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Abstract. On the interval [a, b], we consider the boundary value prob-
lems

u′′(t) = `(u)(t) + q(t); u(a) = 0, u(b) = 0

and
u′′(t) = `(u)(t) + q(t); u(a) = 0, u′(b) = 0,

where ` : C([a, b]; R) → L([a, b]; R) and q ∈ L([a, b]; R).
The existence and uniqueness of nonnegative solutions of these problems

are studied.
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Large Introduction

The following notation is used throughout the paper.
N is the set of all natural numbers.
R is the set of all real numbers. R+ = [0,+∞[.
If x ∈ R, then [x]+ = 1

2 (|x| + x).
C([a, b]; R) is the Banach space of continuous functions u : [a, b] → R

with the norm ‖u‖C = max{|u(t)| : t ∈ [a, b]}.
C([a, b]; R+) = {u ∈ C([a, b]; R) : u(t) ≥ 0 for t ∈ [a, b]}.
Ct0([a, b]; R+) = {v ∈ C([a, b]; R+) : v(t0) = 0}, where t0 ∈ [a, b].

C̃([a, b]; R) is the set of absolutely continuous functions u : [a, b] → R.

C̃ ′([a, b]; R) is the set of functions u ∈ C̃([a, b]; R), such that u′ ∈

C̃([a, b]; R).

C̃ ′loc(D; R), where D ⊂ R, is the set of functions γ ∈ C̃(D̄; R) such that

γ′ ∈ C̃([α, β]; R) for every [α, β] ⊆ D.
L([a, b]; R) is the Banach space of Lebesgue integrable functions p :

[a, b] → R with the norm ‖p‖L =
b∫
a

|p(s)| ds.

L([a, b]; R+) = {p ∈ L([a, b]; R) : p(t) ≥ 0 for t ∈ [a, b]}.
Mab is the set of measurable functions f : [a, b] → [a, b].
Lab is the set of linear bounded operators ` : C([a, b]; R) → L([a, b]; R).
Pab is the set of linear operators ` ∈ Lab transforming the set C([a, b]; R+)

into the set L([a, b]; R+).
We will say that ` ∈ Lab is a t0–Volterra operator, where t0 ∈ [a, b], if

for every a1 ∈ [a, t0], b1 ∈ [t0, b], a1 6= b1 and v ∈ C([a, b]; R) satisfying the
condition

v(t) = 0 for t ∈ [a1, b1],

we have

`(v)(t) = 0 for t ∈ [a1, b1].

By a solution of the equation

u′′(t) = `(u)(t) + q(t), (0.1)

where ` ∈ Lab and q ∈ L([a, b]; R), we understand a function u ∈ C̃ ′([a, b]; R)
satisfying equality (0.1) almost everywhere in [a, b].

Consider the problem on the existence and uniqueness of a solution of
equation (0.1) satisfying one of the following boundary conditions

u(a) = c1, u(b) = c2, (0.2)

u(a) = c1, u′(b) = c2, (0.3)

where c1, c2 ∈ R. Along with problems (0.1), (0.2) and (0.1), (0.3), consider
the corresponding homogeneous problems

u′′(t) = `(u)(t), (0.10)

u(a) = 0, u(b) = 0, (0.20)
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u(a) = 0, u′(b) = 0. (0.30)

The following result is well-known from the general theory of boundary value
problems for functional differential equations (see e.g. [1, 2, 3, 11, 16]).

Theorem 0.1. The problem (0.1), (0.2) (resp. (0.1), (0.3)) is uniquely

solvable iff the corresponding homogeneous problem (0.10), (0.20) (resp.
(0.10), (0.30)) has only the trivial solution.

Definition 0.1. We will say that an operator ` ∈ Lab belongs to the

set V ([a, b]) (resp. V ′([a, b])) if for every function u ∈ C̃ ′([a, b]; R) satisfying
(0.20) (resp. (0.30)) and

u′′(t) ≥ `(u)(t) for t ∈ [a, b], (0.4)

the inequality
u(t) ≤ 0 for t ∈ [a, b] (0.5)

holds.

Remark 0.1. It follows from Definition 0.1 and Theorem 0.1 that if ` ∈
V ([a, b]) (resp. ` ∈ V ′([a, b])) then the problem (0.1), (0.2) (resp. (0.1),
(0.3)) is uniquely solvable. Moreover, if q ∈ L([a, b]; R+), then the unique
solution of the problem (0.1), (0.20) (resp. (0.1), (0.30)) is nonpositive.

In the present paper we establish sufficient conditions guaranteeing the
inclusion ` ∈ V ([a, b]), resp. ` ∈ V ′([a, b]). The results obtained here
generalize and make more complete the previously known ones of analogous
character (see e.g., [1, 2, 13, 14, 17, 18] and references therein) The related
results for another type of equations can be found in [4, 5, 6, 7, 9, 10, 12, 15].

The paper is organized as follow. The main results are formulated in §1.
In §2, some auxiliary propositions are proved. The proofs of main results are
contained in §3. §4 deals with the special case of operator `, with so-called
operator with deviating arguments. The last §5 is devoted to the examples
verifying the optimality of some obtained results.

1. Main Results

In this section we formulate the main results. Theorems 1.1 and 1.2, and
Corollaries 1.1 and 1.2 concern the case −` ∈ Pab. The case when ` ∈ Pab is
considered in Theorems 1.3–1.6 and Corollaries 1.3–1.7. Finally, Theorem
1.7 deals with the case when the operator ` ∈ Lab admits the representation
` = `0 − `1, where `0, `1 ∈ Pab.

Theorem 1.1. Let −` ∈ Pab. Then ` ∈ V ([a, b]) iff there exists a

function

γ ∈ C̃ ′loc(]a, b[; R) satisfying

γ′′(t) ≤ `(γ)(t) for t ∈ [a, b], (1.1)

γ(t) > 0 for t ∈ ]a, b[, (1.2)

γ(a) + γ(b) + mes {t ∈ [a, b] : γ ′′(t) < `(γ)(t)} > 0. (1.3)
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Theorem 1.2. Let −` ∈ Pab. Then ` ∈ V ′([a, b]) iff there exists a

function

γ ∈ C̃ ′loc(]a, b]; R) satisfying (1.1), (1.2) and

γ′(b) ≥ 0, (1.4)

γ(a) + γ′(b) + mes {t ∈ [a, b] : γ′′(t) < `(γ)(t)} > 0. (1.5)

Corollary 1.1. Let −` ∈ Pab and

(b− t)

t∫

a

(s− a)|`(1)(s)| ds+

+ (t− a)

b∫

t

(b− s)|`(1)(s)| ds < b− a for t ∈ [a, b]. (1.6)

Then ` ∈ V ([a, b]).

Corollary 1.2. Let −` ∈ Pab and

b∫

a

(s− a)|`(1)(s)| ds < 1. (1.7)

Then ` ∈ V ′([a, b]).

