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PROBLEMS WITH PARTIALLY UNKNOWN

BOUNDARIES IN THE THEORY OF FILTRATION



Abstract. In the present paper, first we briefly describe effective meth-
ods for solving such two-dimensional problems of the theory of filtration to
which on the plane of complex velocity there correspond circular pentagons
of special type and removable singular points. Of five vertices of the cir-
cular pentagon at least one is a cut end formed by two neighboring sides,
with the angle 2π. Then we present effective methods of solving two prob-
lems of the theory of filtration dealing with the motion of an incompressible
liquid through the plane earth dams of trapezoidal shape with water non-
permeable bases. To each problem there corresponds one removable singular
point. The first problem deals with the plane earth dam whose lower slope
is vertical and the upper one is inclined to the horizon. The second prob-
lem deals with the plane earth dam whose lower slope is inclined to the
horizon and the upper one is vertical. To these problems on the plane of
complex velocity there correspond circular pentagons one of whose vertices
is a cut end with the angle 2π. To find unknown parameters, we write a
system of equations which is decomposed into three systems. We substitute
the solutions of the first system into the second and third systems, and we
substitute the solution of the second system into the third system.
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Introduction

In the present paper we give an algorithm for the effective solution of such
two-dimensional problems of the theory of filtration with partially unknown
boundaries to which on the plane of complex velocity there correspond cir-
cular pentagons in which at least one of five vertices is a cut end with the
angle 2π, while the remaining four angles are arbitrary ones. So we can,
in particular, consider arbitrary circular quadrangles and triangles. More-
over, in these problems we may additionally come across removable singular
points. We give the solution of the problem of incompressible liquid motion
through earth dams with water-nonpermeable bases whose lower and upper
slopes are segments of straight lines which make with the horizon the fol-
lowing angles: (I). π/2, πα; (II). π(1−β), π/2; (III). π/2, π/2. Problem III
was solved by the well-known authors (see, e.g., [1], [2], [7], [8]). It should
be noted that the most complete solution of that problem is given by P.Ya.
Polubarinova- Kochina in [1, 2], therefore the solution of problem III will
be omitted here. Each of the problems I and II has one removable singular
point and to these problems on the plane of complex velocity there cor-
respond circular pentagons, while problem III has two removable singular
points and to that problem there corresponds a circular triangle.

To solve problems I and II, we construct three analytic functions z(ζ),
ω(ζ) and w(ζ) which map conformally the half-plane of the complex ζ =
t + iτ plane onto the domains of: liquid motion, complex potential and
complex velocity, respectively. In constructing the above-mentioned func-
tions we solve Fuchs class equations and nonlinear Schwartz equation. A
system of equations is derived with respect to the unknown parameters; it
decomposes into three systems. The first system is reduced to solution of
three higher transcendental equations with respect to three unknown es-
sential parameters, the second system is reduced to a system of equations
with respect to parameters (constants) of integration of the Schwartz equa-
tion, and the third system of equations is connected with removable singular
points, with the equation for determination of liquid discharge via filtration,
and also with some other parameters. First of all, we solve the first, then
the second and finally the third system. The solutions of these systems are
used subsequently. Finally, we define unknown parts of the boundaries of
the domain of liquid motion.

1. Effective Methods of Solving Two-dimensional Problems of

the Theory of Filtration with Partially Unknown

Boundaries.

Before we proceed to solving the above-mentioned specific problems, let
us consider in short some new effective methods of solving the plane prob-
lems of the theory of filtration with partially unknown boundaries. Using
the methods presented in this section, we construct solutions of Problems I
and II [26]–[34].
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The plane of steady motion of incompressible liquid in a porous medium
subjected to the Darcy law coincides with the plane of a complex variable
z = x + iy. The porous medium is assumed to be isotropic, homogeneous
and undeformable. The boundary l(z) of the domain s(z) of liquid mo-
tion consists of an unknown depression curve to be defined, and of known
segments, half-lines and straight lines.

In the domain s(z) with the boundary l(z) we seek for a reduced complex
potential (divided by the coefficient of filtration) ω(z) = ϕ(x, y) + iψ(x, y),
where ϕ(x, y) is the velocity potential, ψ(x, y) is the flow function satisfying
both the Cauchy-Riemann conditions and the following boundary conditions
[1]–[8]:

ak1ϕ(x, y)+ak2ψ(x, y)+ak3x+ak4(y) = fk, k = 1, 2, (x, y) ∈ l(z), (1.1)

where akj , fk, k = 1, 2, j = 1, 4 are known piecewise constant real functions,
fk, k = 1, 2, depend on the parameter Q, where Q is the liquid discharge
per filtration.

Using the boundary conditions (1.1), we can define a part of the boundary
l(ω) of s(ω) and the boundary l(w) of the domain of complex velocity w(z) =
ω′(z) = dω(z)/dz, except some coordinates of vertices of circular polygons
s(w) [1]–[6]. By means of the functions ω(z) and w(z) the domain s(z) with
the boundary l(z) is conformally mapped respectively onto the domains
s(ω) and s(w) with the boundaries l(ω) and l(w), where the domain s(w) is
a circular polygon with the boundary l(w) consisting of a finite number of
circular arcs and, in particular, of segments of straight lines, half-lines and
straight lines [1]–[8].

Angular points of the boundaries l(z), l(ω) and l(w) which may be en-
countered at least on one of them upon the circuit in the positive direction
will be denoted by Ak, k = 1, n.

To solve the problem of filtration, we map conformally the half-plane
Im(ζ) > 0 (or Im(ζ) < 0) of the plane ζ = t+ iτ , i =

√
−1 onto the domains

s(z), s(ω) and s(w). The corresponding mapping functions are denoted by
z(ζ), ω(ζ) and w(ζ) = ω′(ζ)/z′(ζ), dω(ζ)/dζ = ω′(ζ), dz(ζ)/dζ = z′(ζ). To
the angular points Ak, k = 1, n, along the axis t there correspond the points
t = ek, k = 1, n; note that −∞ < e1 < e2 < · · · < en < +∞, where the
point t = en+1 is mapped into a nonangular point A∞ of the boundary l(z)
which lies between the points An and A1.

The boundary values of the functions z(ζ), ω(ζ) and w(ζ), as ζ → t,
ζ ∈ Im(ζ) > 0 are denoted as follows: z(t) = x(t)+iy(t), ω(t) = ϕ(t)+iψ(t),

w(t) = u(t) − iv(t). By z(t), ω(t) and w(t) we denote the functions which
are complex-conjugate respectively to the functions z(t), ω(t) and w(t).

Introduce the vectors Φ(t) = [ω(t), z(t)], Φ(t) = [ω(t), z(t)], Φ′(t) =

[ω′(t), z′(t)], Φ′(t) = [ω′(t), z′(t)], f(t) = [f1(t), f2(t)]. Then by means of
these vectors the boundary conditions (1.1) can be written as [1]–[8], [11],
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[12], [26]–[34]

Φ(t) = g(t)Φ(t) + i2G−1f(t), −∞ < t < +∞, (1.2)

where g(t) = G−1(t)G(t) is a piecewise constant nonsingular matrix of the
second order with the points t = ek, k = 1, n, of discontinuity, G−1(t) and

G(t) are, respectively, the inverse and complex-conjugate matrices to the
matrix G(t), and f(t) is a piecewise constant vector. The matrix G(t) and
the vector f(t) are defined by (1.1).

Differentiating (1.2) along the boundary t, we get

Φ′(t) = g(t)Φ′(t), −∞ < t < +∞. (1.3)

We can easily verify that the equality g(t) = g−1(t) = G−1(t)G(t) holds.
For the points t = ej , j = 1, n, let us consider the characteristic equations

[12]
det[g−1

j+1(ej + 0)gj(ej − 0)− λE] = 0 (1.4)

with respect to the parameter λ, where E is the unit matrix, gj(t), ej < t <

ej+1, g
−1
j+1(ej +0), and gj(ej − 0) are limiting values of the matrices g−1

j+1(t)

and gj(t) at the point t = ej respectively from the right and from the left.
To solve the problem (1.3), we have first to find w(ζ) and then, using it

and the boundary conditions (1.3), we construct ω′(ζ) and z′(ζ). Finally,
integrating (1.3) with regard for (1.2), we find ω(ζ) and z(ζ). With the help
of ω(ζ) and z(ζ) we can find unknown parts of the boundaries l(z) and l(ω),
Q being the liquid discharge via filtration.

Using the roots λkj of the equation (1.4), we define uniquely the numbers
αkj = (2πi)−1 lnλkj , k = 1, 2, j = 1, n [1], [2].

Suppose that among the points Ak, k = 1, n, of the boundaries l(z) and
l(ω) there exist removable angular points to which on the boundary l(w)
of s(w) there correspond regular nonangular points; such angular points of
the boundaries l(z) and l(ω) are commonly called removable singular points
[1]–[6].

For the sake of simplicity, we assume that the number of removable sin-
gular points equals two. Suppose that removable singular points coincide
with the points t = ej , t = ej+k . To these points on the contours l(z) and
l(ω) there correspond the angles π/2, and on the boundary l(w) − π there
corresponds the angle l(w) − π. To remove these singular points from the
boundary conditions (1.3), we introduce a new unknown vector Φ1(t) by
the formula [1], [2], [26]–[34]

Φ′(t) = χ01(t)Φ1(t), −∞ < t < +∞, (1.5)

where

χ01(t) =
√

(t− ej−1)(t− ej)−1(t− ej+k+1)(t− ej+k)−1 > 0,

t > ej+k+1.
(1.6)

After passing from the vector Φ′(t) to Φ1(t), we multiply the matrices
gj−1(t) and gj+k(t) in the intervals (ej−1, ej) and (aj+k , ej+k+1) by (−1).
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The boundary condition with respect to Φ1(t) takes the form

Φ1(t) = g∗(t)Φ1(t), −∞ < t < +∞, (1.7)

where
g∗(t) = [χ01(t)]

−1g(t)[χ01(t)]. (1.71)

We renumerate singular points on the contour l(w) and denote them by
Bj , j = 1,m, while the corresponding points along the axis t are denoted
by aj , j = 1,m. Uniquely defined characteristic numbers corresponding to
the points t = aj we denote again by αkj , k = 1, 2, j = 1,m. They satisfy
the Fuchs condition.

