonempty bounded subsets of R
n. The distance

between A and B is defined by the Hausdorff metric

Hd(A,B) = max
{

sup
a∈A

inf
b∈B

‖a− b‖, sup
b∈B

inf
a∈A

‖a− b‖
}

where ‖ · ‖ denotes the usual Euclidean norm in R
n. Then (CC(Rn), Hd) is

a complete and separable metric space [13]. We define the supremum metric
d∞ on En by

d∞(u, u) = sup
0<α≤1

Hd([u]
α, [u]α) for all u, u ∈ En.

(En, d∞) is a complete metric space and for all u, v, w ∈ En and λ ∈ R we
have

d∞(u+ w, v + w) = d∞(u, v)

and

d∞(λu, λv) = |λ|d∞(u, v).

We define 0̂ ∈ En as 0̂(x) = 1 if x = 0 and 0̂(x) = 0 if x 6= 0. It is well
known that (En, d∞) can be embedded isometrically as a cone in a Banach
space X , i.e. there exists an embedding j : En → X (see also [9]) defined
by

j(u) = 〈u, 0̂〉 where u ∈ En;

here 〈·, ·〉 is defined in [13]. Notice also that

‖〈u, v〉‖X = d∞(u, v) for u, v ∈ En,

so, in particular,

‖ju‖X = d∞(u, 0̂) for u ∈ En.
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The supremum metric H1 on C(J,En) is defined by

H1(w,w) = sup
t∈J

d∞(w(t), w(t)).

It is well known that C([0, 1], En) is a complete metric space. Now since
j : En → C ⊂ X we can define a map J̄ : C(J,En) → C(J,X) by

[J̄x](t) = j(x(t)) = jx(t) for t ∈ [0, 1];

here x ∈ C(J,En) (note that if x ∈ C(J,En) and t0, t ∈ [0, 1], then by
definition of j we have

‖[J̄x](t)− [J̄x](t0)‖C([0,1],X) = sup
t∈[0,1]

‖jx(t)− jx(t0)‖ = d∞(x(t), x(t0)).

Also, it is easy to check that

J̄ : C(J,En) → J̄(C(J,En))

is a homeomorphism. To see that J̄ is continuous let xn, n ∈ N, x ∈
C(J,En) be such that

H1(xn, x) = sup
t∈[0,1]

d∞(xn(t), x(t)) → 0 as n→∞.

Then

‖J̄xn − J̄x‖C(J,X) = sup
t∈[0,1]

‖jxn(t)− jx(t)‖ =

= sup
t∈[0,1]

d∞(xn(t), x(t)) → 0 as n→∞,

so J̄ is continuous. To see that J̄−1 is continuous, let yn ∈ J(C([0, 1], En)),
y ∈ J(C([0, 1], En)) with ‖yn − y‖C(J,X) → 0 as n → ∞. Then there exist

xn, x ∈ C(J,En)with J̄xn = yn and y = J̄x. Thus

H1(J̄
−1yn, J̄

−1y) = sup
t∈[0,1]

d∞(J̄−1yn(t), J̄−1y(t)) = sup
t∈[0,1]

d∞(yn(t), y(t)) =

= sup
t∈[0,1]

‖jyn(t)− jy(t))‖X = sup
t∈[0,1]

‖yn(t)− y(t)‖X =

→ 0 as n→∞,

since yn(t) = jxn(t) and y(t) = jx(t). Thus J̄−1 is continuous.

Definition 2.1. A map f : J → En is strongly measurable if for all
α ∈ [0, 1] the multi-valued map fα : J → CC(Rn) defined by fα(t) = [f(t)]α

is Lebesgue measurable, where CC(Rn) is endowed with the topology gen-
erated by the Hausdorff metric Hd.