Remark 1.1. Example 5.1, resp. Example 5.2, below shows that condition
(1.6), resp. condition (1.7), cannot be replaced by the condition

(b− t)

t∫

a

(s− a)|`(1)(s)| ds+

+ (t− a)

b∫

t

(b− s)|`(1)(s)| ds ≤ b− a for t ∈ [a, b], (1.8)

resp.
b∫

a

(s− a)|`(1)(s)| ds ≤ 1. (1.9)

Before the formulation of next theorems we introduce the following nota-
tion. Let ` ∈ Lab be a b–Volterra (resp. a–Volterra) operator and ξ ∈ ]a, b[.
Let `ξb (resp. `aξ) denote the restriction of the operator ` to the space
C([ξ, b]; R) (resp. C([a, ξ]; R)). Put

A`
def
= {t ∈ [a, b] : `(1)(x) = 0 for x ∈ [a, t]}, (1.10)

B`
def
= {t ∈ [a, b] : `(1)(x) = 0 for x ∈ [t, b]}, (1.11)

a` = supA`, (1.12)
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b` = inf B`. (1.13)

Theorem 1.3. Let ` ∈ Pab be a b–Volterra operator and let there exist

a function γ ∈ C̃ ′loc([a`, b[; R) satisfying the conditions

γ′′(t) ≥ `a`b(γ)(t) for t ∈ [a`, b], (1.14)

γ(t) > 0 for t ∈ ]a`, b], (1.15)

γ′(a`) ≥ 0. (1.16)

Then ` ∈ V ([a, b]).

Theorem 1.4. Let ` ∈ Pab be an a–Volterra operator and let there exist

a function γ ∈ C̃ ′loc(]a, b`]; R) satisfying the conditions

γ′′(t) ≥ `ab`
(γ)(t) for t ∈ [a, b`], (1.14′)

γ(t) > 0 for t ∈ [a, b`[, (1.15′)

γ′(b`) ≤ 0. (1.16′)

Then ` ∈ V ([a, b]).

Corollary 1.3. Let ` ∈ Pab be a b–Volterra operator and let there exist

m, k ∈ N,m > k, such that

ϕm(t) ≤ ϕk(t) for t ∈ [a, b], (1.17)

where ϕ1 ∈ C̃
′([a, b]; R) satisfies

ϕ1(t) > 0, ϕ′1(t) ≥ 0 for t ∈ ]a, b] (1.18)

and

ϕi+1(t)
def
=

t∫

a

(t− s)`(ϕi)(s) ds for t ∈ [a, b].

Then ` ∈ V ([a, b]).

Corollary 1.4. Let ` ∈ Pab be an a–Volterra operator and there exist

m, k ∈ N,m > k, such that

ψm(t) ≤ ψk(t) for t ∈ [a, b],

where ψ1 ∈ C̃
′([a, b]; R) satisfies

ψ1(t) > 0, ψ′1(t) ≤ 0 for t ∈ [a, b[

and

ψi+1(t)
def
=

b∫

t

(s− t)`(ψi)(s) ds for t ∈ [a, b].

Then ` ∈ V ([a, b]).
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Corollary 1.5. Let ` ∈ Pab be a b–Volterra operator and let there exist

an f̄ ∈ Pab such that

b∫

a

f̄(1)(s) exp

[ b∫

s

f(1)(ξ) dξ

]
ds < 1, (1.19)

where the operator f ∈ Lab is defined by the formulas

f(v)(t)
def
= `(θ(v))(t), (1.20)

θ(v)(t)
def
=

t∫

a

v(s) ds. (1.21)

Let, moreover, the inequality

f(ϕ(v))(t) − f(1)(t)ϕ(v)(t) ≤ f̄(v)(t) for t ∈ [a, b] (1.22)

holds on the set Ca([a, b]; R+), where

ϕ(v)(t)
def
=

t∫

a

f(v)(s) ds for t ∈ [a, b]. (1.23)

Then ` ∈ V ([a, b]).

Corollary 1.6. Let ` ∈ Pab be an a–Volterra operator and let there exists

f̄ ∈ Pab such that

b∫

a

f̄(1)(s) exp

[ s∫

a

|f(1)(ξ)| dξ

]
ds < 1,

where the operator f ∈ Lab defined by formulas

f(v)(t)
def
= −`(θ(v))(t),

θ(v)(t)
def
=

b∫

t

v(s) ds.

Moreover, assume that on the set Cb([a, b]; R+), the inequality (1.22) holds,

where

ϕ(v)(t)
def
=

b∫

t

f(v)(s) ds for t ∈ [a, b].

Then ` ∈ V ([a, b]).

Theorem 1.5. Let the conditions of Theorem 1.3 be fulfilled. Then

` ∈ V ′([a, b]).

Theorem 1.6. Let the conditions of Theorem 1.4 be fulfilled. Then

` ∈ V ′([a, b]).
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Corollary 1.7. Let ` ∈ Pab be a b–Volterra (resp. a–Volterra) operator

and conditions of Corollary 1.3 or 1.5 (resp. Corollary 1.4 or 1.6) hold.

Then ` ∈ V ′([a, b]).

Theorem 1.7. Let the operator ` ∈ Lab admit the representation ` =
`0 − `1, where `0, `1 ∈ Pab and

`0 ∈ V ([a, b]), −`1 ∈ V ([a, b]) (1.24)
(
`0 ∈ V

′([a, b]), −`1 ∈ V
′([a, b])

)
. (1.25)

Then ` ∈ V ([a, b])
(
` ∈ V ′([a, b])

)
.

2. Auxiliary Propositions

Lemma 2.1. Let v ∈ C̃ ′loc(]a, b[; R) be a nontrivial function satisfying

the relations

v(t) ≥ 0 for t ∈ [a, b], (2.1)

v′′(t) ≤ 0 for t ∈ [a, b], (2.2)

v(a) = 0 (resp. v(b) = 0). (2.3)

Then there exists a finite or infinite limit

lim
t→a+

v(t)

t− a
> 0

(
resp. lim

t→b−

v(t)

b− t
> 0

)
.

Proof. By virtue of (2.2), there exists a finite or infinite limit

lim
t→a+

v′(t) = r

(
resp. lim

t→b−
v′(t) = r

)
. (2.4)

Suppose that r ≤ 0 (resp. r ≥ 0). From (2.2) and (2.4), we then easily get

v′(t) ≤ 0 (resp. v′(t) ≥ 0) for t ∈ ]a, b[.

Integrating the above inequality from a to t (resp. from t to b) and taking
into account (2.3), we obtain

v(t) =

t∫

a

v′(s) ds ≤ 0 for t ∈ [a, b]


resp. v(t) = −

b∫

t

v′(s) ds ≤ 0 for t ∈ [a, b]


 ,

which, together with (2.1), contradicts the assumption of the lemma. There-
fore r > 0 (resp. r < 0).

