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BOUNDARY VALUE PROBLEMS
FOR THE BITSADZE EQUATION



Abstract. The Schwarz, Dirichlet, Neumann and some related bound-
ary value problems are explicitly solved for the Bitsadze equation in the
unit disc of the complex plane. The results are obtained from iterations
of related results for the inhomogeneous Cauchy—Riemann equation. Some
generalizations for the inhomogeneous polyanalytic equation are indicated.
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1. INTRODUCTION

From the three complex second order differential operators 92, 9,05 and
02, the Bitsadze operator 92 being the square of the Cauchy—Riemann op-
erator is essentially not different from 92 but differs principally from the
Laplace operator 9,0;. This was remarked by Bitsadze [14] who showed that
the Dirichlet problem as the natural boundary condition to the Laplace op-
erator is ill-posed for the homogeneous Bitsadze equation. Nevertheless, be-
sides the Schwarz and the Neumann boundary value problems this Dirichlet
problem will also be treated. Under some solvability conditions it is shown
to be solvable. In fact, the solutions to all the problems considered in the
unit disc of the complex plane are given explicitly. Solutions together with
the solvability conditions are attained from the iteration of results about
related problems for the inhomogeneous Cauchy-Riemann equation. Their
theory is developed in [6]. The same boundary value problems for the Pois-
son equation are investigated in [7]. Related considerations are available
from [3, 9, 10, 11, 12, 13]. Basic Cauchy—Pompeiu representations are de-
veloped e.g. in [3, 5]. They originate from a hierarchy of integral operators
[2, 8] which is constructed by iterating the Pompeiu operator [20]. This
Pompeiu operator is the main tool in I.N. Vekua’s theory of generalized an-
alytic functions and its main properties were studied by Vekua [20]. Besides
Gakhov [15], N.I. Mushelishvili [18] and Vekua [20, 21] have contributed sub-
stantially to the theory of boundary value problems for complex equations.
Bitsadze and last but not least G. Manjavidze with his extensive work on
boundary value problems with displacement [16] and on generalized ana-
lytic vectors [17] have complemented the work of Georgian mathematicians
on the theory of complex analytic methods.

The material developed here was at first presented in a mini-course on
boundary value problems in complex analysis at the University Simén Bo-
livar in Caracas in May 2004.

2. CAUCHY-POMPEIU REPRESENTATION FORMULAS

As from the Cauchy theorem the Cauchy formula is deduced, from the
complex Gauss theorem representation formulas can be deduced.
Cauchy—Pompeiu representation Let D C C be a reqular domain and
w € CYD;C)NC(D;C). Then using ¢ =& +1in for z € D,

we) = 5 [ 0O -1 [0 1)

(—2z = (—=z
aD

holds.

With respect to boundary value problems a modification of this Cauchy—
Pompeiu formula is important. In the case of the unit disc D = {z : |z| < 1}
it is as follows, see [1, 6, 8].
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Theorem 1. Any w € C*(D;C) N C(D;C) is representable as

_ 1 (tezdd 1 ac _
we) =5 [ RewOFZF 45 [ o
[¢l=1 [¢l=1

1 we(¢) | zwe(€)
- / (C—z+1—z§)d€dn’|z|<1' (2)
I<I<1

Corollary. Any w € C*(D;C) N C(D;C) can be represented as

w(z) = L Rew({)gtz %f

2mi

ci=1

1 we(C) ¢ +2  We(C) 1+ 2(
b /( ¢ c—z7 ¢ 1—z<)d€d”+

I¢l<1
+idmw(0), |z] <1. (3)

Remark. For analytic functions, (3) is the Schwarz—Poisson formula

1 2 d
wz) =5 [ Re w(g)(gfgz - 1)?C Lilmw(©). (%)
I¢|=1
The kernel
C+z_ 2¢
C—z (-2

is called the Schwarz kernel. Its real part

S S <l T

(=2 (-2 ¢ — z[?
is the Poisson kernel. The Schwarz operator
1 ¢+ zd¢
I¢l=1

for ¢ € C(0D;R) is known to provide an analytic function in D satisfying
Re Sp=¢ on 0D

(see [1]) in the sense
1131(5@9(2) =¢((), (€D,

for z in D tending to ¢. The operator

146 =1 [1&FEL sec
D

(—z

on L;(D;C) is the Pompeiu operator [19].
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The formula (3) is called the Cauchy—Schwarz—Poisson-Pompeiu formula.
Rewriting it according to

wy=f inD Rew=¢ on D, Im w(0)=c,

we have that

1 ¢+ zd¢
w(z) =5 SD(OC_Z?*
I¢1=1
1 (f(C)CJrZJrf(C)lJrZC

— o St 1724_)d§dn+ic (3")

I<I<1

is expressed by the given data. Applying the result of Schwarz one easily
sees, taking the real part on the right-hand side and letting z tend to a
boundary point ¢, that this tends to ().