Let us set up the Fuchs class [1]–[6], [26]–[34] equation

u′′(ζ) + p(ζ)u′(ζ) + q(ζ)u(ζ) = 0, (1.8)

where

p(ζ) =

m∑

j=1

(1− α1j − α2j)(ζ − aj)
−1, (1.9)

q(ζ) =

m∑

j=1

[α1jα2j(ζ − aj)
−2 + cj(ζ − aj)

−1]. (1.10)

cj are the unknown accessory parameters satisfying as yet the condition
m∑

j=1

cj = 0. (1.101)

We write the equation (1.8) in the form of a system [26]–[34]

χ′(t) = χ(t)P(t), (1.11)

where

P(t) =

(
0, −q(t)
1, −p(t)

)
, χ(t) =

(
u1(t), u′1(t)
u2(t), u′2(t)

)
. (1.12)

Using linearly independent solutions u1(t) and u2(t) of the equation (1.8),
we construct

w(t) = [Au1(t) +Bu2(t)][Cu1(t) +Du2(t)]
−1, (1.121)

the general solution of the Schwartz equation [14]–[16]

{w, t} ≡ w′′′(t)/w′(t)− 1, 5[w′′(t)/w′(t)]2 = R(t), (1.13)

where

R(t) = 2q(t)− p′(t)− 0, 5[p(t)]2 =

=

m∑

j=1

{
0, 5[1− (α1j − α2j)

2](t− aj)
−2 + c∗j (t− aj)

−1
}
, (1.14)

α1j − α2j = νj , j = 1,m, c∗j = 2cj − βj

m∑

k=1, k 6=j

βk(aj − ak)−1, (1.15)
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with

βk = 1− α1k − α2k, k = 1,m.

A, B, C andD are integration constants of (1.13) which satisfy the condition

AD −BC 6= 0. (1.16)

We can see from (1.14) that the equation (1.13) depends on α1j −α2j =
νj , j = 1,m. By (1.121) the half-plane Im(ζ) > 0 (or Im(ζ) < 0) is confor-
mally mapped onto the domain s(w) with the boundary l(w).

Now we express the function R(ζ) in the vicinity of ζ = ∞ as a power
series in 1/ζ and obtain

R(ζ) =

∞∑

k=1

Mkζ
−k . (1.17)

Since the point ζ = ∞ is the image of a nonangular point of the boundary
l(w), the conditions ([14]–[16])

M1 =

m∑

k=1

c∗k = 0, M2 =

m∑

k=1

[akc
∗
k + 0, 5(1− ν2

k)] = 0,

M3 =

m∑

k=1

[a2
kc
∗
k + ak(1− ν2

k)] = 0

(1.18)

should be fulfilled. From the condition M1 = 0 it follows the condition
(1.101), and vice versa, from the condition (1.101) it follows the condition
M1 = 0. The conditions (1.18) will be obtained below in somewhat different
way. These conditions will allow us to define three parameters cj , j = 1, 3.
Moreover, of the parameters t = ak, k = 1,m we choose arbitrarily and
fix only three. Therefore R(ζ), defined by the formula (1.14), depends on
2(m− 3) unknown parameters aj , cj , j = 1,m− 3 ([14]–[16]).

The equation (1.8) in the vicinity of the point t = aj can be rewritten as

(t− aj)
2u′′(t) + (t− aj)pj(t)u

′(t) + qj(t)u(t) = 0, (1.19)

where

pj(ζ) = p0j +

∞∑

j=1

pnj(t− aj)
n, pnj = (−1)n−1

m∑

k=1,k 6=j

βk(αj − αk)−n,

p0j = βj , βk = 1− α1k − α2k,

qj(t) = α1jα2j + cj(t− aj) +
∞∑

n=2

qnj(t− aj)
n, (1.20)

qnj = (−1)n−2
m∑

k=2,k 6=j

[α1kα2k(n− 1) + ck(aj − ak)](aj − ak)−n,

n = 2, 3, . . . ,

q0j = α1jα2j , q1j = cj , j = 1,m, n = 0, 1.
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The local solutions (1.19) for the points t = aj , j = 1,m are sought in
the form

uj(t) = (t− aj)
αj ũj(t), ũj(t) = 1 +

∞∑

n=1

γnj(t− aj)
n,

where γnj , n = 1,∞, j = 1,m, are defined by the recursion formulas

f0j(αj) = αj(αj − 1) + p0jαj + q0j = 0, (1.21)

γ1jf0j(αj + 1) + f1j(αj) = 0, (1.22)

γ2jf0j(αj+2) + γ1jf1j(αj + 1) + f2j(αj) = 0, (1.23)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γnjf0j(αj + n) + γ(n−1)jf1j(αj + n− 1) + γ(n−2)f2j(αj +m− 2)+

+ · · ·+ γ1jf(n−1)(αj + 1) + fnj(αj) = 0, (1.24)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where

fn(αj) = αjpnj + qnj . (1.25)

If the difference α1j − α2j , j = 1,m, is not an integer, then using the
formulas (1.22)–(1.24), we can construct the linearly independent solutions
(1.8),

ukj(t) = (t− aj)
αkj ũkj(t), ũkj(t) = 1 +

∞∑

n=1

γk
nj(t− aj)

n, (1.26)

k = 1, 2, j = 1,m.

If, however, α1j −α2j = n, n = 0, 1, 2, then u1j(t) can be constructed by
the formulas (1.22)–(1.24), while u2j(t) by the Frobenius method [13], [17].
Note that if α1j − α2j = 0, then u2j(t) is of a simple form

u2j(t) = u1j(t) ln(t− aj) + (t− aj)
α1j

∞∑

n=1

γ2
nj(t− aj)

n, (1.27)

where

γ2
nj =

{
dγ1j(αj)

dαj

}

αj=α2j

.

If α1j − α2j = n, n = 1, 2, then for constructing u2j(t) we have to
differentiate the equality

u2j(t) = (t− aj)
αj [αj − α2j +

∞∑

n=1

γnj(αj)(t− aj)
n] (1.28)

with respect to αj and let αj → α2j . Thus we obtain

u2j(t) = (t− aj)
α2j

[ ∞∑

n=1

lim
αj→α2j

γnj(αj)(t− aj)
n

]
ln(t− aj)+
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+(t− aj)
α2j

{
1 +

∞∑

n=1

[dγn(αj)

dαj

]
αj=α2j

(t− aj)
n

}
. (1.281)

P. Ya. Polubarinova-Kochina has proved that a solution for the cut end
u2j(t), where α1j−α2j = 2, does not contain a logarithmic term. Moreover,
for such points she has obtained the equation which connects the param-
eters aj , cj , j = 1,m. To such points t = aj on the contour l(w) there
correspond cut ends (the cuts may be circular or rectangular) with angle
2π. To construct u2j(t) uniquely, we have proposed [26]–[34] the following
method. The equality (1.23) for the point t = aj fails to be fulfilled since

f0j(αj + 2) = 0, αj → α2j . (1.29)

For the equality (1.23) to take place as αj → α2j , it is necessary and
sufficient to require that

γ1jf1(αj + 1) + f2(αj) = 0, αj → α2j . (1.30)

After transformation, the condition (1.30) takes the form [26]–[34]

q2j + q21j + q1jp1j = 0. (1.31)

To construct u2j(t) uniquely, it suffices to construct uniquely γ2
2j(α2j);

the remaining γ2
nj(α2j), n = 1, 3, 4, . . . , can be calculated by means of (1.22)

and (1.24). Indeed, suppose αj 6= α2j . Then (1.23) yields

γ2j(αj) = −[γ1j(αj)f1j(αj + 1) + f2j(αj)]/f0(αj + 2). (1.32)

After developing indeterminacy in (1.30) as αj → α2j we obtain uniquely
that

γ2
2j = −0, 5[p1j(p1j + 2q1j) + p2j ] (1.33)

Now we can define local solutions in the vicinity of the point t = ∞. We
represent the functions p(t) and q(t) near t = ∞ as

p(t) = t−1
∞∑

n=0

pn∞t
−n, q(t) = t−2

∞∑

n=0

qn∞t
−n, (1.34)

where

pn∞ =

m∑

k=1

βka
n
k , p0∞ = 6, (1.35)

qn∞ =

m∑

k=1

[α1kα2k(n+ 1) + ckak]an
k , (1.36)

q0∞ =

m∑

k=1

[α1kα2k + ckak], (1.37)

q1∞ =

m∑

k=1

[α1kα2k2 + ckak]ak. (1.38)
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Local solutions in the vicinity of the point t = ∞ are sought in the form

u∞(t) = t−α∞ +

∞∑

n=1

γn∞t
−(α∞+n), (1.39)

where γn∞, n = 1,∞, are defined by the formulas

f0∞(α∞) = α∞(α∞ + 1)− p0∞α∞ + q0∞ = 0, (1.40)

γ1∞f0∞(α∞ + 1)− p1∞α∞ + q1∞ = 0, (1.41)

γ2∞f0∞(α∞ + 2) + γ1∞(α∞ + 1)− p2∞α∞ + q2∞ = 0, (1.42)

. . . . . . . . . . . . . . . . . . . . . . . .

γn∞f0∞(α∞ + n) + γ(n−1)∞f1∞(α∞ + α− 1)+

+ γ(n−2)∞f2∞(α∞ + n− 2) + · · ·+
+ γ1∞f(n−1)∞(α∞ + 1)− pn∞α∞ + qn∞ = 0, (1.43)

. . . . . . . . . . . . . . . . . . . . . . . .

where

fk∞ = qk∞ − (α∞ + k)pk∞. (1.44)

Taking into account that t = ∞ is the image of a nonangular point, the
equation (1.40) must have the roots α1∞ = 3, α2∞ = 2 and thus

q0∞ =

m∑

k=1

[α1kα2k + akck] = 6. (1.45)

Because of the fact that α1∞ − α2∞ = 1, the equality (1.41) fails to
be fulfilled. Therefore the formulas (1.41)–(1.43) allow one to define only
one solution u1∞(t). To define u2∞(t), we act as follows [26]–[34]: for the
equality (1.41) to take place as α∞ → α2∞, it is necessary and sufficient
that the condition

q1∞ − p1∞α2∞ = 0 (1.46)

be fulfilled.
To define γ2

1∞, we act in the following manner: from (1.41) for α∞ 6= α2∞

we define γ1∞ and get

γ1∞ = [p1∞α∞ − q1∞]/f0∞(α∞ + 1). (1.47)

Since the numerator and denominator in (1.47) vanish as α∞ → α2∞,
developing indeterminacy we obtain uniquely [32]–[34] that

γ2
1∞ = p1∞. (1.48)

Next, having found γ2
1∞, by the formulas (1.42) and (1.43) we define

γ2
n∞, n = 2,∞, and consequently, the solution u2∞(t).