Let us first suppose that r = +∞ (resp. r = −∞). Then, for every
n ∈ N, there exists tn ∈ ]a, b[ such that

v′(t) ≥ n for t ∈ ]a, tn[
(
resp. v′(t) ≤ −n for t ∈ ]tn, b[

)
.
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The integration of the above inequality from a to t (from t to b), by virtue
of (2.3), yields

v(t) ≥ n(t− a) for t ∈ [a, tn], n ∈ N,
(
resp. v(t) ≥ n(b− t) for t ∈ [tn, b], n ∈ N

)
.

Therefore,

lim
t→a+

v(t)

t− a
= +∞

(
resp. lim

t→b−

v(t)

b− t
= +∞

)
.

Suppose now that 0 < r < +∞ (resp. −∞ < r < 0). Then, for every
n ∈ N, there exists tn ∈ ]a, b[ such that

r −
1

n
≤ v′(t) ≤ r +

1

n
for t ∈ ]a, tn[

(
resp. for t ∈ ]tn, b[

)
.

Integrating the above inequality from a to t (from t to b) and taking into
account (2.3), we get

(r −
1

n
)(t− a) ≤ v(t) ≤ (r +

1

n
)(t− a) for t ∈ [a, tn], n ∈ N

(
resp. − (r +

1

n
)(b− t) ≤ v(t) ≤ −(r −

1

n
)(b− t) for t ∈ [tn, b], n ∈ N

)
.

Therefore

lim
t→a+

v(t)

t− a
= r

(
resp. lim

t→b−

v(t)

b− t
= −r

)
.

The lemma is proved. �

Lemma 2.2. Assume that t0 ∈ ]a, b[ and the function w ∈ C̃ ′loc(]a, b[; R)
satisfies the equality w(t0) = 0 and

w(t) ≥ 0 for t ∈ [a, b],

w′′(t) ≤ 0 for t ∈ [a, b].
(2.5)

Then w ≡ 0.

Proof. It is obvious that
w′(t0) = 0

and
w′(t) ≥ 0 for t ∈ ]a, t0], w′(t) ≤ 0 for t ∈ [t0, b[.

Hence,

w(t) = −

t0∫

t

w′(s) ds ≤ 0 for t ∈ ]a, t0],

w(t) =

t∫

t0

w′(s) ds ≤ 0 for t ∈ [t0, b[.

These two inequalities, together with (2.5) yield w ≡ 0. �
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Analogously, one can prove that the following lemma is true.

Lemma 2.3. Let v ∈ C̃ ′loc(]a, b]; R) be a nontrivial function satisfying

(2.1), (2.2), and the inequality

v′(b) ≥ 0.

Then v(b) > 0.

Lemma 2.4. Let ` ∈ Pab, `(1) 6≡ 0, and let the function u ∈ C̃ ′([a, b]; R)
satisfy (0.4) and

u(a) = 0, (2.6)

u(t1) > 0, (2.7)

where t1 ∈ ]a, b[. Then there exists t0 ∈ ]a`, b[ such that

u(t0) > 0, u′(t0) > 0, (2.8)

where a` is defined by (1.10) and (1.12).

Proof. Suppose that a` ∈ ]a, b[. (The case when a` = a is proved analo-

gously.) Assume that the function u ∈ C̃ ′([a, b]; R) satisfies (2.6), (0.4),
and (2.7). By virtue of the condition ` ∈ Pab it follows from (0.4) and the
definition of a` (see (1.10) and (1.12)) that

u′′(t) ≥ −‖u‖C`(1)(t) for t ∈ [a, b].

Consequently,

u′′(t) ≥ 0 for t ∈ [a, a`]. (2.9)

It is obvious that either

u′(t1) > 0 (2.10)

or

u′(t1) ≤ 0. (2.11)

Let us first suppose that (2.10) holds. If t1 ∈ ]a`, b[ then obviously (2.8) is
fulfilled for t0 = t1. If t1 ∈ ]a, a`], then, by virtue of (2.7) and (2.9), we also
have

u(a`) > 0, u′(a`) > 0.

These inequalities imply that there exists t0 ∈ ]a`, b[ such that (2.8) hold.
Now we suppose that (2.11) is fulfilled. Obviously t1 ∈ ]a`, b[, because

otherwise, by virtue of (2.9) and (2.11), we get

u′(t) ≤ 0 for t ∈ [a, t1],

which, together with the condition (2.6), contradicts (2.7). Moreover,

max{u′(t) : t ∈ [a`, t1]} > 0, (2.12)

because otherwise it follows from (2.7) that

u(a`) > 0, u′(a`) ≤ 0,
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which, together with (2.9), contradicts the condition (2.6). It is clear that
either

u(t) > 0 for t ∈ [a`, t1] (2.13)

or there exists t∗ ∈ [a`, t1[ such that

u(t) > 0 for t ∈ ]t∗, t1], u(t∗) = 0. (2.14)

If (2.13) is satisfied, then, by virtue of (2.12), there exists t0 ∈ ]a`, t1[ such
that (2.8) holds. If (2.14) is fulfilled, then, evidently,

max{u′(t) : t ∈ [t∗, t1]} > 0, (2.15)

because otherwise, it follows from the second condition in (2.14) that u(t1) ≤
0, which contradicts (2.7). It follows immediately from (2.14) and (2.15)
that, for some t0 ∈ ]t∗, t1[, inequalities (2.8) are true. �

The following lemma is proved analogously.

Lemma 2.5. Let ` ∈ Pab, `(1) 6≡ 0, and let the function u ∈ C̃ ′([a, b]; R)
satisfy (0.4), (2.7), where t1 ∈ ]a, b[, and

u(b) = 0. (2.16)

Then there exists t0 ∈ ]a, b`[ such that

u(t0) > 0, u′(t0) < 0, (2.17)

where b` is defined by (1.11) and (1.13).

Lemma 2.6. Let ` ∈ Pab, `(1) 6≡ 0, and let the function u ∈ C̃ ′([a, b]; R)
satisfy (0.4), (2.7), where t1 ∈ ]a, b[, and

u′(b) = 0. (2.18)

Then there exists t0 ∈ ]a, b`] such that

u(t0) > 0, u′(t0) ≤ 0, (2.19)

where b` is defined by (1.11) and (1.13).

Proof. Suppose that b` ∈ ]a, b[. (The case when b` = b is proved anal-

ogously.) Let u ∈ C̃ ′([a, b]; R) be a function satisfying (0.4), (2.7), and
(2.18). It follows immediately from (0.4), (1.11), (1.13), and the condition
` ∈ Pab that

u′′(t) ≥ 0 for t ∈ [b`, b]. (2.20)

It is clear that
u(b`) > 0 (2.21)

or
u(b`) ≤ 0. (2.22)

By virtue of (2.20) and the condition (2.18), we have

u′(b`) ≤ 0.

Therefore, in the case where (2.21) is fulfilled, the inequalities (2.19) also
hold with t0 = b`.
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Suppose now that (2.22) is fulfilled. Then (2.20) and the condition (2.18)
yield

u(t) ≤ 0 for t ∈ [b`, b].