Differentiating with respect to z, as every term on the right-hand side
is analytic besides the T-operator applied to f, one obtains f(z). Also for
z = 0 besides ic all other terms on the right-hand side are real.

Hence, (3") is a solution to the so-called Dirichlet problem

w;=finD Rew=¢ on dD, Im w(0)=c.

This shows how integral representation formulas serve to solve boundary
value problems. The method is not restricted to the unit disc but in this
case the solutions to the problems are given explicitly.

3. ITERATION OF INTEGRAL REPRESENTATION FORMULAS

Integral representation formulas for solutions to first order equations can
be used to get such formulas for higher order equations via iteration, see

Theorem 2. Let D C C be a regular domain and w € C*(D;C) N
CY(D;C), then

w(z) = = [ w(i)=L 1y/“f@)C7de+

27 C—zi% (—=z
oD 4]
1 —

o [0 F== dedn. ()
D

Proof. For proving (4), the formula (1) applied to wz giving

ST S P S N DO
w0 = gy w2~ 1 [ F
oD D

l§
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is inserted into (1), from what after having interchanged the order of inte-
grations

1 d 1 ~ .~
W) = g [ w075 + 5 [ wOve Ot
oD oD
-2 [ wee v Sydéan (5)
D

follows with
1 ddp 1 L[/ 1 1
w(Z;C)—ﬂD/(Cé)(CZ) <~Z7rD/<<<~ (Z)dfdn

The formula (1) applied to the function Z shows

C—=z 1 Cd¢ 1 d&dn ~ ~
o5 o

(= ) To—e 7] oy MEYTVEO O

with a function 1[) analytic in both its variables. Hence by the complex
Gauss theorem

1 TP | S
5 | welQ)¥(z Qd¢ — ;/w&:(g) (z,()dédi =0 .
aD )
Subtracting this from (5) and applying (6) gives (4). O

Remark. There is a dual formula to (4) resulting from interchanging
the roles of z and Z in the preceding procedure. It can be also derived by
applying complex conjugation to (4) after replacing w by w. It is

1 ¢ 1 -z -
we) = = 5 WO+ o [0 i =Zats
oD oD
1 _
- Z wee (O = (x)

The kernel functions (¢ — 2)/(¢ — 2),(¢ — 2z)/(¢ — z) of the second or-
der differential operators 92,92 respectively are thus obtained from those
Cauchy and anti-Cauchy kernels 1/(¢ — z) and 1/(¢ — z) for the Cauchy—
Riemann operator 0; and its complex conjugate d,. The related weakly

singular integral operators are

¢
¢

— 1 _
2 dgdn, Taof ()= 3 [ FOS= dedn
D

1
Toaf(z) == [ f(Q)
ﬂ[[ ¢

acting on Ly (D;C).
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4. BOUNDARY VALUE PROBLEMS FOR THE INHOMOGENEOUS BITSADZE
EQuATION

There are two basic second order differential operators, the Laplace op-
erator 0,0; and the Bitsadze operator 2. The third one, 92 is just the
complex conjugate of the Bitsadze operator and all formulas and results for
this operator can be attained by the ones for the Bitsadze operator through
complex conjugation giving dual formulas and results. Here the Bitsadze
operator will be investigated. For the problems for the Laplace operator
compare [7].

Theorem 3. The Schwarz problem for the inhomogeneous Bitsadze equa-
tion in the unit disc

wzz=finD, Rew=7y, Rewz=v ondD, Imw(0)=cy, Imws:(0)=cy,

for f € Li(D; C),y0,71 € C(OD;R), co,c1 € R is uniquely solvable through

w(z) =ico +i(z +2) + ﬁ / ’YO(C)gi—j%_
I¢I=1

1 ¢+ d¢

- %m_l ’Yl(OC (C —z+(— Z)?