Definition 2.2. A map f : J → En is called integrably bounded if there
exists an integrable function h such that ‖y‖ ≤ h(t) for all y ∈ f0(t).
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Definition 2.3. Let f : J → En. The integral of f over J , denoted∫ 1

0
f(t)dt, is defined by the equation

( 1∫

0

f(t)dt

)α

=

1∫

0

fα(t)dt =

=

{ 1∫

0

v(t)dt | v : J → R
n is a measurable selection for fα

}

for all α ∈ (0, 1].
A strongly measurable and integrably bounded map f : J → En is said

to be integrable over J, if
∫ 1

0 f(t)dt ∈ En.

If f : J → En is measurable and integrable bounded, then f is integrable.

Definition 2.4. A map f : J → En is called differentiable at t0 ∈ J if
there exists a f ′(t0) ∈ E

n such that the limits

lim
h→0+

f(t0 + h)− f(t0)

h
and lim

h→0−

f(t0)− f(t0 − h)

h

exist and are equal to f ′(t0). Here the limit is taken in the metric space
(En, Hd). At the end points of J, we consider only the one-side derivatives.

If f : J → En is differentiable at t0 ∈ J , then we say that f ′(t0) is the
fuzzy derivative of f(t) at the point t0. For the concepts of fuzzy measura-
bility and fuzzy continuity we refer to [10].

3. Main Results

In this section we are concerned with the existence of fuzzy solutions
for the problems (1)–(2) and (3)–(4). Firstly, we shall present an existence
result for the problem (1)–(2).

Definition 3.1. A function y ∈ C2((0, 1), En) is said to be a solution
of (1)–(2) if y satisfies the equation y′′(t) = f(t, y(t)) on [0, 1] and the
condition (2).

We state the fixed point result we will need in Sections 3 and 4. Its proof
can be found in [3] (in fact a more general version can be found in [1]).

Theorem 3.2. Let X ∈ AR and F : X → X be a continuous and

completely continuous map. Then F has a fixed point.

Remark 3.3. Recall that a space Z is called an absolute retract (written
Z ∈ AR) if Z is metrizable and for any metrizable space W and any em-
bedding h : Z →W the set h(Z) is a retract of W.

Theorem 3.4. Let f : [0, 1]×En → En be continuous and assume that

the following conditions hold:
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(A1) There exist a continuous non-decreasing function ψ : [0,∞) −→
(0,∞) and p ∈ L1(J,R+) such that

d∞(f(t, y), 0̂) ≤ p(t)ψ(d∞(y, 0̂)) for t ∈ J, y ∈ En;

(A2) There exists M > 0 with

M

ψ(M)
(
1 + 2

1−η

) 1∫
0

p(s)ds

≥ 1

such that for each t ∈ J the set




t∫

0

(t− s)f(s, y(s))ds+
t

1− η

η∫

0

(η − s)f(s, y(s))ds

−
t

1− η

[ 1∫

0

(1− s)f(s, y(s))ds

]
, y ∈ A





is a totally bounded subset of En, where

A = {y ∈ C(J,En) : d∞(y(t), 0̂) ≤M, t ∈ J}.

Then the problem (1)–(2) has at least one fuzzy solution on J.

Proof. We transform the problem (1)–(2) into a fixed point problem. It
is clear that the solutions of the problem (1)–(2) are fixed points of the
operator N : C(J,En) → C(J,En) defined by

N(y)(t) :=

t∫

0

(t− s)f(s, y(s))ds+
t

1− η

η∫

0

(η − s)f(s, y(s))ds−

−
t

1− η

[ 1∫

0

(1− s)f(s, y(s))ds

]
.

Let

A ∼= B ≡ {J̄y ∈ C(J,En) : y ∈ C(J,En) and d∞(y(t), 0̂) ≤M), t ∈ J}.

Clearly, B is a convex subset of the Banach spaces C(J,X), so in particular
B is an absolute retract. As a result, A is an absolute retract. We will show
that N maps A into A and is continuous and completely continuous. The
proof will be given in several steps.

Step 1: N : A → A.