Hence, in view of (2.7),

t1 ∈ ]a, b`[. (2.23)

It follows from (2.7), (2.22), and (2.23) that there exists t0 ∈ ]t1, b`[ such
that (2.19) hold. �

3. Proof of the Main Results

Proof of Theorem 1.1. Let −` ∈ Pab and ` ∈ V ([a, b]). Let γ denote the
solution of the problem

γ′′(t) = `(γ)(t); γ(a) = 1, γ(b) = 1 (3.1)

(see Remark 0.1). Clearly, (1.1) and (1.3) hold. Put

u0(t) = 1− γ(t) for t ∈ [a, b].

By virtue of (3.1) and the condition −` ∈ Pab, we get

u′′0(t) ≥ `(u0)(t) for t ∈ [a, b]; u0(a) = 0, u0(b) = 0.

Hence, by virtue of the condition ` ∈ V ([a, b]), we have

u0(t) ≤ 0 for t ∈ [a, b],

i.e.,

γ(t) ≥ 1 for t ∈ [a, b].

Therefore, (1.2) holds as well.

Assume now that the function γ ∈ C̃ ′loc(]a, b[; R) satisfies (1.1)–(1.3). By
virtue of (1.1), (1.2), and the condition −` ∈ Pab, it follows that

γ′′(t) ≤ 0 for t ∈ [a, b]. (3.2)

Let the function u ∈ C̃ ′([a, b]; R) satisfy (0.20), (0.4), and the condition

max{u(t) : t ∈ [a, b]} > 0. (3.3)

Integrating (0.4) from t to a+b
2 and from a+b

2 to t, we get

u′(t) ≤M for t ∈ ]a, a+b
2 ], (3.4)

u′(t) ≥ −M for t ∈ [a+b
2 , b[, (3.5)

where

M =

∣∣∣∣u
′

(
a+ b

2

)∣∣∣∣+
b∫

a

|`(u)(s)| ds. (3.6)

The integration of (3.4) and (3.5), by virtue of (0.20), yields

u(t) ≤M(t− a) for t ∈ [a, a+b
2 ], (3.7)

u(t) ≤M(b− t) for t ∈ [a+b
2 , b]. (3.8)
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Let us set

λ = sup

{
u(t)

γ(t)
: t ∈ ]a, b[

}
. (3.9)

On account of (1.2), (3.2), (3.7), (3.8), and Lemma 2.1, we have

λ < +∞.

On the other hand, by virtue of (1.2) and (3.3),

λ > 0. (3.10)

Put

w(t) = λγ(t)− u(t) for t ∈ [a, b]. (3.11)

Obviously,

w(t) ≥ 0 for t ∈ [a, b]. (3.12)

It follows immediately from (0.4), (1.1), (1.3), and (3.10) that

w′′(t) ≤ `(w)(t) for t ∈ [a, b], (3.13)

w 6≡ 0. (3.14)

By virtue of the condition −` ∈ Pab, it follows from (3.12) and (3.13) that

w′′(t) ≤ 0 for t ∈ [a, b]. (3.15)

Now we will show that

lim sup
t→a+

u(t)

γ(t)
< λ. (3.16)

Indeed, if γ(a) 6= 0, then, by virtue of (0.20) and (3.10), inequality (3.16) is
fulfilled. Suppose that

γ(a) = 0. (3.17)

Then on account of (1.2), (3.2), (3.17), and Lemma 2.1, there exists (a finite
or infinite) limit

lim
t→a+

γ(t)

t− a
.

If lim
t→a+

γ(t)
t−a

= +∞, then, by virtue of (3.7), we get

lim sup
t→a+

u(t)

γ(t)
≤M lim

t→a+

t− a

γ(t)
= 0

and, therefore, on account of (3.10), inequality (3.16) holds. Assume that

lim
t→a+

γ(t)

t− a
= r < +∞. (3.18)

Clearly,

r > 0 (3.19)

(see Lemma 2.1). On account of (0.20), (3.12), (3.14), (3.15), (3.17), and
Lemma 2.1, there exist ε0 > 0 and a0 ∈ ]a, b[ such that

w(t) ≥ ε0(t− a) for t ∈ ]a, a0[,
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i.e.,
u(t)

γ(t)
≤ λ−

ε0(t− a)

γ(t)
for t ∈ ]a, a0[.

Hence, by virtue of (3.18) and (3.19), the inequality (3.16) holds. Analo-
gously, one can show that

lim sup
t→b−

u(t)

γ(t)
< λ. (3.20)

By virtue of (3.9), (3.10), (3.16), and (3.20), it is clear that there exists
t0 ∈ ]a, b[ such that

w(t0) = 0.

Hence, on account of (3.12), (3.15), and Lemma 2.2, we get w ≡ 0, which
contradicts (3.14). �

Proof of Theorem 1.2. Let −` ∈ Pab and ` ∈ V ′([a, b]). Let γ denote the
solution of the problem

γ′′(t) = `(γ)(t); γ(a) = 1, γ ′(b) = 0. (3.21)

Clearly (1.1), (1.4), and (1.5) are fulfilled. Put

u0(t) = 1− γ(t) for t ∈ [a, b].

By virtue of (3.21) and the condition −` ∈ Pab, we get

u′′0(t) ≥ `(u0)(t) for t ∈ [a, b]; u0(a) = 0, u′0(b) = 0.

Hence, by virtue of condition ` ∈ V ′([a, b]), we easily get that (1.2) is
fulfilled.

Now assume that a function γ ∈ C̃ ′loc(]a, b]; R) satisfies (1.1), (1.2), (1.4),
and (1.5). By virtue of (1.1), (1.2), and the condition −` ∈ Pab, it is clear
that (3.2) holds. On account of (1.2), (1.4), (3.2), and Lemma 2.3, we get

γ(b) > 0. (3.22)

Let a function u ∈ C̃ ′([a, b]; R) satisfy (0.30), (0.4), and (3.3). The inte-
gration of (0.4) from t to a+b

2 yields (3.4), where M is defined by (3.6).
Integrating (3.4) and taking the first condition of (0.30) into account, we
arrive at (3.7). Put

λ = sup

{
u(t)

γ(t)
: t ∈ ]a, b]

}
. (3.23)

By virtue of (1.2), (3.2), (3.7), (3.22), and Lemma 2.1, we have

λ < +∞.