1 fQO¢+z  flO1+2C
T or ( C c—277¢ 1725)(6

[¢I<1

—z+ Cj)dﬁdn . (N

Proof. Rewriting the problem as the system

w; =w in D, Re w =y on dD, Im w(0)
wz = f in D, Re w =7 on 0D, Im w(0) =¢1 ,

I
o
o

and combining its solutions

w(z) = lCo+—/’Yo +ch

¢
[¢]=1
1 w(() C+2z  w(@) 1+2¢
T <c -2 ¢ 1z<>d§d
[¢]<1
w(z) = zcl+—m/1 “Zg—

1 Q) ¢+z  JIO1+2¢
-5 [ (PP,

I¢I<1
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one obtains formula (7). Here the relations

1 1¢+2z 1142¢ _

5 | (oo crmad) =2,
ci<1

1 (+C¢1¢+2 _(+z

o J Tocec— = ®MTEem)
i<

1 [ 1+¢C11+2C _;

o 1—5551—25d€dn_C+z’
S _

1 T Q114 2C 142 -

— | == dedn=—22((~2),

2 —_ —
7T|(|<1CiCC1 18 1—2¢

1 1+¢{1¢+2 [

1 02 dédn = > (¢ —

2w | Tcc—s &dn 7Z~(C )
i<

are used. The uniqueness of the solution follows from the unique solvabil-
ity of the Schwarz problem for analytic functions and the inhomogeneous
Cauchy—Riemann equation, see [6]. O

It is well known that the Dirichlet problem for the Poisson equation
wyz=f in D, w=+ on JD,

is well posed, i.e. it is solvable for any f € L1(D;C), v € C(9D;C) and the
solution is unique. That the solution is unique is easily seen.

Lemma 1. The Dirichlet problem for the Laplace equation
wy =0 in D, w=0 on ID
is only trivially solvable.

Proof. From the differential equation w, is seen to be analytic. Integrating,
one obtains w = ¢ + 1, where ¢ and 1 are both analytic in . Without
loss of generality 1(0) = 0 may be assumed. From the boundary condition
¢ = —1) on D follows. This Dirichlet problem is solvable if and only if, see

[6],

1 —— zd¢ 1 dc 1 d¢
0=5m [0 = o [ w0 - [ 0% =0

I¢]=1 I<I=1 [¢]=1

This also implies ¢ = 0 on D so that w = 0 in D. g

As Bitsadze [14] has realized, such a result is not true for the equation
Wzz = 0
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Lemma 2. The Dirichlet problem for the Bitsadze equation
wsz =0 in D, w=0 on 0D
has infinitely many linearly independent solutions.

Proof. Here wz is an analytic function in D. Integrating gives w(z) =
©(z)z 4 () with some analytic functions in D. On the boundary we have
w(z) + z1(z) = 0. As this is an analytic function, this relation hold in D
too. Hence, w(z) = (1 — |2|?)¥(2) for arbitrary analytic +. In particular
wi(2) = (1 — |2|?)2* is a solution of the Dirichlet problem for any k € N
and these solutions are linearly independent over C. O

Because of this result, the Dirichlet problem as formulated above is ill-
posed for the inhomogeneous Bitsadze equation.

Since the Dirichlet problem formulated as for the Poisson equation is not
uniquely solvable for the Bitsadze equation, another kind Dirichlet problem
is considered which is motivated from decomposing the Bitsadze equation
into a first order system.

Theorem 4. The Dirichlet problem for the inhomogeneous Bitsadze
equation in the unit disc

wfizfin ]D)7 w =", Wz =71 0N 8]D)a
for f € Li(D;C),v0,m € C((?]D)' C) is solvable if and only if for |z] < 1

| (2520wt oo

(8)

I¢1=1 I¢]<1
and 1 ¢ 1 zded
ol IRNOE LT G )
[¢l=1 [¢]<1
The solution then is
1 d 1 —
we) =55 [ w07 5k [ w0
I¢l=1 I¢|=1
1 (—=z
wr [ r0 = dean. (10)
I¢l<1