Finally, we have

uk∞(t) = t−αk∞ +

∞∑

n=1

γk
n∞t

−αk∞−n, k = 1, 2. (1.49)
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It can be proved that the system (1.18), Mk = 0, k = 1, 3 coincides
respectively with the systems (1.101), (1.45) and (1.46).

Local solutions ukj
(t), k = 1, 2, j = 1,m, contain many-valued functions

of which we select one-valued branches as follows:

exp[βkj(t− aj)] > 0, t > aj ,

{exp[αkj ln(t− aj)]}+ = exp[iπαkj ][exp[αkj ln(aj − t)]], aj > t,

{exp[αk∞ ln(t− aj)]}− = exp[−iπαj ][exp[αkj ln(aj − t)]], aj > t.

For the equation (1.8) in the vicinity of each singular point t = aj ,
j = 1,m+ 1, and in the vicinity of the points t = a∗j = (aj + aj+1)/2,

j = 1, n− 1, we construct respectively uki
(t), k = 1, 2, j = 1,m+ 1.

A solution of (1.7) will be sought by means of the matrix Tχ(t), where
χ(t) is the solution of (1.11). Consequently, Tχ(t) is likewise the solution
of (1.11), where

T =

(
p, q
r, s

)
, detT 6= 0, (1.50)

p, q, r, s are the integration constants of the equation (1.13).
The local fundamental matrices Θj(t), σj(t), Θ∗j (t), Θ±j (t) are defined as

follows:

Θj(t)=

(
u1j(t), u′1j(t)
u2j(t), u′2j(t)

)
, aj<t<aj+1, j=1, j − 1, t=aj , j=1, n, (1.51)

Θ∗j (t) =

(
u∗1j(t), u′∗1j(t)
u∗2j(t), u′∗2j(t)

)
, aj < t < aj+1, (1.52)

σj(t) =

(
σ1j(t), σ′1j(t)
σ2j(t), σ′2j(t)

)
, t = (aj + aj+1)/2 = a∗j , j = 1,m− 1, (1.53)

Θ±j (t) = θ±j Θ∗j (t), aj−1 < t < aj , (1.54)

Θ∞(t) =

(
u1∞(t), u′1∞(t)
u2∞(t), u′2∞(t)

)
, (1.541)

where the matrices θ±j for α1j − α2j 6= n, n = 0, 1, 2, are defined as

θ±j =

(
exp(±iπα1j), 0

0, exp(±iπα2j)

)
, (1.55)

while for α1j − α2j = n, n = 0, 1, 2, they are defined by the equalities

θ±j = exp[±iπα2j ]

(
1, 0
∓πi, 1

)
, n = 0, 2,

θ±j = exp[±iπα2j ]

(
−1, 0
∓πi, 1

)
, n = 1.

It should be noted that the series ukj
(t), k = 1, 2, j = 1,m+ 1, converge

slowly making the process of calculations difficult. To remove this drawback,
we replace the series ukj

(t), k = 1, 2, j = 1,m+ 1, by rapidly and uniformly
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convergent fundamental series. Towards this end, it is sufficient to write the
series ukj

(t), k = 1, 2, j = 1,m+ 1, in the form [30-34]:

ukj
(t) = (t− aj)

αkj ũkj
(t− aj), ũkj

(t− aj) = 1 +

∞∑

n=1

γk
nj

(t− aj), (1.56)

k = 1, 2; j = 1,m, uk∞(t) = t−αk∞

(
1 +

∞∑

n=1

γk
n∞(t)

)
, (1.57)

where γk
nj , γ

k
n∞ are defined through fnj(αj) and fk∞(αj) as follows:

fnj [(t− aj), βk] = αkjpnj(t− aj) + qnj(t− aj), (1.58)

fnj(t− aj) = (−1)n−1
m∑

k=1,k 6=j

βj

( t− aj

aj − ak

)n

, n = 1, 2, . . . ,

q1j(t− aj) = cj(t− aj),

qnj(t− aj)=(−1)n−2
m∑

k=1,k6=j

[α1kα2k(n− 1)+ck(aj − ak)]
( t− aj

aj − ak

)n

, (1.59)

∣∣∣ t− aj

aj − ak

∣∣∣ < 1, k 6= j,

pn∞(t) =

m∑

k=1

βk(ak/t)
n, qn∞ =

n∑

k=1

[α1jα2j(n+ 1) + ckak](ak/t)
n, (1.60)

n = 0, 1, 2, . . . .

The local matrix Θj(t) is complex conjugate with respect to the matrix

Θ+
j (t). The real matrices Θj−1(t), Θ∗j (t) are the local solutions of the system

of equations (1.11) in the vicinity of the points t = aj−1, t > aj−1, t = aj ,
t < aj . Suppose that the elements of these matrices converge on a part
of the interval aj−1 < t < aj , where the matrices Θ∗j (t) and Θj−1(t) are

connected by the matrix identity [26]–[34]

Θ∗j (t) = Tj−1Θj−1(t), (1.61)

which allows one to define the matrix Tj−1 uniquely. Assume that the do-
mains of convergence of the matrices Θ∗1(t) and Θj−1(t) are nonintersecting.
In this case we construct at the point t = a∗j = (aj−1 + aj)/2 the funda-

mental local matrix σj(t) which converges on the interval aj−1 < t < aj .
It is evident that one can always pass from the matrix Θ∗j (t) to the matrix

Θj−1(t) successively:

Θ∗j (t) = Ta∗
j
σj(t), (1.62)

Θ∗j (t) = T ∗j−1Θj−1(t). (1.63)

Ta∗
j

and T ∗j−1 are defined uniquely from (1.62) and (1.63). It follows from the

above-said that θm(t) can be extended analytically along the whole axis t.
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To define the functions ω′(t) and z′(t) on the interval (−∞,+∞), we
consider the matrices [26]–[34]

χ∗(t) = TΘ±m(t), t > am, Θ+
m(t) = Θ−m(t), Θm < t < +∞, (1.64)

where the matrix T is defined by the formula (1.50). From (1.64) it follows
that T = T .

The matrices χ±(t) are the solutions of (1.11), where the signs + and −
denote, respectively, the limiting values of the matrix χ(ζ) from Im(ζ) > 0
as ζ → t and from Im(ζ) < 0 as ζ → t.

Below we will define the matrix χ+(t) and take into account that χ+(t) =
χ−(t). The use will be made of the following notation: χ+(t) = χ(t),
θ+j = θj , j = 1,m.

χ(t) = TθmΘ∗m(t), am−1 < t < am,

χ(t) = TθmTm−1Θm−1(t), Θ∗m(t) = Tm−1Θm−1(t),

am−1 < t < am,

χ(t) = TθmTm−1θm−1Θ
∗
m−1(t), am−2 < t < am−1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

χ(t) = TθmTm−1θm−1Tm−2θm−2 . . . T1Θ1(t), a1 < t < a2,

χ(t) = TθmTm−1θm−1 . . . T1θ1Θ
∗
j (t), −∞ < t < a1,

χ(t) = TθmTm−1θm−1 . . . T1θ1T−∞Θ∞(t), −∞ < t < a1,

χ(t) = TT+∞Θ∞(t), am < t < +∞.

(1.65)

Note that

Θ∗m(t) = Tm−1θm−1(t), am−1 < t < am,

Θ∗m−1(t) = Tm−2Θm−2(t), am−2 < t < am−1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Θ∗2(t) = T1Θ1(t), a1 < t < a2,

Θ∗1(t) = T−∞Θ∞(t), −∞ < t < a1,

Θm(t) = TmΘ∞(t), am < t < +∞.

(1.66)

The matrices Tj , j = 1,m− 1, T−∞, T∞ from the system (1.66) are
defined by means of the matrices Θj(t), Θ∗j (t), j = 1,m, Θ∞(t), which

depend on aj , cj , j = 1,m.

Substituting the matrices χ+(t), χ(t) defined on the intervals (aj−1, aj),
j = m, m − 1, . . . , 2, 1, successively into the boundary condition (1.7)
and then multiplying successively from the right each of the equalities by
[Θ∗j (t)]

−1, j = m,m− 1, . . . , 1, we obtain the system of matrix equations

Tθm = gm−1Tθm, t = am; (1.67)

TθmTm−1θm−1 = gm−2TθmTm−1θm−1, t = am−1; (1.68)

TθmTm−1θm−1Tm−2θm−2 =
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= gm−3TθmTm−1θm−1Tm−2θm−2, t = am−2; (1.69)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T θmTm−1θm−1 . . . T1θ1 = TθmTm−1θm−1 . . . T1θ1, t = a1. (1.70)

It can be immediately verified that when passing to the conjugate ma-
trix equations, the matrix equations (1.67)–(1.70) remain unchanged, since

g(t) = g−1(t) = G
−1

(t)G(t).
Each of the matrix equations (1.67)–(1.70) provide us with two scalar

equations with respect to the elements of the matrices T , Tm, Tm−1, . . . , T1

[26-34]. Indeed, from the matrix equation (1.67), or what comes to the same
thing, from

Tθm = g−1
m gm−1Tθ

−
m, gm = E (1.71)

we find that the matrices

θmθ
−1

m , T−1g−1
m gm−1T, (1.72)

are similar. If, for the sake of brevity, we assume that the matrix θi is
diagonal, then (1.67) can be written as

p · exp(iπα1m) = g11
m−1p · exp(−iπα1m) + g12

m−1r · exp(−iπα1m), (1.73)

q · exp(iπα2m) = g11
m−1q · exp(−iπα2m) + g12

m−1s · exp(−iπα2m), (1.74)

r · exp(iπα1m) = g21
m−1p · exp(−iπα1m)+g22

m−1r · exp(−iπα1m), (1.75)

s · exp(iπα2m) = g21
m′1q · exp(−iπα2m) + q22m−1s · exp(−iπα1m), (1.76)

where gij
m−1, i, j = 1, 2, are the elements of the matrix gm−1, αkm =

(2πi)−1 lnλkm, k = 1, 2, are characteristic numbers.
It is not difficult to verify that the equations (1.73) and (1.74) coincide

identically with the equations (1.75) and (1.76). Indeed, solving (1.73) and
(1.75) with respect to p/r, and (1.74) and (1.76) with respect to s/q and
then equating them to each other, we obtain the following identities:

(λ1m − g22
m−1)(g

21
m−1)

−1 = g12
m−1(λ1m − g11

m−1)
−1; (1.77)

g11
m−1(λ2m − g11

m−1)
−1 = (λ2m − g22

m−1)(g
21
m−1)

−1, (1.78)

where

g11
m−1 + g22

m−1 = λ1m + λ2m, g11
m−1g

22
m−1 − g12

m−1g
21
m−1 = λ1mλ2m. (1.79)

Taking into account (1.68), we can write the equation (1.67) in the form

Tm−1θm−1θ
−1

m−1T
−1
m−1 = θ

−1

m T−1g−1
m−1gm−2Tθm. (1.80)

The matrices on the left and on the right of (1.80) are similar, therefore
we can perform in (1.80) calculations analogous to (1.73)–(1.79), and prove
that the matrix equation (1.68) provides us with two scalar equations.