On the other hand, on account of (1.2) and (3.3), inequality (3.10) holds.
Define the function w by (3.11). Clearly, (3.12) is fulfilled. On account of
(0.4), (1.1), (1.5), and (3.10), inequalities (3.13) and (3.14) are fulfilled. By
virtue of (3.12) and the condition −` ∈ Pab, from (3.13) we get that (3.15)
holds. By virtue of (0.30), (1.4), and (3.10),

w′(b) ≥ 0. (3.24)
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Conditions (3.12), (3.14), and (3.15), on account of Lemma 2.3, imply

w(b) > 0. (3.25)

Arguing similarly to the proof of Theorem 1.1, one can easily verify that
(3.16) is fulfilled. On account of (3.16), (3.23), and (3.25), there exists
t0 ∈ ]a, b[ such that

w(t0) = 0. (3.26)

By virtue of (3.12), (3.15), and (3.26), it follows from Lemma 2.2 that
w ≡ 0, which contradicts (3.14). �

Proof of Corollary 1.1. If `(1) ≡ 0, then Corollary 1.1 is trivial. Therefore,
we will assume that

`(1) 6≡ 0. (3.27)

Put

γ(t) =
1

b− a

[
(b− t)

t∫

a

(s− a)|`(1)(s)| ds+

+ (t− a)

b∫

t

(b− s)|`(1)(s)| ds

]
for t ∈ [a, b]. (3.28)

It follows from (1.6) that there exists ε ∈ ]0, 1[ such that

γ(t) ≤ ε for t ∈ [a, b]. (3.29)

On account of (3.27), (3.29), and the condition −` ∈ Pab, it is clear that

`(γ)(t) ≥ `(1)(t) for t ∈ [a, b], (3.30)

mes {t ∈ [a, b] : `(γ)(t) > `(1)(t)} > 0. (3.31)

On the other hand, (3.27), (3.28), (3.30), and (3.31) imply that (1.1)–(1.3)
are fulfilled. Therefore, the function γ satisfies all the conditions of Theorem
1.1. �

Proof of Corollary 1.2. As in the proof of Corollary 1.1, one can easily verify
that the function

γ(t) =

t∫

a

(s− a)|`(1)(s)| ds+ (t− a)

b∫

t

|`(1)(s)| ds for t ∈ [a, b]

satisfies all the conditions of Theorem 1.2. �

Proof of Theorem 1.3 and 1.5. We first note that, by virtue of (1.14)–(1.16)
and the condition ` ∈ Pab,

γ′(t) ≥ 0 for t ∈ [a`, b]. (3.32)

Let a function u ∈ C̃ ′([a, b]; R) satisfy (0.20) (resp. (0.30)), (0.4), and (3.3).
According to Lemma 2.4 there exists

t0 ∈ ]a`, b[ (3.33)
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such that

u(t0) > 0, u′(t0) > 0. (3.34)

From (0.4), (1.14), and (3.33), we get

u′′(t) ≥ `t0b(u)(t) for t ∈ [t0, b], (3.35)

γ′′(t) ≥ `t0b(γ)(t) for t ∈ [t0, b]. (3.36)

Obviously

min{u(t) : t ∈ [t0, b]} < 0, (3.37)

because otherwise by virtue of the condition ` ∈ Pab, it follows from (3.35),
that

u′′(t) ≥ 0 for t ∈ [t0, b],

which, together with (3.34), contradicts the second condition in (0.20) (resp.
(0.30)). Put

λ = max

{
−u(t)

γ(t)
: t ∈ [t0, b]

}
(3.38)

and

w(t) = λγ(t) + u(t) for t ∈ [t0, b]. (3.39)

Clearly,

w(t) ≥ 0 for t ∈ [t0, b]. (3.40)

On account of (3.37) and (1.15), we also have

λ > 0. (3.41)

By virtue of (3.35), (3.36), (3.40), (3.41), and the condition ` ∈ Pab, we get

w′′(t) ≥ 0 for t ∈ [t0, b]. (3.42)

It follows from (1.15), (3.32), (3.34), and (3.41) that

w(t0) > 0, w′(t0) > 0. (3.43)

By virtue of (3.38), (3.39), and the first inequality in (3.43), there exists
t∗ ∈ ]t0, b] such that

w(t∗) = 0,

which contradicts (3.42) and (3.43). �

Proof of Theorems 1.4 and 1.6. The proof of Theorem 1.4, resp. Theorem
1.6, is analogous of Theorem 1.3 and 1.5. Lemma 2.5, resp. Lemma 2.6,
should be used instead of Lemma 2.4. �

Proof of Corollary 1.3. Suppose that a` ∈ [a, b[ (if a` = b, then ` ≡ 0 and,
therefore, ` ∈ V ([a, b])). By virtue of (1.18), it is easy to verify that

ϕi(t) > 0 for t ∈ ]a`, b], i ∈ N. (3.44)

Let us put

γ(t) =
m∑

i=k+1

ϕi(t) for t ∈ [a, b].
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Evidently γ ∈ C̃ ′([a, b]; R),

γ(t) > 0 for t ∈ ]a`, b]; γ′(a`) ≥ 0.

On the other hand, by virtue of (1.17) and the condition ` ∈ Pab, we get

γ′′(t) =

m−1∑

i=k

`(ϕi)(t) = `(γ)(t) + `(ϕk − ϕm)(t) ≥ `(γ)(t) for t ∈ [a, b].

Therefore, the function γ satisfies all the conditions of Theorem 1.3. �

Corollary 1.4 is proved similarly.

Proof of Corollary 1.5. According to Corollary 1.1 in [8] and the conditions

(1.19) and (1.22), there exists w ∈ C̃([a, b]; R) such that

w′(t) = f(w)(t) for t ∈ [a, b], (3.45)

w(t) > 0 for t ∈ [a, b]. (3.46)

Put
γ(t) = θ(w)(t) for t ∈ [a, b], (3.47)

where θ is defined by (1.21). Clearly, γ ∈ C̃ ′([a, b]; R). It follows immedi-
ately from (1.20), (1.21), (3.45), (3.46), and (3.47) that

γ′′(t) = w′(t) = f(w)(t) = `(γ)(t) for t ∈ [a, b],

γ(t) > 0 for t ∈ ]a, b],

γ′(t) > 0 for t ∈ [a, b].

Therefore function γ satisfies all the conditions of Theorem 1.3. �

Proof of Corollary 1.6 is similar.

Proof of Theorem 1.7. Let u ∈ C̃ ′([a, b]; R) be a function satisfying (0.20)
(resp. (0.30)) and (0.4). According to Remark 0.1 and the condition `0 ∈
V ([a, b]) (resp. `0 ∈ V

′([a, b])), the problem

v′′(t) = `0(v)(t) − `1([u]+)(t), (3.48)

v(a) = 0, v(b) = 0
(
resp. v(a) = 0, v′(b) = 0

)
(3.49)

has a unique solution v and

v(t) ≥ 0 for t ∈ [a, b]. (3.50)

It follows from Remark 0.1, relations (0.20) (resp. (0.30)), (0.4), (3.48),
(3.49), and the condition `1 ∈ Pab that

u(t) ≤ v(t) for t ∈ [a, b]. (3.51)

Hence, on account of (3.50),

[u(t)]+ ≤ v(t) for t ∈ [a, b]. (3.52)

By virtue of (3.50), (3.52), and the conditions `0, `1 ∈ Pab, it follows from
(3.48) that

v′′(t) ≥ −`1(v)(t) for t ∈ [a, b]. (3.53)



76 A. Lomtatidze and P. Vodstrčil

On account of the condition −`1 ∈ V ([a, b]) (resp. −`1 ∈ V
′([a, b])), (3.49),

and (3.53) imply

v(t) ≤ 0 for t ∈ [a, b].