Let y ∈ A and t ∈ [0, 1]. From (A1) we have

d∞(Ny(t), 0̂) = d∞

( t∫

0

(t− s)f(s, y(s))ds+
t

1− η

η∫

0

(η − s)f(s, y(s))ds−
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−
t

1− η

[ 1∫

0

(1− s)f(s, y(s))ds

]
, 0̂

)
≤

≤

t∫

0

(t− s)d∞(f(s, y(s)), 0̂)ds+

+
t

1− η

η∫

0

(η − s)d∞(f(s, y(s)), 0̂)+

+
t

1− η

1∫

0

(1− s)d∞(f(s, y(s)), 0̂)ds ≤

≤

1∫

0

p(s)ψ(d∞(y(s), 0̂))ds+
1

1− η

1∫

0

p(s)ψ(d∞(y(s), 0̂))ds+

+
1

1− η

1∫

0

p(s)ψ(d∞(y(s), 0̂))ds ≤

≤ ψ(M)(1 +
2

1− η
)

1∫

0

p(s)ds ≤M.

Thus N(A) ⊂ A.

Step 2: N is continuous.

Let {yn} ∈ A be a sequence such that yn → y ∈ A in C([0, 1], En).

H1(Nyn(t),Ny(t)) = H1

( t∫

0

(t− s)f(s, yn(s))ds+

+
t

1− η

η∫

0

(η − s)f(s, yn(s))ds−

−
t

1− η

[ 1∫

0

(1− s)f(s, yn(s))ds

]
,

t∫

0

(t− s)f(s, y(s))ds+
t

1− η

η∫

0

(η − s)f(s, y(s))ds−

−
t

1− η

[ 1∫

0

(1− s)f(s, y(s))ds

])
≤
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≤

1∫

0

H1(f(s, yn(s)), f(s, y(s)))ds+

+
1

1− η

1∫

0

H1(f(s, yn(s)), f(s, y(s)))ds+

+
1

1− η

1∫

0

H1(f(s, yn(s)), f(s, y(s)))ds.

Hence

H1(Nyn, Ny) ≤

(
1 +

2

1− η

) 1∫

0

H1(f(s, yn(s)), f(s, y(s)))ds.

Let

ρn(s) = d∞(f(s, yn(s)), f(s, y(s))).

Since f is continuous, we have

ρn(t) → 0 as n→∞ for t ∈ [0, 1].

From (A1) we have that

ρn(t) ≤ d∞(f(t, yn(t)), 0̂) + d∞(0̂, f(t, y(t))) ≤

≤ p(t)[ψ(d∞(yn(t), 0̂)) + ψ(d∞(y(t), 0̂))] ≤

≤ 2p(t)ψ(M).

As a result,

lim
n→∞

1∫

0

ρn(s)ds =

1∫

0

lim
n→∞

ρn(s)ds = 0.

Thus

H1(Nyn, Ny) → 0 as n→∞,

so N : A → A is continuous.

Step 3: N(A) is an equicontinuous set of C([0, 1], En) .

Let l1, l2 ∈ [0, 1], l1 < l2, and let y ∈ A. Then

d∞(Ny(l2),Ny(l1)) = d∞

( l2∫

0

(l2 − s)f(s, y(s))ds+

+
l2

1− η

η∫

0

(η − s)f(s, y(s))ds−
l2

1− η

[ 1∫

0

(1− s)f(s, y(s))ds

]
,
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l1∫

0

(l1 − s)f(s, y(s))ds+
l1

1− η

η∫

0

(η − s)f(s, y(s))ds−

−
l1

1− η

[ 1∫

0

(1− s)f(s, y(s))ds

])
=

= d∞

( l1∫

0

(l1 − s)f(s, y(s))ds+

l1∫

0

(l2 − l1)f(s, y(s))ds+

+

l2∫

l1

(l2 − s)f(s, y(s))ds+

+
l2 − l1

1− η

η∫

0

(η−s)f(s, y(s))ds+
l1

1− η

η∫

0

(η−s)f(s, y(s))ds−

−
l2 − l1

1− η

1∫

0

(1− s)f(s, y(s))ds−
l1

1− η

1∫

0

(1− s)f(s, y(s))ds,

l1∫

0

(l1 − s)f(s, y(s))ds+
l1

1− η

η∫

0

(η − s)f(s, y(s))ds−

−
l1

1− η

[ 1∫

0

(1− s)f(s, y(s))ds

])
.