For the point t = am−2 we have

Tm−2θm−2θ
−1

m−2T
−1
m−2 =

= θ
−1

m−1T
−1
m−1θ

−1

m T−1g−1
m−2gm−3TθmTm−1θm−1. (1.81)
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Further, for all the points t = am−1, . . . , t = a1, we can write out similar
matrices, which proves the above statement.

Now from the system (1.66) we define the elements of the matrices Tj ,
j = 1,m, depending on the parameters aj , cj , j = 1,m, and substitute them
in (1.67)–(1.70); thus we obtain a system of matrix equations with respect
to p, q, r, s, aj , cj , j = 1,m; from the matrix equations, as is said above,
for each of the points t = ak, k = 1,m, we obtain two scalar equations with
respect to the parameters aj , cj , p/s, q/s, r/s, j = 1,m. Thus we obtain a
system consisting of 2m equations.

According to Riemann’s theorem, we can choose arbitrarily and fix three
parameters from t = aj , j = 1,m.

From the system (1.101), (1.45) and (1.46) we can define the next three
parameters, for instance, c1, c2 and c3. Consequently, the number of un-
known essential parameters aj , cj turns out to be equal to 2(m−3) [14]–[16].
In the general case, to the above-given parameters aj , cj we have to add
three complex parameters of integration of the Schwartz equation. Hence
the number of unknown parameters will be equal to 2(m− 3) + 6 = 2m. In
our case, for gm(t) = E we have three integration parameters: p/s, q/s and
r/s. Thus the number of unknown parameters is equal to 2m−6+3 = 2m−3,
and the number of equations is 2m. The difference is 2m− (2m− 3) = 3.

The contour l(w) of the domain s(w) may contain vertices with the an-
gles 2π formed by circular or linear cuts. For each of the vertices of l(w) we
obtain one equation of the type (1.30), because in the theory of filtration
the coordinates of such vertices of the contour l(w) are unknown before-
hand. Suppose that the number of such vertices is two, then the number
of equations will be equal to 2(m− 1). In the theory of filtration, as it will
be seen below, we may come across circular pentagons with only one cut.
Then the number of essentially unknown parameters reduces to three, and
the number of equations is equal to five. The difference between the number
of equations and that of the essentially unknown parameters is equal to two.
As is known, in the case of linear polygons the number of equations is by
two units more than that of the essentially unknown parameters.

It is very difficult, but quite possible, to solve a system of three higher
transcendent equations with respect to three essential parameters. If we
denote by u1(t) and u2(t) the components of the vector Φ1(t), then using
the formula

w(t) = u1(t)/u2(t), −∞ < t < +∞, (1.82)

we obtain the general solution of (1.3). The components ω′(t) and z′(t) of
the vector Φ′(t) are defined by the equalities

dω(t) = u1(t)χ01(t)dt, −∞ < t < +∞, (1.83)

and

dz(t) = u2(t)χ01(t)dt, −∞ < t < +∞, (1.84)
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where ω′(t) = u1(t)χ01(t) and z′(t) = u2(t)χ01(t) satisfy both the bound-
ary conditions (1.3) and the conditions at the singular points t = ej ,
j = 1, n+ 1.

The integration of the equalities (1.83) and (1.84) on the intervals
(−∞, t), (ej , t), j = 1, n, results in

ω(t) =

t∫

−∞

u1(t)χ01(t)dt+ ω(−∞), (1.85)

z(t) =

t∫

−∞

u2(t)χ01(t)dt+ z(−∞), (1.86)

ω(t) =

t∫

ej

u2(t)χ01(t)dt+ ω(ej + 0), (1.87)

z(t) =

t∫

ej

u2(t)χ01(t)dt+ z(ej + 0). (1.88)

Considering (1.87) and (1.88) for t = ej+1, we obtain a system of equa-
tions with respect to the removable singular points t = ej , t = ej+k (pa-
rameters ej , ej+k) and parameters S, Q, where Q is the liquid discharge via
filtration.

Equations (1.87) and (1.88) allow us to determine the parametric equa-
tion of the depression curve.

Remark. Sometimes it is advisable to map an arbitrary angular point of
the contour l(w) into the point t = ∞. Assume that the point Bm+1 of l(w)
is an angular point with the angle πνm+1. Let the point t = am+1 = ∞ be
the image of the angular point Bm+1 with the characteristic numbers α1∞

and α2∞ which must satisfy the conditions

α1∞ − α2∞ = νm+1, (1.89)

p0∞ ≡
m∑

k=1

(1− α1k − α2k) = 1 + α1∞ + α2∞, (1.90)

q0∞ ≡
m∑

j=1

[α1jα2j + ajcj ] = α1∞ · α2∞. (1.91)

Note that the condition M1 = 0 in (1.8) remains true, while the condition
M2 = 0 is replaced by the condition (1.91). The condition M3 = 0 fails to
be fulfilled, i.e., M3 6= 0. The condition (1.90) is the Fuchs condition [13],
[16].
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2. Liquid Motion Through the Plane Earth Dam whose Lower

and Upper Slopes Make with the Horizon The Angles,

Respectively, π/2 and πα

Schemes of the domains s(z), s(ω) and s(w) are given below in Fig. 1.
The boundary conditions along the boundary l(z) have the form: along the
water boundaries A1A2 : ϕ(x, y) = −H2, x = L; A5A6 : ϕ(x, y) = −H1

y = tg(πα)x; along the leaking interval A2A3 : ϕ(x, y) + y = 0, x = L;
along the unknown depression curve A3A4A5 : ϕ(x, y)+y = 0, ψ(x, y) = Q;
along the dam base A6A1 : ψ(x, y) = 0, y = 0, where H1 and H2 is water
depth, respectively, in the upper and lower pools, L is the length of water
nonpermeable base of the plane earth dam, and Q is the liquid discharge
via filtration.

Fig. 1

The matrix g(t) and the vector f(t) are defined as follows:

g−∞(t) = E, f−∞(t) = [0, 0], −∞ < t < +∞,

g1(t) = E, f1(t) = 2[−H2;L], e1 < t < e2,

g2(t) = (−1)

(
1, 2i
0, 1

)
, f2(t) = 2L[i, 1], e2 < t < e3,

g3(t) = g4(t) =

(
1, 0
−2i, 1

)
, f3(t) = f4(t) = 2Q[i, 1], e3 < t < e5,

g5(t) =

(
−1, 0
0, exp(i2πα)

)
, f5(t) = −H1[1; 0], e5 < t < e6,

g6(t) = E, f6(t) = [0, 0], e6 < t < +∞,

(2.1)

where E is the unit matrix.
For the functions ω′(t) and z′(t) at the singular points t = ej , j = 1, 7,

we set up the equations (1.4) and define the roots λkj , k = 1, 2, j = 1, 7,
and then define uniquely the characteristic numbers α∗kj = (2πi)−1 lnλkj

,
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Aj [α1j∗ , α
∗
2j ], j = 1, 7. We have A1[1/2;−1/2], A2[0; 0], A3[0; 0], A4[2; 0],

A5[−1/2;−α], A6[−1/2;α− 1], A7[3; 2].
The point A1[1/2;−1/2] is the removable singular point [1]–[8]. To re-

move it from the boundary conditions (1.3), we introduce the vector

Φ′(t) = χ02(t)Φ2(t), −∞ < t < +∞, (2.2)

where χ02(t) =
√

(t− e2)(t− e1)−1 > 0, t > e2.
After transformations, on the contour l(w) we renumerate the angular

points and the corresponding points along the axis t and introduce the
following notation: Bj [α1j ;α2j ], t = aj . ej+1 = aj , j = 1, 5, a6 = a7 = ∞.
We fix the points t = aj as follows: a1 = −b, a2 = −a, a3 = 0, a4 = a,
a5 = b.

For the points Bj [α1j ;α2j ], j = 1, 6, we define the characteristic expo-

nents αkj , k = 1, 2, j = 1, 6, and the corresponding matrices θ+
j = θj ,

θ
+

= θ−j , j = 1, 6:

B1[−1/2;−1/2], B2[0; 0], B3[2; 0], B4[−1/2; 1− α], B5[−1/2;α− 1],

B6[3; 2] = B∞[3; 2],

θ1 = (−i)
(

1, 0
−iπ, 1

)
, θ2 =

(
1, 0
πi, 1

)
, θ3 = E,

θ4 = (−1)

(
−1, 0
0, exp(−iπα)

)
, θ5 = (−1)

(
i, 0
0, exp(iπα)

)
.

Note that α1j − α2j = νj , j = 1, 6, where πνj is the angle at the vertex
bj .

By means of the numbers αkj , k = 1, 2, j = 1, 5, we write the Fuchs class
equation

u′′(t) + p(t)u′(t) + q(t)u(t) = 0, (2.3)

where

p(t) =

5∑

j=1

[1− α1j − α2j ](t− aj)
−1,

q(t) =

5∑

j=1

[α1jα2j(t− aj)
−2 + cj(t− aj)].

(2.31)

Following Section 1, for the equation (2.3) we construct ukj(t), σkj (t),
Θj(t), Θ∗j (t), σj(t), j = 1, 6, k = 1, 2, and χ+(t), χ−(t), χ+(t) = χ−(t).