Proof. Decomposing the problem into the system
wy=w in D, w=7y on JD,
w;=finD, w=- on JD,

composing its solutions

wiz)= = [ - L / w(¢) &

2mi (—z 7 -z’
[¢l=1 [¢l<1
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dédn
(-2’

! 1
w2 =5 [ mOF25 -1 [ 10
<=1 I¢I<1

and using the solvability conditions

1 zd¢ 1 Zd&dn
2mi %(C)lfzg_w /w(ol—zg’
I¢I=1 I¢l<1
1 zd¢ 1 zd&dn
o | O = [ r0T22
I<I=1 I¢l<1
one proves (10) together with (8) and (9). Here
1 / dedn (-z 1 (—z d¢ (-2
) C-Q0-) 1-2 2w S 1= 1-xC
[¢l<1 I¢]=1
and
1 dgdy _ 1 1 ( 11 )dd :§—z
”/(C—C)(C—Z) ”/C—Z (=¢ G-z i C—z
I¢l<1 I¢I<1
are used. O

Theorem 5. The Dirichlet—Neumann problem for the inhomogeneous
Bitsadze equation in the unit disc

wzgz=f in D, w=-~y, Jdhwz=y on ID, wz(0)=c,
for f € Li(D;C) N C(OD;C), v9,71 € C(OD;C), ¢ € C is solvable if and
only if for z € D
1 1
-5 [ 0O 1 [ 50

<=1 ICl<1

1- ¢ _
CA=20) dédn=20 (11)

and

i e L[ Q.
[ 00000 <<1—z<>+7r<£ Tk dedn =0, (12)

The solution then is

1 d¢

w(z) = cz + 3 VO(C)EJr
[¢]=1
_ 2 _
o [ 010 - g -0 %+
[¢]=1
so f J) - (13)
- (C—z) &

I<I<1
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Proof. The problem is equivalent to the system

w;=w in D, w=-~9 on ID
=finD OJw=mv ondD, w(0)=c.

The solvability conditions are

LI N e a— / w(¢) 2.

27i 1—-2¢ « 1-2¢
I¢l=1 [¢l<1
and
1 - d¢ 1 zf(Q) _
%m/l (m(¢) = ¢f(Q)) T=z0¢ T ;Kl[l EERE d§dn =0,

and the unique solutions are given by

wz)= = [ - L / w(¢) &D

27 (—z (—=z
I¢1=1 I¢l<1
and
w@)=e=g= [ 0O - -:0% -1 [
I¢l=1 |C|<1

according to the results on the Dirichlet and Neumann problems for the
inhomogeneous Cauchy—Riemann equation, see [6]. From

l/ ddy
T 1—z¢ 7

lcl<1
1 o dedn 1 dC _
[ = =g [ st~ g =0
lcl<1 =1
and )
1/ ¢ dédn _ |¢P-1
™) (-¢l1-2 (1-%)
lcl<1

the condition (11) follows. Similarly (13) follows from

déd déd — |z]2 =
[ E a2 g OE — = o2
[¢1<1 [¢]<1
and
1 ¢ dédp [P |z?
- _ — _ . O
m / C—-¢¢—= (C—2)

I<I<1
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Theorem 6. The boundary value problem for the inhomogeneous Bitsadze
equation in the unit disc
wzgz=f in D, w=ry, zwszz=y on dD, wz(0)=c,

is solvable for f € L1(D;C),v,11 € C(OD;C), ¢ € C if and only if for
z € D the condition (11) together with

1 _d&dn
ori (Oc zc +2 / O a=2g =0 (14)
I¢l=1 |C|<1
holds. The solution then is uniquely given by
1 d 1 1—|z? ~.d
w(z) = cz + o / ’yo(C)C —Cz + o 71(¢) z|Z| log(1 — z()?{Jr
I¢l=1 I¢l=1
1 ¢12 — ]z <
w2 [ 10 S E S e, (15)

ICI<1

The proof is as the last one but a modification of the Neumann condition
for the inhomogeneous Cauchy—Riemann equation is involved, see [6].