As a result,

d∞(Ny(l2),Ny(l1)) = d∞

( l1∫

0

(l2 − l1)f(s, y(s))ds+

l2∫

l1

(l2 − s)f(s, y(s))ds+

+
l2 − l1

1− η

η∫

0

(η − s)f(s, y(s))ds−

−
l2 − l1

1− η

1∫

0

(1− s)f(s, y(s))ds, 0̂

)
≤

≤ l2

l2∫

l1

d∞(f(s, y(s)), 0̂))ds+

l1∫

0

(l2 − l1)d∞(f(s, y(s)), 0̂))ds+
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+ 2
l2 − l1

1− η

1∫

0

d∞(f(s, y(s)), 0̂)ds ≤

≤ l2

l2∫

l1

p(s)ψ(y(s), 0̂))ds+

l1∫

0

(l2 − l1)p(s)ψ(y(s), 0̂))ds+

+ 2
l2 − l1

1− η

1∫

0

p(s)ψ(y(s), 0̂)ds ≤

≤

l2∫

l1

l2p(s)ψ(M)ds+

l1∫

0

(l2 − l1)ψ(M)ds+

+ 2
l2 − l1

1− η

1∫

0

p(s)ψ(M)ds.

Now Steps 1 to 3, (A2) and the Arzela–Ascoli theorem guarantee that N :
A → A is continuous and completely continuous. Theorem 3.2 implies that
N has a fixed point y which is a solution of the problem (1)–(2). �

Next we study the four-point problem (3)–(4).

Definition 3.5. A function y ∈ C2((0, 1), En) is said to be a solution of
(3)–(4) if y satisfies the equation y′′(t) = f(t, y(t)) on [0, 1] and the condition
(4).

Theorem 3.6. Let f : [0, 1]×En → En be continuous and assume that

the following conditions hold:

(A3) There exist a continuous non-decreasing function ψ : [0,∞) −→
(0,∞) and p ∈ L1(J,R+) such that

d∞(f(t, y), 0̂) ≤ p(t)ψ(d∞(y, 0̂)) for t ∈ J, y ∈ En;

(A4) There exists M1 > 0 with

M1

ψ(M1)

(
(3 + 2

1−τ
)

1∫
0

p(s)ds

) ≥ 1

such that for each t ∈ J the set




t∫

0

(t− s)f(s, y(s))ds+

η∫

0

f(s, y(s))ds+

+
1 + t

1− τ

[ τ∫

0

(τ − s)f(s, y(s))ds+

1∫

0

(1− s)f(s, y(s))ds

]
: y ∈ A1




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is a totally bounded subset of En, where

A1 = {y ∈ C(J,En) : d∞(y(t), 0̂) ≤M1, t ∈ J}.

Then the problem (3)–(4) has at least one fuzzy solution on J.

Proof. We transform the problem (3)–(4) into a fixed point problem. A
simple computation shows that the solutions of the problem (3)–(4) are
fixed points of the operator N1 : C(J,En) → C(J,En) defined by

N1(y)(t) :=

t∫

0

(t− s)f(s, y(s))ds+

η∫

0

f(s, y(s))ds+

+
1 + t

1− τ

[ τ∫

0

(τ − s)f(s, y(s))ds+

1∫

0

(1− s)f(s, y(s))ds

]
.

Set

A1 = {y ∈ C(J,En) : d∞(y(t), 0̂) ≤M1, t ∈ J}.