Below we will use the notation χ+(t) = χ(t).
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The system of equations (1.101), (1.45) and (1.46) for the problem under
consideration has the form

5∑

j=1

cj = 0,

5∑

k=1

[α1kα2k + akck]− 6 = 0,

5∑

k=1

[2α1kα2k + ckak]ak − p1∞α2∞ = 0,

(2.4)

where

p1∞ =
5∑

j=1

(1− α1j − α2j)ak, p13 =
5∑

k=1,k 6=3

(1− α1k − α2k)(a3 − ak)−1,

qn3 = (−1)n−2
5∑

k=1,k 6=3

[α1kα2k(n− 1) + ck(a3 − ak)](a3 − ak)−n, n=2,∞,

q0j = α1jα2j , q1j = cj , n = 0, 1.

Using the formulas (1.65) and (1.66) for m = 5, we construct the matrix
χ(t), and according to the formulas (1.67) for the points t = ak, k = 1, 5,
we construct the matrix equations

t = a5 : Tθ5 = g4Tθ5; t = a4 : Tθ5T4θ4 = g3Tθ5T4θ4;

t = a2 : Tθ5T4θ4T32θ2 = g2Tθ5T4θ4T32θ2,

t = a1 : Tθ5T4θ4T32θ2T1θ1 = Tθ5T4θ4T32θ2T1θ1,

(2.5)

where T32 = T3T2, θ
∗
j (t) = Tj−1Θj−1(t), j = 2, 5, Θ∗1(t) = T−∞Θinfty(t),

Θ5(t) = T+∞, Θ∞(t).
From the matrix equations (2.5) we obtain respectively the scalar equa-

tions

t = a5 : q = 0, r = 0; (2.6)

t = a4 : q4 = 0, (2.7)

pp4 − sr4 cos(πα) = 0, (2.8)

t = a3 : q23 + q213 + q13p13 = 0, (2.9)

t = a2 : r4q32 sin(πα) − s4s32 = 0, (2.10)

r4(p32 sin(πα) + πq32 cos(πα)) − s4r32 = 0, (2.11)

t = a1 : q1p32 + s1q32 = 0, (2.12)

p1p32 + (r1 − π2q1)q32 = 0. (2.13)

For the point t = a3 we get only one equation (2.9). The compatibility
conditions for the systems (2.10), (2.11) and (2.12), (2.13) have the form

tg(πα) det T32 + πs32q32 = 0, (2.14)

detT1 + πq21 = 0. (2.15)
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From the matrix equations θ∗j (t) = Tj−1Θj−1(t), j = 2, 5, we define the

elements of the matrices Tj , j = 1, 4, and substitute them in the system
(2.7)–(2.15).

The systems (2.4) and (2.9) allow us to find the unknown parameters
c1, c2, c4, and c5. We substitute them in the system of equations (2.7)–
(2.15) and in the matrices θj(t), j = 1, 6. The number of unknown essential
parameters reduces to three: a, b and c3.

The number of equations for the determination of the parameters a, b
and c3 is equal to five: they are (2.7), (2.10), (2.11), (2.12) and (2.13).
The difference between the number of equations and that of the unknown
parameters a, b and c3 is equal to two. To define a, b, and c3 from the system
(2.7), (2.10)–(2.15), we take the system (2.7), (2.14) and (2.15) and solve
it, we substitute the obtained parameters a, b and c3 in (2.4), (2.8)–(2.13),
(1.66) (for m = 5) and find cj , j = 1, 5, p/s = r4 cos(πα)/p4. Moreover,
we define the matrices Tj , j = 1, 4, T−∞, T+∞ where the parameter α is
fixed. Having found the functions ω(t) and z(t), we can define the remaining
parameters, for instance, t = e1 and Q.

The matrix χ(t) along the axis t is defined as follows:

χ(t) =

(
p, 0
0, s

)
Θ5(t), t > a5,

χ(t) =

(
pp+∞, pq+∞
sr+∞, ss+∞

)
Θ∞(t), a5 < t < +∞,

χ(t) = (−1)

(
ip, 0
0, exp(iπα)

)
Θ∗5(t), a4 < t < a5,

χ(t) = (−1)

(
pp4, 0

sr4 exp(iπα), ss4 exp(iπα)

)
Θ∗5(t)Θ4, a4<t<a5,

(2.16)

χ(t) =

(
(−1)pp4, 0

isru exp(iπα), ss4

)
Θ∗4(t), t < a4,

χ(t) =

(
−pp4p3, −pp4q3

isrup3 exp(iπα) + ss4r3, isr4q3 exp(iπα) + ss4s3

)
Θ3(t),

a2 < t < a4,

χ(t) = pp4

(
−p32, −q32

ip32 + πq32, iq32

)
Θ2(t), a2 < t < a4,

χ(t) = pp4

(
−p32 − iπq32, −q32

ip32, iq32

)
Θ∗2(t), a1 < t < a2,

χ(t) = (−1)πpp4q32

(
πq1 + ip1, iq1
−iπq1, 0

)
Θ1(t), a1 < t < a2i,

χ(t) = (−1)πpp4q32

(
p1, q1
−πq1, 0

)
θ∗1(t), −∞ < t < a1.

The linearly independent solutions u1(t) and u2(tr) of the equation (2.3)
which are defined by the elements of the first column of the matrix χ(t) can
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be represented along the axis t as follows:

u1(t) = pu15(t), u2(t) = su25(t), a5 < t < +∞,

u1(t) = (−i)pu∗15(t), u2(t) = (−1)s exp(iπα)u∗25(t), a4 < t < a5,

u1(t) = (−i)pp4u14(t), u2(t) = (−1)s exp(iπα)[r4u14(t) + su24(t)],

a4 < t < a5,

u1(t) = −pp4u
∗
14(t), u2(t) = isr4 exp(iπα)u∗14(t) + ss4u

∗
24(t),

a3 < t < a4,

u1(t) = −pp4[p3u13(t) + q3u23(t)], a3 < t < a4,

u2(t) = [isru exp(iπα)p3 + ss4r3]u13(t)+

+ [isr4q3 exp(iπα) + ss3s4]u23(t), a3 < t < a4,

u1(t) = −pp4[p32u12(t) + q32u22(t)], a2 < t < a3,

u2(t) = pp4[(ip32 + πq32)u12(t) + iq32u22(t)], a2 < t < a3

u1(t) = −pp4[(p32 + iπq32)u
∗
12(t) + q32u

∗
22(t)], a1 < t < a2,

(2.17)

u2(t) = ipp4[(p32u
∗
12(t) + q32u

∗
22(t)], a1 < t < a2,

u1(t) = (−1)πpp4q32[(πq1 + ip1)u11(t) + iq1u21(t)], a1 < t < a2,

u2(t) = iπ2pp4q32q1u11(t), a1 < t < a2,

u1(t) = (−1)πpp4q32[p1u
∗
11(t) + q1u

∗
21(t)], −∞ < t < a1,

u2(t) = π2pp4q32q1u
∗
11(t), −∞ < t < a1,

u1(t) = (−1)πpp4q32[p1v−1(t) + q1v−2(t)], −∞ < t < a1,

u2(t) = π2pp4q32q1v−1(t), −∞ < t < a,

where

v−1(t) = p−∞u1∞(t) + q−∞u2∞(t),

v−2(t) = r−∞u1∞(t) + s−∞u2∞(t).

The components ω′(t) and z′(t) of the vector φ′(t) are defined by the
equalities

dω(t) = χ02(t)u1(t)dt, −∞ < t < +∞, (2.18)

dz(t) = χ02(t)u2(t)dt, −∞ < t < +∞. (2.19)

Integrating (2.18) and (2.19) on the intervals (ej , t), j = 1, 6, we obtain

ω(t) = p

t∫

a5

χ02(t)u15(t)dt−H1, (2.20)

z(t) = s

t∫

a5

χ02(t)u25(t)dt, (2.21)
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ω(t) = (−i)
t∫

a∗
4

χ02(t)u
∗
15(t)dt−H1 + iψ(a∗4), (2.22)

z(t) = (−1)s exp(iπα)

t∫

a4

χ02(t)u25(t)dt + z(a∗4), (2.23)

ω(t) = −ipp4

t∫

a4

χ02(t)u14(t)dt −H1 + iQ, (2.24)

z(t) = −s exp(iπα)[r4

t∫

a4

χ02(t)u14(t)dt+ s4

t∫

a4

χ02(t)u24(t)dt]+

+H1[ctg(πα) + i], (2.25)

ω(t) = −pp4

t∫

a∗
3

χ02(t)u
∗
14(t)dt+ ϕ(a∗3) + iQ, (2.26)

z(t) = isr4 exp(iπα)

t∫

a∗
3

χ02(t)u
∗
14(t)dt+

+ss4

t∫

a∗
3

χ02(t)u
∗
24(t)dt+ z(a∗3), (2.27)

ω(t) = −pp4

t∫

a∗
2

χ02(t)[p3u13(t) + q3u23(t)]dt + ϕ(a∗2) + iQ, (2.28)

z(t) = [isr4p3 exp(iπα) + ss4r3]

t∫

a∗
2

χ02(t)u13(t)dt+

+[isr4q3 exp(iπα) + ss3s4]

t∫

a∗
2

χ02(t)u23(t)dt+ z(a∗2)., (2.29)

ω(t) = −pp4

t∫

a2

χ02(t)[p32u12(t) + q32u22(t)]dt− y(a2) + iQ, (2.30)

z(t) = pp4(ip32 + πq32)

t∫

a2

χ02(t)u12(t)dt+
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+ipp4q32

t∫

a2

χ02(t)u22(t)dt+ L+ iy(a2), (2.31)

ω(t) = −pp4[(p32 + iπq32)

t∫

a∗
1

χ02(t)u
∗
12(t)dt+ q32

t∫

a∗
1

χ02(t)u
∗
22(t)dt]+

+ϕ(a∗1) + iψ(a∗1), (2.32)

z(t) = ipp4

[
p32

t∫

a∗
1

χ02(t)u
∗
12(t)dt+ q32

t∫

a∗
1

χ02(t)u
∗
22(t)dt

]
+

+L+ iy(a∗1), (2.33)

ω(t) = (−1)πpp4q32

[
(πq1 + ip2)

t∫

a1

χ02(t)u11(t)dt+ ia1

t∫

a1

χ02(t)u21(t)dt

]
−

−H2 + iQ′, (2.34)

z(t) = iπ2pp4q32q1

t∫

a1

χ02(t)u11(t)dt+ L+ iH2, (2.35)