Hence, by virtue of (3.51), the inequality (0.5) is fulfilled. �

4. Equations with Deviating Argument

In this section, the results from §1 will be concretized for the case, where
the operator ` ∈ Lab is given by one of the following formulas.

`(v)(t)
def
= −g(t)v(µ(t)), (4.1)

`(v)(t)
def
= p(t)v(τ(t)), (4.2)

`(v)(t)
def
= p(t)v(τ(t)) − g(t)v(µ(t)), (4.3)

where p, g ∈ L([a, b]; R+) and τ, µ ∈Mab.
Define the function h by the equality

h(t)
def
= (b− µ(t))

µ(t)∫

a

(s− a)(µ(s)− a)(b− µ(s))g(s) ds+

+ (µ(t)− a)

b∫

µ(t)

(b− s)(µ(s)− a)(b− µ(s))g(s) ds−

− (b− a)(µ(t) − a)(b− µ(t)) for t ∈ [a, b].

Theorem 4.1. Let

gh 6≡ 0 (4.4)

and

h(t) ≤ 0 for t ∈ [a, b]. (4.5)

Then the operator ` defined by (4.1) belongs to the set V ([a, b]).

Remark 4.1. Example 5.1 below shows that condition (4.4) is essential
and cannot be omited.

Corollary 4.1. Let

b∫

a

(µ(s)− a)(b− µ(s))g(s) ds < b− a. (4.6)

Then the operator ` defined by (4.1) belongs to the set V ([a, b]).

Define the function h1 by the equality

h1(t)
def
=

µ(t)∫

a

(s− a)(µ(s) − a)g(s) ds+
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+ (µ(t)− a)

b∫

µ(t)

(µ(s)− a)g(s) ds− (µ(t) − a) for t ∈ [a, b].

Theorem 4.2. Let

gh1 6≡ 0 (4.7)

and

h1(t) ≤ 0 for t ∈ [a, b].

Then the operator ` defined by (4.1) belongs to the set V ′([a, b]).

Remark 4.2. Example 5.2 below shows that condition (4.7) is essential
and cannot be omited.

Corollary 4.2. Let

b∫

a

(µ(s)− a)g(s) ds < 1.

Then the operator ` defined by (4.1) belongs to the set V ′([a, b]).

Theorem 4.3. Let there exist numbers λi ∈ [0, 1[, αij ∈ R+ (i, j = 1, 2),
and c ∈ [a, b] such that

+∞∫

0

ds

α11 + α12s+ s2
≥

(c− a)1−λ1

1− λ1
,

+∞∫

0

ds

α21 + α22s+ s2
≥

(b− c)1−λ2

1− λ2

(4.8)

and

(t− a)2λ1g(t) ≤ α11,

(t− a)λ1

[
λ1

t− a
+ (t− µ(t))g(t)

]
≥ −α12 for t ∈ ]a, c[,

(b− t)2λ2g(t) ≤ α21,

(b− t)λ2

[
−

λ2

b− t
+ (t− µ(t))g(t)

]
≤ α22 for t ∈ ]c, b[.

(4.9)

Let, moreover, at least one of the inequalities in (4.9) holds in the strict

sense on a set of positive measure, or at least one of the inequalities in (4.8)
is strict. Then the operator ` defined by (4.1) belongs to the set V ([a, b]).

Remark 4.3. Example 5.3 below shows that condition, at least one of the
inequalities in (4.9) holds in the strict sense on a set of positive measure, or
at least one of the inequalities in (4.8) is strict, is essential and cannot be
omited.
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Theorem 4.4. Let there exist numbers λ ∈ [0, 1[ and αi ∈ R+ (i = 1, 2)
such that

+∞∫

0

ds

α1 + α2s+ s2
≥

(b− a)1−λ

1− λ
(4.10)

and

(t− a)2λg(t) ≤ α1,

(t− a)λ

[
λ

t− a
+ (t− µ(t))g(t)

]
≥ −α2 for t ∈ [a, b].

(4.11)

Let, moreover, the inequality (4.10) is strict or one of the inequalities in

(4.11) hold in the strict sense on a set of positive measure. Then the operator

` defined by (4.1) belongs to the set V ′([a, b]).

Remark 4.4. Example 5.4 below shows that condition, the inequality
(4.10) is strict or one of the inequalities in (4.11) hold in the strict sense on
a set of positive measure, is essential and cannot be omited.

Theorem 4.5. Let

τ(t) ≥ t for t ∈ [a, b] (4.12)

and

sup

{
1

t− a

t∫

a

(t− s)(τ(s) − a)p(s) ds : t ∈ ]a, b]

}
≤ 1. (4.13)

Then the operator ` defined by (4.2) belongs to both sets V ([a, b]) and

V ′([a, b]).

Corollary 4.3. Let (4.12) holds and

b∫

a

(τ(s)− a)p(s) ds ≤ 1. (4.14)

Then the operator ` defined by (4.2) belongs to both sets V ([a, b]) and

V ′([a, b]).

Theorem 4.6. Let

τ(t) ≤ t for t ∈ [a, b] (4.15)

and

sup

{
1

b− t

b∫

t

(b− τ(s))(s − t)p(s) ds : t ∈ [a, b[

}
≤ 1.

Then the operator ` defined by (4.2) belongs to both sets V ([a, b]) and

V ′([a, b]).
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Corollary 4.4. Let (4.15) holds and

b∫

a

(b− τ(s))p(s) ds ≤ 1.

Then the operator ` defined by (4.2) belongs to both sets V ([a, b]) and

V ′([a, b]).

Theorem 4.7. Assume that (4.12) holds and either

b∫

a

(b− s)p(s) ds ≤ 1 (4.16)

or the following two conditions are satisfied:

b∫

a

(b− s)p(s) ds > 1 (4.17)

and
τ(t)∫

t

s∫

a

p(ξ) dξ ds ≤ η∗, (4.18)

where

η∗ = sup{η(x) : x > 0},

η(x) =
1

x
ln




x exp
[
x

b∫
a

(b− s)p(s) ds
]

exp
[
x

b∫
a

(b− s)p(s) ds
]
− 1


 for x > 0.

Then the operator ` defined by (4.2) belongs to the sets V ([a, b]) and

V ′([a, b]).

Theorem 4.8. Let (4.15) holds and either

b∫

a

(s− a)p(s) ds ≤ 1

or the following two conditions are satisfied:

b∫

a

(s− a)p(s) ds > 1

and
t∫

τ(t)

b∫

s

p(ξ) dξ ds ≤ ζ∗,
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where

ζ∗ = sup{ζ(x) : x > 0},

ζ(x) =
1

x
ln




x exp
[
x

b∫
a

(s− a)p(s) ds
]

exp
[
x

b∫
a

(s− a)p(s) ds
]
− 1


 for x > 0.