Clearly, A1 is an absolute retract. Now we prove that N1(A1) ⊂ A1. Let
y ∈ A1. Then

d∞(N1y(t), 0̂) = d∞

( t∫

0

(t− s)f(s, y(s))ds+

η∫

0

f(s, y(s))ds+

+
1 + t

1− τ

[ τ∫

0

(τ − s)f(s, y(s))ds

]
−

1∫

0

(1− s)f(s, y(s))ds, 0̂

)
≤

≤

t∫

0

(t− s)d∞(f(s, y(s)), 0̂)ds+

η∫

0

d∞(f(s, y(s)), 0̂)ds+

+
1 + t

1− τ

τ∫

0

(τ − s)d∞(f(s, y(s)), 0̂)ds+

1∫

0

(1− s)d∞(f(s, y(s)), 0̂)ds≤

≤

1∫

0

p(s)ψ(M1)ds+

1∫

0

p(s)ψ(M1)ds+

+
2

1− τ

1∫

0

p(s)ψ(M1)ds+

1∫

0

p(s)ψ(M1)ds =

= ψ(M1)
(
3 +

2

1− τ

) 1∫

0

p(s)ds ≤M1.

Thus N1(A1) ⊂ A1.
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Essentially the same reasoning as in Theorem 3.4 guarantees that N1 :
A1 → A1 is continuous and completely continuous. Now Theorem 3.2
implies that N1 has a fixed point y which is a solution to the problem
(3)–(4). �
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[Mathematical Monographs], 61. Państwowe Wydawnictwo Naukowe (PWN), War-
saw, 1982.

4. C. P. Gupta, Solvability of a three-point nonlinear boundary value problem for a
second order ordinary differential equation. J. Math. Anal. Appl. 168 (1992), No. 2,
540–551.

5. V. A. Il’in and E. I. Moiseev, A nonlocal boundary value problem of the first
kind for the Sturm-Liouville operator in differential and difference interpretations.
(Russian) Differentsial’nye Uravneniya 23 (1987), No. 7, 1198–1207.

6. V. A. Il’in and E. I. Moiseev, A nonlocal boundary value problem of the second
kind for the Sturm–Liouville operator. (Russian) Differentsial’nye Uravneniya 23

(1987), No. 8, 1422–1431.
7. A. Kandel and W. J. Byatt, Fuzzy differential equations. Proceedings of the In-

ternational Conference on Cybernetics and Society, Vol. I, II (Tokyo/Kyoto, 1978),
1213–1216, IEEE, New York, 1978.

8. O. Kaleva, Fuzzy differential equations. Fuzzy Sets and Systems 24 (1987), No. 3,
301–317.

9. O. Kaleva, The Cauchy problem for fuzzy differential equations. Fuzzy Sets and
Systems 35 (1990), No. 3, 389–396.

10. Y. K. Kim, Measurability for fuzzy valued functions. Fuzzy Sets and Systems 129

(2002), No. 1, 105–109.
11. J. J. Nieto, The Cauchy problem for continuous fuzzy differential equations. Fuzzy

Sets and Systems 102 (1999), No. 2, 259–262.
12. D. O’Regan, V. Lakshmikantham and J. J. Nieto, Initial and boundary value

problems for fuzzy differential equations. Nonlinear Anal. 54 (2003), No. 3, 405–415.
13. M. Puri and D. Ralescu, Fuzzy random variables. J. Math. Anal. Appl. 114 (1986),

No. 2, 409–422.
14. S. Seikkala, On the fuzzy initial value problem. Fuzzy Sets and Systems 24 (1987),

No. 3, 319–330.

(Received 17.12.2004)

Authors’ addresses:

R. P. Agarwal
Department Mathematical Sciences
Florida Institute of Technology
Florida 32901-6975 USA
E-mail: agarwal@fit.edu



14 R. P. Agarwal, M. Benchohra, D. O’Regan, A. Ouahab

M. Benchohra and A. Ouahab
Laboratoire de Mathématiques
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