Theorem 7. The Neumann problem for the inhomogeneous Bitsadze
equation in the unit disc

wzz=f in D, dw=r, Gwz=v on ID, w(0)=cy, wz(0)=cy

is uniquely solvable for f € C*(D;C), 0 < a < 1, 7,71 € C(9D;C),
co,c1 € C if and only if for z € OD

ar g [0~ 5 [ 00 - U0 - lon(1 ~ 0+

—z  2m
I¢I=1 I¢l=1
1 F(©) (2(C—2) 1 _
+E/ ¢ ((17202_@2)655‘”7_0 (16)
I¢l<1
and
1 - _d&dn
| 0= === [ 10555z =0, a7
I¢l=1 \C\<1
The solution then is given as
w(z )—co—i—clz—— / 70(¢) log(1 — 2{)—= C
C

I¢l=1

tam [ Q)= CHOET=R) g1~ 20 G+

<=1
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2 [ HQC==
w/ ¢ (-2

I¢I<1

(18)

Proof. From the theory of the inhomogeneous Cauchy-Riemann equation
(6],

w@) = =5 [ (00— CuO)oa(1 —:0F ~ 2 [ w077
[¢]=1 I¢l<1
_ déd
v =a-gm [ 0O-s1-:0T -2 [ 10725
[¢]=1 [¢l<1
if and only if
1 = g z w(¢) _
I¢1=1 I¢l<1
1 = d¢ z f(©) _
5 | 00— o+ [ g dedn =0,
I¢1=1 I¢1<1
Inserting w into the first condition leads to (16) on the basis of
1 ¢
i ) e
I¢1=1 )
o1 o zemy L[ log(1—¢Q)dCdl
—aZ- oo / (1(Q) = ¢f(€))5— / -2 ¢
I¢l=1 I¢l=1
1 @L Rt T dg dédi =
o A TR R
ICl<1 I¢l=1
—artge [ Q-G+ [ A
I¢I=1 \<\<1
and
z ©) _
I¢l<1
_Z (€ —2)w(<) _z ¢ —
;[ oS- | e -
I¢l<1 I¢l<1
z (—z z ¢
i [ G- = [ gt e,
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where for |z| =1

z (—=z oz C—z C
27i (1-—2¢)2 (Odc_% (sz JdC= _% (—z C
I¢]=1 =1 I¢l=1

—om [ @G5 [ EES Cf) ac -
¢l=t1

From

1 = 1
o [ st = 20dc =~ [ log(1 - )¢ =0,
I¢I=1 I¢I=1

o [ el = cOlos(1 2008 =~ [ log(1 = GO log(1 — )i =
\C\—l I¢l=1

= eI A L
= ac log(1 — 2()|¢=0 = 7;:2 (k—Dk

k
= Clog(1 - =) — + (log(1 ~ 20) + 20) =+ Tog(1 ~ 20) -,

and
1 Clog(l - 2¢) gi— L [ les(l- 29) i =
2mi (—¢ 2mi 1-¢C B
I¢l=1 I¢l=1
1 logl — z¢
Tom g
I¢I=1

the relation

o [ Qo1 — 20 i =
I<I=1
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dg

1 - 1—2C S
5 | O -GO)(F e -0 +0)F ()
<=1
follows. Similarly from
dédn 1 dédn 1 dédn
/< w/<fzw/<‘z’
\<\<1 I<I<1 I¢l<1
1 log(1 CC) _
- | -
I¢1<1
. =1 — = d
(= oglt—20) - 5 [ (T Q) logl — )= -
I<1=1
_( Ao, L _ -
= (T~ 2)log(1 ~ =) + 5 / (1 - c)loe(1 ~ Q)75 =
|c< 1
_ - F S 1|22 -
= (= 2)log(1 — 20) + og(l —z() = ————log(1 — 2(),
déd ¢
%/lg(l—(C dedn _ /QC g(1 — ¢C)dedn =
\C\<1 |C|<1
— 57 [ tos1-c0G = <.
|C| 1
and
1 dgdn _ 1 < 11 >dd :7(;—2
m / (€= —2) W(CZ)/ (-¢ (-2 S C(—=z
I<I<1 I¢l<1
it follows
z _d&dn
;| w0z
I<l<1
— |22 _ R
:f612+— / 7(¢ 1 ||10g(124)+<>%
|C| 1
z [ fQC—=
-= / T(jdgdn. (20)
I<l<1
From (19) and (20) the representation (18) follows. O

Theorem 8. The boundary value problem for the inhomogeneous Bitsadze
equation in the unit disc