ω(t) = −iπpp4q32

[
p1

t∫

e∗
1

χ̃02(t)u
∗
11(t)dt+ q1

t∫

e1

χ̃02(t)u
∗
21(t)dt

]
−

−H2 + iψ(e∗1), (2.36)

z(t) = iπ2pp4q32q1

t∫

e∗
1

χ̃02(t)u
∗
11(t)dt+ L+ iy(e∗1), (2.37)

ω(t) = (−i)πpp4q32

t∫

e∗
1

χ̃02(t)[p1v−1(t) + q1v−2(t)]dt −H2, (2.38)

z(t) = iπ2pp4q32p1

t∫

e1

χ̃02(t)y−1(t)dt+ L, (2.39)

where

χ̃02(t) =
√

(e2 − t)(t− e1)−1, e1 < t < e2, (2.40)

Q′ is the liquid discharge via filtration though the interval

(e1, e2), e
∗
j = (ej−1 + ej)/2, a∗j = (aj−1 + aj)/2, j = 2, 5. (2.41)
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Consider (2.39) and (2.38) for t = e∗1,

x = L, y(e∗1) = π2pp4q32p1

e∗j∫

e1

χ̃02(t)V−1(t)dt, (2.42)

ϕ(e∗1) = −H2, ψ(e∗1) = −πpp4q32

e∗
1∫

e1

χ̃02(t)[p1v−1(t) + q1v−2(t)]dt. (2.43)

If we substitute the values of y(e∗1) and ψ(e∗1) in (2.37) and (2.36), and
consider them for t = a1, we obtain

x(a1) = L, y(a1) = π2pp4q32q1

a1∫

e∗
1

χ̃02(t)u
∗
11(t)dt+ y(e∗1), (2.44)

ϕ(a1) = −H2, (2.45)

Q′ = −πpp4q32

[
p1

a1∫

e∗
1

χ̃02(t)u
∗
11(t)dt+ q1

a1∫

e∗
1

χ̃02(t)u
∗
21(t)dt

]
+ ψ(e∗1). (2.46)

Having defined the parameters, we can define the liquid discharge Q′

through the interval [e1, e2] by the formula (2.46).
Define now the values of the functions (2.34) and (2.35) for t = a∗1. We

have

x(a∗1) = L, y(a∗1) = π2pp4q32q1

a∗
1∫

a1

χ02(t)u11(t)dt +H2, (2.47)

ϕ(a∗1) = (−1)π2pp4q32p2

a∗
1∫

a1

χ02(t)u11(t)dt−H2, (2.48)

ψ(a∗1) = (−1)πpp4q32×

×
[
p2

a∗
1∫

a1

χ02(t)u11(t)dt+ a1

a∗
1∫

a1

χ02(t)u21(t)u21(t)dt

]
+Q′. (2.49)

By the formulas (2.33) and (2.32) we can define z(a2) and ω(a2). We get

x(a2) = L, (2.50)

y(a2) = pp4

[
p32

a2∫

a∗
1

χ02(t)u
∗
12(t)dt+ q32

a2∫

a∗
1

χ02(t)u
∗
22(t)dt

]
+ y(a∗1), (2.51)

ϕ(a2) = −pp4

[
p32

a2∫

a∗
1

χ02(t)u
∗
12(t)dt+ q32

a2∫

a∗
1

χ02(t)u
∗
22(t)dt

]
−y(a∗1), (2.52)
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Q = ψ(a2)− πpp4q32

a2∫

a∗
1

χ02(t)u
∗
12(t)dt+ ψ(a∗1). (2.53)

Since ϕ(a2) = −y(a2), the equations (2.51) and (2.52) coincide.
Considering (2.31) and (2.30) for t = a∗2, we find that

x(a∗2) = πpp4q32

a∗
2∫

a2

χ02(t)u12(t)dt+ L, (2.54)

y(a∗2) = pp4

[
p32

a∗
2∫

a2

χ02(t)u12(t)dt+ q32

a∗
2∫

a2

χ02(t)u22(t)dt

]
+ y(a2), (2.55)

ϕ(a∗2) = −pp4

a∗
2∫

a2

χ02(t)

[
p32u12(t)dt+ q32u22(t)dt

]
dt−

−y(a2), ψ(a∗2) = Q. (2.56)

If we consider (2.29) and (2.28) for t = a3, then we obtain

x(a3) = [−sr4p3 sin(πα) + ss4r3]

a3∫

a∗
2

χ02(t)u13(t)dt+

+[−sr4q3 sin(πα) + ss3s4]

a3∫

a∗
2

χ02(t)u23(t)dt+ x(a∗2), (2.57)

y(a3) = sr4p3 cos(πα)

a3∫

a∗
2

χ02(t)u13(t)dt+

+sr4q3 cos(πα)

a3∫

a∗
2

χ02(t)u23(t)dt+ y(a∗2), (2.58)

ϕ(a3) = −pp4

a3∫

a∗
2

χ02(t)[p3u13(t) + q3u23(t)]dt+

+ϕ(a∗2), ψ(a3) = Q. (2.59)

From (2.29) and (2.28) we find z(a∗3) and ω(a∗3). We substitute the ob-
tained values z(a∗3) and ω(a∗3) in (2.27) and (2.26). We do not write out
these values, because they can be obtained from (2.57)–(2.59) if instead of
t = a3 we take t = a∗3.
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Considering (2.27) and (2.26) for t = a4, we obtain

x(a4)=−sr4 sin(πα)

a4∫

a∗
3

χ02(t)u
∗
14(t)dt+ss4

a4∫

a∗
3

χ02(t)u
∗
24(t)dt+x(a

∗
3), (2.60)

y(a4) = sr4 cos(πα)

a4∫

a∗
3

χ02(t)u
∗
14(t)dt+ y(a∗3), (2.61)

ϕ(a4) = −pp4

a4∫

a∗
3

χ02(t)u
∗
14(t)dt + ϕ(a∗3), ψ(a4) = Q. (2.62)

By means of the formulas (2.25) and (2.24) we find z(a∗4) and ω(a∗4).
Thus we have

x(a∗4) = −s cos(πα)

[
r4

a∗
4∫

a4

χ02(t)u14(t)dt + s4

a∗
4∫

a4

χ02(t)q24(t)dt

]
+

+H1 ctg(πα), (2.63)

y(a∗4) = H1 − sin(πα)

[
r4

a∗
4∫

a4

χ02(t)u14(t)dt+ s4

a∗
4∫

a4

χ02(t)u24(t)dt

]
, (2.64)

ϕ(a∗4) = −H1, ψ(a∗4) = −pp4

a∗
4∫

a4

χ02(t)u14dt+Q. (2.65)

Finally, considering (2.23) and (2.22) for t = a5, we get

(−1)s cos(πα)

a5∫

a∗
4

χ02(t)u
∗
25(t)dt+ x(a∗4) = 0, (2.66)

(−1)s sin(πα)

a5∫

a∗
5

χ02(t)u
∗
25(t)dt+ y(a∗4) = 0, (2.67)

ϕ(a5) = −H1, ψ(a5) = −p
a5∫

a∗
4

χ02(t)u
∗
15(t)dt+ ψ(a∗4) = 0. (2.68)

Taking into account (2.63)–(2.65), let us consider the system of equations
(2.66), (2.67) and (2.68). From the system (2.66) and (2.67) we find the
parameters e1 and s and then substitute them in (2.20)–(2.65) and (2.68).
Then from the formula (2.65), with regard for (2.68), we define Q, and
the formula (2.53), with regard for (2.68) we define Q′. Formula (2.51),
with regard for (2.47) allows us to define y(a2). When all the unknown
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parameters are determined, we can find the parametric equation of the
depression curve by means of the formulas (2.26)–(2.31).

3. Liquid Motion Through the Plane Earth Dam whose Lower

and Upper Slopes Make with the Horizon The Angles

π(1− β) and π/2, Respectively

Schemes of the domains s(z), s(ω) and s(w) are given in Fig. 2, and the
boundary conditions along l(z) have the form: along the water boundaries
A1A2 : ϕ(x, y) = −H2, y = − tg(πβ)(x − L); A4A5 : ϕ(x, y) = −H1, x = 0;
along the leaking interval A2A3 : ϕ(x, y) + y = 0, y = − tg(πβ)(x − L);
along the unknown depression curve A3A4 : ϕ(x, y) + y = 0, ψ(x, y) = Q;
along the dam base A5A1 : ψ(x, y) = 0 y = 0, where H1 and H2 are
water depth, respectively, in the upper and lower pools, L is length of water
nonpermeable dam base, and Q is liquid discharge via filtration.

Fig. 2

The piecewise constant matrix g(t) and the vector f(t) are defined as
follows:

g−∞(t) = [0, 0], f−∞(t) = [0, 0], −∞ < t < e1,

g1(t) =

(
−1, 0
0, exp(−i2πβ)

)
,

f1(t) = 2i[−H2, L sin(πβ) exp(−iπβ)], e1 < t < e2,

g2(t) =

(
−1, 2 sin(πβ) exp(−iπβ)
0, exp(−i2πβ),

)
,

f2(t) = 2L sin(πβ) exp(iπβ)[−1, i], e2 < t < e3,

(3.1)
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g3(t) = g4(t) =

(
1, 0
−2i, 1

)
, f3(t) = f4(t) = 2Q[1, i], e3 < t < e4,

g5(t) =

(
−1, 0
0, −1

)
, f5(t) = −2H1[1, 0], e4 < t < e5,

g6(t) = E, f6(t) = [0, 0], e5 < t < e6 < t < +∞,

where E is the unit matrix.
Characteristic exponents for ω′(t) and z′(t) at the points Aj , j = 1, 7,

are defined in the following manner: Aj [α
∗
1j ;α

∗
2j ], j = 1, 7, A1[−1/2;β− 1],

A2[0; 0], A3[1/2−β; 0], A4[−1/2;−1/2], A5[1/2;−1/2], A6 = [2; 0], A7[3; 2].
A5[1/2;−1/2] is the removable singular point.
Let us introduce a new unknown vector by the formula

Φ′(t) = χ03(t)Φ3(t), −∞ < t < +∞, (3.2)

where

χ03(t) =
√

(t− e5)(t− e5)−1 > 0, t > e5. (3.21)

We renumerate the angular points of the boundary l(w) of the domain
s(w) and the corresponding points along the axis and introduce for them
the following notation: Bj [α1j ;α2j ], t = aj , ej = aj , j = 1, 6, a6 = e7 = ∞.
We fix the points t = aj , j = 1, 5 as: a1 = −b, a2 = −a, a3 = 0, a4 = a,
a5 = b.