Then the operator ` defined by (4.2) belongs to the sets V ([a, b]) and

V ′([a, b]).

Theorem 4.9. Let (4.12) holds and

b∫

a

p(t)

[ τ(t)∫

t

(τ(t) − s)(τ(s) − a)p(s) ds

]
×

× exp

[ b∫

t

(τ(s) − a)p(s) ds

]
dt < 1. (4.19)

Then the operator ` defined by (4.2) belongs to the sets V ([a, b]) and V ′([a, b]).

Corollary 4.5. Let (4.12) holds, p 6≡ 0, and

ess sup

{ τ(t)∫

t

(τ(s)− a)p(s) ds : t ∈ [a, b]

}
<

<

(
exp

[ b∫

a

(τ(s) − a)p(s) ds

]
− 1

)
−1

. (4.20)

Then the operator ` defined by (4.2) belongs to the sets V ([a, b]) and V ′([a, b]).

Theorem 4.10. Let (4.15) holds and

b∫

a

p(t)

[ t∫

τ(t)

(s− τ(t))(b − τ(s))p(s) ds

]
exp

[ t∫

a

(b− τ(s))p(s) ds

]
dt < 1.

Then the operator ` defined by (4.2) belongs to the sets V ([a, b]) and V ′([a, b]).

Corollary 4.6. Let (4.15) holds, p 6≡ 0, and

ess sup

{ t∫

τ(t)

(b− τ(s))p(s) ds : t ∈ [a, b]

}
<

<

(
exp

[ b∫

a

(b− τ(s))p(s) ds

]
− 1

)
−1

.
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Then the operator ` defined by (4.2) belongs to the sets V ([a, b]) and V ′([a, b]).

Theorem 4.11. Let ` ∈ Lab be an operator defined by (4.3), where

functions g and µ satisfy conditions one of the Theorem 4.1 or Theorem 4.3
or Corollary 4.1, while the functions p and τ satisfy conditions one of the

Theorem 4.5–4.10 or Corollary 4.3–4.6. Then ` ∈ V ([a, b]).

Theorem 4.12. Let ` ∈ Lab be an operator defined by (4.3), where

functions g and µ satisfy conditions one of the Theorem 4.2 or Theorem 4.4
or Corollary 4.2, while the functions p and τ satisfy conditions one of the

Theorem 4.5–4.10 or Corollary 4.3–4.6. Then ` ∈ V ′([a, b]).

Proof of Theorem 4.1. Let us first suppose

b∫

a

(µ(s) − a)(b− µ(s))g(s) ds 6= 0. (4.21)

Put

γ(t) =
1

b− a

[
(b− t)

t∫

a

(s− a)(µ(s)− a)(b− µ(s))g(s) ds+

+ (t− a)

b∫

t

(b− s)(µ(s)− a)(b− µ(s))g(s) ds

]
for t ∈ [a, b].

By virtue of (4.21),

γ(t) > 0 for t ∈ ]a, b[.

On the other hand, by virtue of (4.4) and (4.5),

γ′′(t) ≤ −g(t)γ(µ(t)) for t ∈ [a, b],

mes {t ∈ [a, b] : γ′′(t) < −g(t)γ(µ(t))} > 0.

Therefore, the function γ satisfies the conditions of Theorem 1.1.
Suppose now that

b∫

a

(µ(s) − a)(b− µ(s))g(s) ds = 0. (4.22)

Let the function u ∈ C̃ ′([a, b]; R) satisfy (0.20) and (0.4). It is easy to verify
that

u(t) = −
1

b− a

[
(b− t)

t∫

a

(s− a)u′′(s) ds

+ (t− a)

b∫

t

(b− s)u′′(s) ds

]
for t ∈ [a, b].
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Hence,
|u(t)| ≤M(t− a)(b− t) for t ∈ [a, b], (4.23)

where

M =
1

b− a

b∫

a

|u′′(s)| ds.

By virtue of (4.22) and (4.23), it follows from (0.4) that

u′′(t) ≥ 0 for t ∈ [a, b].

Taking now (0.20) into account, we get that (0.5) holds. �

Proof of Corollary 4.1. Suppose that (4.21) holds (if (4.22) holds, then, ob-
viously, ` ∈ V ([a, b]), see the proof of Theorem 4.1). Clearly for t ∈ [a, b]
the inequality

h(t) ≤ (µ(t)− a)(b− µ(t))

[ b∫

a

(µ(s)− a)(b− µ(s))g(s) ds− (b− a)

]
(4.24)

holds. Hence, on account of (4.6), the inequality (4.5) holds as well. On the
other hand, it follows from (4.24) and (4.21) that (4.4) is also fulfilled. �

Theorem 4.2 and Corollary 4.2 are proved analogously.

Proof of Theorem 4.3. Suppose that c ∈ ]a, b[ (if c = a or c = b, the theorem
is proved analogously). Without loss of generality, assume that

+∞∫

0

ds

α11 + α12s+ s2
=

(c− a)1−λ1

1− λ1
,

+∞∫

0

ds

α21 + α22s+ s2
=

(b− c)1−λ2

1− λ2
,

(4.25)

and that at least one of the inequalities (4.9) holds in the strict sense on a
set of positive measure.

Define functions ρ1 and ρ2 by equalities

+∞∫

ρ1(t)

ds

α11 + α12s+ s2
=

(t− a)1−λ1

1− λ1
for t ∈ ]a, c], (4.26)

+∞∫

ρ2(t)

ds

α21 + α22s+ s2
=

(b− t)1−λ2

1− λ2
for t ∈ [c, b[. (4.27)

By virtue of (4.25),

ρ1(t) > 0 for t ∈ ]a, c[, ρ2(t) > 0 for t ∈ ]c, b[, (4.28)

ρ1(c) = 0, ρ2(c) = 0. (4.29)
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Put

γ(t) =





exp

[
−

c∫

t

(s− a)−λ1ρ1(s) ds

]
for t ∈ [a, c[,

exp

[
−

t∫

c

(b− s)−λ2ρ2(s) ds

]
for t ∈ [c, b].

It follows from (4.26)–(4.29) that γ ∈ C̃ ′loc(]a, b[; R),

γ′′(t) ≤ 0 for t ∈ [a, b], (4.30)

γ(t) > 0 for t ∈ ]a, b[, (4.31)

γ′(t) > 0 for t ∈ ]a, c[, γ′(t) < 0 for t ∈ ]c, b[, (4.32)

γ(a) ≥ 0, γ(b) ≥ 0 (4.33)

and

γ′′(t) = −
α11

(t− a)2λ1

γ(t)−

[
α12

(t− a)λ1

+
λ1

t− a

]
γ′(t) for t ∈ ]a, c[,

γ′′(t) = −
α21

(b− t)2λ2

γ(t) +

[
α22

(b− t)λ2

+
λ2

b− t

]
γ′(t) for t ∈ ]c, b[.