Wzz = f in ]D)a ZWz = Y0, RWzz =71 0N a]D)a ”LU(O) = Co, wé(o) =C1,
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for f € L1(D;C), v9,71 € C(OD;C), co,c1 € C is uniquely solvable if and
only if for |z| =1

1 ¢ 1

¢ _
5 %(O(l—zf)c +o— 1(Q): log(l—ZC)? =
<=1 ICI 1
/ f(¢ 5 d€dn, (21)
|C|<1
and
1 dédn
2_7m/7( 1—z( /f (1-2¢)? ' =
I¢I=1 |(|<1

The solution then is

w(z) =co+ 1z — 2%” / Y0 (¢) log(1 — zf)%Jr
[¢l=1

1 1—|z|? - 2\ d
tom [ (L os- 20 +0) T4
I¢1=1
s [ HOTE
+2 / ot dedn. (23)
[¢l<1

Proof. The system

wy =w in D, zw, =7 on ID, w(O) =y,
Wz = f in ]D7 ZW, =71 On a]D)7 OJ(O) =cp,

is uniquely solvable if and only if

= [ O+ D [ w0 B~

2mi (1-2¢)¢ (1-—2¢)2
[¢l=1 I¢|<1
and
1 d¢ z d&dn
2_7_m-|§|_1 VI(C) (1 — ZC)C + ;([I W(C) (1 _ 2()2 0

The solution then is

[ onost - 0% - 2 / Q) 7
=1 [¢l<1
[ moosa-20% -2 [ 5

I<I=1 I¢I<1

1
w(z) =co— 3
I<
d d
w(z)=c 5 77

B 1
T T om
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Inserting the expression for w into the first condition gives (21) because, as
in the preceding proof, on |z| =1 one has

- / (1W(C—) 7 =

- )
I¢l<1
1 -
5 [ 0O w10 %/ 7O de dy
[¢]=1 ¢<1
Also from
2 dedp 1 — |22 A
2 [uoZts = art g [nO(FE s - 20+0) F -
[¢l<1 I¢]=1
AN (9]
- C C déd
I¢l<1
the formula (23) follows. O

5. THE INHOMOGENEOUS POLYANALYTIC EQUATION

As second order equations of special type were treated in the preceding
section, model equations of third, forth, fifth etc. order can also be inves-
tigated. From the material presented it is clear how to proceed and what
kind of boundary conditions can be posed. However, there is a variety of
boundary conditions possible. All kind of combinations of the three kinds,
Schwarz, Dirichlet, Neumann conditions can be posed. And there are even
others, e.g., boundary conditions of mixed type which are not investigated
here.

As a simple example, the Schwarz problem will be studied for the inhomo-
geneous polyanalytic equation. Another possibility is the Neumann problem
for the inhomogeneous polyharmonic equation, see [12, 13], and the Dirich-
let problem, see [5]. As the results are published elsewhere [10, 11] only
statements are given.

Theorem 9. The Schwarz problem for the inhomogeneous polyanalytic
equation in the unit disc
Zw=Ff in D, Rediw=r2, on D, Im Zw(0)=c,, 0<v<n-—-1,
is uniquely solvable for f € L1(D;C), v, € C(OD;R), ¢, e R, 0<v <n-—1.
The solution is

L (=1)” ., d
_ZZV| Z+Z 2(27”3' /’YV(C)%(C_Z'FC_Z“)V?C‘F

(=" fQO¢+z  fO1+2C
+27T(n—1)! /( ¢ (j—z+ ¢ 1—2(

I¢I<1

) (=240 —2)"dgdn. (24)
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For the proof see [11].

Theorem 10. The Dirichlet problem for the inhomogeneous polyanalytic

equation in the unit disc

8

Ofw=f in D, Jw=-, on D, 0<v<n-—1,
uniquely solvable for f € L1(D;C), v, € C(0D;C), 0 <v <n-—1, if and

only if for0 <v <n-—1

n—1 _ ——_y
Z(il)/\_u Z / ’y/\(C) (C*Z)A' d¢—

2mi 1—2C (A=)
A= cl=1
z © =9 _
T 1-2( (n—1-v)! de dn =0. (25)

I<l<1

The solution then is

10.

11.

12.

cI=1 ¢l<1
(26)

The proof is given in [10].
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