For the points Bj [α1j ;α2j ], j = 1, 6, the characteristic exponents αkj ,

k = 1, 6, and the corresponding matrices θ+
j = θj , θ

+

1 = θ−1 , j = 1, 6 have
the form

B1[−1/2;β − 1], B2[0; 0], B3[1/2− β; 0]

B4[−1;−1], B5[2; 0], B6[3; 2],
(3.3)

θ1 = (−1)

(
i, 0
0, exp(iπβ)

)
, θ2 =

(
1, 0
πi, 1

)
, θ3 =

(
exp(iπβ), 0

0, 1

)
,

θ4 = (−1)

(
1, 0
iπ, 1

)
, θ5 =

(
1, 0
0, 1

)
.

Now we write the Fuchs class equation analogously to (2.3), where αkj

are defined by (3.3).
To construct the matrix χ(t), it is necessary to construct the local ma-

trices for the points t = aj , j = 1, 6, a6 = ∞. We fix t = aj , j = 1, 5, as
follows: t = a1 = −b, t = a2 = −a, t = a3 = 0, t = a4 = a, t = a5 = b.

Having constructed the matrix χ(t), we have

χ(t) = TΘ5(t), a5 < t < +∞, χ(t) = T ∗Θ4(t), a4 < t < a5,
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where T ∗ = TT4, p
∗ = pp4 + qr4, q

∗ = pq4 + qs4, r
∗ = rp4 + sr4, s

∗ =
rq4 + ss4.

χ(t) = T ∗θ4Θ
∗
4(t), a3 < t < a4,

χ(t) = T ∗θ4T3Θ3(t), a3 < t < a4,

χ(t) = T ∗θ4T3θ3Θ
∗
3(t), a2 < t < a3,

χ(t) = T ∗θ4T3θ3T2Θ2(t), a2 < t < a3,

χ(t) = T ∗θ4T3θ3T2θ2Θ
∗
2(t), a1 < t < a2,

χ(t) = T ∗θ4T3θ3T2θ2T1Θ1(t), a1 < t < a2,

χ(t) = T ∗θ4T3θ3T2θ2T1θ1Θ
∗
1(t), −∞ < t < a1,

χ(t) = T ∗θ4T3θ3T2θ2T1θ1T−∞Θ∞(t), −∞ < t < a1,

χ(t) = TT+∞Θ∞(t), a5 < t < +∞.

(3.31)

The transition matrices from one singular point to the neighboring are
defined as

Θ∗j (t) = Tj−1Θj−1(t), j = 2, 6,

Θ∗1(t) = T−∞Θ∞(t), Θ5(t) = T+∞Θ∞(t).
(3.32)

The system of equations (1.101), (1.45) and (1.46) for the problem under
consideration is of the form

5∑

j=1

cj = 0,

5∑

j=1

[α1jα2j + ajcj ]− 6 = 0,

5∑

j=1

[2α1jα2j + cjaj ]aj − p1∞α2∞ = 0,

(3.4)

where

p1∞ =

5∑

j=1

(1− α1j − α2j)aj ,

and the equation for the point t = a5 has the form

q25 + q215 + q15p15 = 0, (3.5)

where

p15 =
5∑

k=1,k 6=5

(1− α1k − α2k)(a5 − ak)−1,

q0j = α1jα2j , q1 = cj , n = 0, 1,

qn5 = (−1)n−2
∑

k=1,k 6=5

[α1kα2k(n− 1) + ck(a5 − ak)](a5 − ak)−n, n = 2,∞.
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The matrix equations, respectively, for the points aj , j = 4, 3, 2, 1, have
the form

t = a4 : T ∗θ4 =g3T
∗θ4,

t = a3 : T ∗θ4T3θ3 = g2T
∗θ4T3θ3,

t = a2 : T ∗θ4T3θ3T2θ4 =g1T
∗θ4T3θ3T2θ2,

t = a1 : T ∗θ4T3θ3T2θ2T1θ1 = T ∗θ4T3θ3T2θ2T1θ1.

(3.6)

It follows from (3.6) that

t = a4 : q∗ = 0, (3.7)

p∗ + πs∗ = 0; (3.8)

t = a3 : r∗p3 + s∗r3 = 0, (3.9)

r∗q3 sin(πβ) + s∗[πq3 cos(πβ) + s3 sin(πβ)] = 0; (3.10)

t = a2 : p3q2 sin(πβ) + q3s2 = 0, (3.11)

p3[p2 sin(πβ) − πq2 cos(πβ)] + q3r2 = 0; (3.12)

t = a1 : p2q1 + q2s1 = 0, (3.13)

p1 = 0. (3.14)

The compatibility conditions for the systems (3.9), (3.10) and (3.11),
(3.12) have, respectively, the form

tg(πβ) det T3 + πq3p3 = 0, (3.15)

tg(πβ) det T2 − πq2s2 = 0. (3.16)

The system (3.7), (3.8) and (3.9) allows us to determine p/s, r/s and
q/s:

r/s = −[r3s4 + r4p3]/[p3p4 + r3q4], (3.17)

p/s = −(s4/q4)/(q/s),

q/s = −{(p/s)(p4/r4) + π[(r/s)(q4/s4) + (s4/r4)]}.
(3.18)

From the system (3.4) and (3.5) we can define the parameters cj , j = 1, 4,
which are the functions of the parameters πβ, c5, a, b. The parameter β
is given beforehand. To determine the parameters c5, a, b we have the
system (3.15), (3.11), (3.16), (3.13) and (3.14). The difference between the
number of equations and that of unknown parameters c5, a, b is equal to
two. But were the coordinates of the vertex A6 known, the above-mentioned
difference would be equal to three. From the system (3.10)–(3.16) we select
the system (3.14)–(3.16), define the elements of the matrices Tj , j = 1, 4,
from (3.32) and substitute them in (3.6)–(3.16). Then we solve the system
(3.14)–(3.16) with respect to c5, a and b and substitute the obtained values
in (3.4)–(3.17). Thus we define the parameters cj , aj , p/s and r/s. It
remains now to define the parameters e1, Q and s for which below we will
get a system of equations.
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Further, following the reasoning of Sections 1 and 2, we define the matrix
χ(t) along the axis t. We have

χ(t) =

(
p, q
r, s

)
Θ5(t), a5 < t < +∞,

χ(t) = TT+∞Θ∞(t), a5 < t < +∞,

χ(t) =

(
p∗, 0
r∗, s∗

)
Θ5(t), a4 < t < a5,

χ(t) = (−1)

(
p∗, 0

r∗ + iπs∗, s∗

)
Θ∗4(t), t < a4,

(3.19)

χ(t) = (−1)

(
p3, q3
−ir3, q3 exp(−iπβ/ sin(πβ))Θ3(t),

)
Θ3(t), a3 < t < a4,

χ(t) = (−1)p∗ exp(−iπβ)

(
ip3, q3 exp(iπβ)
p3, q3/ sin(πβ)

)
Θ∗3(t), a2 < t < a3,

χ(t) = (−1)p∗p3 cos(πβ)

(
ip2 + πq2, iq2

πq2 exp(−iπβ)/ sin(πβ), 0

)
Θ2(t), a2<t<a3,

χ(t)=(−1)p∗p3 cos(πβ)

(
ip2, iq2

πq2 exp(−iπβ)/ sin(πβ), 0

)
Θ∗2(t), a1<t<a2,

χ(t)=(−1)p∗p3q3 cos(πβ)

(
ir1, 0
0, πq1 exp(−iπβ)/ sin(πβ)

)
Θ1(t), a1<t<a2,

χ(t)=(−1)p∗p3q2 cos(πβ)

(
r1, 0
0, −πq1/ sin(πβ)

)
Θ∗1(t), −∞ < t < a1.

The equations (3.19) allow us to define linearly independent solutions
u1(t) and u2(t) of the Fuchs class equation. Thus we have

u1(t) = pu15(t) + qu25(t), a5 < t < +∞,

u2(t) = ru15(t) + su25(t), a5 < t < +∞;

u1(t) = pu∗15(t) + qu∗25(t), a4 < t < a5,

u2(t) = ru∗15(t) + su∗25(t), a4 < t < a5;

u1(t) = p∗(t)u14(t), a4 < t < a5,

u2(t) = r∗u14(t) + s∗u24(t), a4 < t < a5;

u1(t) = (−1)p∗u∗14(t), a3 < t < a4,

u2(t) = (−1)[(r∗ + iπs∗)u∗14(t) + s∗u∗24(t)], a3 < t < a4;

u1(t) = (−1)p∗[p3u13(t) + q3u23(t)], a3 < t < a4, (3.20)

u2(t) = (−1)p∗[−ip3u13(t) + q3 exp(−iπβ)/ sin(πβ)u23(t)], a3 < t < a4;

u1(t) = (−1)p∗[ip3 exp(−iπβ)u∗13(t) + q3u
∗
23(t)], a2 < t < a3,

u2(t) = (−1)p∗ exp(−iπβ){p3u
∗
13(t) + [q3/ sin(πβ)] · u∗23(t)}, a2 < t < a3;

u1(t) = (−1)p∗ cos(πβ)[(ip2 + πq2)u12(t) + iq2u22(t)], a2 < t < a3,
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u2(t) = (−1)πp∗p3q2 ctg(πβ) exp(−iπβ)u12(t), a2 < t < a3;

u1(t) = (−i)p∗p3 cos(πβ)(p2u
∗
12(t) + q2u

∗
22(t)), a1 < t < a2,

u2(t) = (−1)p∗p3 ctg(πβ)πq2 exp(−iπβ)u∗12(t), a1 < t < a2;

u1(t) = (−i)p∗p3q2r1 cos(πβ)u11(t), a1 < t < a2,

u2(t) = (−1)πp3q2q1 ctg(πβ) exp(−iπβ)u21(t), a1 < t < a2;

u1(t)=(−1)p∗p3q2r1 cos(πβ)u∗11(t), −∞ < t < a1,

u2(t) = πp∗p3q2q1 ctg(πβ)u∗21(t), −∞ < t < a1.