(4.34)

By virtue of (4.9), (4.31), and (4.32), equalities (4.34) imply

γ′′(t) ≤ −g(t)γ(t)− (µ(t)− t)g(t)γ ′(t) for t ∈ [a, b]. (4.35)

Moreover, by virtue of the assumption that one of the inequalities (4.9)
holds in the strict sense on a set of positive measure, we get

mes {t ∈ [a, b] : γ′′(t) < −g(t)γ(t)− (µ(t)− t)g(t)γ ′(t)} > 0. (4.36)

Taking (4.30) into account, one can easily verify that

(µ(t)− t)γ′(t) ≥

µ(t)∫

t

γ′(s) ds for t ∈ [a, b].

This inequality, together with (4.35) and (4.36), implies

γ′′(t) ≤ −g(t)γ(µ(t)) for t ∈ [a, b],

mes {t ∈ [a, b] : γ′′(t) < −g(t)γ(µ(t))} > 0.

Therefore, the function γ satisfies all the conditions of Theorem 1.1. �

Theorem 4.4 is proved analogously.

Proof of Theorem 4.5. Theorem 4.5 follows from Corollary 1.3 with

ϕ1(t) = t− a, m = 2, and k = 1.

�

Proof of Corollary 4.3. It is not difficult to verify that inequality (4.14) im-
plies (4.13). �
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The proof of Theorem 4.6 and Corollary 4.4 are analogous.

Proof of Theorem 4.7. If (4.16) holds, then, obviously, the conditions of
Corollary 1.3 are fulfilled with ϕ1(t) = 1,m = 2, and k = 1. Therefore, we
will assume that (4.17) and (4.18) hold. On account of (4.17),

lim
x→0+

η(x) = −∞.

On the other hand, clearly,

lim
x→+∞

η(x) = 0.

Therefore, there exists λ > 0 such that

η∗ = η(λ). (4.37)

It follows from (4.18) and (4.37) that

exp

[
λ

τ(t)∫

t

s∫

a

p(ξ) dξ ds

]
≤

λ exp
[
λ

b∫
a

(b− s)p(s) ds
]

exp
[
λ

b∫
a

(b− s)p(s) ds
]
−1

for t∈ [a, b]. (4.38)

Clearly,
b∫

a

(b− s)p(s) ds ≥

τ(t)∫

a

s∫

a

p(ξ) dξ ds for t ∈ [a, b]. (4.39)

Inequalities (4.38) and (4.39) imply

(
exp

[
λ

τ(t)∫

a

s∫

a

p(ξ) dξ ds

]
− 1

)
exp

[
λ

τ(t)∫

t

s∫

a

p(ξ) dξ ds

]
≤

≤ λ exp

[
λ

τ(t)∫

a

s∫

a

p(ξ) dξ ds

]
for t ∈ [a, b].

Hence,

λ exp

[
λ

t∫

a

(t− s)p(s) ds

]
≥

≥ exp

[
λ

τ(t)∫

a

(τ(t) − s)p(s) ds

]
− 1 for t ∈ [a, b]. (4.40)

Put

γ(t) = exp

[
λ

t∫

a

(t− s)p(s) ds

]
− 1 for t ∈ [a, b].
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It is easy to check that

γ(t) > 0 for t ∈ ]a`, b], γ′(a`) = 0,

where a` is defined by (1.10), (1.12), and (4.2). On the other hand, by
virtue of (4.40),

γ′′(t) ≥ p(t)γ(τ(t)) for t ∈ [a, b].

Therefore, the function γ satisfies all the conditions of Theorem 1.3. �

Theorem 4.8 is proved analogously.

Proof of Theorem 4.9. Clearly,

f(v)(t) = p(t)

τ(t)∫

a

v(s) ds, ϕ(v)(t) =

t∫

a

f(v)(s) ds.

Put

f̄(v)(t)
def
= p(t)

τ(t)∫

t

(τ(t) − s)f(v)(s) ds.

It is not difficult to verify that

f(ϕ(v))(t) − f(1)(t)ϕ(v)(t) = p(t)

τ(t)∫

t

(τ(t) − s)f(v)(s) ds−

− p(t)

t∫

a

(s− a)f(v)(s) ds ≤

≤ f̄(v)(t) for t ∈ [a, b], v ∈ Ca([a, b]; R+).

On the other hand, (4.19) implies (1.19). Therefore all the conditions of
Corollary 1.5 hold. �

Proof of Corollary 4.5. It is not difficult to verify that inequality (4.20) im-
plies (4.19). �

The proof of Theorem 4.10 and Corollary 4.6 are analogous.
Theorems 4.11 and 4.12 immediately follow from Theorems 4.1–4.10,

Corollaries 4.1–4.6 and Theorem 1.7.

5. Examples

Example 5.1. Let

`(v)(t)
def
= −

8

(b− a)2
v

(
a+ b

2

)
.

Clearly, (1.8) holds. On the other hand, the function

u(t) =
4

(b− a)2
(t− a)(b− t) for t ∈ [a, b]
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is a nontrivial solution of the problem (0.10), (0.20). Therefore, according
to Remark 0.1, ` 6∈ V ([a, b]).

Example 5.2. Let

`(v)(t)
def
= −

2

(b− a)2
v(b).

Evidently, (1.9) holds. On the other hand, the function

u(t) =
2

(b− a)2

(
1

2
(t− a)2 + (t− a)(b− t)

)
for t ∈ [a, b]

is a nontrivial solution of the problem (0.10), (0.30). Therefore, according
to Remark 0.1, ` 6∈ V ′([a, b]).

Example 5.3. Let

g(t)
def
=

π2

(b− a)2
, µ(t)

def
= t

and

λ1 = λ2 = 0, α12 = α22 = 0, α11 = α21 =
π2

(b− a)2
, c =

a+ b

2
.

It is not difficult to verify that all inequalities in the conditions (4.8) and
(4.9) are satisfied as equalities. On the other hand, the function

u(t) = sin
π(t− a)

b− a
for t ∈ [a, b]

is a nontrivial solution of the problem (0.10), (0.20). Therefore, according
to Remark 0.1, ` 6∈ V ([a, b]).

Example 5.4. Let

g(t)
def
=

π2

4(b− a)2
, µ(t)

def
= t

and

λ = 0, α2 = 0, α1 =
π2

4(b− a)2
.

It is not difficult to verify that all inequalities in the conditions (4.10) and
(4.11) are satisfied as equalities. On the other hand, the function

u(t) = sin
π(t− a)

2(b− a)
for t ∈ [a, b]

is a nontrivial solution of the problem (0.10), (0.30). Therefore, according
to Remark 0.1, ` 6∈ V ′([a, b]).
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