The components of the vector Φ′(t) = [ω′(t), z′(t)] are defined as follows:

dω(t) = χ03(t)u1(t)dt, −∞ < t < +∞,

dω(t) = χ03(t)u1(t)dt, −∞ < t < +∞.
(3.21)

Integrating (3.21) within (aj , t), j = 1, 6, we obtain

z(t) =(−1)πp3q2q1 ctg(πβ) exp(−iπβ)

t∫

a1

χ03(t)u21(t)dt+ L, (3.22)

ω(t) =(−i)p∗p3q2r1 cos(πβ)

t∫

a1

χ03(t)u11(t)dt−H2, (3.23)

z(t) =(−1)πp∗p3q2q1 ctg(πβ) exp(−iπβ)

t∫

a∗
1

χ03(t)u
∗
12(t)dt+ z(a∗1), (3.24)

ω(t) =(−i)p∗p3 cos(πβ)

{
p2

t∫

a∗
1

χ03(t)u
∗
12(t)dt+

+ q2

t∫

a∗
1

χ03(t)u
∗
22(t)dt

}
−H2 + iψ(a∗1), (3.25)

where

a∗1 =(aj + aj+1)/2, j = 1, 4, (3.26)

z(t) =(−1)πp∗p3q2 ctg(πβ) exp(−iπβ)

t∫

a2

χ03(t)u12(t)dt+ z(a2), (3.27)

ω(t) =(−1)p∗ cos(πβ)[(ip2 + πq2)

t∫

a2

χ03(t)u12(t)dt+

+ iq2

t∫

a2

χ03(t)u22(t)dt]−H2 + iQ′, (3.28)
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z(t) =(−1)p∗ exp(−ipβ)

[
p3

t∫

a∗
2

χ03(t)u
∗
13(t)dt+

+ [q3/ sin(πβ)]

t∫

a∗
2

χ03(t)u
∗
23(t)dt

]
+ z(a∗2), (3.29)

ω(t) =(−1)p∗[ip3 exp(−iπβ)

t∫

a∗
2

χ03(t)u
∗
13(t)dt+

q3

t∫

a∗
2

χ03(t)u
∗
23(t)dt] + ω(a∗2), (3.30)

z(t) =(−1)p∗
[
− ip3

t∫

a3

χ03(t)u13(t)dt+

+q3 exp(−iπβ)/ sin(πβ)

t∫

a3

χ03(t)u23(t)dt

]
+ z(a3), (3.31)

ω(t) =(−1)p∗
[
p3

t∫

a3

χ03(t)u13(t)dt+

+ q3

t∫

a3

χ03(t)u23(t)dt

]
+ ω(a3), (3.32)

z(t) =(−1)

[
(r∗ + iπs∗)

t∫

a∗
3

χ03(t)u
∗
14(t)dt+

+ s∗
t∫

a∗
3

χ03(t)u
∗
24(t)dt

]
+ z(a∗3), (3.33)

ω(t) =(−1)p∗
t∫

a∗
3

χ03(t)u
∗
14(t)dt+ ω(a∗3), (3.34)

z(t) =ir∗
t∫

a4

χ̃03(t)u14(t)dt+ is∗
t∫

a4

χ̃03(t)u24(t)dt+ z(a4), (3.35)
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ω(t) =ip∗
t∫

a4

χ̃03(t)u14(t)dt+ ω(a4), (3.36)

where

χ03(t) = iχ̃03(t), a4 < t < e5, (3.37)

z(t) = r

t∫

e5

χ03(t)u
∗
15(t)dt+ s

t∫

e5

χ03(t)u
∗
25(t)dt, (3.38)

ω(t) = r

t∫

e5

χ03(t)u
∗
15(t)dt+ q

t∫

e5

χ03(t)u
∗
25(t)dt−H1, (3.39)

z(t) = r

t∫

e6

χ03(t)u15(t) + s

t∫

e6

χ03(t)u25(t)dt+ z(e6), (3.40)

ω(t) = p

t∫

e6

χ03(t)u15(t)dt+ q

t∫

e6

χ03(t)u25(t)dt+ ω(e6). (3.41)

From (3.22) and (3.23) we can define z(a∗1) and ω(a∗1). Thus we get

x(a∗1) = (−1)πp3q2q1 cos2(πβ)/ sin(πβ)

a∗
1∫

a1

χ03(t)21(t)dt+ L, (3.42)

y(a∗1) = πp3q2q1 cos(πβ)

a∗
1∫

a1

χ03(t)u21(t)dt, (3.43)

ϕ(a∗1) = −H2, ψ(a∗1) = −p∗p3q2r1 cos(πβ)

a∗
1∫

a1

χ03(t)u11(t)dt−H2. (3.44)

Considering (3.24) and (3.25) for t = a2, we find that

x(a2) =(−1)πp∗p3q2q1 cos2(πβ)/ sin(πβ)

a2∫

a∗
1

χ03(t0u
∗
12(t)dt+ x(a∗1), (3.45)

y(a2) =H2 = πp∗p3q2q1 cos(πβ)

a2∫

a∗
1

χ03(t)u
∗
12(t)dt + y(a∗1), (3.46)

ϕ(a2) =−H2, Q′ = (−1)p∗p3 cos(πβ)

{
p2

a2∫

a∗
1

χ03(t)u
∗
12(t)dt+



Effectively Solvable Two-Dimensional Problems 123

+ q2

a2∫

a∗
1

χ03(t)u
∗
22(t)dt

}
+ ψ(a∗1). (3.47)

Recall that the coordinates [x(t), y(t)] in the interval (a1, a2) satisfy the
boundary condition y(t) = − tg(πβ)[x(t) − L].

The Equations (3.27) and (3.28) provide us with z(a∗2) and ω(a∗2),

x(a∗2) =(−1)πp∗p3q2 ctg(πβ) cos(πβ)

a∗
2∫

a2

χ03(t)u12(t)dt+ x(a2), (3.48)

y(a∗2) =πp∗p3q2 cos(πβ)

a∗
2∫

a2

χ03(t)u12(t)dt+ y(a2), (3.49)

ϕ(a∗2) =(−1)πp∗q2 cos(πβ)

a∗
2∫

a2

χ03(t)u12(t)dt−H2, (3.50)

ψ(a∗2) =(−1)p∗ cos(πβ)

[
p2

a∗
2∫

a2

χ03(t)u12(t)dt+

+ q2

a2∗∫

a2

χ0322(t)u22(t)dt

]
+Q′. (3.51)

With the help of (3.29) and (3.30) we obtain

x(a3) =(−1)p∗ cos(πβ)

[
p3

a3∫

a∗
2

χ03(t)u
∗
13(t)dt+

+(q3/ sin(πβ))

a3∫

a∗
2

χ03(t)u
∗
23(t)dt

]
+ x(a∗2), (3.52)

y(a3) =p∗ sin(πβ)

[
p3

a3∫

a∗
2

χ03(t)u
∗
13(t)dt+

+(q3/ sin(πβ))

a3∫

a∗
2

χ03(t)u
∗
23(t)dt

]
+ y(a∗2), (3.53)

ϕ(a3) =(−1)

[
p3 sin(πβ)

a3∫

a∗
2

χ03(t)u
∗
13(t)dt+
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+q3

a3∫

a∗
2

χ03(t)u
∗
23(t)dt

]
+ ϕ(a∗2), (3.54)

Q =ψ(a3) = (−1)p∗p3 cos(πβ)

a3∫

a∗
2

χ03(t)u
∗
13(t)dt + ψ(a∗2). (3.55)

Using (3.30) and (3.32), we define z(a∗3) and ω(a∗3), and find that

x(a∗3) =(−1)p∗q3 ctg(πβ)

a∗
3∫

a3

χ03(t)u23(t)dt + x(a3), (3.56)

y(a∗3) =p∗
[
p3

a∗
3∫

a3

χ03(t)u13(t)dt + q3

a∗
3∫

a3

χ03(t)u23(t)dt

]
+ y(a3), (3.57)

ψ(a∗3) =ψ(a3) = Q,

ϕ(a∗3) =(−1)p∗
[
p3

a∗
3∫

a3

χ03(t)u13(t)dt+ q3

a∗
3∫

a3

χ03(t)u23(t)dt

]
+ ϕ(a3).

(3.58)

By means of (3.33) and (3.34) we define z(a4) and ω(a4). We have

x(a4) =(−1)

[
r∗

a4∫

a∗
3

χ03(t)u
∗
14(t)dt+ s∗

a4∫

a∗
3

χ03(t)u
∗
24(t)dt

]
+

+ x(a∗3) = 0, (3.59)

y(a4) =H1 = (−1)πs∗
a4∫

a∗
3

χ03(t)u
∗
14(t)dt+ y(a∗3), (3.60)

ϕ(a4) =−H1, H1 = p∗
a4∫

a3

χ03(t)u
∗
14(t)dt− ϕ(a∗3). (3.61)

From (3.35) and (3.36) we define z(e5) and ω(e5), and get

z(e5) = 0, r∗
e5∫

a4

χ̃03(t)u14(t)dt+ s∗
e5∫

a4

χ̃03(t)u24(t)dt +H1 = 0, (3.62)

ϕ(e5) = −H1, ψ(e5) = p∗
e5∫

a4

χ̃03(t)u14(t)dt +Q = 0, (3.63)
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By virtue of (3.38) and (3.39) we define z(e6) and ω(e6), and obtain

x(e6) = r

e6∫

e5

χ03(t)u
∗
15(t)dt+ s

e6∫

e5

χ03(t)u
∗
25(t)dt, (3.64)

ψ(e6) = 0, y(e6) = 0, (3.65)

ϕ(e6) = p

e6∫

e5

χ03(t)u
∗
15(t)dt+ q

e6∫

e5

χ03(t)u
∗
25(t)dt−H1. (3.66)

Thus we have obtained the system of equations (3.46), (3.47), (3.53),
(3.55), (3.62) and (3.63) with respect to the unknown parameters s, e5, Q

′,
Q and y(a3). Of the above-given system only the system (3.46) and (3.62)
depends on the parameters e5 and s. This system makes it possible to find
e5 and s. We substitute the obtained values in all the above-mentioned
equations. Next, using the formula (3.47), we define Q′, and then by the
formula (3.55) we find Q. We substitute the formula (3.53) allows us to
find y(a3), and the formulas (3.64) and (3.66) provide us with the unknown
parameters of the problem of filtration. Finally, by virtue of the formulas
(3.31)–(3.34), we can find the parametric equations of unknown parts of the
boundaries l(z) and l(ω) of the domains s(z) and s(ω).
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